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Abstract—The vulnerability of traditional blockchains have
been demonstrated at multiple occasions. Various companies are
now moving towards Proof-of-Authority (PoA) blockchains with
more conventional Byzantine fault tolerance, where a known set
of n permissioned sealers, among which no more than t are
Byzantine, seal blocks that include user transactions. Despite their
wide adoption, these protocols were not proved correct.

In this paper, we present the Cloning Attack against the two
mostly deployed PoA implementations of Ethereum, namely Aura
and Clique. The Cloning Attack consists of one sealer cloning its
pair of public-private keys into two distinct Ethereum instances
that communicate with distinct groups of sealers. To identify their
vulnerabilities, we first specify the corresponding algorithms. We
then deploy one testnet for each protocol and demonstrate the
success of the attack with only one Byzantine sealer. Finally, we
propose counter-measures that prevent an adversary from double
spending and introduce the necessary number of sealers needed
to decide a block depending on n and t for both Aura and Clique
to be safe.

I. INTRODUCTION

Ethereum is one of the most popular blockchain systems
thanks to the large ecosystem of distributed applications that it
executes. Unfortunately, the default Ethereum protocol based
on proof-of-work (PoW) can fork as it allows distinct blocks to
be appended at the same index of the chain. This forking situ-
ation can lead to security vulnerabilities, like double spending,
if it is not detected early enough [20], [31], [30]. Alternative
protocols, called proof-of-authority (PoA) protocols, that aim
at avoiding forks have recently been integrated in the most
widely deployed versions of Ethereum, parity and geth, and are
currently used world-wide. PoA has become rapidly popular
and is now distributed through major Software-as-a-Service
providers and used in several blockchain networks [7], [39],
[3]. Yet, to our knowledge, the level of security offered by
PoA protocols has not been properly assessed.

These PoA consensus protocols, called Aura and Clique,
are said to use a proof-of-authority because they restrict the
creation of a block to a fixed set of n authority nodes, called
sealers, among which a maximum of t < n

2 can misbehave or
be Byzantine. They aim at solving the well-known Byzantine
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consensus problem [33], where among n nodes the n−t honest
ones agree on a unique block. More precisely, honest nodes
cannot decide different values (agreement) and eventually they
must decide (termination). PoA gives the sealers the authority
to seal a block, which consists of signing cryptographically
the block. This set of sealers can possibly change over time
if a subset of the participants allow it, hence being well
suited for dynamic consortia of participants as in community
blockchains.

For these reasons, PoA recently gained rapid momentum
in critical applications [39], [3]. Industry, such as Lavaa,
propose a tracking service to prevent fraud counterfeiting on
top of Aura [39]. Microsoft describes how to deploy Aura “in
production” [16]. Amazon Web Services offers PoA through
the Clique protocol built in geth to its customers [25]. They im-
plemented a service that aims at maintaining data privacy and
integrity in a multi-tenant scenario. Every day, Internet users
exchange digital assets through multiple instances of these two
protocols. Huawei uses the Apla blockchain platforms based
on PoA to develop smart transportation by coupling IoT with
blockchain in supply chains and logistics [5]. Rinkeby is a
network of 65 participants offering the Clique service across
four continents to its users [34]. The xDai DPOS network
uses an Ethereum 1.0 sidechain based on the Aura consensus
protocol to transfer assets [3]. Sokol and Kovan are other
Ethereum testnets running the Aura protocol [21].

An interesting theoretical work by De Angelis et al. [2]
indicated that the consistency of Aura can be limited, for
example if the clocks are far apart, and that Clique is eventually
consistent. To the best of our knowledge, all these imple-
mented algorithms have simply been described in words often
in online documentations or white papers and no pseudocode
description has been provided. In particular, we noted that
some of the stated assumptions are ambiguous and require
experts to maintain them during deployment. As a result it is
unclear whether an attacker could violate their data integrity.

In this paper, we show that PoA is not secure even under
its disambiguated conditions: when a sufficiently large subset
V of sealers among n must seal a block despite a minority t of
them being malicious. To this end, we design, implement and
experiment an attack, called the Cloning Attack, against both
Ethereum’s Aura and Clique consensus protocols that allows
us to steal digital assets with only t = (2 − (n mod 2))
failures. The Cloning Attack consists of one or two sealer
attacker(s) cloning a private key to convince half of the honest
sealers that a transaction is correctly committed before erasing
this transaction to double spend its coins. Thanks to the
cloning, to convince half of the honest sealers that transactions
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are committed, the attacker simply needs to delay messages
between two halves of honest sealers. Note that this is achieved
without knowing the precise locations of sealers.

Our counter-measure inspired by the theory of Byzantine
fault tolerance defines precisely the necessary and sufficient
number of sealers |V | needed to sign each block, n+t2 < |V | <
n− t, for PoA protocols to be safe (i.e., satisfy agrement) and
live (i.e., satisfy termination). More specifically, the upper
bound |V | < n − t is necessary for PoA protocols to be
live whereas the lower bound |V | > n+t

2 is necessary for
PoA protocols to be safe. As expected these bounds comply
with the well-known impossibility to solve consensus when
t ≥ n/3 [33]. In fact, if t ≥ n/3, then the aforementioned
bounds cannot be met as n−t ≤ n+t

2 : to be safe PoA protocols
would violate liveness but to be live they would necessarily
violate safety. Our counter-measure differs from previously
known results in that it relies on a new parameter, the set
V of needed participating sealers that comprises typically less
than n participants.

Responsible disclosure: For ethical reasons, we previously
communicated the vulnerability we present here to (i) the
security team of Parity Technology, (ii) the security team of
the Ethereum Foundation and (iii) the Ethereum development
community [14]. Both security teams acknowledged the pos-
sibility of the attack and the xDai blockchain of the POS-
DAO project is currently implementing one of the counter-
measures of Section IX-C at https://github.com/poanetwork/
parity-ethereum/pull/109 [3].

We demonstrate the effectiveness of the Cloning attack
by double spending in two testnets, one running parity and
the other running geth. The application of the Cloning attack
to Aura is slower as it consists of the attacker sealing more
blocks in one branch while its application to Clique is faster
but more subtle as it consists of the attacker disordering the
victim sealers to minimize the weight of a branch. Overall, the
attack against Clique is about twice faster than Aura’s but its
success rate ranges from 60% to 100%. In order to remedy the
identified vulnerabilities, we propose to modify these two PoA
protocols to preserve their safety. Even though our counter-
measures introduce liveness limitations in these algorithms
they make them more suitable for critical applications.

Section II presents the related work. Section III describes
the model. Section IV lists the pseudocode of the algorithms
in the Aura and Clique algorithms as implemented in, respect-
ively, parity and geth. Section V describes the Cloning Attack
against both algorithms. Sections VI and VII explain how to
exploit it to double spend in Aura and Clique, respectively.
We then present in Section VIII our evaluation of the Cloning
Attack on both protocols, while Section IX discusses our
results and potential countermeasures. Section X concludes the
paper.

II. BACKGROUND

Most of the known double spending attacks against block-
chains exploit their inherent permissionless mechanism by
including in the blockchain a transaction that transfers coins
and then discards this transaction, hence allowing to re-spend
the previously spent coins in a subsequent transaction. Below

we list some of these attacks to explain the recent raise of
alternative protocols based on PoA.

Perhaps the most conventional way to double spend in
permissionless blockchains is for an attacker to exploit more
than half of the mining power of the system to create a
heavier or longer branch that can overwrite transactions that
were expected to be sufficiently confirmed or committed [35].
In some blockchains, a quarter of the mining power appears
enough in theory to attract participants into a coalition whose
cumulative mining power reaches strictly more than half of
the total mining power [17]. SMARTPOOL [27] copes with the
centralisation of mining power into these blockchains and the
risk of mining pools to join a coalition of strictly more than
half of the total mining power.

To attack permissionless blockchains without a significant
mining power, researchers attacked the network. The Eclipse
attack against Bitcoin [20] consists of isolating at the IP layer
a victim miner from the rest of the network to exploit its
resources. The Blockchain Anomaly [29] exploits message
reordering in Ethereum to abort transactions that seemed
sufficiently confirmed. The Balance Attack [30] partitions the
network into groups of similar mining power to influence
the selection of the canonical chain. Recently, actual man-
in-the-middle attacks were run to demonstrate the feasibility
of stealing assets in Ethereum without a significant mining
power [13].

To cope with these attacks, some modern blockchains
build upon Byzantine agreement [33]. sometimes probab-
ilistically [28], [19], sometimes deterministically [22], [9].
Given the long series of research results in the literature
about Byzantine agreement protocols, we know that when
the network is synchronous and messages are delivered in
a known bounded time, then t < n

3 is sufficient to reach
consensus. If one also assumes authentication, then even t < n

2
becomes sufficient [24]. What is key for critical applications
is that these Byzantine fault tolerant blockchains guarantee
that no participants double spend even when messages get
unexpectedly delayed. Unfortunately, it is impossible to reach
consensus when message delays are unbounded [18].

Proof-of-Authority (PoA) was recently proposed as a Byz-
antine fault tolerant consensus mechanism that integrates with
the Ethereum protocols [4]. The Ethereum geth software
offers two different PoA consensus protocol, called Clique
and Istanbul BFT [26] whereas the Ethereum parity offers the
PoA consensus protocol, called Aura. The concept is similar
to traditional Byzantine fault tolerant consensus in that only
n sealers are permissioned to create new blocks but requires
authentication and strictly less than n

2 Byzantine participants,
similarly to the seminal work on Byzantine consensus [24].

The claim that PoA can “tolerate up to 50% of malicious
nodes” [4] raised interest from the industry [7], [39], [3].
However, some work recently questions the consistency of
PoA [2], [37], [36]. In particular, it was found that un-
synchronized clocks could affect Aura’s consistency whereas
Clique was only eventually consistent [2], however, no attacks
against Aura or Clique have been proposed. Another work [37]
mentioned that an attacker could maintain two chains of equal
lengths. To be possible, this requires the attacker to falsify
block timestamps to violate the policy that new blocks are

2
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appended to the branch whose latest block has the earliest
timestamp among all branches. It turns out, that such a
violation can be easily detected by other sealers verifying
timestamp or header of the blocks. This is probably why the
developers did not change the code to remedy this, as the
authors mentioned in their paper.

As we explained previously our result matches the im-
possibility of solving consensus when t ≥ n

3 [33], however, it
differs from the classic results on Byzantine consensus where
no subset of authority nodes are considered. In our case, if
the set V of needed authority nodes or sealers comprise all
n nodes, then the highest number of failures that Aura could
tolerate under a synchrony assumption would be t = n − 1,
however, without this synchrony assumption, even with t = 1,
PoA protocols are not guaranteed to be safe. The relation
between |V | and t is described in Section IX-B.

Our cloning idea shares similarities with the idea to attack
a distributed system by falsifying identities that was already
discussed in the past. The Sybil Attack [11] presents the attack
against peer-to-peer systems by forging multiple identities.
By contrast, the Cloning Attack consists of replicating the
machines using the same identity rather than forging identities.
More specifically, the Cloning Attack leverages the fact that
Ethereum accepts two different machines located at different
ends of the network to use the same private key.

III. MODEL

Distributed system: We consider a distributed system
of n permissioned sealers whose identifiers are p1, .., pn ∈ Ids .
As the blockchain is open, it accepts the requests issued by
nodes or processes that are not necessarily sealers, hence the
overall number of participants can be larger than n, but only
n participants can propose blocks and seal (or sign) them.

Failures: We consider the Byzantine failure model
where Byzantine nodes can act in an arbitrary way. Note
that this differs from a rational model in which nodes are
typically incentivized to act in a certain way so as to maximize
their utility function, like a personal reward or reputation.
This rational model is however insufficient to characterize the
behavior of participants with motivations external to the sys-
tem: one can think of a blockchain company investing secretly
significant resources into a participant running the blockchain
of its competitor in order to attack it, regardless of the reward
this participant could generate. Following the original tolerance
claim of “up to 50% of malicious nodes” [4], we assume, in our
analysis that no more than t < n

2 participants can be Byzantine
but show that t = 1 Byzantine participant is sufficient to double
spend. The remaining n− t participants are honest.

Authentication: We assume authentication through a
public-key cryptosystem that allows participants to easily
identify that a block is correctly signed by a sealer so that
incorrectly signed blocks are simply ignored. We assume that
keys cannot be forged or stolen by Byzantine participants
and that appropriate private keys are correctly distributed to
the sealers initially. As in the Dolev-Yao model [10], we
assume the attacker, who has the control over the Byzantine
participants, can intercept messages.

Partial synchrony: As it is well known that consensus
cannot be reached in an environment where communication
is asynchronous in the presence of faults, it appears natural
to assume additional synchrony. It is unclear whether PoA
protocols can be safe under partial synchrony, where messages
get delivered in a bounded amount of time that is not known
from the algorithm [12] or how long communication can take
for these protocols to work. As an example, a preliminary
version of Aura was mentioned to require synchrony in a web
document [32], however, this information appears outdated
as the implementation is closer to another documentation [4]
that does not mention this assumption, as we explain in
Section IV-A.

The questions we investigate is whether PoA protocols
work under partial synchrony, and if not, whether the risk
of unexpected message delays is benign (liveness or termin-
ation of the consensus is not guaranteed but safety remains
guaranteed in that no double spending occur) or can have
dramatic consequences (disagreement can occur), hence letting
an attacker double spend. As we will explain, our conclusion
is that PoA protocols do not work in that even safety is
not guaranteed but some countermeasures can remedy this
problem.

IV. POA CONSENSUS ALGORITHMS

In this section we describe the two main variants of
PoA algorithms, called Aura and Clique, implemented in
the predominant Ethereum software, called parity and geth,
respectively. We first discuss two distinct versions of the Aura
algorithm that are both publicly available online. We then
present the pseudocode for the Clique algorithm.

A. The Aura consensus algorithms

There exist two distinct versions of the Aura algorithm as
documented online, one that corresponds to the current parity
implementation of the Ethereum protocol and another [4] that
uses rounds to decide whether a consensus decision is reached.

1) The parity Aura algorithm: Algorithm 1 depicts the way
Aura guarantees that participating nodes reach consensus on
the uniqueness of the block at a given index of the blockchain
as implemented in Parity-Ethereum-v2.0.8 (v2.0.8 was the
latest version at the time we performed our experiments).
Every participating node maintains a state comprising a set
of sealers , its current view of the blockchain ci as a directed
acyclic graph 〈Bi, Pi〉, a block b with fields parent that links
to the parent block, a sealer and a step indicating the time
at which the block is added to the blockchain, as explained
below. They are initialized to ⊥ meaning “undefined”.

The function propose() is invoked in order to propose a
block for a particular index of the blockchain. The consensus
is reached once the block is decided, which can happen
much later as we will explain in the function is-decided()
(line 29) below. The algorithm discretises time into steps
that correspond to consecutive periods of step-duration time,
as specified in a configuration file. Each sealer executes an
infinite loop that periodically checks whether the clock-time()
indicates that this is its turn to propose a block (line 13). When
it is its turn (line 14), a sealer sets the parent of the block to
the last block of its view and signs it (line 16).
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Algorithm 1 The parity Aura algorithm at process pi
1: State:
2: sealers ⊆ Ids , the set of sealers
3: ci = 〈Bi, Pi〉, the local blockchain at node pi is a directed
4: acyclic graph of blocks Bi and pointers Pi

5: b, a block record with fields:
6: parent , the block preceding b in the chain, initially ⊥
7: sealer , the sealer that signed block b, initially ⊥
8: step, the blockchain step when the block gets added, initially ⊥
9: step-duration, the duration of each step as configured

10:
11: propose()i: � sealers keep proposing
12: while true do � infinite loop
13: step ← clock-time()/step-duration � discretize time
14: if i ∈ sealers ∧ step mod |sealers| = i) then � my turn
15: b.parent ← last-block(ci) � link a block
16: b.sealer ← pi � seal the block
17: b.step ← step
18: ci ← 〈Bi ∪ {b}, Pi ∪ {b.parent}〉 � update local view
19: broadcast(ci) � send blocks

20: sleep(step-duration) � wait before looping

21:
22: score(〈Bj , Pj〉): � compute the score of a branch
23: return UINT128_MAX× height(〈Bj , Pj〉)− step-num(〈Bj , Pj〉)
24:
25: deliver(〈Bj , Pj〉)i:
26: if score(〈Bj , Pj〉) > score(〈Bi, Pi〉) then
27: 〈Bi, Pi〉 ← 〈Bj , Pj〉 � select the right branch in case of forks

28:
29: is-decided(b)i:
30: V ← {bk .sealer | bk ∈ Bi ∧ bk.step ≥ b.step} � sealers after b
31: return (|V | × 2 > |sealers|) � more than majority of sealers signed

Each broadcast() invoked by the propose() function sends
blocks that get delivered to all other participating nodes that
are honest (in reality only the last block is broadcast unless
some sealers are unaware of more blocks). The deliver()
function (line 25) is thus invoked at each honest participating
node, regardless of whether it is a sealer, upon reception of
the broadcast message. Once a blockchain view is delivered
to pi, the node compares the score of the blockchain view
it maintains to the blockchain view it receives, using the
score (line 22). The highest blockchain has the greatest score,
however, if two blockchains share the same height, then the one
that is denser in terms of its number of non-empty slots obtains
the highest score. In other words, among many blockchains
with the same height, a blockchain whose last block has the
the lowest index wins. This is indicated by the two functions
height and step-num that represent the height of the blockchain
and the number of slots for which there exists a block in the
blockchain.

Finally, function is-decided() (line 29) takes a block b as an
argument and returns whether b is considered decided, meaning
that all the transactions it contains are committed [29]. To this
end, the function simply lists the set V of distinct sealers that
have signed a block following b in the blockchain. If this set
contains a majority of the sealers, i.e., |V | × 2 > |sealers|
(line 31), then the block b is decided and true is returned.

2) Round-based variant of the Aura algorithm: The Aura
algorithm implemented in parity is not the only algorithm
called, Aura. Another variant is presented in the PoA Network
white paper available online [4]. Algorithm 2 presents the
different decision technique of this variant, the rest of the
pseudocode being identical to Algorithm 1.

In order to know whether a block b is decided at the
end of a successful consensus (Algo 2, line 1), a participant
simply has to check whether there exist two consecutive rounds
round1 and round2 following block b, in each of which the
blocks are sealed by a majority of the sealers.

Algorithm 2 The round-based variant of Aura at process pi
1: is-decided(b)i:
2: `← |sealers| � number of validators
3: round1 ← (b.step, b.step + `] � steps in next round
4: round2 ← (b.step + `, b.step + 2× `] � steps in the 2nd next round
5: maj1 ← |{b′ : b′.step ∈ round1}| > `/2 � majority in round 1
6: maj2 ← |{b′′ : b′′.step ∈ round2}| > `/2 � majority in round 1
7: return (maj1 ∧maj2 ) � decided if majority in both rounds

Note that while presented in some documentation, this
alternative Aura specification is not the one used by the
mainstream implementation of the protocol. The current defin-
ition of the Aura algorithm disregards the rounds and simply
requires enough blocks to be sealed [32]. Although the version
of Aura we experiment in this paper is the mainstream one
(Algorithm 1), the attack we present in Section VI also applies
to this more restrictive definition presented in Algorithm 2.

B. The Clique consensus algorithm

Algorithm 3 depicts the pseudocode of the Clique con-
sensus algorithm. It is the one used currently in Go Ethereum
geth-1.8.20-stable.

Every participating node shares the same initial block, the
genesis block, which also contains the block-period, the period
between consecutive block creations. Similarly to the Aura
protocol, each node maintains its own view of the growing
blockchain ci as a directed acyclic graph 〈Bi, Pi〉. A block b
contains a number as an index of the block in the blockchain,
a weight as a weight of the block, a parent field that links to
its parent block and a sealer .

The propose() function runs an infinite loop in order to
propose blocks to the blockchain when certain conditions are
satisfied. The first condition (line 26) requires the process
to wait for blocks from other sealers until none of the last
sealer-limit blocks contains its signature. In the current imple-
mentation the sealer-limit must be b|sealers|/2c+1, which is
the smallest majority. As a result of this first condition, the
sealers need to take turn to sign blocks. The second condition
(line 28) is to wait for block-period.1 When both conditions
are met, the process checks if it is its turn to sign the block
(line 29). The process may sign a block right away with weight
equal to 2; otherwise, it may sign a block with weight equal to
1 after a random delay between 0 and 500×b|sealers|/2c+1
milliseconds (line 32). The consensus is reached once the
block is decided later as we will describe in the function
is-decided() (line 47). The last step in the loop, broadcast(),
sends messages to other participants.

Upon reception of the broadcast message, the deliver()
function (line 43) is invoked at each participating node re-
gardless of whether it is a sealer. The total-weight function
(line 40) used by the process compares the weight between

1The default block-period is 15 seconds as developers suggest the same
duration to remain analogous to the proof-of-work blockchain Ethereum.
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Algorithm 3 The geth Clique algorithm at process pi
1: State:
2: sealers ⊆ Ids , the set of sealers
3: ci = 〈Bi, Pi〉, the local blockchain at node pi is a directed
4: acyclic graph of blocks Bi and pointers Pi

5: b, a block record with fields:
6: parent , the block preceding b in the chain, initially ⊥
7: sealer , the sealer that signed block b, initially ⊥
8: number , the index of the block in the chain, initially ⊥
9: weight , the weight of a block, initially ⊥

10: block-period, minimum duration in second between timestamps of
11: two consecutive blocks, initially 5 seconds
12: majority, the number of b |sealers|

2
c+ 1

13: sealer-limit, max. number of consecutive blocks among which a sealer
14: can sign at most one block, initially set to the majority

15:
16: sign-recently(ci, n)i:
17: λ← sealer-limit
18: ret = false
19: for m = n− λ, ..., n do � loop through last λ blocks
20: if bm .number mod |sealers| = i then ret = true

21: return ret
22:
23: propose()i:
24: while true do
25: n ← last-block(ci).number � last block index
26: wait until ¬sign-recently(ci, n) � wait until I can seal a block

27: T ← get-last-timestamp(ci)
28: wait until clock ≥ T + block-period � wait ≥ block-period

29: if (n + 1 ) mod |sealers| = i then � in-turn sealing
30: b.weight = 2 � block weight 2
31: else � out-of-turn sealing
32: sleep(rand([0, 500×majority])ms) � random delay in millisecs
33: b.weight = 1 � block weight 1

34: b.number = n + 1 � increment block index
35: b.parent ← last-block(ci) � link a block
36: b.sealer ← sign() � seal the block
37: ci ← 〈Bi ∪ {b}, Pi ∪ {b.parent}〉 � update local view
38: broadcast(ci) � send blocks

39:
40: total-weight(〈Bj , Pj〉)i: � total weight
41: return

∑
∀b∈Bj

b.weight

42:
43: deliver(〈Bj , Pj〉)i:
44: if total-weight(〈Bj , Pj〉) > total-weight(〈Bi, Pi〉) then � heaviest
45: 〈Bi, Pi〉 ← 〈Bj , Pj〉
46:
47: is-decided(b)i:
48: V ← {bk .sealer : bk ∈ B; k ≥ i} � sealers in blocks since bi
49: return |V | > majority � more than majority of sealers signed

two blockchain views, a current blockchain that it maintains
locally and the one freshly received. The process updates its
local view if the received blockchain is heavier; otherwise it
keeps the same local blockchain view.

To consider whether a block b is decided (line 47), a
process has to check the set of sealers who sign blocks after
b. Only when a majority of sealers have appended subsequent
blocks to the chain, can a block be considered decided.

V. THE CLONING ATTACK

In this section, we present the Cloning Attack to double
spend in PoA blockchains. In particular, we present the
commonalities between the attacks against Aura and Clique,
namely the cloning process that allows an attacker to play
different roles in the blockchain, the majority that allows two

groups of sealers to make progress without the other, and
the way transactions should conflict to double spend. The
difference in how these attacks are applied to Aura and Clique
are deferred to Sections VI and VII, respectively.

By assumption, only a minority of the sealers can be mali-
cious, this is the reason why PoA algorithms require a majority
of sealed blocks to consider whether a block is decided and
its transactions appear to be committed. Intuitively, this should
prevent the malicious sealers from forming a coalition that can
double spend. In reality, as we explain below, (2− (n mod 2))
attacker(s) cloning their own instance into two clones are
sufficient to double spend.

A. Cloning instances by duplicating keys

The first step necessary in the Cloning Attack is for some
attacker to duplicate its Ethereum instance into two clones.
Cloning consists for a single user of running two instances
of the Ethereum protocol with the same address or public-
private key pair. Note that these two instances could run
either on the same machine, using the same IP address, or
on distinct machines with distinct IP addresses. We call these
two instances clones because one has the same information
as the other before messages start being delayed. In addition,
during the whole duration of the attack, both clones use
the same public-private key pair. Interestingly, we noted that
Ethereum allows these two cloned instances to both create
blocks, however, as they use the same private key to seal
blocks, they are considered to act as a unique sealer.

At some point, the attacker exploits message delays (either
accidental or as a result of a network attack) between two
groups of a minority of dn/2e − 1 sealers, hence creating a
transient partition. At this moment, the two clones may not
share exactly the same database content as they may not be
aware of the exact same blocks that are present in the block-
chain. To maintain the cloning at the start of the partition, the
attacker copies the content of the blockchain database of one
of the clones to the database of the other clone and connects
each of these clones to a different partition. During the time
of this partition, the Ethereum protocol readjusts the peering
so that sealers within the same group keep communicating.

Note that there are various conditions that can cause a
partition in the Ethereum network and only one of these
conditions is sufficient for the attack to be successful. First,
one can leverage a delay in the network due to BGP table
misconfiguration for example. Second, one can maliciously
attack the network through DoS, ARP-spoofing, or BGP-
hijacking. In particular, BGP-hijacking works by having an
attacker advertising to one group wrong routes that reach the
other group in order to intercept all traffic between the two
groups. Once the traffic is rerouted, the attacker can simply
delay the propagation of messages. We refer the interested
reader to existing ways of implementing man-in-the-middle
attacks in Ethereum [13].

B. Majority groups to guarantee progress

Clones are exploited in the attack to give the illusion to
honest sealers that each group contains a majority of sealers.
In order to progress towards a double spending situation, each
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group must commit transactions and thus decide blocks, this
is why we need (2−(n mod 2)) attackers that clone instances:

• Case n is odd. The honest sealers can be split into two
groups of (n−1)/2 sealers, each representing a minority.
In order to guarantee progress of the protocol on both
sides of the partition, a single attacker can simply add
one clone in each minority, hence reaching a majority of
bn/2c + 1 sealers on each side. This is the reason why
(2− (n mod 2)) = 1 attacker is sufficient when n is odd.

• Case n is even. A single attacker could split the n − 1
honest sealers into two groups of different sizes, one that
contains n/2 sealers and another that contains n/2 − 1
sealers. It would however be insufficient to include a clone
in the second group to guarantee its progress. This is why
(2− (n mod 2)) = 2 attackers are needed.

To conclude, the (2 − (n mod 2)) attacker(s) thus par-
tition(s) a network of n sealers into roughly two halves to
which they add clones so that each group contains a majority
of at least bn/2c + 1 sealers. This guarantees the progress
of the protocol on each group so as to obtain the commit
of a transaction TX1 on one group and the canonical chain
containing TX2 in the other group. For example, there must
be at least 5 sealers in each subgroup for a network of n = 9
sealers. Such a condition is required to ensure termination of
the consensus algorithm, so that blocks will be decided, or
appear to be final, from the viewpoint of both subgroups.

Note that we consider here the necessary time for a
partition. In a realistic scenario, the attacker may want the
effect of its transaction to take occur before stopping the
partition. For example, an attacker buying a good in transaction
TX1 may want to receive the good before the transaction gets
discarded from the blockchain.

C. Conflicting transactions

The most common way of double spending is to make sure
a transaction TX 1 ends up being included in one branch of a
fork, then convincing the recipient that TX 1 is committed,
before resolving the fork by discarding the branch of this
transaction TX 1. Later on, the sender of the transaction TX 1

can simply reuse the coins he initially spent in TX 1 in another
transaction TX 2. Interestingly in Ethereum, if the conflicting
transaction TX 2 is not issued early enough, then TX 1 could
be re-included in a mempool and committed later on.

The goal is for the clones to leverage the message delays
between network partitions to rapidly issue two conflicting
transactions. As soon as the blockchain network is divided into
two subgroups, the attacker issues a minimum of two conflict-
ing transactions, at least one transaction to each subgroup. A
typical example to illustrate the double spending attack is two
conflicting transactions:

TX 1 where Alice gives all her coins to Bob in the first
transaction sent to one group and

TX 2 where Alice gives all her coins to Carol on the other
transaction sent to the other group.

It is clear that committing both transactions would violate the
integrity of Alice’s account and would result in a double spend-
ing. Once the first transaction appears committed, delivering

the delayed messages or ending the partition will have the
effect of discarding one of the two transactions.

In the next two sections, we explain how the majority of
sealers in Aura and the order of the sealings in Clique allow
to select the transaction to be discarded by the system.

VI. THE CLONING ATTACK AGAINST AURA

We now present a simple way to apply the Cloning Attack
to double spend in Aura. To discard the branch, say the victim
branch, that contains TX1 and double spend, the attacker must
influence Aura to select the branch containing TX2 , say the
attacker branch, as the canonical chain.

As explained earlier in Algorithm 1, the current imple-
mentation of Aura simply chooses the longest chain as the
canonical chain whenever a fork is detected. So, to influence
the selection of the attacker branch as the canonical chain,
the attacker simply has to contribute to the attacker branch by
sealing more blocks in the group maintaining this branch than
the other group.

Sealer 1 Sealer 3 Sealer 7 Sealer 9Sealer 5

Sealer 1Sealer 2 Sealer 6 Sealer 8Sealer 4

TX1

TX2

A block sealed
by a malicious

sealer

A block sealed by
a well-behaved

sealer
An empty turn

Well-behaved
sealer sealer

Malicious

Figure 1. Applying the Cloning Attack to double spend in Aura requires
the attacker, “Sealer 1”, to delay messages during (n + 1) × s seconds for
transaction TX1 to be committed on the upper branch and for the attacker to
seal more blocks on the lower branch than on the upper branch

To seal more blocks in one branch than another, the attacker
maintains the partition during (n + 1) × s seconds, where n
is the number of sealers and s is the step duration in seconds
that separates consecutive blocks. The reason is twofold.

• First, as mentioned earlier in Algorithm 1, Aura requires
ns delay after a block is created to ensure that it is
decided. Deciding a block on the victim side is necessary
to make sure that TX1 gets committed. Given that both
the size of the group on each side is bn/2c+ 1 and that
each sealer seals one after another, the attacker clone must
also seal at least one block.

• Second, the attacker must ensure that the attacker branch
is longer than the victim branch so that the attacker branch
gets selected by Aura as the canonical branch. This can
only be done if the attacker seals two blocks on the
attacker branch, i.e., one extra block compared to the
number of blocks it sealed on the victim side. As a result,
the attacker needs to maintain the network partition for
(n+ 1)× s seconds to get at least two turns in which it
can seal a block.

6



Example with 9 sealers. For the sake of simplicity, Figure 1 de-
picts the Cloning Attack against Aura with a network partition
where there are n = 9 sealers and where (2 − n mod 2 = 1)
sealer is malicious, namely “Sealer 1”. This attacker is thus
present in both groups through its two cloned instances and
gives the illusion that each group contains a majority of
bn/2c+ 1 = 5 sealers while one of the sealers in each group
is actually a clone. As we can see, this attack translates into
having Sealer 1 creating the last block (depicted with the red
right-most block in the figure) only on the lower partition
before merging the two partitions. By doing so, Sealer 1 makes
sure that this branch will be the canonical branch whereas the
upper branch will disappear. The attacker is thus guaranteed
to double spend successfully.

VII. THE CLONING ATTACK AGAINST CLIQUE

In this section, we apply the cloning attack against Clique.
In Clique, the Cloning Attack does not require to take as long
as in Aura. Unlike in Aura, a sealer of Clique can seal a block
even when it is not its turn. Depending on their turn, some
sealers may have to wait while others do not. These differences
impact the way the attacker can influence the selection of one
branch of a fork as the canonical chain and allow an attacker
to double spend faster than in Aura.

A. In-turn and out-of-turn sealers

The cloning attack against Clique differs from the one
against Aura in the moment at which it starts delaying mes-
sages. Because the order of sealing is important in Clique, the
attacker should ideally decide to start delaying the messages
based on the sealer’s turn to seal a block.

When a sealer seals a block while it is his turn, we
call this sealer an in-turn sealer and the block an in-turn
block (cf. Alg. 3, line 29). There is at most one in-turn
sealer to seal the current block in each partition of Clique.
When a sealer seals a block while it is not his turn, we
call this sealer an out-of-turn sealer and this block an out-
of-turn block (cf. Alg. 3, line 32). As a sealer must wait for
sealer-limit blocks between two blocks it seals, there are at
most (n− sealer-limit) potential out-of-turn sealers to seal a
block. The in-turn block contributes a weight of 2 to the weight
of its branch whereas the out-of-turn blocks contribute to 1 to
the weight of its branch, hence sealing in-turn or out-of-turn
impacts the decision regarding the branch selection process.

In addition, an in-turn sealer can append a block to the
chain without waiting for any delay as shown in line 29 of
Alg. 3. By contrast, an out-of-turn sealer has to wait for
a random period as indicated at line 32 of Alg. 3. This
mechanism gives the in-turn sealer some time to be the first to
seal a block in his turn, but allows out-of-turn sealers to seal
a block if the in-turn sealer is lagging.

As the canonical chain is chosen among the branches of a
fork by comparing the sum of their block weights, the attacker
must have a maximum number of in-turn sealers at the time
of the partition to maximize the overall weight. Hence, to
influence the selection of the branch as the canonical chain,
the attacker must choose the proper turn to start delaying mes-
sages. If not done properly, the attacker risks to maximizing
the weight of the branch where its transaction was included,
limiting the chances of a successful double spending.
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Figure 2. An execution of the in-turn cloning attack against Clique where
n = 9 sealers mine the blue blocks in-turn before the messages get delayed,
after which each group seals five blocks, 3 in-turn blocks on the left group
and 1 in-turn block on the right group

B. Disordering sealers to select a branch

Figure 2 depicts the execution of the attack with n = 9
sealers and one attacker (Sealer 1) as time increases from top to
bottom. Initially, the blockchain starts with block 5, indicating
that the first block is sealed by Sealer 5. As times goes on,
Sealers 6, 7, 8 and 9, seal one after the other the subsequent
blocks of the blockchain. As there is no partition yet, the
in-turn sealers are the first to sign these blocks during their
respective turn, hence all blocks are in-turn blocks represented
in blue in the figure. Next to each created block is a list of
sealers that are either unable to seal (grey), in-turn sealers
(green) or out-of-turn sealers (yellow).

Consider that Sealer 1, the attacker, performs the cloning
and delays the network messages. Right after Sealer 9 sealed
his block, Sealer 1 starts intercepting the messages between the
group of sealers 2, 3, 4 and 5 on the left side and the group
of sealers 6, 7, 8 and 9 on the right side. Note that Sealer 1
is represented on both sides because of the presence of one
of its clones on each side. The resulting partition is indicated
in Figure 2 with a fork of the blockchain into two branches.
Right after the partition starts, Sealer 1 issues two conflicting
transactions TX1 and TX2 on each side of the partition that
will double spend. The two clones of Sealer 1 allow him to seal
one block in each group. Note that these blocks are labelled 1
and represented in blue because Sealer 1 is the in-turn sealer
at this point in time. After sealing, Sealer 1 is no longer able
to seal any block due to the sealer-limit , hence Sealer 1 is
depicted in grey in both groups.

On the right side of the partition, we can see that Sealer
6 seals the following block, even though it is not the in-
turn sealer at this moment. This is because the in-turn sealer,
Sealer 2, cannot communicate with this group as the network
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is partitioned. For some reason it might also be the case on the
left side of the partition that Sealer 2 is not fast enough to seal
the next block and that another sealer, say Sealer 3, manages
to seal it before. Note that this can happen as the delay Sealer
3 has to wait before sealing is a random number that can be
null (cf. Alg. 3, line 32). However, this last seal from Sealer
3 prevents it from sealing the next block in-turn as it has to
wait for the sealer-limit , hence the next block is again out-
of-turn. The process continues where sealers on the left side
seal in-turn whereas sealers on the right side seal out-of-turn.

Finally, the attacker does no longer need to delay the mes-
sages and can stop the partition as both transactions TX1 and
TX2 are now successfully committed. In fact, the transactions
are both now in the first block of a series of bn/2c + 1 = 5
consecutive blocks, which is sufficient for all Clique users to
consider these transactions as committed because their block
is decided as indicated at line 49 of Algorithm 3. We can
conclude that the weight gained by the branch on the left side
during the partition is 3× 2+ 2× 1 = 8 because it contains 3
in-turn blocks and 2 out-of-turn blocks. By contrast, the weight
gained by the branch on the right side during the partition is
1 × 2 + 4 × 1 = 6 because it contains 1 in-turn block and 4
out-of-turn blocks. It follows from the difference in weight of
the two branches that the heaviest branch on the left side is
chosen as the canonical branch whereas the lightest branch on
the right side is simply discarded by the protocol (cf. Alg. 3,
line 44).

C. Attack regardless of the order of sealers

Note that even if the attacker does not know the topology,
there is a way to attack Clique. The attack is slightly different
from the previous one as it relies on the possibility for the
attacker to become the only sealer able to seal a block on both
sides of the partition. The attacker can simply seal a single
block on the victim branch, and keep sealing blocks on the
attacker branch. In the worst case scenario for the attacker,
all the bn/2c + 1 upcoming in-turn sealers end up on the
victim side, which will maximize the weight of the branch
on the victim side gained during the partition. Recall that the
sealer-limit is always bn/2c + 1 in Clique (Alg. 3, line 14),
Now, if the attacker stops sealing a second block on the victim
side, then the maximum weight gained on this side during the
partition will be (sealer-limit ×2). The attacker simply needs
to keep sealing on the other branch until the gained weight on
this branch reaches (sealer-limit × 2 + 1). In this case, the
attacker successfully double spends regardless of the sealer
turn in each group.

VIII. EXPERIMENTS

In this section, we present the double spending results
of the Cloning Attack in both Aura and Clique. For ethical
reasons, we do not experiment our attack against PoA networks
that are currently in production. Instead, we first present our
experimental setup then detail the risk for an attacker to
perform double spending in both Aura and Clique within our
network.

A. Testnet setup

To practically observe the chance of successful double
spending using the approaches described in the previous sec-

tions we have created our own PoA blockchain networks,
experimented the attacks and measured their success rate
empirically.

Our testnet consists of 10 Ubuntu 18.04 Virtual Ma-
chines (VMs) on our OpenStack private cloud; each VM
is provided with 1 virtual CPU core and 2 GB of memory.
These VMs are placed into two subnets, 5 VMs each;
they are connected through 5 linux virtual routers and a
physical Ethernet switch with dedicated VLAN. An in-
stance of either Parity-Ethereum-v2.0.8-stable with Aura or
geth-1.8.21-stable with Clique runs on each VM.

All of these instances are peering with each other to form
the blockchain network. While we have 10 Ethereum instances
in total, our PoA blockchain employed only 9 unique private
keys for sealers; the last instance instead uses the same key
as the first one as explained in Section V where one instance
is seen as a clone of the other. As of writing, neither Aura
nor Clique incorporate a mechanism to prevent private key
reusing. One can simply copy a key and configuration files
from one instance to another in order share the private key,
other instances will simply accept the connection from the
clone instance in the same way as the original.

In our experiments, the attacker is a Byzantine (or mali-
cious) sealer with the intention to achieve double spending.
This attacker is provided the capability to transiently partition
the network into two sealer groups: the attacker and the victim
group. We refer to the attacker group as the group of sealers
whose blocks sealed during the network partition are intended
to be adopted as a part of canonical chain, while we refer to
the victim group as the group of sealers whose sealed blocks
are intended to be discarded after the fork is resolved.

To grant the capability to partition the network, we allow
our attacker to cut the network connectivity between two
subnets using a firewall feature on the linux routers. Note that
the same result is achieved using a man-in-the-middle attack
though ARP-spoofing in a local area network or with BGP-
hijacking in other networks [13]. The attacker also has control
over 2 Ethereum instances (2 VMs) that share the same private
key used to seal the blocks.

The attacker aims to partition the network right before
their turn to seal the block, where each sealer group must
contain one VM that is under the control of the attacker. To
begin the attack, our attacker actively checks the owner of
the current turn every 10 ms in order to partition the network
close to the right timing. Right after the network partition, the
attacker issues one transaction to each sealer group; these two
conflicting transactions TX1 and TX2 , for example Alice is
giving all of her coins to Bob in TX1 and gives the same
coins to Carol in TX2 .

After issuing the transactions, the network partition is
maintained during a period that depends on which PoA al-
gorithm as explained below. When the fork is resolved at the
end of the network partition, we look at the resulting branch
of the fork which has been adopted as a canonical chain as
well as the status of transactions.

A double spending is considered successful only if:

1) A transaction issued to the victim group is committed
before the end of the network partition;
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Figure 3. The success rate of double spending with the Cloning Attack in
Aura
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Figure 4. The success rate of the Cloning Attack double spending in Clique
as the duration of the network partition increases and for different numbers
of consecutive possible in-turn sealers

2) the blocks sealed by the attacker group during the fork
have been adopted as a part of the canonical chain after
the end of the partition; and

3) the resulting canonical chain does not contain a transac-
tion issued to the victim group.

B. Running the Cloning Attack against Aura

We experiment the Cloning Attack in Aura by varying
the step duration and network partition duration. We chose
Step durations 3, 5, and 7 seconds in order to observe their
impact of the minimum partition duration that makes the attack
successful.

We maintain the network partition to match the step
duration in use, such that for example a 24, 27, and 30 second
partition duration corresponds respectively to the 8th, 9th and
10th step for a 3 second step duration, respectively. We divide
the sealers into two groups, such that apart from the two
attacker instances, the placement of the reminder sealers is
randomly but equally balanced between the two partitions. We
do ensure, however, that both groups have an equal number
of instances, which is 5, and each group contains one of two
instances under the control of the attacker. The values plotted
for each combination of step duration and network partition
duration are the averages over 30 runs.

Figure 3 presents the double spending success rate of
3, 5 and 7 second step durations. In all three cases, the
obtained results show a similar trend. As expected, achieving a
successful double spending is impossible in all step durations
at the 8th step or any earlier step, namely 24, 40 and 56
seconds for 3, 5, and 7 second step durations, respectively.
Indeed, these attempts fail because any attack attempt among
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these runs could neither commit the transaction in the victim
group nor force the block sealed by the attacker group to be
adopted as a canonical chain when the network partition ends.

However, we can observe that as expected, the chances
of successful double spending at the 9th step falls within
the range between 50-60%. Even though both groups are
provided enough time to seal 5 blocks in order to commit the
transactions, the attacker still cannot force a particular branch
of the fork to be adopted. The variation at this point is due
to the randomness of Ethereum instance placement during our
experiment.

For all three step durations, at the 10th step and any step
thereafter, the attack is always successful (100% chances). This
is due to the attack technique in use that allows the attacker to
force a branch of the fork to be adopted. Overall, we can see
that a longer step duration requires a longer period of network
partition in order to achieve a successful double spending,
which confirms our expectations.

C. Running the Cloning Attack against Clique

We experiment the Cloning Attack on Clique while varying
the partition duration and the way sealers are distributed
between two partitions.

The variations in the sealer divisions are included in the
experiments in order to capture the changes in weight of each
branch as a result of the sealing sequences. In particular, we
experiment with the 4 sealer divisions presented below with
different number of consecutive sealers:

• 5 consecutive sealers: 1, 2, 3, 4, 5 in the attacker group
and 1, 6, 7, 8, 9 in the victim group;

• 4 consecutive sealers: 1, 2, 3, 4, 6 in the attacker group
and 1, 5, 7, 8, 9 in the victim group;

• 3 consecutive sealers: 1, 2, 3, 6, 7 in the attacker group
and 1, 4, 5, 8, 9 in the victim group;
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Figure 6. The average weight gained in Clique depending on the partition
duration and the sealer distribution across partitions

• 2 consecutive sealers: 1, 2, 4, 6, 8 in the attacker group
and 1, 3, 5, 7, 9 in the victim group.

The partition duration is based on the block duration in
use, which is fixed to 5 seconds in all our Clique experiments.
Since our testnet setup consists of 9 sealers in total, to commit
a transaction during a partitioning, at least 5 blocks must be
sealed in such a period. In the best case where 5 sealers could
seal 5 in-turn blocks, the minimum duration required for the
attack to succeed is equal to 5 × 5 = 25 seconds. In other
cases where at least 1 out of 5 blocks is sealed out-of-turn,
however, the required duration exceeds 25 seconds.

Based on our knowledge of the time necessary for the
algorithm to seal 5 blocks, we vary the duration from 24.8
to 28.0 seconds in an incremental step of 200 milliseconds.
The range of duration allows to take into account the random
delay of out-of-turn sealers as shown in Algorithm 3 and yet
to capture the behavior of the system from the point where
only 4 blocks can be sealed to the point where 5 blocks can
be sealed.

For each run we keep a record of whether the double
spending was successful, which block was sealed by which
sealer, the weight gained during the partition for each fork,
and the number of blocks created during the network partition.
The values averaged over 50 runs are depicted in the charts
for each partition duration.

Figure 4 reveals the double spending success rate for
the four aforementioned sealer divisions while Figure 5 and
Figure 6 show the number of sealed blocks and the weight
gained during the network partition, respectively. We observe
that the success rate in Figure 4, follows a similar trend for
all of 4 grouping variations; the longer the partition duration,
the higher the chance of successful double spending.

The shortest partition duration value in the chart, 24.8
second, gives the lowest success rate regardless of the sealer

division. This low success rate for short duration can be
explained by the number of blocks sealed during the network
partition. Indeed, due to the limited partition duration, the
victim group is rarely able to seal five blocks during the
network partition as shown in Figure 5, thus a transaction
issued by the victim group could not be committed and the
attack fails. When the partition takes longer, we can see that
the victim group is able to seal five blocks.

When the partition duration is less or equal to 26 seconds,
there is no noticeable difference between the four different
sealer divisions. In the case of two consecutive possible in-
turn sealers and when the partition duration is greater than 26
seconds, however, the success rate is lower than the other three
divisions. This phenomenon can be explained by the weight
gained during the network partition as shown in Figure 6.
In fact, in case of 2 consecutive possible in-turn sealers,
the difference in weight gained between attacker and victim
branches becomes relatively low; this gap narrows with the
increase in the partition duration.

IX. ANALYSIS AND COUNTERMEASURES

We begin this section by comparing the vulnerabilities of
Aura and Clique to the Cloning Attack resulting from our
experiments in Section VIII. Next, we analyse further the Aura
algorithm and discuss its implication to the blockchain safety
and liveness. Finally, we present potential countermeasures
against the Cloning Attack.

A. Comparison between Aura and Clique

In this section, we explain why the Cloning Attack against
Aura can always be successful whereas the Cloning Attack
against Clique is much faster but not always successful.

As detailed in Section IV, one of the main differences
between Aura and Clique resides in the predictability of
the sequence of sealers. In fact, in Aura the sequence is
strictly enforced whereas in Clique this sequence may change
depending on the difference between a random number and
the network communication delay. This slight algorithmic
difference has however significant consequences on consensus
algorithms resilience to double spending attacks using our
proposed Cloning Attacks.

On the one hand and as we have demonstrated in Sec-
tion VIII, due to its strict enforcement of sealing order, Aura is
vulnerable to the Cloning Attack in case of network partition.
Performing the Cloning Attack against Aura, the attacker does
not need to know anything about the identity of the sealers nor
does it need to know their order. Thus, a malicious sealer only
needs to partition the overlay network using classical network
attacks such as BGP hijacking to succeed in double spending
with a 100% chance of success.

On the other hand, double spending without topology
information on Clique is possible, but the attack against Clique
is about twice as fast as against Aura when the topology is
known. Indeed, as we have presented in Section VIII, the
knowledge of potential next in-turn sealer greatly influences
the chance of double spending. When the attacker is capable
of isolating the next bn/2c+1 sealers, it is able to perform the
double spending attack with 100% success rate. By contrast,
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the knowledge of only the next two in-turn sealers only
guarantees a success rate of 60% maximum.

Interestingly, when considering the attacks against both
Aura and Clique without the knowledge of the topology, it
appears that attacking Clique can be even slower than attacking
Aura. The reason is that in the worst case scenario where all
in-turn sealers are on the victim side, the attacker will have
to obtain a branch that is twice as large as the victim branch
before it can double spend. Growing this branch would take
more time than executing the Cloning Attack on Aura. But
overall, even without knowledge of the topology both Aura
and Clique consensus algorithms are vulnerable to a malicious
sealer aiming at double spending.

B. Modifications to make Aura and Clique safe and live

Our attack violates the safety of Aura and Clique, in that
it leads the system to an undesirable state, where coins can be
stolen.2 As we explain here, this problem can be mitigated by
simply selecting the right number of sealers |V | necessary to
decide a block. Determining |V | to ensure safety may however
be insufficient, as it does not ensure that the system makes
progress, which is a liveness problem. So we also explain how
to choose |V | in the case of Aura to ensure that it is both safe
and live. Changing |V | can be easily achieved by modifying
the boolean condition under which a block is decided at line 31
of Algorithm 1. Note that while we focus on Aura, the same
arguments also apply to Clique.

Figure 7 depicts the relation between the desired fault
tolerance of the system and the number of sealers |V |
necessary to decide a block to ensure Aura’s safety. This
analysis is helpful as it allows us, depending on the targeted
fault tolerance, to decide the minimal number of sealers that
are necessary to decide a block in a synchronous or partially
synchronous network so as to ensure that Aura is safe and
live. In particular, we consider two distinct cases, whether
the network communication is synchronous or partially
synchronous. The asynchronous case is ignored here as
consensus would be impossible in all interesting cases where
t > 0 [18].

Synchronous network. In the synchronous case, Aura’s safety
is guaranteed when |V | > t, which is represented by the area
above the orange dotted line |V | = t+1 in Figure 7. In fact, to
ensure that there exists a block sealed by an honest sealer, one
has to wait for the number of blocks sealed by distinct sealers
to be greater than the total number of malicious sealers, which
requires the number of sealers |V | to exceed the number t of
malicious sealers.

• Case t = 0: When all the sealers are honest, |V | = 1
is sufficient to consider finality of a block, i.e., the
transactions within a block can be considered committed
instantly because one may safely assume that a block will
be delivered to all the sealers in the known upper bounded
time.

• Case 0 < t < n: When there is at least one malicious
sealer, one must ensure that at least one honest sealer

2Safety (resp. liveness) is often referred to as the property of a system to
guarantee that "a bad thing will never happen" (resp. "a good thing eventually
happens") [23], [1].
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Figure 7. Required number of sealers |V | to decide a block depending on
the number of malicious sealers t: Aura is safe only when |V | > n+t

2
, Aura

is live only when |V | < n − t, so Aura is both safe and live only when
n+t
2

< |V | < n− t.

has recently appended a block to the blockchain before
considering finality of its previous blocks because a
malicious sealer may violate the protocol by introducing
a malformed block or appending a block out-of-turn.

• Case t = n: In this case, we can see that |V | should be
strictly greater than n, which is impossible by definition.
This illustrates that it is impossible for Aura to work when
t = n.

To conclude, the highest fault tolerance t that Aura can
tolerate in a synchronous system is t = n − 1 by requiring
blocks from all the |V | = n sealers to decide a block.

Partially synchronous network. Requiring bn2 c + 1 sealers
to decide one block is insufficient to tolerate unpredictable
message delays between two partitions of honest sealers when
t > 0. As an example, recall that Aura aims at tolerating
up to a minority dn2 e − 1 of malicious sealers, however, if a
majority bn2 c+1 of sealers are sufficient to decide a block, then
a group of only 2 honest sealers helped with the t = bn2 c+ 1
malicious sealers would be sufficient to decide one block. This
does not prevent the other honest sealers in another partition
from deciding a conflicting block with the help of the clones of
the t malicious sealers. This is the reason why the dashed red
line on Figure 7 indicates that |V | ≥ bn+t2 c+1 is necessary to
guarantee that a majority of honest sealers sign a block so that
no other conflicting blocks can be decided. More precisely,
here are the 3 interesting cases to consider:
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Figure 8. An Aura execution using |V | > 2n
3

and t < n
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(n = 9, |V | = 7
and t = 2) where transaction TX1 is committed
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Figure 9. An Aura execution using |V | > 2n
3

and t < n
3

(n = 9, |V | = 7
and t = 2) where neither transaction TX1 nor TX2 are committed

• Case t = 0. When all the sealers are honest, the algorithm
only needs at least a majority of sealers, |V | ≥ bn2 c+ 1,
before considering that a block is decided.

• Case 0 < t < n
3 . To ensure that a majority of the honest

sealers seal a block for one block to be decided, we
need |V | ≥ bn+t2 c + 1 sealers to seal blocks. As there
are n − t honest sealers, a majority of them contains
bn−t2 c + 1 sealers. As there are t malicious sealers, we
need strictly more than half n−t

2 of the honest sealers
and the t malicious ones to seal blocks, which leads to
|V | ≥ bn+t2 c + 1. The two upper triangles of Figure 7
depict these conditions, under which Aura is safe.

• Case t ≥ n
3 . Interestingly, when t ≥ n

3 , it is impossible to
guarantee that at least |V | ≥ bn+t2 c+ 1 will seal blocks.
In fact, this would imply that strictly more than 2n

3 sealers
seal a block. However, as t ≥ n

3 this would also mean
that at least one malicious sealer seals a block, which
cannot be guaranteed as malicious sealers may choose,
by definition, to not follow the protocol. The upper-right
triangle of Figure 7 depicts the conditions under which
Aura is safe because |V | ≥ bn+t2 c+1 but not live because
t ≥ n

3 .

Even with only one malicious sealer (t = 1), the current

S1 S3 S7 S9S5

S2 S6 S8S4

TX1

A decided
block

A sealed
block

Well-behaved
sealer sealer

Malicious

S4

S7

A group of blocks
capable of finalizing the
first block in the group

Figure 10. A Clique execution using |V | > 2n
3

and t < n
3

(n = 9, |V | = 7
and t = 2) where transaction TX1 is committed

implementation of Aura cannot guarantee safety. The reason is
that Aura claims that a majority of sealers is enough as long
as t < n

2 . However, one can find a counter-example where
|V | = bn2 c+1 that falls in the unsafe area shown in Figure 7.

C. Simple safe countermeasure

As explained in the introduction and for ethical reasons, we
disclosed early a simple, yet naive, countermeasure to make
both Aura and Clique safe. This countermeasure has been
implemented in the xDai blockchain as acknowledged in their
white paper [3]. This first countermeasure was not as precise
as of today and required |V | > 2n

3 and t < n
3 [15] to ensure

safety but ignoring liveness guarantees. Interestingly, the same
conditions of this countermeasure are required by IBFT [7]
and recent work suggested that IBFT is not live either [36].

1) Making Aura safe: As an example, Figures 8 and 9
demonstrate how a modified version of Aura where n = 9,
|V | = 7, t = 2 where S4 and S7 and malicious. These two
sealers are allowed to be silent or even seal the blocks in
all groups whenever a network partition occurs. As indicated
with a green dash frame in Figure 8, this version of Aura
can commit TX1 even though S4 and S7 do not contribute
any block to the chain in their turns. The S4 turn can be left
empty and S5 may simply continue sealing a block after that;
the same goes for S8 after the end of S7 turn. In this case, the
other 7 honest sealers alone are sufficient to decide a block. As
indicated in the execution of Figure 9, however, it is impossible
to have at least 7 sealers on both sides at the same time.
Therefore, it is impossible to commit the transactions issued
to both partitions concurrently, even though Aura allows their
sealers to continue sealing more blocks during the network
partition.

2) Making Clique safe: The same condition also applies
to Clique. To illustrate how a modified Clique with two-thirds
consensus works, let us use the same setup with a blockchain
network of n = 9 sealers: S1 to S9 with two malicious sealers
S4 and S7. As indicated with green dash frame in Figure 10,
the blockchain network can still commit TX1 . Instead of S4
and S7, Clique allows other sealers to continue sealing the
blocks in an out-of-turn fashion without any gap and eventually
reaches the 7 blocks requirement. In another case where the
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Figure 11. A Clique execution using |V | > 2n
3

and t < n
3

(n = 9, |V | = 7
and t = 2) where neither transaction TX1 nor TX2 are committed

network partition occurs, if the number of sealers in a partition
is not greater than two-thirds of all sealers, such a partition
will be stuck even before sealing enough blocks to commit a
transaction. Figure 11 shows a concrete example where both
partitions get stuck due to the lack of sealers; one partitions
contains only 6 sealers whereas there are only 5 sealers in the
other.

D. Replacing the consensus by a formally verified alternative

On Figure 7, it is easy to identify that the simple counter-
measure presented above, which requires |V | > 2n

3 and t < n
3 ,

does not ensure liveness. This is because the protocol can reach
an undesirable situation depicted by the upper-right triangle
of the figure. To remedy this issue, it is sufficient to ensure
that n+t

2 < |V | < n − t. Note that this implicitly guarantees
that t < n

3 anyway. As a result, under these conditions Aura
remains safe and live; likewise, the same conditions also apply
to Clique.

Finally, a radically different countermeasure that also of-
fers safety and liveness is to use a deterministic consensus
algorithm that is partially synchronous in that it tolerates
arbitrary delays. PBFT [6] is one example but is not designed
to scale outside a small network as it relies on a leader.
DBFT [8] is a leaderless deterministic partially synchronous
consensus algorithm that was especially designed to scale to
blockchain systems. One of the variant of DBFT has recently
been formally proved correct with model checking [38]. In
addition, DBFT is time optimal and resilience optimal. It has
been shown that DBFT is resilient to double spending attacks,
as it is not possible for a blockchain building upon it, like the
Red Belly Blockchain [9], to fork.

X. CONCLUSION

To cope with the drawbacks of proof-of-work (PoW),
Byzantine fault tolerance has been introduced in mainstream
blockchains in the form of proof-of-authority (PoA) where
sufficient sealers |V | among n must seal a block despite a
minority t of them being malicious. In this paper, we have
detailed three of the most popular PoA algorithms in pseudo-
code to dissect their executions under various conditions.
Although they feature more elaborate consensus algorithms

than the classical longest branch strategy typically used in PoW
blockchains, our study shows that PoA fails at offering a safe
alternative.

The Cloning Attack allows malicious participants to double
spend in Ethereum instances using Clique and Aura consensus
protocols. This attack leverages the possibility of cloning
public-private key pairs in Ethereum in two distinct instances
before executing a network attack between two groups to lure
the sealers on the number of votes that occurred in each group.

Our findings inspired by the theory of Byzantine fault toler-
ance capture precisely the relation between the fault tolerance
t and the amount of sealers |V | that must sign a block for
PoA to be safe and live. Other countermeasures include simply
replacing the Aura and Clique algorithms within Ethereum
parity and geth by a recent Byzantine deterministic consensus
especially designed for blockchains and that has been proved
correct.
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