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Abstract—The increasing popularity of virtual reality (VR) in
a wide spectrum of applications has generated sensitive personal
data such as medical records and credit card information. While
protecting such data from unauthorized access is critical, directly
applying traditional authentication methods (e.g., PIN) through
new VR input modalities such as remote controllers and head nav-
igation would cause security issues. The authentication action can
be purposefully observed by attackers to infer the authentication
input. Unlike any other mobile devices, VR presents immersive
experience via a head-mounted display (HMD) that fully covers
users’ eye area without public exposure. Leveraging this feature,
we explore human visual system (HVS) as a novel biometric
authentication tailored for VR platforms. While previous works
used eye globe movement (gaze) to authenticate smartphones or
PCs, they suffer from a high error rate and low stability since
eye gaze is highly dependent on cognitive states. In this paper,
we explore the HVS as a whole to consider not just the eye
globe movement but also the eyelid, extraocular muscles, cells,
and surrounding nerves in the HVS. Exploring HVS biostructure
and unique HVS features triggered by immersive VR content can
enhance authentication stability. To this end, we present OcuLock,
an HVS-based system for reliable and unobservable VR HMD
authentication. OcuLock is empowered by an electrooculography
(EOG) based HVS sensing framework and a record-comparison
driven authentication scheme. Experiments through 70 subjects
show that OcuLock is resistant against common types of attacks
such as impersonation attack and statistical attack with Equal
Error Rates as low as 3.55% and 4.97% respectively. More
importantly, OcuLock maintains a stable performance over a 2-
month period and is preferred by users when compared to other
potential approaches.

I. INTRODUCTION

Virtual reality (VR) technology is boosting exponentially.
The market size of VR has witnessed an increase of 178%
from 2016 to 2018 [51]. By interacting with head-mounted
displays (HMD), a user can enjoy immersive virtual content,
making VR become a new personal computing paradigm [33],
[55]. Due to the diverse applications of VR in entertainment,
healthcare, education, and military, sensitive data can be ac-

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA

ISBN 1-891562-61-4

https://dx.doi.org/10.14722/ndss.2020.24079
www.ndss-symposium.org

cessed via HMD. For example, credit card information is
often stored in HMD for the convenience of games and add-
ons purchase in VR App stores [38]. In medical applications,
patients’ CT scan models have been viewed in VR HMD to
assist the diagnosis of structural abnormalities on human body
[24]. Stimuli implying patients’ traumatic experience have
been displayed in VR during psychological exposure therapies
[54]. In military applications, pilots learn the operation of
top-secret aircrafts in VR simulator [46]. Protecting HMD
from unauthorized access thus becomes critical in guaranteeing
users’ experience and privacy in VR systems [52].

Unfortunately, VR computing is still at its infancy and
state-of-the-art HMD authentication methods suffer funda-
mental limitations in security. Recent systems have adopted
traditional unlock pattern, PIN, and graphical passwords in
VR through new input modalities such as remote controllers
and head movement navigation [36], [13]. Similarly, common
behavior biometrics such as head movement [28], [44] and
body motion [40] were also proposed to authenticate users.
However, all these systems expose the entire authentication
action to the public, making various attacks possible through
observation. For example, adversaries have successfully con-
ducted side-channel attacks by observing user input behavior
and inferring the virtual input [14], [30]. Since wearing HMD
blocks users’ real-world visuals and decreases their situation
awareness [17], the threat of observation-based attacks in VR is
significantly higher than that in traditional computing devices.

We envision an unobservable solution that utilizes the
distinctive human visual system (HVS) for VR authentication.
Since human eyes are fully covered by HMD without public
exposure, it is unlikely, if not impossible, for nearby adver-
saries to observe users’ eye activities and execute observation-
based attacks. While eye gaze biometrics have been used in
PCs and smartphones [41], [45], [47], [56], harnessing HV'S for
stable VR authentication remains challenging. The error rate of
previous eye gaze based authentication is still high (e.g., EER
of 6.3% [45]) and the performance quickly degrades over time
[47]. One likely reason is that eye gaze pattern, as a behavioral
biometric, varies when a user attempts the authentication under
different cognitive states and such variability becomes more
significant as time passes by.

In this paper, we propose to explore the HVS as a whole
to build a stable and unobservable VR authentication system.



We utilize the fact that in addition to the eye globe many
other components in the HVS such as the eyelid, extraocular
muscles, cells, and surrounding nerves conduct unique activ-
ities that can be triggered and sensed in VR environment. In
addition to the unobservable nature, comprehensive analysis
of the entire HVS in VR also enhances the authentication
performance. First, unlike prior eye gaze biometrics that only
focused on the movement of eye globe [41], [45], [47], [56],
considering the physiological characteristics of various HVS
components in the authentication can enhance the performance
stability since HVS biostructure is far less dependent on the
time-varying cognitive states of users. Second, some less-
intuitive features of HVS cells and nerves (besides traditional
eye gaze) not presented in physical reality can be triggered
by immersive VR content [39] and utilized to increase the
distinctiveness among users. These unique and temporally
stable features consequently improve the average error rate.

Realizing such a biometric authentication system for VR
HMD is non-trivial. While eye globe movement has been
captured by previous works using monitor-mounted eye track-
ers or high-resolution cameras in an illuminated open space,
we must trigger and measure low-level activities of HVS
components that are not clearly visible but uniquely presented
in dark VR environment. To tackle this challenge, we propose
an electrooculography (EOG) based HVS sensing framework
for VR. EOG measures the electrical signals resulted from
biological activities in the HVS and can characterize both
behavioral and physiological features of the HVS in VR
environment. Since the foam face cover of current VR HMD
has direct contact to eye sockets and their surrounding nerves,
we attach thin electrodes on the cover to measure low-level
HVS signals which are otherwise unavailable via eye trackers
or video cameras in the context of PCs and smartphones. We
also design a set of visual stimuli to trigger EOG signals that
manifest desirable HVS features.

Another challenge of the proposed authentication system
is that discriminative features must be extracted from the
comprehensive HVS data for efficient model training and
reliable authentication. Previous biometric systems [29], [19],
[7] trained a two-class classifier to differentiate the owner
and others, but a new model had to be trained for every
new owner. We propose a different authentication scheme to
remove the model training and owner enrollment overhead.
Specifically, EOG is first processed to recognize common HVS
activities and extract a suite of symbolic features representing
the behavior and biostructure of various HVS components.
Each feature of the input will be compared with that of the
owner’s record to generate a matching score. The matching
scores for all features are fed to a comparator to indicate if
the input matches the owner’s record. That way, we only need
to train one comparator and can use it for all future owners.

We validate the proposed authentication system, referred as
OcuLock, through extensive evaluation. During our evaluation
that involves 70 subjects and lasts for 2 months, we validate the
stability, security and user preference of OcuLock. In the secu-
rity analysis, the system achieves Equal Error Rates of 3.55%
and 4.97% against impersonation attack and statistical attack
respectively. The reliability study over a 2-month period shows
that the model can maintain a far more stable performance
than existing eye gaze behavior based approach. Moreover, the
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Fig. 1: HVS structure (left) and standing potential (right).

user study demonstrates that Oculock is preferred over other
authentication approaches due to its convenience, security, and
social comfort.

To summarize, the contributions of this paper include:

e  We propose an EOG-based framework to measure the
HVS as a whole for VR authentication, where visual
stimuli are designed to trigger the HVS response and
EOG is collected to characterize the HVS.

e  We design a record-comparison driven authentication
scheme, where distinctive behavioral and physiologi-
cal features are extracted and accurate authentication
decisions are made.

e  We perform an extensive evaluation of the proposed
OcuLock system including reliability performance of
the authentication, security analysis against several
attacks, and user study of VR HMD authentication.

II. BACKGROUND
A. Human Visual System

As shown in Figure 1, human visual system (HVS) is
primarily comprised of four components: eyelid, eye globe,
their surrounding tissues, and extraocular muscles, as well
as the bidirectional connecting pathways to the visual cortex
and other parts of the brain. The eyelid opens and closes
regularly to expose the cornea to the outside, giving vision
to humans. The eye globe absorbs incoming light through
the cornea (its outermost layer of tissues) and shines it on
the retina (its innermost and light-sensitive layer of tissues).
After the retina transduces the received images into electric
pulses, the connecting pathway delivers the pulses to the brain.
Conversely, the brain and the nervous system can also send
control signals to extraocular muscles, which contract or relax
to motivate the eye globe rotation and the eyelid movement.
For example, signals from the sympathetic nervous system are
received by eyes to trigger the reaction of alert [26].

Since the size, shape, position, and anatomy of the HVS
vary from person to person [21], these HVS components
and their daily interaction present unique features that can
distinguish people. The opening and close of the eyelid are of
different extent and speed due to the distinctive muscle strength
of HVS among people [1]. Similarly, the eye globe rotation for
each individual is only able to reach a limit determined by the
size and shape of the eye globe [53]. In order to transport
nourishing substances to the retina and remove wastes via the
connecting pathway, a layer of cells in the posterior part of



the eye globe called retinal pigment epithelium (RPE) have
to conduct metabolism. The metabolic rate of RPE depends
on the activeness of cells, which is unique among individuals
[49]. Finally, the sympathetic signals transported to the eyes
show unique energy patterns dependent on the biostructure of
people’s sympathetic nerves [26].

Apart from the aforementioned physiological features,
HVS also involves voluntary movement that demonstrates
discriminative patterns. Eye globe typically has two basic types
of movement, where fixations are sessions when eyes maintain
a stationary gaze on a single location and saccades are sessions
between two fixations when eyes move in the same direction
quickly. The trace of fixations and saccades generates the scan-
path, which varies among people and is uniquely influenced
by individuals’ personal emotion and preference [41]. Since
immersive VR display triggers different eye globe movement
from traditional display [39], comprehensive analysis of eye
gaze could benefit the authentication.

Building on these facts, we conclude that HVS contains
unique physiological biostructure and voluntary movement to
authenticate VR users. While the eye globe movement was
individually used as gaze biometrics, we consider the HVS as
a whole in this paper to explore low-level visual activities and
the interaction among HVS components.

B. Electrooculography

Electrooculugraphy (EOG) measures the electric voltage
variance between two sensing positions on the skin near
human eyes [5]. The voltage variance is resulted from standing
potential (shown in Figure 1), a steady electric potential field
existing between cornea (positive pole) and retina (negative
pole). The standing potential is formed by transepithelial
potential (TEP), the difference of electric potential between
two sides of RPE cell membrane, which is originally caused
by the metabolism of RPE in the HVS.

As EOG measures the cornea-retinal standing potential that
exists between the front and the back of the eyes, it is closely
related to all major components of HVS. If the eye globe
moves from the center position toward one of the two EOG
sensing positions, this sensing position becomes closer to the
positive side (front) of the eye globe and the opposite sensing
position becomes closer to the negative side (back). Assuming
that the resting potential is constant, the recorded potential
between the two sensing positions is a measure of the eye’s
rotating angle [4]. Similarly, when eyelid moves, the electric
pulses generated by extraocular muscles cause a rapid rise
and drop of voltage in the eye area which can be detected
by EOG [1]. EOG is also able to measure the activeness of
RPE cells and sympathetic nerves as the standing potential
is highly influenced by the RPE metabolism and sympathetic
signal transportation. [49], [26]. Therefore, it is feasible to
exploit EOG to measure the characteristics of HVS.

III. PROBLEM STATEMENT

A. System Model

We assume a general VR viewing scenario as shown in
Figure 2. The system includes an owner and a VR HMD. The
VR HMD is equipped with electrodes to collect EOG signals.
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Fig. 2: A general VR viewing scenario.

The VR HMD analyzes the EOG data and compares it with the
owner’s record to make the authentication decision. The VR
HMD that processes EOG data and authenticates users cannot
be forced to run unintended code. The owner is enrolled to
this VR HMD during which she views the visual stimuli by
moving her eyes around. Templates of EOG records for all
enrolled owners are stored in the VR HMD. The enrollment
is a secure process.

The system involves a visual channel between the attacker
and the owner. The attacker can observe who is using the
HMD and thus know the identities of all enrolled owners. The
attacker can also visualize the owner’s head and body motion if
there is any. However, since the owner’s eyes and surrounding
areas are fully covered by the HMD without public exposure,
adversaries cannot observe the displayed content or the owner’s
eye movement without alerting the owner.

B. Threat Model

We assume a powerful adversary who has enough time
and space to freely perform attacks. As HMD is a detachable
device that can be unplugged and carried along, attackers
can steal the device and conduct attacks in another place.
Furthermore, many unauthorized purchases via VR HMD are
made by people who are known to the owners without ill
intent, e.g., their children [16]. We also assume that the
attacker has not installed malware in the HMD to monitor the
input. The attacker has not attached additional hardware to the
HMD to capture signals. We do not consider the attack that
requires nearby complicated device either, e.g., the attack using
an antenna near the target HMD to capture electromagnetic
emanations and infer user input. However, the attacker may
utilize other methods to indirectly obtain information related
to user input, e.g., by statistical attack. The objective of the
adversaries is to input EOG either directly or indirectly to the
VR HMD in order to bypass the authentication. We consider
the following types of attacks.

o Impersonation Attack: After observing the owners’
authentication action, the attacker puts on the HMD
and impersonates one of the enrolled users in the
system. The attacker then attempts the authentication
by providing her own EOG signal.

e  Statistical Attack: The adversary obtains the statistics
about EOG signals for a population similar to the
victim owner. The attacker forges new EOG records
with the most probable feature values and then attempt
the authentication with a higher chance of success.
This can be done by observing the enrolled owners and
identifying a similar population, e.g., college students.
Then the attacker can let a target population attempt
the HMD authentication and collect a dataset of EOG
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Fig. 3: The architecture of OcuLock.

signals for record forgery. The forged record can be
fed to the VR HMD by connecting a voltage generator
or injecting the signal to the authentication code.

C. Design Goal

To protect the VR HMD in the above scenario, OcuLock
has the following design goals.

e  Secure: OculLock must be resistant to all of our
proposed attacks from adversaries when the HMD is
left unattended or stolen.

e  Reliable: OculLock must have small error rates to
prevent unauthorized access. The performance should
keep stable overtime to avoid the frequent update of
authentication biometric.

e  Usable: The authentication process must be fast and
simple. The users should not wear additional sensing
devices besides the HMD. No credentials should be
memorized.

IV. SYSTEM ARCHITECTURE

In this section, we overview the proposed OculLock system
and its authentication protocol. As depicted in Figure 3,
OcuLock is comprised of an EOG-based HVS sensing frame-
work and a record-comparison driven authentication scheme.

When a user claims her identity and attempts to access the
HMD, OculLock renders VR visual stimuli on the screen. The
visual stimuli are designed to trigger unique HVS activities for
VR authentication. While the user is viewing the VR scene,
EOG signals are acquired through electrodes embedded in the
HMD. Various types of noise are filtered during the acquisition
to generate clean EOG signals.

Next, the EOG signal will be analyzed to detect key HVS
activities such as eye globe and eyelid movement by using
wavelet domain analysis. As a result, a trace of HVS activities
manifesting various features is produced. Finally, based on the
derived trace of HVS activities, the clean EOG is re-examined
to extract the biostructure and behavior features of HVS. The
extracted feature vector of the current attempt is compared
with that of the claimed owner. The comparison result for
each feature is fed to a machine learning model to determine
whether the current attempt is from the owner or an attacker.

V. EOG-BASED HVS SENSING

In this section, we introduce the EOG-based HVS sensing
framework proposed by Oculock. Specifically, we design
visual stimuli to trigger EOG response in VR and then collect
clean EOG signals manifesting distinctive HVS characteristics.

A. Visual Stimuli Design

1) Design Principle: Without proper stimulation, users’
eye movement may be minimal and some HVS characteristics,
e.g., the extent of eye globe rotation, may not be manifested.
Hence, it is important to design visual stimuli to trigger desired
HVS activities.

In consideration of usability, it is important to keep the
stimuli simple and intuitive so that no special efforts are
required. The only instruction for OcuLock’s users is that
they follow moving objects using their eyes. Users need not
memorize any types of credentials during the authentication.
They also do not need to wear extra hardware or take off the
HMD. This level of user efforts is minimal and is consistent
with existing authentication methods, such as speaking for
voice recognition and typing passwords.

The procedure of stimuli design is as follows. First, three
typical types of eye behavior that trigger eye globe/eyelid-
level and cell/nerve-level HVS activities were identified [47]:
fixed-trajectory movement, free exploration, and involuntary
micro-saccades. Second, to elicit the behavior, we designed
Fixed-Route, City-Street, and Illusion, respectively, in a 2D
image form. Third, to exploit the powerful graphic rendering
techniques in VR, the 2D stimuli were converted to 3D.

All visual stimuli are displayed on the main viewport that
human eyes face when the HMD is put on. The viewing range
of the viewport is 90 degrees from left to right and 60 degrees
from top to bottom. Such a setting allows users to view all
elements of the stimuli by only rotating their eyes without the
need for head navigation [25]. The visual stimuli should also
elicit distinctive HVS responses so that OcuLock is able to
discover the uniqueness of each user in VR.

2) Visual Stimuli: We design three types of visual stimuli to
investigate their impacts on authentication results. In the Fixed-
Route stimulus (Figure 4a), we follow the principle of simplic-
ity and present a 3D spherical red ball changing positions step
by step from left to right and then from top to bottom in a
fixed trajectory. The ball stays at each intermediate positions
for a given time interval. We aim to study if such a simple
stimulus can trigger enough HVS response for authentication.



(a) Fixed-Route;

(c) Mlusion.

Fig. 4: Three visual stimuli. (b) is a static scene while the other
two are dynamic.

By responding to this stimulus, all users will have almost the
same scanpath. However, the micro-saccades determined by
extraocular muscles [8] could be different among users. Since
the ball moves from one end of the viewport to the other, it
forces the user to rotate her eye globe as much as possible to
track the ball. The extent of eye rotation distance depending on
the eye globe size and shape is then triggered and collected in
EOG signals. As users also blink during the session, it provides
an opportunity to observe the extent and strength of eyelid
action [1]. Furthermore, the above eye response is triggered
along with low-level cell and nerve activities. Therefore, HVS
characteristics such as metabolism intensity and sympathetic
signal energy would be reflected.

The City-Street stimulus (Figure 4b) is a 3D model of a
street containing diverse elements such as buildings, vehicles,
billboards, and cranes. We aim to investigate how users re-
spond to static objects in a VR scene through this stimulus.
Since all objects are static, users will not follow any moving
objects. Instead, they will explore the VR scene freely. The
scanpath thus reflects the unique viewing interests and habits
of a user [41]. Similar to Fixed-Route, the low-level HVS
signals from cells and muscles can be triggered by the user’s
movement.

Finally, the [llusion stimulus (Figure 4c) contains nine
spinning vortexes, among which one special vortex is growing
larger and shrunk to its original size within a short time
interval. Each vortex takes turns to become the special one in a
fixed order (from left to right and top to down). By following
the expansion and shrinkage of the spinning vortexes, users
present a fixed scanpath but different low-level HVS data
as in Fixed-Route. The physiological features of eye globe
rotation can also be triggered since the vortexes cover the
entire viewport. Moreover, since spinning vortexes elicit more
micro-saccades and blinks [8], this visual stimulus is designed
to characterize fine-grained HVS actions and more cell and
muscle activities.

The benefit of the three visual stimuli is that they are
designed to trigger a set of physiological and behavioral
features of HVS. It is unlikely for adversaries to forge an
EOG record containing both similar scanpath and extensive
low-level HVS information.

B. EOG Signal Acquisition

1) Hardware Setup: We propose to measure the low-level
HVS activities through EOG [5]. By attaching thin electrodes
on the face cover of HMD and placing them in the appropriate

Fig. 5: Electrodes placement for EOG acquisition.
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Fig. 6: The frequency domain of raw EOG signals. Various
types of noise can be removed by filters.

positions near eye sockets as shown in Figure 5, EOG measures
the electric voltage variance around eye areas. As shown in
the figure, we attach two electrodes to the outer edges of
eyes to collect the horizontal voltage variance and another two
electrodes to the upper and lower part of the right eye to collect
the vertical voltage variance. One more electrode is attached
to the forehead for signal reference.

We measure the variance detected by the two groups of
electrodes at a sampling rate of 200 Hz through two channels.
Each channel is equipped with an adapter which integrates
the voltage variance detected by electrodes into electrical
signals. The electrical signals are then digitized and the raw
EOG signals representing horizontal and vertical variance are
generated.

The proposed EOG-based sensing enables the measurement
of HVS signals that are otherwise unavailable in previous
systems capturing high-level eye gaze patterns. Due to the
miniature nature of electrodes, users will not be burdened
by the weight of the extra hardware. In fact, EOG sensors
have been embedded in commercial smart glasses, e.g., JINS
MEME, to sense eye activities [32]. More importantly, the
collected EOG signal is a time series that can be processed
and analyzed without high computation overhead.

2) Noise Removal: After the raw signals are collected,
OcuLock removes various types of interference from the
horizontal and vertical EOG and generate two clean signal
components, FOG) and FOG,, for further authentication
analysis. The measured raw electrical signals contain DC bias,
power-line interference, and electricity generated by neurons
and muscles when subjects move their head and body during
EOG collection. As illustrated in Figure 6, since each type
of noise is of a specific frequency, we remove them using
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Fig. 7: EOG signals of two users are distinctive.

filters. The DC bias has a frequency lower than 0.05 Hz. The
frequency of power-line interference is around 60 Hz. As for
noise from head and body movement, its frequency is much
higher than the frequency bands of EOG signals that is between
0 to 35 Hz. Therefore, OculLock applies a bandpass filter to
pass frequencies between 0.05 and 35 Hz.

3) Sample EOG Data: In order to validate the feasibility
of EOG-based HVS sensing, we conducted a pilot study to
investigate the EOG of different VR users. To obtain EOG
signals containing enough information, we carried out two
experiments with the Fixed-Route and City-Street stimuli,
respectively. The detailed experiment setup is consistent with
the main evaluation and will be elaborated in Section VIL

We show the noise-removed horizontal EOG, EOG),, and
vertical EOG, FOG,, of two users in Figure 7. It can be seen
that the EOG signals of user X and user Y are significantly
different for both experiments in terms of both horizontal and
vertical EOG. Since we set users’ right side as the positive
pole for EOGY}, a positive FOG), indicates users are looking
to their right. Similarly, a positive FOG, implies eyes looking
up. As shown in Figure 7a and 7b, users’ EOG signals achieve
a similar fluctuation trend but present distinct details in the
first experiment. This is because users followed an identical
scanpath while viewing the Fixed-Route. However, as EOG
is also impacted by other HVS interaction and biostructure,
the signals still present an obvious difference. For example,
different size of eye globe results in the different magnitude
of EOG when gazing at the same location. For the City-Street
(Figure 7c and 7d), users’ scanpath becomes different due to
the free exploration and their different areas of interest, which
makes the EOG signals more distinct. As we will show in
Section VI-B, in addition to the movements of eye globe that
are straightforward to visualize using the EOG, there are other
important features that can be extracted from the temporal
and frequency domain of EOG signals to characterize HVS
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Fig. 8: Wavelet-transformed EOG marked with blinks (B),
saccades (S) and fixations (F).

activities and biostructure.

VI. RECORD-COMPARISON DRIVEN AUTHENTICATION

In this section, we introduce the record-comparison driven
authentication scheme of OcuLock. In particular, OculLock
first analyzes the clean EOG to recognize a trace of HVS
activities including saccades, fixations, and blinks. OcuLock
then extracts HVS physiological and behavioral features from
the clean EOG by utilizing the activity trace and compare the
input with the owner’s record for authentication decisions.

A. EOG Signal Processing

1) Saccade and Fixation Recognition: As discussed in Sec-
tion II-A, saccades and fixations are the two basic movements
of eye globe that manifest many behavioral and physiological
HVS features. In OculLock, we employ a wavelet transform
based algorithm to detect saccades and fixations in order to
assist the feature extraction. This algorithm is transplanted
from a prior study [5]. It can easily identify a signal segment
of specific shape and has been shown to achieve good perfor-
mance on eye movements recognition. A wavelet-transformed
EOG signal is shown in Figure 8. The segments of high EOG
changing rate (high eye rotation speed) appear as peaks or
valleys in the transformed signal. By applying a threshold thsq
(horizontal red dashed lines) and removing segments shorter
than 10 ms [11], saccades can be detected (marked with “S”).
Similarly, all segments between the thresholds thsg and —thgg
and longer than 100 ms are marked as fixations [31] (“F”).

To optimize the threshold th,y for our implementation, we
collected the ground truth of saccade and fixation for 50 EOG
records from 5 users and tested the algorithm performance
under varying thgsy. By following the methodology in [5],
we inspected the EOG visually and identified 698 horizon-
tal saccades and 774 vertical saccades as the ground truth.
To evaluate the accuracy of the algorithm, we compare the
saccades recognized by the algorithm with the ground truth
and calculate F1 Score defined as follows,

TP _ . TP
_ TP+FP * TP+FN
F1 Score = 2% —5 5 (1)

TP+FP + TP+FN

where TP, FP, and FN are the number of true positive,
false positive and false negative, respectively. We investigate
the accuracy with the threshold varying from 0.01 to 0.05 in



TABLE I: List of HVS features in OcuLock (“V”=Vertical; “H”’=Horizontal).

Index Name EOG-based Calculation Category Component
1 Eyelid Close Speed Slope of EOG signal during blink close phase. Physiological | V
2 Eyelid Open Speed Slope of EOG signal during blink open phase. Physiological \Y
3 Eyelid Stretch Extent Amplitude of EOG signal during blink close phase. Physiological \Y
4&5 Metabolism Intensity Arden Ratio (AR). Physiological | H & V
6 Extent of Right Rota. Dist. Max amplitude of positive EOG/AR. Physiological | H
7 Extent of Left Rota. Dist. Max amplitude of negative EOG/AR. Physiological | H
8 Extent of Up Rota. Dist. Max amplitude of positive EOG/AR. Physiological | V
9 Extent of Down Rota. Dist. | Max amplitude of negative EOG/AR. Physiological | V
10 & 11 Sympathetic Energy Wavelet transform amplitude from 0.05 to 0.5 Hz. Physiological | H & V
12 & 13 | Fixation Start Time Start time of fixation. Behavioral H&V
14 & 15 | Fixation Duration Duration of fixation. Behavioral H&V
16 & 17 | Fixation Centroid Average EOG amplitude during a fixation. Behavioral H&V
18 & 19 | Saccade Start Time Start time of saccade. Behavioral H&V
20 & 21 Saccade Duration Duration of saccade. Behavioral H&V
22 & 23 Saccade Location 5-point sampling of saccade path. Behavioral H&V
1.00 1.00 SSRETT PP .
AN reliability by considering low-level HVS biostructure and
0.75 075 / behavior. Given the trace of HVS activities recognized in
g g / Section VI-A, we go back to the EOG signals and extract these
$0.50 $H0.50| features. For example, based on the time interval of a blink,
= - f. 50 ms we can derive the eyelid stretch extent by inspecting the EOG
0.25 m‘ 0.25 ]9 ms amplitude during that interval. We first extracted a long list
= Vertical 200 ms of features. Then we tested the impact of removing each one
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Fig. 9: Saccade/fixation (left) and blink (right) detection algo-
rithms can be optimized by seeking the best thresholds.

50 steps. As shown in Figure 9, the algorithm achieves the
highest F1 score when ths4 reaches 0.036. We therefore select
it for saccade and fixation recognition.

2) Blink Recognition.: As the biostructure features of the
eyelid are only presented when the eyelid is moving, i.e.,
during a blink, we need to recognize all eye blinks before the
feature extraction. A blink is the rapid closing of the eyelid
accompanied by a rapid eye globe rotation. In the wavelet-
transformed domain, the vertical signal component appears as
a signal peak followed by a signal valley [5] without a long
interval. Hence, blinks can be recognized by first applying two
thresholds to the transformed FOG, to identify segments as
peaks or valleys, i.e., thyy and —thyg (two horizontal green
dashed lines). An interval threshold th, is then adopted to
drop those segments that are successive saccades. As shown
in Figure 8, the segment marked with “B” represents a blink.

To optimize the thresholds for OcuLock, we identified 359
blinks as ground truth from the same set of EOG records
mentioned above. We compared the recognized blinks with
ground truth across varying thyg from 0.01 to 0.08 (in 70
steps) and different th; (50, 100, 150, and 200 ms). As shown
in Figure 9, the algorithm achieves the optimal F1 score of
0.972 using thpg at 0.052 and th; at 200 ms, which are selected
for blink recognition.

B. Feature Extraction

In contrast to existing eye gaze authentication for smart-
phones and PCs with a high error rate and variability, OcuLock
explores the HVS as a whole and improves the performance

feature from the model. If the accuracy of the model remained
the same after we removed a feature, then this feature was
removed permanently. For example, the median eyelid close
speed was removed since it has duplicated effects as eyelid
close speed distribution.

The list of features is summarized in Table I. Most features,
e.g., eyelid close speed, have multiple samples because an HVS
activity, e.g., eye blink, can happen multiple times in an EOG
record. In this case, we store the feature as a distribution in
the form of probability density function (PDF). This unique
design enables OcuLock to capture a comprehensive view of
the feature compared to previous eye-based feature extraction
that generates a single scalar number for a feature. For features
with a single sample, e.g., metabolism intensity, we represent
them via a scalar number as well. We extract features from
both horizontal and vertical EOG signals except for the eyelid-
related features that are only extracted from EOG,. We
indicate this by “H” or “V” in Table L.

Physiological Features. Eyelid features decided by the
unique eyelid biostructure and extraocular muscles are ex-
tracted from the original EOG signal and the eyeblink trace.
Each blink is presented as a peak in the original EOG signal
(before transform), where upward-going signal indicates the
eyelid close phase and downward-going signal implies the
eyelid open phase. Hence, eyelid close speed can be calculated
by the slope of the upward-going EOG segment and eyelid
open speed can be computed by the slope of the downward-
going EOG segment. Eyelid stretch extent signifies the largest
extent the eyelid can move and can be represented by the
maximum amplitude of EOG signal during eyelid close phase.

As discussed in Section II-B, the metabolism intensity of
RPE, uniquely determined by surrounding cell conditions, can
be revealed by the values of standing potential [4] and thus
can be measured by EOG. We derive metabolism intensity
by calculating the Arden Ratio. Arden Ratio is of positive
correlation with the RPE metabolic rate and has been used



by doctors to examine the metabolism of RPE cells [43]. To
calculate the Arden Ratio, we first search through the entire
EOG signals and derive the absolute values of the signal at
all peaks and valleys. The ratio between the maximum and
minimum absolute values is derived as the result.

The distinctive size and shape of the eye globe result in
different rotating and reachable distance of eyes for different
users. The EOG signal has a linear relationship to the rotating
angle of eyes and the coefficient is determined by the standing
potential [4]. We approximate the standing potential by the
Arden Ratio [43] and then derive the rotating range in four
directions (up, down, left and right) by dividing the EOG
amplitude by the Arden Ratio. For example, the extent of right
rotating distance represents the angular distance between the
central reference point and the rightmost point the eye can
reach. We calculate this feature by the maximum amplitude of
all peaks in EOG}), divided by the horizontal Arden Ratio.

Sympathetic signals show unique energy patterns which de-
pend on the nature and activeness of individual’s sympathetic
nerve systems. Such signals concentrate between 0.05 and 0.5
Hz frequency band of EOG signals. We derive its frequency
domain information by re-using the wavelet transform results
of EOG signals across the above frequency bands. Since this
is already computed in the signal processing step, sympathetic
signals can be extracted without additional overhead.

Behavioral Features. This category of features character-
izes the voluntary movement of the eye globe that signifies
users’ unique viewing habits and preferences. They are ex-
tracted from the trace of fixations and saccades detected from
EOG signals.

We extract the start time, duration, and centroid position
of all fixation instances. Fixation centroid can be derived by
computing the average EOG signal amplitude during a fixation,
which represents the horizontal and vertical offset with respect
to the resting position. Since these features are stored as a
distribution, fixation start time and duration imply the temporal
characteristic of fixations while fixation centroid indicates the
spatial property of fixations. Similarly, we extract the saccade
start time, saccade duration and saccade location. Saccade
location represents EOG values at five moments during a
saccade: the beginning, the first quarter time of the saccade, the
medium moment, the third quarter time, and the ending. Both
temporal and spatial characteristics of saccades are extracted.

C. Authentication Decision

To make the authentication decision, previous biometric
authentication systems [29], [19], [7] use the extracted features
to directly trained a classifier in order to differentiate a given
legitimate user from all other users. As a result, a classifier
is built for each enrolled owner. Every time a new owner is
enrolled, a new classifier has to be trained from scratch to
recognize the new owner’s feature patterns. Such a method-
ology requires extra overhead for classifier training during
owner enrollment and thus could degrade users’ experience
in interacting with the authentication system.

To address this issue, we propose a new authentication
mechanism for OcuLock to utilize the distinctive features. Af-
ter features are extracted from the EOG signals, a comparison

Fig. 10: Experiment setup.

algorithm is adopted to compare each feature of the input EOG
with that of the owner’s EOG. A matching score indicating
the similarity and ranging from O to 1 is generated for each
feature. The resulting matching scores for all features are fed
to a comparator to determine whether the input EOG matches
the owner’s EOG, i.e., whether the current user is the owner.
If the matching scores of all features are high, the input record
is determined to be from the owner.

Similar to previous methods, this procedure stores the
features, or a template, of the owner. However, it does not
require repeated classifier training for each enrolled owner.
The comparison algorithm can accept the features of any
input user and any owner and gauge the similarity. Therefore,
only one comparator that makes the authentication decision
based on a set of matching scores needs to be trained. This
mechanism significantly reduces enrollment complexity and
improves system usability.

As we will show in Section VIII, the choice of the
comparison algorithm and the machine learning model to build
the comparator affect the authentication performance. Hence,
it is important to select the optimal comparison algorithm and
comparator model.

VII. EXPERIMENT SETTING

Apparatus. As shown in Figure 10, the prototype of
OcuLock consists of a VR HMD, a EOG acquisition device,
and a laptop. The VR HMD is a Lenovo Mirage Solo, the
first standalone VR HMD powered by Google Daydream
[18]. The EOG acquisition device is a BIOPAC MP36R that
measures EOG at a sampling rate of 200 Hz via five Ag-AgCl
series lead electrodes. The Dell Inspiron 5577 laptop with a
2.8 GHz CPU is connected with the acquisition device for
processing the signal records. The authentication decision is
then sent back to VR HMD. Our proof-of-concept prototype
adopts a separate data acquisition and processing device for the
purpose of software compatablity. However, we point out that
integrated device including above three component is already
commercially available [32]. Therefore, our prototype design
does not decrease the potential of OcuLock.

Subjects. We recruited 70 subjects (27 females and 43
males, age from 19 to 32) through public advertisements and
email lists. All participants are university students. Among
these subjects, 24 of them wore glasses and they did not
remove their glasses during the experiments. 23 subjects have
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Fig. 11: F1 scores for three stimuli using different comparison algorithms and comparator models.

used VR before while 47 never used it. Subjects were told
that their EOG will be recorded to extract unique features and
differentiate themselves from others. They signed a written
consent form in accordance with an existing IRB approval
we hold which allows for recording EOG and other responses
from human subjects for user authentication and VR system
evaluation. A subject sat in a chair in a relaxed posture and
wear the VR HMD with electrodes to view the three visual
stimuli. Five electrodes were fixed on the HMD cover, the elec-
trode positions on different participants were the same. Each
stimulus was viewed for 10 seconds and the corresponding
EOG was collected. Each subject viewed the 3-stimuli session
for 10 times and a total of 700 EOG records were generated
for each stimulus.

Training and Testing Procedure. OculLock uses a new
record-comparison based scheme for authentication decision.
To generate training and testing data for the decision-making
comparator, the subjects are randomly divided into two halves
for training and testing. For the 35 subjects for training, any
two records of the 350 records are compared to generate
61,075 samples as the training data. Each sample indicates
whether or not the two records are from the same person. A
total of 1,575 samples are from comparison between the same
subject, i.e., positive samples, while the others are negative
samples. Similarly, the testing set also has 61,075 samples and
is used for model evaluation. We repeat the above procedure
for 10 times and report the average results in the following.

Evaluation Metrics. While accuracy is a popular way to
evaluate a machine learning model, the unbalanced composi-
tion of our testing data could generate misleading accuracy. A
comparator could achieve 97% accuracy even if it predicts all
sample as negative. We instead use Equal Error Rate (EER)
and F1 score that have been widely used in authentication
systems. The EER is the rate when the false acceptance rate
(FAR) and the false rejection rate (FRR) are equal.

VIII. RELIABILITY EVALUATION RESULTS

In this section, we discuss the reliability of our system un-
der different impact factors such as the authentication duration,
the subset of selected features and the performance degradation
over time.
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Fig. 12: The EERs using different authentication duration.

A. Choices of Algorithm and Model

To ensure that OcuLock achieves its best performance, we
test different comparator models including k-nearest neighbors
algorithm (kNN), a Support Vector Machine (SVM) using the
Gaussian radial basis function as the kernel, an SVM using a
linear kernel, and an SVM using a polynomial (poly) kernel.
Multiple comparison algorithms including Ansari-Bradley Test
(AB), Two-Sample Cramer-von Mises Test (CM), Two-Sample
Kolmogorov-Smirnov Test (KS), Mann-Whitney U-Test(MW),
and Two-Sample t-test (TS) [20] are also tested. Figure 11
shows the F1 scores for each combination of comparison
algorithm and comparator model. The F1 scores reach ~ 98%
due to the unique and comprehensive features considered
in OcuLock. We also observe that AB Test achieves better
performance. This is because many proposed features are
distributions rather than scalar numbers. AB Test can capture
the shape information between two distributions and thus
characterize each user’s EOG more accurately. We herein
select the optimal combination for the remaining evaluations.

B. Time Efficiency

A practical authentication system should be able to ac-
curately identify the user within an acceptable amount of
time. To study the impacts of authentication duration on the
performance, we repeat the experiment procedure described
in Section VII for all 70 subjects with the viewing duration
for stimuli changed to 3, 5 and 7 seconds. The EER results
are demonstrated in Figure 12. Using 10-second records, the
three stimuli reaches EERs of 5.27%, 7.32% and 3.55% with
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Fig. 13: The information gain of each included feature.

standard deviations of 1.41%, 1.48% and 1.34%, respectively.
Decreasing duration slowly increases the EERs. For example,
the 3-second authentication achieves an EER of 5.75% for II-
lusion stimulus. This result suggests a small trade-off between
convenience and security.

We also observe that among all three stimuli Illusion
achieves the best performance because it elicits more micro-
saccades and blinks, as well as extraocular cell and muscle
activities. To evaluate other impact factors of OculLock, we
use Illusion as an example in the following Section VIII-C
and VIII-D.

C. Feature Selection

Feature selection helps identify the important features
to reduce the computation complexity and overfiting of the
comparator. To verify the impact of feature selection on
the comparator performance, we apply minimum redundancy
maximum relevance feature selection algorithm (mRMR) [9]
to select highly related features while minimizing the inter-
dependence between selected features. At first, the most con-
tributing feature is selected. Then in each round, another
feature that enhances the model the most is added to the
feature subset. Each time, the authentication is executed on the
selected feature set and the corresponding information gain is
calculated.

Information Gain. Figure 13 reports the information gain
of each feature included for Illusion by mRMR feature selec-
tion algorithm. The X axis lists feature indexes as defined in
Table I. These features are ranked from the most important on
the left to the least important on the right. We observe that
the top 5 features are Metabolism Intensity (V), Sympathetic
Energy (H), Extent of Up Rotation Distance, Extent of Left
Rotation Distance, Sympathetic Energy (V), and Extent of
Down Rotation Distance while the best behavioral feature is
ranked the 8th. This clearly shows the importance of low-level
HVS biostructure in identifying users compared to traditional
eye gaze.

Receiver Operating Characteristic (ROC). To investigate
the effect of behavioral and physiological features on the
performance of the system, we repeat the mRMR algorithm
separately on each feature group and report the ROC for FAR
and FRR in Figure 14. The area-under-curve (AUC) values for
models using behavioral features, physiological features and
both categories are 87.59%, 95.43%, and 98.31% respectively.
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Fig. 15: The EERs are stable in the one-day short-term period.

Physiological features perform significantly better (smaller
FAR) than behavior features especially when FRR is small.
This indicates when the system gives more “accept” decisions
(smaller FRR), the model using behavioral features quickly
becomes misjudging and accepts wrong users. This is because
behavioral features are less distinctive than physiological fea-
tures and thus more acceptance results in higher FAR.

From the results above, we conclude that the proposed
physiological features of HVS play the essential role in differ-
entiating users. Besides, traditional behavioral features based
on saccades and fixations is less important but still contributes
to the authentication. Therefore, both feature categories should
be used in OcuLock.

D. Short-term and Long-term Performance

The physical and mental states of human users change
over time. In this section, we investigate the impacts of time
on authentication performance. We first conduct a short-term
study at different time of a day. We aim to evaluate the
impacts of eye fatigue and strains. Five subjects (Two subjects
were group members and the rest three were from the general
public) were recruited for this experiments. Since they worked
on their personal computers extensively during the day, it
is expected that their eye fatigue and strain increase with
time. We started the first experiment at 10 AM and continued
four more experiments until 6 PM. Samples from the 10
AM experiment were set as original. We used the optimal
comparator trained in Section VIII-A (AB Test and SVM-
poly) to continuously compare samples from later experiments
with original ones. Figure 15 illustrates the one-day short-term
EER for three models trained using physiological features,
behavioral features and both physiological and behavioral
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Fig. 16: The EERs over a 2-month long-term period. The
models including physiological features is much more stable
than the model only using behavioral features.

features (as categorized in Table I). It is interesting to observe
that there is no significant fluctuation of EERs. This suggests
the negligible impacts of eye fatigue and short-term cognitive
states on our HVS-based authentication. The average EER
for the model only using physiological features is 47% less
than the average EER for the model only using behavioral
features. Combining both feature categories further reduces
EERs during the day down to 3.71%. This indicates that
low-level HVS features, especially HVS biostructure, can be
uniquely triggered in VR HMD, and outperform traditional eye
gaze behavior features.

One weakness of gaze biometric is that the performance
degrades quickly as time passes by because eye movement
is highly dependent on the cognitive states and gaze patterns
constantly change. We performed a long-term over a two-
month period to investigate the stability of OcuLock. The
first set of records collected from the recruited 5 users were
set as original. Then we kept collecting records from these
subjects once every three days and evaluated the consistency
of authentication results. The EERs results are demonstrated
in Figure 16. EERs for the model using physiological features
slowly increase from 8.51% at the first day to 10.64% at the
25th day and remain stable after that. In contrast, EERs for
the model using behavioral features quickly and continuously
raise from 17.42% all the way up to 30.96%. Two subjects
were our group members and their knowledge of the system
may bias performance stability. However, we did not observe
noticeable difference in performance stability between these
group members and others. This is because the biostructural
information represented by physiological features are less
susceptible to change over time, and it cannot be controlled by
subjects. In OcuLock, we utilize this fact to achieve a far more
stable EER performance than existing eye gaze biometric by
combining both feature categories. Since using both feature
categories still slowly increases EER (3.17% to 6.18% over
2 months), VR users can strike a tradeoff between EOG
update frequency and authentication accuracy. When users
cannot accept the accuracy after 2 or more months, they can
record new EOG ground truth samples based on their current
physiological and behavioral features.

IX. SECURITY ANALYSIS

In this section, we investigate the security of the system
against two types of attacks discussed in Section III: imper-
sonation attack and statistical attack.
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Fig. 17: The ROC curves (left) and EERs (right) under
impersonation attack for three stimuli.

A. Impersonation Attack

Impersonation attack is the most simple and popular type of
attacks in which the adversaries are not required to have prior
knowledge about the legitimate user’s HVS information. They
simply try to be the owner and follow the standard authenti-
cation procedure. Since OcuLock is unobservable, adversaries
also cannot obtain much information to assist the attacks by
observing owner’s authentication action. What they can see are
only minor head and body motions. To emulate impersonation
attacks, one user is assigned as the legitimate user and the
others become attackers to perform ‘“attack attempts”. This
process is repeated for all users in the test set. The system
is then evaluated using ROC curves, EER and F1 scores.

ROC. Figure 17 reports how well our system performs
against the impersonation attack using ROC curves. During the
authentication process, the comparator of OcuLock produces
probability values indicating chances that the input signal
belongs to the owner or the attacker. An authentication decision
is then produced by comparing probability values with a
predefined threshold. The ROC could be built by varying this
threshold and recording the false acceptance rate and false
rejection rate. The ROC gives an overall picture about the
system security at every comparator threshold.

In Figure 17, the AUC values for ROC curves correspond-
ing to three stimuli are 97.62%, 96.08% and 98.31%. For all
stimuli, the ROC curves of the comparator stay closely to the
top-left corner where both FAR and FRR are minimized. The
derived AUC values are close to the 1.0 mark even though
the curve for City-Street stays a little lower than the others.
The shape of the ROC curves and the AUC values indicates
OcuLock performs well in terms of false acceptance and
rejection for all model thresholds.

EER and F1 score. EER values are depicted in Figure
17, where City-Street shows an EER of 7.32% with STD of
1.48%, while the EER of Fixed-Route is 5.27% with STD of
1.41% and Illusion is 3.55% with STD of 1.34%. Similarly,
we calculate the F1 scores for these stimuli and find a strong
correlation to EER, i.e., 98.32%, 97.89% and 98.33% for
Fixed-Route, City-Street and Illusion respectively.

The resistance to impersonation attacks depends on the
stimuli, i.e., it is better in Illusion but a little worse in City-
Street. This is due to the fact that the HVS activities when
viewing different stimuli are different. The City-Street allows
subjects to freely scan through the picture, where subjects tend
to conduct “smooth pursuit eye movements” whose speed is
voluntarily controlled and not reflecting extraocular muscle
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statistical attack for three stimuli.

conditions. Also after scanning the entire picture, subjects
would reduce eye movements and stare at one point, which
generate more silent segments in their EOG signal records.
With less information conveyed by the records, it is harder for
the comparator to differentiate subjects. Thus City-Street has
the lowest F1 scores and highest EER. On the contrary, the
Fixed-Route and Illusion both require subjects to continuously
follow a dynamic target jumping at a given speed allowing
more HVS activities to be produced. Hence their EOG signal
records consistently contain more low-level HVS information
and are easier to distinguish.

B. Statistical Attack

Statistical attack is a stronger form of attack in which
the adversaries are assumed to have some knowledge about
the statistics from a group of users. The attacker calculates
the probability density function of features from users and
then use the most probable feature values to generate the
forgery.Statistical attacks have been performed for behavior
biometrics [48], [32], [33], [34].

To simulate statistical attack, we assume the attacker gains
insights into the statistics of all enrolled users in the system
(but not the exact record of the victim). The attackers are also
able to forge fake EOG signals with desired feature values.
We then follow the procedure suggested by [48] to generate
forged features from real feature values. First, the attackers
reconstruct a histogram approximating the distribution of the
values of one given feature from all users. Each histogram
comprises 5 bins of equal size. Fake values of the feature are
then created by sampling uniformly from the bin in which
the feature value has the highest probability. This procedure
is repeated for all features to create one fake sample. We
performed the statistical attack using the fake records and
records from all 70 subjects. During the test, all the subject’s
records were compared with each other, which generated 45
positive samples. Meanwhile her records were attacked by the
fake records, which generated 1500 negative samples. With 70
subjects, the testing set contained 3,150 positive samples and
10,5000 negative samples. Then the ROC curves, EERs and
F1 scores were recorded.

ROC. Figure 18 reports the FARs and FRRs for the model
at various thresholds. The AUC for curves from Fixed-Route,
City-Street and Illusion are 96.11%, 94.78% and 96.23%
respectively. In all stimuli, the curves stay close to the upper-
left corner where both FAR and FRR are minimized suggesting
the resistance of the model against statistical attack. The AUC
score for City-Street is lower than the other two, which is
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consistent with our previous conclusion about the uncertainty
nature of this stimulus. The AUC score for statistical attack is
lower than impersonation attack by a small amount suggesting
this type of attack is stronger but does not severely affect the
model performance.

EER and F1 score. Figure 18 reports the EER of the
model. As expected, Illusion has the lowest EER at 4.97%
while the EER for City-Street is the highest at 7.93% due to
the random exploration behavior in this stimulus. The EERs in
all stimuli are on average 1.08% higher than EERs from the
Impersonation attack. The comparator model attains F1 scores
of 97.62%, 96.59%, 97.55% in Fixed-Route, City-Street, and
Illusion respectively, which is on average 0.92% lower than
F1 scores for models under impersonation attack.

Compared with the reported results in impersonation attack,
the performance for the comparator model under statistical at-
tack are worse suggesting statistical attack are more powerful.
However, our authentication system still achieve promising
scores in both F1 score and EER. We surmise that the
resistance of our model against statistical attack is because the
feature values among different people spread widely, which
makes it harder to predict feature values for a specific person
based on the statistical information.

X. USER EXPERIENCE

Gathering subjects’ opinions towards system usability is
necessary as an authentication system requires extensive in-
teraction with users. To gather the subjects’ opinions towards
OcuLock, all 70 subjects participating in the experiments were
given paper-form questionnaires in person immediately after
the experiments. The questionnaire includes several questions
on subjects’ experience of the authentication system. Each
subject was asked to filled out the questionnaire and the
answers were scored from 1 (worst) to 5 (best).

Table II quantifies the subjects’ feelings towards OcuLock.
Most users preferred stimuli with explicit moving targets to
follow (Q1, Q3) over complicated static scene where they have
to subjectively scan through (Q2). This indicates the desirabil-
ity to design stimuli with dynamic and attractive patterns. In
addition, subjects preferred the duration of authentication to be
at around 4 seconds and should not be more than 8 seconds.
Our system can provide acceptable performance within this
time frame, as discussed in Section VIII-B.

We further conducted another survey of the subject’s opin-
ions towards several potential authentication methods for VR
HMD. After describing all methods to subjects in detail, opin-
ion scores were recorded on four criteria: security, reliability,
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Fig. 19: User feedback about preferred authentication method.

convenience and social comfort (comfortable to use in the
public). Figure 19 reports the results among four potential ap-
proaches including HVS-based (OculLock), gesture-based [34],
password-based [17] and brainwave-based [29]. Most subjects
agreed that HVS-based authentication is more convenient and
socially acceptable in the public. HVS-based authentication is
also more secure as it is more resistant to observation-based
attacks than password-based and gesture-based approaches. In
regard to reliability, most subjects consider the password-based
authentication as the best choice. However, we conjecture
that the high reliability score for password-based methods is
from its proven practical usage. Considering the high stability
results reported in Section VIII, the subjects’ reliability score
for OcuLock can be boosted if they are given first hand
experiences of our system in a long term.

XI.

HMD Authentication. Early works of HMD authentication
have been focusing on smart glasses for augmented reality.
Chauhan et al. [6] proposed a gesture-based authentication
system for Google Glass that collects authentication input on
the touchpad. Li et al. [28] developed an head movement
biometric system in response to auditory stimuli. Similarly,
unique head movement was also triggered by a set of pictures
to authenticate smart glasses users [44]. Recently, efforts have
been made towards VR HMD authentication by migrating
traditional authentication methods. Oculus Quest is the first
commercial VR HMD equipped with virtual PIN code [36].
George et al. [17] studied the security and usability of au-
thentication methods such as PIN and unlock pattern in VR
HMD through remote controllers. Graphical password [13] and
body motion biometric [40] were also proposed to authenticate
VR users. Although these traditional methods can achieve
acceptable error rate, the entire authentication action is exposed
to the public and can be observed by adversaries to execute
attacks. For example, adversaries managed to observe the
authentication action and either mimic the owner’s behavior
for impersonation attacks or analyze the behavior for side-
channel attacks [30], [14]. Although extracting brain signals
for VR HMD authentication is relatively secure [29], collecting
brainwaves requires a device covering the majority of the
scalp via a large number of electrodes. Such a setup is too
cumbersome for practical use and is not compatible with the
form factor of today’s VR HMDs that only has one holding
strap [37], [27]. In this paper, we utilize the fact that VR HMD
fully covers users’ eye area to propose an HVS-based biometric
for unobservable authentication. Since the foam face cover has
direct contact to skin around eye sockets, we design a usable
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system only using 5 embedded electrodes to collect the HVS
signals through EOG.

Eye-based Authentication. Existing eye-based authenti-
cation systems were designed for smartphones and PCs and
focused on the uniqueness of eye globe movement. Most of
them collected the gaze pattern stimulated by visual stimuli
via video cameras or other types of eye trackers and then
crafted a set of features for authentication [3], [23], [19],
[47], [15]. These features include scanpath and more detailed
statistics such as acceleration and duration of saccades [12]. A
system using reflexive eye movements was developed to enable
fast authentication [45]. Saccades and fixations triggered by
implicit stimuli during nornal viewing were utilized to support
continuous eye-based authentication [56]. EOG was also used
to identify the saccades and fixations to differentiate users [22],
[1]. While these systems build the foundation for OcuLock,
they only focused on the gaze pattern in using smartphones
and PCs and the support of long-term performance stability has
not be validated. In this paper, we explore HVS as a whole to
utilize low-level physiological and behavioral features of HVS
triggered by immersive VR content and leverage the stability
of HVS biostructure to achieve a low variability over a two-
month evaluation.

EOG Applications. EOG has been widely used for human
computer interaction. Barea et al. [2] designed a wheelchair
system controlled by eye movements collected from EOG
signals. Chen et al. [7] developed EOG-based interfaces to
control robots. Qvarfordt et al. [42] proposed a system that
explores users’ interest based on eye-gaze patterns. Ding et
al. [10] implemented a human-computer interface using EOG
signals as input. These works validate the promise of adopting
EOG in personal computing systems. However, they do not
harness EOG as a source of information that presents unique
features of HVS. Instead, we take the first step to utilize EOG
to explore the whole HVS for VR HMD authentication.

X1II.
A. Advanced Attacks

DISCUSSION

Replay attack is a common attack for biometric authenti-
cation system. In OcuLock, the authentication action is fully
covered by HMD. It is unlikely, if not impossible, for an
attacker to directly record EOG signals and replay the record
as what have been done in replay attacks for voice or face
biometric. In some cases, stronger adversaries might obtain the
owner’s EOG templates, e.g., by measuring electromagnetic
emanations while the system is processing critical information.
To spoof the system, the attackers can use two ways to feed
the stolen template into the EOG sensing system. First, the
attackers leverage the voltage generators to produce the exact
same EOG signals of the owner according to the template.
The generated signals are directly sent to the EOG electrodes
through wire connections. However, considering the ever-
growing lightweight sensors on modern VR headsets, we can
prevent it by adopting existing sensing-based or learning-based
liveness detection methods [50], [35]. Second, if the attackers
are even aware of the liveness detection, the upgraded attacking
method can be building the artificial eyes that contain all HVS
functionalities. However, such an artificial eye is currently
unavailable in the market and building it from scratch is indeed
non-trivial. Hence we do not consider it as a typical attack.



B. Computation Time

To guarantee the usability of an authentication system,
computation time is one of the major concerns. The total
computation time of OcuLock consists of three parts: the EOG
recording time when users view the stimuli, the signal process-
ing time when the EOG is transformed, and the authentication
time when features are extracted, the comparison algorithm
is run and the comparator model is executed. According to
our measurement, the signal processing takes less than 1 ms
and the authentication takes an average of 39 ms. The EOG
recording time ranges from 3 seconds to 10 seconds as shown
in the experiment results. We can see that the total computation
time is dominated by the EOG recording time while other time
components are negligible because we use efficient algorithms
to design our system. We even reuse several intermediate
results, e.g., reusing wavelet transform results for sympathetic
energy.

It is true that authentication systems in a physical world
usually take less time (1-2 seconds) than OcuLock. However,
VR interaction is generally slower since it relies on head
and/or eye navigation in a virtual world, which is harder
than physical-world interaction. User studies showed that the
simplest authentication such as PIN code or unlock patterns
takes around 3 seconds in VR environment [17]. Therefore,
users generally have lower expectation on VR authentication
and thus we believe the 3-second authentication time of
Oculock is acceptable. Depending on the tradeoff between
authentication error and computation time, users can select a
proper EOG recording time for OcuLock.

The memory consumption for the entire authentication
is on average 54 MB, which is acceptable in modern VR
computing devices.

C. Electrode Placement

In our prototype, we applied conductive gel inside each
electrode to help measure EOG signals. However, the gel does
not need to be replaced frequently (once every 30 minutes).
For future real-world systems, dry electrodes can be used for
EOG collection to enhance system usability. This technique
has been used by JINS MEME, a commercial smart glasses
device [32].

After finishing each session in our experiment, the elec-
trodes were taken off from one subject and attached to another.
We point out that it is not this replacement of electrodes that
results in the different EOG samples between subjects. In the
majority of the evaluation, electrodes were fixed at the HMD
cover and thus their positions for different participants were
the same (see Figure 5). Even though there is minor placement
difference in some cases, we found that EOG measurement is
not sensitive to that. In our temporal study (Section VIII-D),
the electrodes were detached and attached to the HMD repeat-
edly with around 1cm of position change. However, the system
could still recognize users although electrode positions are not
the same, which proves the negligible effects of electrodes
position.

XIII. CONCLUSION

In this paper, we present OculLock, a stable and unobserv-
able system to authenticate users for VR HMD. Compared
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with eye gaze based systems, we explore HVS as a whole
and extract low-level physiological and behavioral features
for biometric authentication. OcuLock is resistant to common
and anticipated types of attacks such as impersonation and
statistical attacks with EERs of 3.55% and 4.97% respectively.
Thanks to the stable physiological features, OcuLock is less
variable over time and reduces the frequency of updating
EOG template. Our user study suggests promising potential
for HVS-based authentication in which the requirement of
convenience, security and social comfort can simultaneously
be satisfied. Future work should focus on integrate the devices
in our prototype into a unified VR HMD for more practical
and larger-scale user study.
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