
Let’s Revoke:
Scalable Global Certificate Revocation

Trevor Smith, Luke Dickinson, Kent Seamons
Brigham Young University

tsmith@isrl.byu.edu, luke@isrl.byu.edu, seamons@cs.byu.edu

Abstract—Current revocation strategies have numerous issues
that prevent their widespread adoption and use, including
scalability, privacy, and new infrastructure requirements.
Consequently, revocation is often ignored, leaving clients
vulnerable to man-in-the-middle attacks. This paper presents
Let’s Revoke, a scalable global revocation strategy that addresses
the concerns of current revocation checking. Let’s Revoke
introduces a new unique identifier to each certificate that
serves as an index to a dynamically-sized bit vector containing
revocation status information. The bit vector approach enables
significantly more efficient revocation checking for both clients
and certificate authorities. We compare Let’s Revoke to existing
revocation schemes and show that it requires less storage and
network bandwidth than other systems, including those that
cover only a fraction of the global certificate space. We further
demonstrate through simulations that Let’s Revoke scales linearly
up to ten billion certificates, even during mass revocation events.

I. INTRODUCTION

In the current web Public Key Infrastructure (PKI),
Certificate Authorities (CAs) issue and sign the X.509
certificates that secure TLS connections. It is critical to identify
any certificate that was erroneously issued or has had its key
pair compromised. Once identified, the owner of the certificate
requests the issuing CA to revoke or invalidate their certificate.
Notice of this revocation needs disseminating to all clients
that rely on the certificate. Otherwise, connections using the
compromised certificate are vulnerable to man-in-the-middle
(MitM) attacks until the certificate has expired, which can be
up to 2 years later [1]. Without accurate and timely revocation
checking, attackers can impersonate the server undetected and
glean private information such as passwords, emails, financial
data, and other personally-identifying information.

Currently deployed revocation strategies have some critical
issues that interfere with providing secure and practical
revocation checking. Among these concerns are scalability
[2]–[4], privacy [5], page loading delays [5], and susceptibility
to downgrade attacks [2], [5], [6]. The remaining strategies
have other debilitating weaknesses, such as requiring significant
infrastructure changes [7], [8] or opening new attack surfaces

[9]. Due to these critical issues, certificate revocation is ignored
by most clients, leaving many computers and mobile devices
vulnerable to attack [10].

Major browser vendors consider the security of their users a
high priority. At the same time, browsers emphasize low latency
and fast page loads to remain competitive, and mobile browsers
must consider network bandwidth usage. Because of these
concerns, combined with vulnerability to downgrade attacks,
Firefox and Chrome have reduced their support for traditional
revocation methods such as Certificate Revocation Lists (CRLs)
[2] and Online Certificate Status Protocol (OCSP) [5]. Instead,
Firefox and Chrome have both deployed custom revocation
systems to protect their users against the compromise of a
relatively few critical certificates. Liu et al. [10] additionally
found that mobile browsers do not currently evaluate certificate
revocation statuses due to the previously described concerns,
especially those relating to network bandwidth consumption.

Over the last few years, the certificate space has grown
tremendously. From January 2017 to January 2018 alone,
the number of live CA-trusted certificates observed in public
Internet scans more than doubled, growing from 30 million
[11] to over 80 million [12]. Two years later, in January 2020,
this number has increased more than fivefold to over 434
million [12]. One reason for this explosive growth is the
emergence of a new CA, Let’s Encrypt [13], which freely issues
certificates through an automated system. As of January 2020,
the number of active trusted certificates signed by Let’s Encrypt
exceeded 231 million [12]. The recent efforts to promote using
only encrypted web traffic [14] has also contributed to the
increase of trusted certificates. As the number of certificates in
use continues to grow, the scalability of revocation strategies
becomes increasingly essential.

While revocation strategies should maintain acceptable
network bandwidth requirements during normal conditions, it
is also imperative that they effectively handle mass revocation
events such as the period following the announcement of
the Heartbleed vulnerability. In 2014, Liu et al. [10] found
that, before the announcement of Heartbleed, the percentage
of revoked certificates was approximately 1% of all active
certificates (non-expired certificates signed by a trusted CA).
Following the announcement, the percentage spiked to nearly
11%. During this time, Cloudflare estimated that they incurred
an additional cost of $400,000 per month to publish their
enlarged CRL due to increased network bandwidth consumption
[15]. After measuring the effects of Heartbleed, Durumeric et al.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24084
www.ndss-symposium.org

stated: “The community needs to develop methods for scalable
revocation that can gracefully accommodate mass revocation
events, as seen in the aftermath of Heartbleed” [16].

Despite the importance of these performance concerns,
perhaps the most troubling issue is that many revocation
strategies are subject to downgrade attacks. When a revocation
status is unavailable because the authoritative server is
inaccessible, modern browsers “soft-fail” by assuming the
certificate in question is still valid. This default posture
shows that browsers value accessibility over protection against
the attack vectors exposed by a compromised certificate.
Soft-failing is particularly dangerous since an attacker
conducting a MitM attack using a revoked certificate can also
trivially force soft-failure by blocking outgoing requests to
verify revocation status. On this topic, Langley stated that
“soft-fail revocation checks are like a seat-belt that snaps when
you crash” [17].

These issues motivate the general requirements for an
effective revocation strategy, which Larisch et al. [11] formally
enumerated as the following six criteria that a universal
revocation strategy should fulfill:

1) Efficiency - The revocation strategy should require
minimal network bandwidth, storage, and computational
resources.

2) Timeliness - Revocation status updates should be sent
frequently to ensure that they never become stale.

3) Failure Model - The strategy should enable clients to
adopt a hard-failure policy.

4) Privacy - The strategy should preserve client traffic
privacy.

5) Deployability - The revocation strategy should be
incrementally deployable and provide incentives for
adopters.

6) Auditability - Revocation information should be auditable
by other parties.

In this paper, we present Let’s Revoke, a new revocation
strategy designed to overcome the limitations of other
revocation strategies and fulfill the six criteria set forth by
Larisch et al. First, we provide a survey of current revocation
strategies with their strengths and weaknesses. Second, we
describe an efficient method for uniquely identifying certificates.
Third, we propose a new revocation strategy, Let’s Revoke,
and describe how it fulfills the six criteria listed above and
addresses the concerns surrounding current revocation strategies.
Fourth, we compare Let’s Revoke to other proposed revocation
strategies. Fifth, we provide simulations showing the storage
requirements of Let’s Revoke for revocation spaces up to 10B
certificates and a 10% revocation percentage. While we present
Let’s Revoke in the context of the web PKI, the scheme applies
to any PKI where revocation scalability is an issue.

CRLite, a recent proposal that satisfies the six criteria of
a universal revocation strategy, inspired our work for more
efficient revocation checking. Let’s Revoke offers improvements
over CRLite in computational resource efficiency, especially
network bandwidth. Our measurements presented in this paper
estimate that Let’s Revoke clients require only approximately

28% of the network bandwidth of CRLite. Let’s Revoke also
eliminates the necessity of CRLite to acquire the revocation
statuses of all certificates on the Internet to construct the
cascading Bloom filter each day, which would currently require
over 950 OCSP requests per second to the CA Let’s Encrypt
alone.

The contributions of the paper are an analysis showing that
Let’s Revoke requires less storage and network bandwidth
than currently deployed revocation methods, even those that
cover only a small fraction of the certificate space. Further,
we provide simulated revocation data anticipating the growth
of the certificate space to both 1B and 10B certificates. These
estimates show typical daily revocation download requirements
as 612 KB and 7.4 MB, respectively. Storage estimates also
remain manageable during mass revocation events that revoke
10% of all valid certificates.

II. RELATED WORK

Many certificate revocation proposals have arisen in the past
two decades. These strategies for certificate revocation generally
fall into one of three classifications: pull-based, push-based, or
network-assisted.1

A. Pull-Based Revocation

Pull-based revocation is synonymous with on-demand
revocation validation. Pull-based requests for a revocation
status occur only at the time a certificate needs to be validated.
Numerous revocation strategies of this type have been proposed
such as Certificate Revocation Trees [18], [19], Certificate
Revocation System [20], and Revocation Transparency [21].
Of the pull-based certificate revocation strategies, CRLs [2]
and OCSP [5] are the most commonly used today.

CRLs [2] are lists of all revoked certificates which the
issuing CA assembles, signs, and distributes. A client seeking
to check a single certificate must download and parse the
corresponding CRL to ensure the certificate is not in the list.
Scalability is the main criticism against CRLs as they can grow
large2, consuming processor, memory, storage, and bandwidth
resources. Due to these issues, Mozilla Firefox and Google
Chrome have disabled revocation checks using CRLs.

OCSP [5] responders provide a signed revocation status
for individual certificates. OCSP requires clients to make this
request for every web session initiated through HTTPS and
must wait for the OCSP response to check the revocation status
before the page can be fully loaded. In addition to page load
delays, OCSP presents a significant privacy concern as each
client divulges its browsing history to a third party. While
some revocation strategies only share coarse-grained traffic
patterns [2], OCSP divulges detailed client traffic patterns to
the CA that signs the collection of certificates that the client
checks and all the nodes along the path of an unencrypted
OCSP request. Despite these concerns, most modern desktop
browsers use OCSP.

1We employ the pull-based and push-based terminology given by Larisch
et al., though clients download the revocation updates themselves [11].

2Apple once published a 76 MB CRL [10].

2

Generally, all pull-based certificate revocation strategies share
common features. Depending on the specific implementation,
clients typically cache responses to pull-based revocation
requests to improve access times and availability. If a request
is not cached or has expired, the client request introduces
page delays and resorts to soft-failing when the revocation
status cannot be ascertained. Thus, any issue in availability,
malicious or not, forces the client to soft-fail [22]. Because
uncached soft-failing revocation checks allow a MitM attack to
go unnoticed, pull-based certificate revocation strategies offer
little protection.

B. Push-Based Revocation

Clients using a push-based revocation strategy regularly
download revocation information at periodic intervals. In
contrast to pull-based strategies, push-based strategies do
not reveal client traffic patterns as all clients receive similar
payloads. Because the data is collected and cached on the
client ahead of time, there is a higher probability that a client
can rely on the cached status information at the time of
connection. Compared to pull-based strategies, clients collect
more certificate revocation status information than necessary.

Some revocation strategies minimize this additional
bandwidth consumption by only including a small, hand-picked
set of high-priority certificates. Both Google’s CRLset and
Mozilla’s OneCRL fit into this category of selective, push-based
revocation strategies.

Google pushes periodic updates to Chrome with a small
list of revoked certificates called a CRLset. This list is built
internally at Google by filtering Extended Validation (EV) leaf
certificates by revocation reason. CRLSets have a maximum
size of 250 KB [4], which equates to a capacity of about 40,000
revoked certificates. While CRLSets are useful for protecting
against critical certificate compromises, they are not designed
to protect most certificates. In 2015, Liu et al. [10] found
that only 0.35% of revoked certificates had ever existed in a
CRLset.

Mozilla produces a similar revocation list called OneCRL [3].
Instead of filtering through leaf certificates, OneCRL includes
only revoked intermediate certificates, which would have a
much more significant impact if abused.

Another method to minimize bandwidth consumption is to
use a more efficient data structure, such as a Bloom filter.
A Bloom filter is an append-only data structure used to test
whether a particular element is in a given set. To achieve their
efficiency, Bloom filters allow false positives but disallow false
negatives. Rabieh et al. [23] showed how using two Bloom
filters in tandem, one stating if a certificate is not revoked
and one stating if a certificate is revoked, drastically reduced
false-positive rates. In rare cases where the filters report a
certificate as both revoked and not revoked, an on-demand
request is necessary.

Larisch et al. [11] presented CRLite, a revocation strategy
that uses a Bloom filter cascade. CRLite allows clients to
download the revocation status of all live certificates across
the Internet in a compressed, deterministic data structure.

The cascade stores any false positive queries into another
Bloom filter that tests for the opposite value. The alternating
process repeats until a Bloom filter has no false-positive entries.
Building the filter cascade requires testing the entire set of both
non-revoked and revoked certificates through the data structure,
requiring substantial computational and network resources. In
January 2017, CRLite required 10 MB of storage with daily
updates averaging 580 KB. Using the data we collected (see
section 5) in March of 2018, we estimated that the data structure
had grown to 18.0 MB.3

C. Network-Assisted Revocation

Network-assisted revocation strategies eliminate the need for
a client to request a revocation status but instead modify the
TLS ecosystem to address revocation.

One approach is through a middlebox. Revocation in the
Middle (RITM) [8] is one such strategy that distributes
revocation information to middleboxes throughout the Internet
via a CDN. As the middlebox intercepts traffic, it checks each
certificate’s revocation status and appends this status to the
connection as part of a TLS extension. Use of a middlebox
eliminates the latency of a separate revocation status check
since the middlebox is along the route of the connection.
However, this strategy requires middleboxes throughout the
Internet, potentially costly CDN access to update these systems,
and both clients and servers to adopt a new TLS extension.

As an alternative middlebox strategy, Hu et al. [24] proposed
Certificate Revocation Guard (CRG), which uses a middlebox to
intercept all TLS traffic for an entity such as an organizational
gateway. This middlebox performs OCSP requests to check a
certificate revocation status. If a revoked certificate is detected,
then a malformed certificate is returned to the client, effectively
blocking the connection. This strategy does not require clients
to make any modifications to participate. However, by nature
of using a middlebox, mobile clients such as laptops and
smartphones lose protection when they leave the network.

OCSP Stapling [6], proposed in 2001, requires each website
administrator, instead of end clients, to download an OCSP
response for their certificates. The web server transmits the
revocation status to each client during TLS handshakes. This
improvement eliminates both the page load delay and the
privacy concerns of traditional OCSP. However, OCSP Stapling
is still vulnerable to impersonation and man-in-the-middle
attacks since an attacker can simply choose not to include the
OCSP Staple in their handshake with the client.

OCSP Must-Staple [25] was proposed in 2015 to remedy
this issue. An X.509 certificate extension signals the browser
to block the connection if the OCSP Staple is missing.
The certificate extension corrects the attack vulnerabilities in
standard OCSP Stapling but requires server administrators to
commit to always giving an updated OCSP Staple. Failure to
do so results in their website becoming inaccessible to clients.

3We used source code as provided by the authors. CRLite’s full Bloom
filter cascade size is strongly dependent on the number of revoked certificates
(19.1 M) and the number of total certificates (86.2 M). Including revocations
only from publicly used certificates (1.1 M) reduces the size is to 1.93 MB.

3

Full adoption of OCSP Must-Staple also opens the Internet to
new attack vectors if proper infrastructure is not in place ahead
of time. An OCSP responder hit with an extended Denial of
Service (DoS) attack could block access to a large portion of the
Internet since server administrators would not be able to acquire
the requisite OCSP Staple. Due to these concerns, Google
Chrome currently does not support the certificate extension for
OCSP Must-Staple [9], [26]. While others [10] have suggested
the potential for a DOS attack is not a fundamental problem
as a CDN could distribute static revocation information, OCSP
Must-Staple has also suffered other problems. These include
CA inconsistencies and bugs in server implementations, both
of which have slowed adoption [27], [28] shown by the fact
that only 0.032% of live certificates use OCSP Must-Staple
[29].

Lastly, using short-lived certificates [30] is a strategy that
eschews revocation checking. Instead, certificates expire shortly
after issuance, generally ranging from a matter of hours [31]
to just a few days [32]. This strategy requires the server to
renew its certificate regularly. While it was previously not
practical to change public keys on renewal [32], the emergence
of new technology such as the ACME protocol [33] and
the EFF’s CertBot4 enables automatic public key rotation
on renewal. If a private key compromise occurs, the server
administrator does not renew the certificate. This strategy is
similar to OCSP Must-Staple except that the certificate is
regularly renewed instead of the OCSP Staple. Removing the
need for revocation checks, however, does place additional
strain on other elements of the certificate ecosystem, including
the issuing systems of CAs and other certificate monitors like
certificate transparency logs that must ingest more records
as more certificates are issued. More-frequent renewal of
certificates also places increased demands on organizations
in which any part of the certificate-issuing process is not fully
automated, requiring additional human effort to handle.

III. LET’S REVOKE SYSTEM DESIGN

As stated above, Let’s Revoke is designed to address the
concerns raised by previous revocation strategies and fulfill the
six criteria of a global revocation strategy. To accomplish these
goals, Let’s Revoke uses a push-based model and focuses on
minimizing the required computational resources, particularly
network bandwidth consumption.

Throughout this section, we use the following definitions
for the two entities involved in Let’s Revoke:

• CA - the entity that issues certificates and tracks revocation
statuses, including CAs that issue website certificates,
email certificates, code signing certificates, etc.

• Client - the entity that needs to verify the revocation status
of a particular certificate.

A. Design Description

Let’s Revoke utilizes dynamically-sized bit vectors, known
as Certificate Revocation Vectors (CRVs), to accomplish its

4https://certbot.eff.org/about/

efficiency goals. CRVs are simple data structures that use a
single bit to represent the revocation status of a certificate (0-no,
1-yes). To efficiently map certificates to their corresponding
revocation bits, Let’s Revoke uses new unique identifiers called
Revocation IDs (RIDs). RIDs consist of three parts. The first
two parts are fields already present in all certificates, namely
the issuing CA and the expiration date. The third part is a new
X.509 extension field called a revocation number (e.g., RID =
Let’s Encrypt : March 1, 2018 : 24561).

1) Revocation Numbers: Revocation numbers (RN) are
non-negative integers that represent the index to a revocation
bit within a particular CRV. The issuing CA assigns each RN
sequentially and includes it in the certificate as a new X.509
extension field (e.g., Revocation Number: 37892). Including
the issuing CA and expiration date in an RID means that RNs
must be unique only among the certificates issued by the same
CA that expire on the same date, thereby reducing the required
magnitude of RNs.

To assign RNs, each CA uses a counter, beginning at 0, for
each possible expiration date. When issuing a certificate with a
given expiration date, the CA assigns an RN with the counter’s
current value and increments the counter. This process ensures
that given n certificates that expire on the same day, each
receives a unique RN [0..n − 1]. Thus, an issuing CA and
expiration date uniquely identify a CRV, and a certificate’s
RN provides the index of its revocation bit within that CRV.
In cases where a CA issues relatively few certificates that
expire each day, a unique counter can be used for a group of
consecutive days to track all certificates issued within that time
frame in a single larger CRV.

2) Certificate Revocation Vectors: Let’s Revoke maintains a
database of CRVs: one for each expiration date per CA. Every
CRV is initialized as an empty bit vector. When revoking a
certificate associated with a given CRV, the CA updates the
CRV as follows:

1) If the newly revoked certificate’s RN is larger than or
equal to the number of bits in the CRV, then append
enough 0-bytes to the CRV so the RN is less than the
number of bits in the CRV.

2) Set the bit at the index of the RN to 1.

For example, suppose a CA issues 100,000 certificates that
expire on a specific day. The CRV for that day is initially
an empty bit vector. When the first certificate with RN = i
is revoked, the bit vector expands with enough zero bytes so
that bit i can be set to 1. For example, if RN=10 is revoked,
then the empty bit vector is replaced with a two-byte vector
that has bit 10 set. Suppose the next revoked certificate on the
same expiration date for this CA has RN = j. If i > j, then
bit j is set to 1. For instance, if RN=4 is revoked, then bit 4
in the first byte of the two-byte vector is set to 1. If j > i and
bit j is not in the same byte as bit i, then the bit vector is
expanded again with enough bytes so that bit j can be set to 1.
For example, if RN=30 is revoked, the bit vector is expanded
to four bytes and bit 30 is set. The bit vector in each CRV has
just enough bytes to mark the highest RN that is revoked.

4

The CA aggregates these individual CRV updates to generate
a batch update for end clients using one of the following three
methods:

• ADD Method - the CA generates a list of all the newly
added RNs and the client iteratively adds each item in
the list to the corresponding CRV as described above.

• OR Method - the CA creates a delta CRV that includes
only the newly added RNs for the client to bitwise OR
with the client’s current CRV, yielding a fully updated
CRV.

• NEW Method - the CA generates a complete copy of
the current CRV that the client will bitwise OR with its
previous CRV.

The batch update is compressed, timestamped, and signed by
the CA before being sent to clients upon request.

To check the revocation status of a certificate, the client
first accesses the correct CRV indicated by the certificate’s
issuing CA and expiration date. The client then determines the
revocation status of the certificate by verifying the value of
the bit at index RN.

3) Example: To illustrate the usage of Let’s Revoke, we
provide the following hypothetical example shown in Figure 1.

The example begins with the Example CA (ECA) that issues
16 certificates on January 1, 2019, that all expire on January 1,
2020. The CA assigns a revocation number to each certificate
between 0 to 15 inclusive. On February 2, 2019, the owner
of the certificate with the RN of 7 sends a signed request for
ECA to revoke that certificate. ECA revokes the certificate
and sets the appropriate bit in the ECA CRV corresponding
with the expiration date January 1, 2020. ECA then provides
clients, upon request, with either the single element list ({7})
or the current ECA CRV for January 1, 2020 (“0000 0001”).
Applying these updates, clients now have version 1 of the
January 1, 2020 ECA CRV.

A client, upon receiving a certificate with an RID
corresponding to the January 1, 2020 ECA CRV and an RN
of 2, checks the corresponding bit in the CRV, determines that
it is unset, and proceeds to use the certificate.

A short time later, on February 22, 2019, the two certificates
with the RNs of 2 and 4 are submitted for revocation. ECA
again revokes the certificates and updates the January 1, 2020
ECA CRV. When a client requests updates to this CRV,
indicating it already has version 1, ECA can send the list
of newly added elements ({2,4}), an updating CRV (“0010
1000”), or the current CRV for January 1, 2020 (“0010 1001”).
These updates produce version 3 of the CRV. Once updated, if
the client again receives the certificate with an RID for January
1, 2020, ECA, and RN 2, it finds the bit in the corresponding
CRV is now set and rejects the revoked certificate.

On January 2, 2020, ECA and all clients purge the January
1, 2020 CRV from their data stores since all 16 certificates that
expired on January 1, 2020 are no longer valid, irrespective of
their revocation status.

B. Design Analysis

1) Revocation IDs and Revocation Numbers: Including
the expiration date in a certificate’s identification provides
two advantages to RIDs compared to the identifiers in other
revocation approaches.5

First, the RNs in RIDs are efficiently small and
unique. Current certificate revocation tracking utilizes large
pseudo-random numbers as unique identifiers, including serial
numbers (≈128 bits) and SHA256 fingerprints (256 bits).
These large numbers are necessary to avoid misidentifying one
certificate as another. However, due to their sequential issuance,
RNs ensure uniqueness and can use a smaller fixed-length
encoding for improved storage and communication efficiency.
The design in this paper specifies encoding RNs as 32-bit
integers, enabling the representation of over 4 billion certificates
per CA per day, while also requiring significantly less space
than traditional identifiers.

Second, the expiration date enables the efficient removal of
revocation information for already expired certificates. Once a
specified expiration date has passed, CRVs labeled with earlier
dates are safely removed since all associated certificates have
expired. This approach does not waste any storage on obsolete
information and requires no additional network connections to
complete these removals.

2) Certificate Revocation Vectors: CRVs effectively utilize
the efficiency improvements offered by RNs and RIDs to
reduce the computational, storage, and network requirements
of revocation checking.

Computationally, nearly all operations occur in constant
time. To check a revocation status, accessing a specified bit
has constant time complexity as the certificate’s RN specifies
the index.

When updating CRVs, there are two operations to consider:
appending additional zero bytes and setting the appropriate bit.
Appending additional bytes when necessary is also a constant
time operation since the number of required additional bytes
is given as the difference between the total number of bytes
currently in the CRV and the byte where the new RN is set.
Setting a bit within the CRV is likewise done in constant time
since the index of the bit is given by the certificate’s RN.

Batch updates to CRVs are linear operations according to
the number of new RNs since every new RN added causes a
constant time update operation.

Storage requirements for CRVs also remain very low,
since every certificate is represented using only a single bit
As an example, a certificate space of 100M certificates6 is
represented in at most 12.5 MB (100 million bits) without any
compression. Since CRVs generally contain long sequences
of unset bits, compression algorithms are highly effective at
further decreasing storage requirements.

5It is worth noting that RNs and RIDs offer efficiency gains to many other
revocation strategies independent of CRVs and Let’s Revoke.

6We chose 100M certificates as a representative number similar to the total
number of certificates we found during our Internet scan, which we discuss in
section V.

5

Fig. 1: Sequence Diagram for Let’s Revoke showing the processes of certificate issuance to web servers and revocation as well
as the update process of CRVs for both the CA and client.

The communication of revocation updates between CAs and
clients requires network resources. Let’s Revoke supports three
methods for communicating batch updates, and it selects the
method that minimizes bandwidth costs.

The most efficient update method depends on the total
number of certificates represented in a CRV, previously revoked
certificates, and newly revoked certificates. The following is a
general approximation to determine which update method is
most efficient. If fewer than 0.1% of all represented certificates
are newly revoked, the CA sends a list of the 32-bit RNs to
add to the CRV (ADD method). In the rare case of revoking
more than half of the current active certificates since the last
update, the CA generates and sends an entirely new CRV (NEW
method). For all other updates, it is usually most efficient to
create and send a CRV containing only the new additions
(OR method). Figure 2 illustrates more exact results for which
update method minimizes bandwidth requirements and the level
of those requirements at differing revocation percentages for a
CRV representing 1M certificates. Most updates are relatively
small and therefore use the ADD method for batch updates,
typically requiring less than 3 KB for every 1M certificates
covered to update daily. The OR method allows for efficient
distribution of large updates during mass revocation events or
when the client’s CRV is sufficiently outdated.

Selecting the minimally-sized update method ensures that
the data structure can be communicated using minimal

network bandwidth. Assuming a certificate space of 100M
certificates and a total revocation rate of 2% distributed as
100 date-separated CRVs (1M certificates issued per day), then
each CRV receives an additional 0.04% of new revocations
every day. Each update for a single CRV requires 1.14 KB of
network bandwidth using the ADD method. In total, a client
downloads just 114 KB per day from 100 CRVs to receive
complete revocation coverage for 100M certificates.

Since the design calls for individual CAs to generate CRVs, it
is important to show that distributing the revocation information
across multiple CRVs does not drastically affect the other
desired attributes. Since distributed CRVs are smaller than an
equivalent monolithic CRV, all computational requirements
should decrease (e.g., look-up times, memory requirements).
Table I shows a comparison of two different distribution
strategies. The first represents a single large CA that issues 30M
certificates per month and stores three monthly-generated CRVs.
The second shows the corresponding values for 5 smaller CAs
that issue 200K certificates per day and store 90 daily-generated
CRVs (450 total CRVs). The calculation of the daily update
bandwidth assumes a constant daily revocation percentage.

These results show that while there is storage overhead
associated with the meta-data required for distributing CRVs,
this overhead is minimal compared to the size of the CRVs
themselves.

6

(a) Update Method for All Percentages (b) Update Size for All Percentages

(c) Update Method for Low Percentages (d) Update Size for Low Percentages

Fig. 2: Details of update methods and efficiency levels for a CRV representing one million certificates shown as follows:
(a) The optimal update method for the CRV depending on the beginning and ending revocation percentages.
(b) The compressed update size for the optimal update method.
(c) A zoomed in region of (a), showing the update method for normal low revocation percentages.
(d) A similarly zoomed in region of (b), showing the update size for normal low revocation percentages.

C. Distribution Methods

While CRVs are an efficient representation of revocation
information, CAs must still distribute this data to potentially
every client on the Internet. Currently, both CRLs and OCSP
reponses are frequently uploaded to Content Delivery Networks
(CDNs) to disseminate revocation information from CAs to
clients more efficiently. CAs can similarly utilize CDNs to
distribute CRVs by uploading, at regular intervals, the signed
latest version of each CRV. For improved bandwidth efficiency,
the CA also generates the most efficient CRV update from the
methods described earlier. The CA then signs the generated
update and uploads it to the CDN and labels it for access by
the CRV version number.

Clients update their stored CRVs by periodically requesting,
from the CDN, all updates with higher version numbers than
their current version. If a significant time has passed since the
last update request, clients simply request the latest CRV to
replace their outdated version.

While CRVs would enable clients to download all revocation
statuses for the entire certificate space, efficiency can be
further enhanced by only downloading CRVs for certificates
they use. This is important to some clients, such as Internet
of Things devices, that require maximum efficiency due to
constraints like limited computational, storage, or energy
resources. Such clients could use a pull-based discovery
mechanism to download the CRV that corresponds to any new

7

Compressed
Storage

Uncompressed
Storage

Daily Update
Bandwidth

3 CRVs
1% Revocation 1.1 MB 11.2 MB 72 KB
10% Revocation 5.5 MB 11.2 MB 407 KB
50% Revocation 11.2 MB 11.2 MB 1.2 MB

450 CRVs
1% Revocation 1.2 MB 11.2 MB 82 KB
10% Revocation 5.8 MB 11.2 MB 480 KB
50% Revocation 11.2 MB 11.2 MB 1.4 MB

TABLE I: A storage and bandwidth comparison of different
distribution levels for CRVs representing 90M Certificates.

certificate they encounter. From that point on, the client would
request push-based updates periodically for the CRV until it
was no longer necessary. This approach conserves bandwidth
for both clients and CAs, but comes at the cost of possible
security and privacy trade-offs, which we describe later.

D. Limitations

Since Let’s Revoke requires a new certificate field (RN)
it can only be used to revoke new certificates that adopt its
format. It is not designed to be backward compatible to handle
revocation for existing certificates. Furthermore, CAs must
accept the responsibilities of issuing these unique RNs, tracking
revocations in CRVs, and providing CRV updates to clients.

To achieve its efficiency, Let’s Revoke only provides the
revocation status of a given certificate. Additional information
such as revocation time and reason are not available using
CRVs. However, other revocation schemes that include these
details, like CRLs, can be supported in tandem with CRVs to
provide this additional information to requesting clients.

IV. COMPARING REVOCATION STRATEGIES

This section compares Let’s Revoke to a range of revocation
strategies based on the six criteria outlined for evaluating a
revocation strategy. We compare Let’s Revoke to two other
centralized revocation strategies (CRLite and a simple “RN
Listing” strategy) that allow clients to adopt a hard-failure
policy.7 Additionally, CRLs, OCSP, and CRLsets are compared
with Let’s Revoke because these revocation strategies are
currently used today. Our analysis is summarized in Table
II.

A. Efficiency

There are two primary resources for considering the
efficiency of a revocation strategy, namely device storage and
network bandwidth.

For CRLs and OCSP these requirements are highly variable
depending on the usage of certificates by a given client, though
average costs can be established for both of these strategies. For

7While other revocation strategies also allow clients to adopt a hard-fail
policy (such as OCSP Must-Staple [25] and RITM [8]), no other previously
proposed strategy can do so without adding new entities in the PKI ecosystem
or forcing relatively high numbers of servers to change their configurations
and key management practices.

CRLs, the average CRL requires 173 KB in both bandwidth
and cache storage, as determined by an Internet-wide scan
that we describe in Section V. OCSP requests require 1.3 KB
for again both bandwidth and storage costs. CRLSets have a
fixed maximum size requiring 250 KB of device storage and
network bandwidth daily. However, these three strategies do
not provide secure coverage for all revocation statuses.

To provide a global revocation system comparable to Let’s
Revoke and CRLite, the above strategies could be used or
extended to generate a list of all the revocation statuses for
every non-expired certificate each day. As a model for such a
listing strategy, we generated a list of the revoked certificates
using 32-bit binary representations of the associated revocation
numbers as unique identifiers. This Revocation Number Listing
(RN Listing) strategy requires significantly fewer bits per
revocation than both traditional CRLs and CRLSets, which use
serial numbers and are typically around three to four times the
size of a revocation number. CRLs also include the date of
revocation and, in some situations, the reason for revocation.
Thus, the listing model we used provides a reasonable lower
bound for a list of revoked certificates.

To compare the storage requirements of Let’s Revoke against
both CRLite and RN Listing, we utilized all three strategies
to store information for a certificate space containing one
million certificates8 at various revocation percentages. For
each of these strategies, we ran 100 simulations within two
ranges of revocation percentage, incrementing the revocation
percentage evenly through the range. The first ranged from
0-100%, which demonstrates the scalability of the strategy as
revocation percentages rise dramatically. The second ranged
from 0-4% to show a finer granularity between strategies at
more typical revocation percentages.

For each simulation of Let’s Revoke, we built and
compressed one large CRV representing all one million
certificates by randomly selecting bits equal to the number of
revoked certificates and setting each of these to 1. We serialized
the resulting CRV into a binary file and XZ compressed the
file.

Every CRLite simulation created a Bloom filter cascade9

using the source code provided by the authors of CRLite.
Because the layers of the Bloom filter cascade form a relatively
patternless binary stream, XZ compression was not effective.

We also compared Let’s Revoke to a combinadics
representation, which is a lower bound for representing any
combination of values. The combinadics, or combinatorial,
number system uses a lexicographic ordering to rank a
combination instance, so the index alone denotes it. Because
revocation numbers provide an obvious ordering, this type
of representation is possible. For example, given 1 million
certificates with a 1% revocation rate (10,000 revocations), there

8One million certificates roughly corresponds to the daily issuance of the
CA Let’s Encrypt [12].

9We used the following parameters in our simulations:‘p’= 0.5 as
recommended by the authors; for ‘r’ and ‘s’, we chose values 102.5% times
the receptive certificates used, allowing room for growth and daily deltas; ‘p1’
= r ∗ √p/s.

8

E
ffi

ci
en

cy

Ti
m

el
in

es
s

Fa
ilu

re
M

od
el

Pr
iv

ac
y

Pr
es

er
vi

ng

D
ep

lo
ya

bi
lit

y

A
ud

ita
bi

lit
y

CRL 173 KB per CRL† 7 Days Soft Yes Deployed Yes
OCSP 1.3 KB per request [11] 4 Days Soft No Deployed Yes
CRLSet 250 KB per day 1 Day Soft Yes Deployed No
RN Listing Initially 5.1 MB; 114 KB per day∗ 1 Day Hard Yes Incremental Yes
CRLite Initially 3.1 MB; 408 KB per day∗ 1 Day Hard Yes Incremental Yes
Let’s Revoke Initially 2.2 MB; 114 KB per day∗ 1 Day Hard Yes Incremental Yes

TABLE II: Comparison of Let’s Revoke to other revocation strategies.
†: The average size of CRLs in our dataset.
∗: Simulated values at 2% revocation rate, 1% daily expiration rate, using 100 Million certificates.

are approximately 1024,340 or 280,856 possible combinations of
revoked certificates. A combination of certificates given these
parameters can be denoted with its index in 80,856 bits (10.2
KB). While the combinadics representation requires even less
storage space than Let’s Revoke, unranking algorithms that
convert a combinatorial index back into the expanded form have
expensive space and time costs, rendering them impractical for
certificate revocation.

Figure 3 summarizes the storage requirements across all
revocation percentages, while Figure 4 shows the comparison
at the low revocation percentages likely to be found in daily
use. While there are more efficient methods of providing
update information (i.e., delta updates), it is important to note
that the compressed storage requirements for each strategy
represent the maximum required bandwidth. For low revocation
percentages (<0.02) all strategies compress to approximately
the same size. Both other strategies quickly outperform the RN
Listing strategy. Around a revocation percentage of 0.5% RN
Listing requires double the storage requirements of the other
strategies. CRLite and CRVs remain competitive until about
2.0% revocation, where CRVs begin to outperform CRLite
significantly. Even more interesting is the close relationship
between the size of the combinadics representation and that of
the compressed CRV. While the combinadics representation is
smaller, it is only marginally so, indicating that a compressed
CRV is close to the theoretically minimal size for representing
a set of randomly revoked certificates.

Uncompressed CRVs require significantly more storage
space than either RN Listing and CRLite until relatively high
revocation percentages. Thus, storing an uncompressed CRV
generally requires significantly more storage than either of the
other two considered strategies. However, this can be avoided
by only decompressing the CRV at the time of use, which
allows end clients to choose between storage and computational
efficiency. Our testing showed that revocation checks for a
single certificate using an uncompressed CRV representing 1M
certificates finished in under 1 ms, while the same checks took

Fig. 3: Storage sizes for different revocation strategies
representing one million certificates

Fig. 4: Storage sizes for different revocation strategies
representing one million certificates in typical ranges at higher
detail.

9

approximately 10 ms when starting with a compressed CRV.10

Bandwidth requirements were also simulated for our model
listing strategy, CRLite, and Let’s Revoke. These simulations
used the same parameters as those described in Section
III.B.4, namely a certificate space of 100 million certificates,
a 2% revocation rate, and a 1% daily expiration and issuance
rate. These values serve as a representative point since
numerous variables affect the final bandwidth requirement.
For each strategy, update simulations depend on the initial and
final revocation percentages as well as the total number of
revocations. CRLite’s updates also depend on changes to the
size of the entire certificate space and the usage of the total
space allotted for future growth. For CRLite, we used a fixed
certificate space at 100 million certificates and a 90% storage
utilization rate.

Since Let’s Revoke and RN Listing both use RNs, and
the optimal update method for Let’s Revoke at these low
revocation percentages is a list of new revocations, their daily
update costs are identical at 114 KB per day. The low daily
bandwidth is particularly significant since these systems provide
full revocation coverage and require less daily bandwidth than
even CRLSets. CRLite’s daily delta requirements are higher at
408 KB per day, primarily due to the additional instructions
required to remove expired certificates from the cascading
Bloom filter.

B. Timeliness

Most revocation strategies utilize either revocation status
caching or regularly scheduled updates to ensure time and
bandwidth efficiency. Pull-based strategies, such as CRLs and
OCSP, typically cache revocation status information and assume
it is valid for up to 7 days. A 7-day period leaves a large window
of time in which an adversary can exploit a compromised
certificate, even after correctly revoking that certificate.

Push-based strategies generally use periodic updates. CRLset,
OneCRL, and CRLite all push daily updates to clients, which
drastically reduces an adversary’s window of opportunity
when compared to traditional pull-based methods. If deemed
necessary, push-based strategies can elect to generate even
more frequent updates.

Let’s Revoke is intended to be used as a push-based
strategy. Regular updates can be pushed out daily as
necessary, or as frequently as a CA or client desires. This
provides clients with both consistently updated revocation
information and the freedom to choose which trade-offs to
make between bandwidth costs and more reliable security.
Providing revocation information on demand for clients instead
of at regular intervals comes at increased costs to a CA that
provides this service.

C. Failure Model

As stated previously, pull-based strategies suffer from soft
failing revocation checks. This issue directly affects both CRLs
and OCSP. CRLSets, though they are a push-based model,

10We conducted timing measurements on a Dell Laptop with an Intel 8th-gen
Core i7 processor and 16GB of RAM.

also must adopt a soft failing approach by assuming that any
certificate not in its limited coverage space is not revoked.

Since Let’s Revoke covers the global certificate space and
uses a push-based model, clients using Let’s Revoke can assume
a hard failure model for certificates with an RID. Since all the
certificates in the working set have the timestamp of the last
successful revocation status check, the client can set a limit
on how long they rely on that status check before hard-failing
if the check is not refreshed. CRLite is the only other strategy
in our comparison that can adopt this hard failure model.

D. Privacy

Since a CRL covers all the certificates issued by a CA and
is acquired only upon request, third parties or eavesdroppers
learn only extremely coarse access patterns. In contrast, OCSP
does not preserve user privacy. OCSP requests correspond to
the certificates in use, revealing the users’ browsing habits to
third parties and eavesdroppers.

Both CRLSets and CRLite provide the same revocation
information to every user. Since this coverage does not depend
on any user action, it maintains the privacy of its users.

Similar to CRLs, CRVs cover a range of certificates.
Downloading a given CRV does not reveal which particular
certificate’s revocation status a client needs. However, should
a client decide to only track the CRVs it uses, the client
becomes vulnerable to potential denial of service (DoS) and
privacy issues. First, since the client downloads only CRVs
for certificates that it encounters, if the CRV is unavailable
when needed for any reason, malicious or coincidental, the
hard-failure policy results in a DoS until the CRV becomes
available. This concern is partially mitigated by the use of
CDNs for distributing CRVs. Second, by only tracking selected
CRVs, a passive adversary may be able to derive client browsing
patterns by correlating the CRVs a particular client downloads.
Thus, it remains for the client to choose between privacy
concerns and the efficiency gains of selective CRV Tracking.

E. Deployability

CRLs, OCSP, and CRLSets are already deployed. However,
modern browsers do not use CRLs and OCSP due to reasons
discussed previously.

CRLite can be incrementally deployed today with software
updates to clients. It requires an agent to aggregate all available
revocation information regularly to provide updated filters. This
daily aggregation process imposes significant computational
requirements11 on the CRLite agent and adds similar costs to
the CRL and OSCP endpoints. There is little incentive for an
agent to incur both the network and computational costs to
perform this daily aggregation.

Similarly, Let’s Revoke is incrementally deployable now;
however, Let’s Revoke also incentivizes both CAs and clients by
lowering computational and networking resource consumption

11Aggregating only the revocation statuses of the 231 Million Let’s Encrypt
certificates every 24 hours would require processing more than 2,500 OCSP
requests each second. Further computing resources would be necessary to
handle the remaining 203 Million revocation statuses.

10

while providing the desired security. More precisely, CAs must
begin issuing RNs and tracking CRVs. Any CA could begin
doing so without negatively impacting their certificates or other
revocation processes. Clients that then implement the local CRV
store can assume a hard-failure strategy for any certificate with
a RN and rely on current revocation strategies for all other
certificates.

F. Auditability

Auditability is an important feature of any revocation
scheme that desires to prevent malicious or faulty revocation
status distribution. Most schemes are auditable; however, due
to the nature of CRLSets and OneCRL, these revocation
strategies cannot be audited for completeness, modification, or
equivocation.

It is easy to audit Let’s Revoke for errors of omission and
equivocation. To detect omissions, clients apply a bitwise-OR
between the most recent CRV with any previous CRV. The
resulting CRV matches the most recent CRV if there are no
omissions. To detect equivocation, apply a bitwise-XOR to
any two clients’ CRVs with matching version numbers. The
resulting CRV contains all zeros if there is no equivocation.

V. VIABILITY SIMULATIONS

To further validate the performance of CRVs, we ran some
revocation simulations to show that CRVs work well for
current everyday revocation checking and scale both for mass
revocation events and the larger certificate spaces of the future.

A. Methodology

1) Data Collection: To ensure the accuracy of our
simulations, we acquired the relevant revocation data for the
global certificate space as of March 21, 2018. Similar to
previous revocation measurement studies [10], we collected
all certificates seen in previous scans and then filtered out
certificates that have expired or were no longer trusted by
any standard root store. We obtained our initial data from
Censys.io [34], a search engine created to allow researchers
to access data from daily Internet scans. On March 21, 2018,
the number of certificates tagged by Censys.io as “Currently
Trusted” (non-expired, trusted by Apple’s, Microsoft’s, or
Mozilla NSS’s root store) was 88.9M.

First, we filtered this dataset by removing duplicate,
expired,12 private,13 and invalid certificates.14 After filtering,
84.1M certificates remained.

Second, we separated the certificates with CRL endpoints
(26.8M, 33.6%) from those with only OCSP endpoints (55.3M,
66.3%) [10], [11]. We identified 475 unrevokable certificates
that did not have any revocation endpoint15 and removed them
from the dataset as well.

12Certificates that expired by March 21st.
13Private certificates are those using an LDAP endpoint or are otherwise

inaccessible. Most of these certificates returned an unauthorized status code
on request.

14Each invalid certificate had at least one Zlint error [35].
15Of the 475 unrevokable certificates, all but 2 certificates were a root

certificate, an intermediate certificate, or an OCSP signing certificate.

C
le

an
ed

C
er

tifi
ca

te
s

G
oo

d
R

ev
oc

at
io

n
St

at
us

R
ev

ok
ed

R
ev

oc
at

io
n

St
at

us

U
nk

no
w

n
R

ev
oc

at
io

n
St

at
us

From CRL 26,772,989 25,983,705 789,284 (2.90%) 0
(OCSP) Let’s Encrypt 53,196,388 52,946,338 250,050 (0.47%) 0
(OCSP) Symantec 2,483,288 2,446,508 36,780 (1.48%) 0
(OCSP) DigiCert 1,157,956 1,149,840 8,116 (0.70%) 0
(OCSP) Other 542,641 541,807 807 (0.15%) 27

Total 84,153,262 83.068,198 1,085,037 (1.29%) 27

TABLE III: The reported revocation status of certificates in
our data set.

Third, we scanned the remaining certificates to determine
their revocation status. Before scanning, we obtained permission
from each CA who issued over 1 million OCSP-only certificates
for a specific scan rate that would not place an undue burden
on their OCSP server. We sent 50 OCSP requests per second
to Let’s Encrypt’s endpoints and 10 requests per second to
Symantec’s and DigiCert’s endpoints. For all other OCSP-only
certificate endpoints, we limited our request rate to 10 requests
per second. In addition to rate-limiting, our software also
implemented exponential back-off for any response errors.

Table III contains a summary of the results of our scan.
The revoked certificates comprise about 1.29% (1.08M) of
the total certificates, with an average daily revocation rate
of 0.007%. The 1.29% rate is very similar to the rate for
revoked certificates in 2014 [10] before the discovery of
the Heartbleed vulnerability. We believe that the 1-2% rate
for revoked certificates is typical in the absence of a mass
revocation event.

2) Simulator: We created a simulator with parameters
controlling the number of CAs, the number of expiration dates
recorded by the CA, the number of certificates issued per
day, the percentage of revoked certificates per CA, and the
percentage of new revocations on a given day per CA. For
each simulation, every CA was assigned RNs spread uniformly
across all their possible active CRVs (equal to the number
of days until their last certificate expires) corresponding to
its number of non-expired certificates. We then provided the
revocation percentage for each CA and revoked randomly
selected RNs from the CA’s CRVs. We generated the resulting
CRVs and measured their size. Using the percentage of new
revocations, we created an average update (revoking that many
more RNs) and built the most efficient update for that day,
yielding the update size. Summing the storage and bandwidth
requirements for every CRV from every CA gave us the total
storage and bandwidth, which we report for various scenarios
below.

B. Current Revocation Space

With the data acquired from our scan, we simulated the
current requirements for global revocation coverage using
revocation numbers and CRVs. For the simulation, we grouped
all of the CAs with fewer than 10K total certificates into

11

Compressed
Storage

Uncompressed
Storage

Daily Update
Bandwidth

100M Certificates
1% Revocation 1.3 MB 12.5 MB 62.6 KB
10% Revocation 6.2 MB 12.5 MB 429.2 KB

1B Certificates
1% Revocation 12.2 MB 125 MB 611.5 KB
10% Revocation 60.1 MB 125 MB 4.1 MB

10B Certificates
1% Revocation 121.3 MB 1.25 GB 7.4 MB
10% Revocation 605 MB 1.25 GB 41.5 MB

TABLE IV: A storage and bandwidth comparison for CRVs
representing different certificate space sizes.

a conglomerate CA. After the grouping, we had 42 CA
entities that had issued 84.1M certificates with a revocation
percentage of 1.29% and an average daily addition of 0.007%.
Our simulation used all of these parameters and yielded
results showing that the representation of the entire revocation
space compressed to under 5.0 MB with the optimal method
for daily updates compressing to less than 25 KB.16 These
small requirements indicate that CRVs are well-suited for the
certificate space and revocation conditions we found during
our scan.

C. Mass Revocation Event

In contrast to the typically low revocation percentages,
specific wide-spread security vulnerabilities have forced periods
of mass revocation. Such events include CA compromise
(Trustico Revocation Event) and server bugs (Heartbleed
Vulnerability). Using data from the Heartbleed Revocation
Event, we ran simulations modeling the requirements that
would be necessary if a similar event occurred today. To match
that event, we raised the reported revocation percentage to 10%
by proportionally scaling each CA’s revocation percentage and
increased the average daily update to 0.06%. This increase
brought storage requirements to 10.8 MB and necessary update
bandwidth to 150 KB per day. While much higher than the
storage and bandwidth requirements for typical revocation
percentages, this simulation shows that CRVs can also scale
to handle mass revocation events.

D. Growing Revocation Space

To show how CRVs scale into potential future certificate
spaces, we ran simulations representing a single large
CA responsible for all certificates that divides them into
100 day-separated CRVs. The update bandwidth calculation
assumes the associated revocation percentage occurs uniformly
across all CRVs each day. Table IV contains a summary for
each revocation percentage.

Of particular interest are the results for 1B certificates,
which is slightly more than double the size of the current
certificate space. The 100 associated CRVs store all the

16For reference, fetching the Google home page requires approximately 400
KB of network bandwidth.

requisite information in less than 125 MB uncompressed. At
1% revocation, these CRVs compressed to 12 MB. Assuming
an optimal update methodology of 0.02% new revocations
per day, the compressed CRVs only require 612 KB of daily
bandwidth. Increasing to the scale of a mass revocation event
(10% revocation), the CRVs compressed to 60 MB and required
a daily bandwidth of 4.1 MB. These results indicate the
ability of CRVs and Let’s Revoke to scale gracefully with
the ever-growing certificate space.

VI. SECURITY ANALYSIS

We assume a threat model where an active network attacker
can create, modify, and block messages. The attacker has two
goals: (1) coerce a client to accept a revoked certificate, and
(2) coerce a client to assume a valid certificate is revoked.
The threat model does not include a compromised CA or a
compromised client.

A. Accept a Revoked Certificate

An attacker can coerce a client to accept a revoked certificate
by preventing them from updating their CRV and learning that
the certificate is revoked.

1) Update Manipulation: The first method for doing so
is to try and provide an update that omits the needed new
revocation or remove a previously added revocation. To ensure
that a revocation update is valid, the CA must digitally sign
each update. It is then the client’s responsibility to validate that
signature. Further protection prevents the removal of previous
revocations. Since the design of CRVs allows only insertions,
the only way to remove a previous revocation is for the attacker
to send an update indicating a new CRV. However, this attack
is easy to prevent by having the client bitwise OR the new
(malicious) CRV with the old CRV to ensure that all previous
revocations remain even if the malicious CRV has excluded
previous revocations.

2) Update Blocking: The second attack vector for an
adversary is to prevent updates from reaching the client by
blocking traffic from the CA. This attack allows the adversary
to conduct a MitM attack on the client using any certificate
revoked since the last time the client updated its CRV. Since
CRVs are a push-based revocation strategy, the client can detect
any interference with the update schedule and warn the user
about a potential MitM attack.

B. Revoke a Valid Certificate

An adversary may also coerce a client to believe a valid
certificate has been revoked. The net effect is a denial of service
attack that prevents a client from using the service associated
with the certificate.

1) Unauthorized Revocation: An attacker can attempt to
impersonate the owner of the certificate to the CA and revoke
the certificate. The revocation process should require the
revoking party to prove that they have access to the private
key. If an adversary has access to the private key, then the
certificate should be revoked.

12

2) Update Manipulation: The attacker can also attempt to
modify updates to the CRV by adding new numbers to any
of the update methods. Again, this attack is defeated because
the CA digitally signs the updates, and a client verifies those
signatures.

VII. CONCLUSION

This paper presents Let’s Revoke, a scalable global
revocation strategy that addresses the concerns of current
revocation checking. Let’s Revoke introduces a new unique
identifier to each certificate that serves as an index to a
dynamically-sized bit vector containing revocation status
information. The bit vector approach enables significantly more
efficient revocation checking for both clients and certificate
authorities.

We demonstrated how Let’s Revoke fulfills six
properties [11] of a scalable revocation strategy, namely:

1) Efficiency - Let’s Revoke offers significant efficiency
gains over other push-based revocation strategies.

a) Bandwidth - CRVs minimize bandwidth requirements,
not only for end-clients but also for certificate issuers
and revocation status responders.

b) Storage - CRVs require fewer storage resources than
all other currently implemented and proposed strategies
that offer comparable revocation coverage.

c) Computational - CRVs are simply and efficiently
constructed and utilized, requiring minimal
computational time and resources.

2) Timeliness - Updates to CRVs can be acquired daily (or
even more frequently) to ensure that they never become
stale.

3) Failure Model - Since CRVs can efficiently represent the
entire revocation space, clients can adopt a hard-failure
policy.

4) Privacy - Since CRVs provide global coverage they
preserve client traffic privacy.

5) Deployability - CRVs allow for incremental deployment
and provide an incentive to each of the involved entities.

6) Auditability - CRVs are auditable by all other parties.

We showed that Let’s Revoke requires fewer resources than
currently available revocation methods, even those that cover
only a fraction of the certificate space. We simulated certificate
revocation data anticipating certificate growth to 1B and 10B
certificates. Our estimates show the daily revocation download
estimates are 612 KB and 7.4 MB, respectively. Storage
estimates also remain manageable during mass revocation
events that revoke 10% of all valid certificates.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1528022 and
CNS-1816929.

REFERENCES

[1] “Ballot 193 – 825-day Certificate Lifetimes.” [Online]. Available: https:
//cabforum.org/2017/03/17/ballot-193-825-day-certificate-lifetimes/

[2] R. Housley, W. Ford, T. Polk, and D. Solo, “ Internet X.509 Public
Key Infrastructure Certificate and CRL Profile,” RFC Editor, RFC 2560,
January 1999.

[3] “CA:RevocationPlan.” [Online]. Available: https://wiki.mozilla.org/CA:
RevocationPlan#OneCRL

[4] “CRLSets.” [Online]. Available: https://dev.chromium.org/Home/
chromium-security/crlsets

[5] M. Myers, R. Ankney, A. Malpani, S. Galperin, and C. Adams, “X.509
Internet Public Key Infrastructure Online Certificate Status Protocol -
OCSP,” RFC Editor, RFC 2560, June 1999.

[6] D. Eastlake, “Transport Layer Security (TLS) Extensions: Extension
Definitions,” RFC Editor, RFC 6066, January 2011.

[7] A. Schulman, D. Levin, and N. Spring, “Revcast: Fast, private certificate
revocation over fm radio,” in Proceedings of the ACM SIGSAC Conference
on Computer and Communications Security, 2014.

[8] P. Szalachowski, C. Amann, T. Lee, and A. Perrig, “RITM: Revocation in
the Middle,” in 36th International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2016.

[9] “Feature request: OCSP Must Staple (RFC 7633).” [Online].
Available: https://groups.google.com/a/chromium.org/forum/#!topic/
security-dev/-pB8IFNu5tw

[10] Y. Liu, W. Tome, L. Zhang, D. Choffnes, D. Levin, B. Maggs, A. Mislove,
A. Schulman, and C. Wilson, “An End-to-End Measurement of Certificate
Revocation in the Web’s PKI,” in Proceedings of the Conference on
Internet Measurement Conference (IMC). ACM, 2015.

[11] J. Larisch, D. Choffnes, D. Levin, B. M. Maggs, A. Mislove, and
C. Wilson, “CRLite: A Scalable System for Pushing All TLS Revocations
to All Browsers,” in 2017 Symposium on Security and Privacy (SP).
IEEE, 2017.

[12] “Censys,” 2017. [Online]. Available: https://censys.io/certificates?q=tags.
raw%3A+%22trusted%22

[13] J. Aas, R. Barnes, B. Case, Z. Durumeric, P. Eckersley, A. Flores-López,
J. A. Halderman, J. Hoffman-Andrews, J. Kasten, E. Rescorla et al.,
“Let’s encrypt: An automated certificate authority to encrypt the entire
web,” in Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, 2019, pp. 2473–2487.

[14] “Indexing HTTPS pages by default,” 2015. [Online]. Available: https://
security.googleblog.com/2015/12/indexing-https-pages-by-default.html/

[15] M. Prince, “The Hidden Costs of Heartbleed,” 2017. [Online]. Available:
https://blog.cloudflare.com/the-hard-costs-of-heartbleed/

[16] Z. Durumeric, J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer et al., “The matter
of heartbleed,” in Proceedings of the 2014 Conference on Internet
Measurement Conference. ACM, 2014, pp. 475–488.

[17] A. Langley, “Revocation checking and Chrome’s CRL,” 2012. [Online].
Available: https://www.imperialviolet.org/2012/02/05/crlsets.html

[18] P. C. Kocher, “On certificate revocation and validation,” in Financial
Cryptography, R. Hirchfeld, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1998, pp. 172–177.

[19] M. Naor and K. Nissim, “Certificate revocation and certificate update,”
IEEE Journal on selected areas in communications, vol. 18, no. 4, pp.
561–570, 2000.

[20] S. Micali, “Efficient certificate revocation,” Cambridge, MA, USA, Tech.
Rep., 1996.

[21] B. Laurie and E. Kasper, “Revocation transparency,” Google Research,
September, 2012.

[22] M. Marlinspike, “Defeating OCSP with the Character ‘3’,” Blackhat
2009, 2009.

[23] K. Rabieh, M. M. Mahmoud, K. Akkaya, and S. Tonyali, “Scalable
certificate revocation schemes for smart grid ami networks using bloom
filters,” IEEE Transactions on Dependable and Secure Computing, vol. 14,
no. 4, pp. 420–432, 2017.

[24] Q. Hu, M. R. Asghar, and N. Brownlee, “Certificate Revocation Guard
(CRG): An Efficient Mechanism for Checking Certificate Revocation,”
in Proceedings of the 41st Conference on Local Computer Networks
(LCN). IEEE, 2016.

[25] P. Hallam-Baker, “X.509v3 Transport Layer Security (TLS) Feature
Extension,” RFC Editor, RFC 7633, October 2015.

13

[26] A. S. Wazan, R. Laborde, D. W. Chadwick, F. Barrere, and A. Benzekri,
“Tls connection validation by web browsers: Why do web browsers
still not agree?” in 41st Annual Computer Software and Applications
Conference (COMPSAC). IEEE, 2017.

[27] H. Bock, “The Problem with OCSP Stapling and Must Staple and
why Certificate Revocation is still broken,” 2017. [Online]. Available:
https://blog.hboeck.de/archives/886-The-Problem-with-OCSP-Stapling-
and-Must-Staple-and-why-Certificate-Revocation-is-still-broken.html

[28] T. Chung, J. Lok, B. Chandrasekaran, D. Choffnes, D. Levin, B. M.
Maggs, A. Mislove, J. Rula, N. Sullivan, and C. Wilson, “Is the
Web Ready for OCSP Must-Staple?” in Proceedings of the Internet
Measurement Conference 2018. ACM, 2018, pp. 105–118.

[29] “Censys,” 2017. [Online]. Available: https://censys.io/certificates?q=
%281.3.6.1.5.5.7.1.24%29+AND+tags.raw%3A+%22trusted%22

[30] R. L. Rivest, “Can we eliminate certificate revocation lists?” in
International Conference on Financial Cryptography. Springer, 1998,
pp. 178–183.

[31] Y.-K. Hsu and S. Seymour, “Intranet Security Framework Based on
Short-lived Certificates,” in Proceedings of the Sixth IEEE Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises,
1997.

[32] E. Topalovic, B. Saeta, L.-S. Huang, C. Jackson, and D. Boneh, “Towards
Short-Lived Certificates,” Web 2.0 Security and Privacy, 2012.

[33] R. Barnes, J. Hoffman-Andrews, D. McCarney, and J. Kasten, “Automatic
Certificate Management Environment (ACME) draft-ietf-acme-acme-12,”
Internet Requests for Comments, Internet-Draft, April 2018. [Online].
Available: https://tools.ietf.org/html/draft-ietf-acme-acme-12

[34] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman,
“A search engine backed by Internet-wide scanning,” Oct. 2015.

[35] D. Kumar, M. Bailey, Z. Wang, M. Hyder, J. Dickinson, G. Beck,
D. Adrian, J. Mason, Z. Durumeric, and J. A. Halderman, “Tracking
certificate misissuance in the wild,” in 2018 Symposium on Security and
Privacy (SP). IEEE, 2018.

14

