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Abstract—Cache conflicts due to deterministic memory-to-
cache mapping have long been exploited to leak sensitive infor-
mation such as secret keys. While randomized mapping is fully
investigated for L1 caches, it still remains unresolved about how
to secure a much larger last-level cache (LLC). Recent solutions
periodically change the mapping strategy to disrupt the crafting
of conflicted addresses, which is a critical attack procedure to
exploit cache conflicts. Remapping, however, increases both miss
rate and access latency. We present PhantomCache for securing
an LLC with remapping-free randomized mapping. We propose a
localized randomization technique to bound randomized mapping
of a memory address within only a limited number of cache sets.
The small randomization space offers fast set search over an
LLC in a memory access. The intrinsic randomness still suffices
to obfuscate conflicts and disrupt efficient exploitation of con-
flicted addresses. We evaluate PhantomCache against an attacker
exploring the state-of-the-art attack with linear-complexity. To
secure an 8-bank 16 MB 16-way LLC, PhantomCache confines
randomization space of an address within 8 sets and brings
only 1.20% performance degradation on individual benchmarks,
0.50% performance degradation on mixed workloads, and 0.50%
storage overhead per cache line, which are 2x and 9x more effi-
cient than the state-of-the-art solutions. Moreover, PhantomCache
is solely an architectural solution and requires no software change.

I. INTRODUCTION

Cache conflicts have long been exploited to leak sensitive
information such as secret keys. Although memory isolation
among processes can be enforced for the sake of security,
caches are still shared among different processes. A cache
access of a process may cause a cache hit or miss to another
process accessing the cache. A cache hit and a cache miss
differ in access latency, the timing of which can be observed
by an attacker so as to infer the access behavior of a victim
process. Consider the AES algorithm for example. A single bit
of the secret key may determine whether a branch is executed.
This leads to different cache access behaviors and therefore
different cache timings. Through a timing side channel attack,
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an attacker can infer secret AES keys in use [5], [19], [26],
[33], [44], [48].

Last level caches (LLCs) are the main target of conflict-
based cache timing attacks. This is because an LLC is shared
among all cores and it is difficult to prevent cache conflicts
between attacker processes and victim processes in the LLC.
This sharing feature of LLCs also brings severe risk of
information leakage in web applications and cloud services. For
example, an attacker is able to use unprivileged Javascript code
to obtain secret information of a victim [33]. When the victim’s
browser runs the Javascript code, the attack is launched and the
victim’s cache access behaviors are monitored. The snooped
access behaviors then can be used to infer secret information.
Moreover, cache conflicts in an LLC also allow attackers
to build robust cache covert channels in cloud environment.
Maurice et al. [30] succeeded in building LLC-based covert
communication channels between processes on Amazon EC2.
The covert channel supports a transmission rate of more than
45 KBps and a 0% error rate even in the presence of high
system activity.

Most countermeasures against conflict-based cache timing
attacks [6], [15], [23], [28], [39], [41], [42], [46] either fall
short of strong security or sacrifice system functionality. For
example, detection-based solutions [8], [9], [13], [46], [47] may
simply consider frequent cache misses of specific addresses
as suspicious and trigger an event alarm. Such solutions,
however, are usually threshold based and vulnerable to false
negatives. To prevent conflict-based attacks, cache partition [23],
[41], [42] and fuzzy time [39] break the premises of cache
sharing and time measurements, respectively. While throttling
attacks, they affect system functionality in terms of lower cache
space utilization and inaccurate time measurements for normal
processes.

As a fundamental countermeasure, randomized mapping
aims to break deterministic cache conflicts by randomly
mapping a memory block to a cache location [25], [42],
[43]. This method does not reduce cache conflicts. Instead,
it improves the difficulty of observing and exploiting cache
conflicts. Once the placement policy is randomized, the memory-
to-cache mapping for any address is not fixed. In this scenario,
the attacker can hardly find and exploit addresses that may
conflict with the victim addresses. This is because with the
existence of randomness, the attacker cannot create cache
conflicts with certainty. While efficient randomized-mapping
on small L1 caches have been fully investigated [24], [25],
[42], [43], it still awaits efficient implementation on a much
larger last-level cache (LLC). The major challenge is how to
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guarantee fast lookup for a block that may be randomly mapped
to anywhere in a large LLC. It is impractical to enforce a full-
scale search across the entire LLC. Previous solutions for LLCs
resort to indirect randomized mapping. They first introduce
implicit mapping to lengthen the time for finding conflicted
addresses. Then they conduct dynamic remapping to change the
mapping strategy from time to time so as to bring randomness.
They, however, have recently been found insecure against
the state-of-the-art attacking algorithm with linear complexity
[35], [40], [45]. To prevent the state-of-the-art attack, these
countermeasures need an extremely frequent remapping, which
will cause unacceptable performance overhead [35].

Skewed-cache based designs provide a partial solution to
the above problem. Such designs scatter the cache lines in a
cache set into different cache partitions, and adopt random
placement among these partitions [35], [45]. The uncertainty
in memory-to-cache mapping increase the cost of the attack,
because an attacker needs to repeat the old procedures for
many times to succeed with high probability. However, since
the total number of possible cache locations of a physical
address is not enhanced, these designs still need the inefficient
dynamic remapping. To secure a 2 MB 16 way LLC against
the linear-complexity attack, the state-of-the-art ScatterCache
[45] brings 2% slowdown and 5% storage overhead per cache
line, requiring both hardware and software changes.

In this paper, we present PhantomCache, an LLC-favorable
countermeasure against conflict-based cache timing attacks
without inefficient dynamic remapping. It leverages our newly
proposed localized randomization to mitigate conflict-based
cache timing attacks. In contrast with global randomization,
localized randomization restricts the randomization space to
a small range of cache locations. Each time a memory block
enters the cache, it is randomly placed at a location from its
fixed mapping range. Because the mapping range is small,
all of the locations in it can be checked in parallel during a
cache access to search for the needed memory block. This is
more practical and efficient than global randomized mapping.
Although the randomness is limited, PhantomCache is still
sufficient to prevent conflict-based cache timing attacks.

On a 16 MB 16-way LLC where PhantomCache maps an
address to one of 8 random locations, our analysis shows that an
attacker using the linear-complexity attack algorithm needs 500+
years to succeed. PhantomCache achieves such strong security
without dynamic remapping. This is because PhantomCache
preserves a sufficiently large randomization space by randomly
mapping an address across several sets from the entire LLC.
In contrast, the number of possible mapping locations for an
address by skewed-cache based solutions is equal to the number
of locations in only one set of the undivided cache. This is
why they need dynamic remapping to preserve security at the
cost of efficiency [35], [45].

In summary, we make the following contributions to
mitigating conflict-based cache timing attacks.

• We propose the localized randomization technique that
can protect large caches (such as LLCs) against conflict-
based cache timing attacks without inefficient dynamic
remapping (Section III).

• We explore a series of hardware-efficient design
strategies to realize localized randomization in Phan-
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Fig. 1. Prime+Probe attack [26], [30] infers (a) the victim access upon a
cache miss and (b) the victim no-access upon all cache hits in a 4-way cache
set.

tomCache. The mapping function to realize localized
randomization only imposes one clock cycle latency
per cache access (Section IV). Our analysis shows that
these efficient design strategies do not compromise the
security (Section V).

• We propose an efficient design to integrate Phan-
tomCache into the multi-banked LLC architecture
(Section IV-E). This improves parallelism and reduces
the overhead of cache access.

• We implement PhantomCache using the ChampSim
simulator and validate its performance using extensive
SPEC CPU 2017 benchmarks. We evaluate Phantom-
Cache implementation on an 8-bank 16 MB 16 way
LLC. It brings only 1.20% performance degradation on
individual benchmarks, 0.50% performance degrada-
tion on mixed workloads, and 0.50% storage overhead
per cache line, which are 2x and 9x more efficient
than the state-of-the-art skewed-cache based solutions.
Moreover, PhantomCache requires no software change
(Section VII-F).

II. PROBLEM

In this section, we review the basics of conflict-based
cache timing attacks and underline the inefficiency of prior
countermeasures based on randomized mapping.

A. Conflict-based Cache Timing Attack

Conflict-based cache timing attacks exploit cache conflicts
to reveal the cache access behavior of processes [40]. To infer
whether the victim has accessed a memory address, the attacker
need craft another memory address that maps to the same cache
line with the memory address of interest. The attacker then
periodically accesses the crafted address. The first access makes
the corresponding data block cached. For the next access, a
cache hit indicates that the cached block is not replaced. The
attacker makes sure that the victim has not accessed the memory
address of interest in between its two accesses. Otherwise, a
cache miss occurs and it reveals the memory access behavior of
the victim. Since modern processors use set associative caches,
the attacker can only deduce which set a memory address maps
to rather than the exact cache line. Therefore, the attacker has
to craft a set of addresses that map to an entire cache set, which
is called an eviction set. Periodical access and timing inference
then involve all or most of the addresses in the eviction set.
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Fig. 2. Memory address format: virtual address and physical address.

Prime+Probe [26], [30], a representative conflict-based
attack, exercises eviction addresses through first priming and
then probing a cache set. During the wait interval in between,
the victim may or may not access the cache set. We enumerate
both cases in Figure 1. In Figure 1(a), the attacker first primes
the entire cache set by accessing addresses in the eviction
set. While the attacker waits, the victim accesses a memory
address that maps to the primed cache set. This leads to
a cache replacement over, for example, the second cache
line in Figure 1(a). When the wait interval terminates, the
attacker probes the cache set by accessing eviction addresses
again. Since the second cache line is replaced by the victim,
the attacker encounters a cache miss there and infers the
access action of the victim. In contrast, if the victim has not
accessed the cache set (Figure 1(b)), the attacker experiences
all cache hits upon probing and infers the victim’s non-access
action. Note that Evict+Reload [16], [22] jointly exploits cache
conflicts and shared blocks between the attacker and victim
processes. It is therefore usually handled by countermeasures
involving shared memory, say forbidding shared memory
between Virtual Machines (VMs) [38].

B. Minimal Eviction Set

A successful conflict-based attack relies on a minimal
eviction set that satisfies two properties—identical mapping
and minimal cardinality [26], [40]. First, identical mapping
requires that all eviction addresses map to the same cache
set. As shown in Figure 1, if some eviction addresses map
to other cache sets, they may still cause cache misses to the
attacker even though the victim does not access the example
cache set. This fails the Prime+Probe attack. Second, minimal
cardinality requires that the number of eviction addresses be
minimized to set associativity. An eviction-set cardinality less
than set associativity is insufficient for priming an entire
cache set. On the other hand, if the eviction set contains
more addresses than a cache set can hold, they lead to cache
conflicts among themselves and cause cache misses irrelevant
to the victim access. This fails the Prime+Probe attack as
well. To satisfy identical mapping and minimal cardinality, the
algorithmic essence for finding a minimal eviction set features
two respective core building blocks [40]. One is to initialize an
eviction set with candidate addresses that likely map to the same
cache set. The other is to iteratively remove addresses whose
absence will not make the remaining eviction set ineffective.

Candidate address sampling. For sampling initial candidate
addresses, the attacker exploits the deterministic memory-to-
cache mapping strategy on modern processors. That is, the
index bits of a physical address are directly used as the index
of the cache set that the address maps to. What makes it
exploitable is that part or even all of the index bits can be
overlapped by a virtual address and its corresponding physical
address. As shown in Figure 2, a virtual address consists of
a frame number and a page offset while its corresponding

physical address consists of a tag, index bits, and a line offset.
Using system configuration parameters, it is straightforward to
calculate the length of each field. The length difference of the
page offset and the line offset decides how many index bits
are shared by a virtual address and its corresponding physical
address. The longer the page offset the more likely it facilitates
inferring which cache set a virtual address can finally access. In
particular, microarchitecture with large pages is more vulnerable
to this exploit. For example, a Sandy Bridge processor released
by Intel uses the 6th to 16th least significant bits of a physical
address as index bits; a 2 MB page in use results in a 21-bit
page offset, which covers the complete index bits [26]. This
reveals to the attacker exactly which cache set a virtual address
maps to.

Address removal. Algorithm 1 presents a typical iterative
framework for finding a minimal eviction set with O(|E|2)
complexity [33], where |E| denotes the cardinality of the initial
set E. In each iteration, the attacker determines whether a
candidate address e in the initial set E can be removed (lines 1-
11). Removing e should not make the remaining E insufficient
for evicting x from the cache. Consider, for example, when
the current E is sufficient for priming the cache set that x
maps to. After priming the cache set (line 2), accessing x
encounters a cache miss with a relatively large delay t1 (line 3).
Now we remove a candidate address e at random and access
all the remaining candidate addresses (lines 5-6). If they can
no longer evict x, accessing x again will return a cache hit
with a relatively low delay t2 (lines 7-8). Such a miss-then-hit
sequence of accessing x can be determined by a noticeable
timing difference (line 8). In this case, the removed candidate
address e should be added back to E (line 9). Otherwise, the
two accesses of x in the same iteration show comparative
timings, the attacker can remove the selected candidate address
e. The iteration ceases upon the minimal eviction set contains
as many candidate addresses as set associativity.

The state-of-the-art eviction set minimization algorithm
[35], [40] achieves O(|E|) complexity using group testing [11].
Consider an m-way associative cache that requires an minimal
eviction set of size |E| = m to attack. In each iteration, the
algorithm first splits the eviction set into m + 1 groups. It
removes addresses group wise and tests whether accessing
the remaining groups of addresses can still evict the target
cache line. If yes, the group of addresses are removed from the
eviction set. Otherwise, they are brought back to the eviction
set. Since the minimal eviction set requires m addresses, these
m addresses reside in at most m groups. Therefore, at least
one of the m + 1 groups addresses can be removed in each
iteration. This makes the minimization process converge much
faster than the O(|E|2) algorithm that removes addresses one
by one.

C. (Inefficient) Randomized Mapping for LLC

Randomized memory-to-cache mapping has been explored
as a fundamental countermeasure against conflict-based cache
timing attacks. Ideally, randomized mapping obfuscates cache
conflicts by mapping a physical address to a random cache
line [25], [43]. Even for the same address, its consecutive
placements will highly likely occupy different cache lines. This
makes it hard to find a set of addresses that always map to
the same cache set. Randomized mapping thus prevents the
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Algorithm 1 Minimal Eviction Set Construction [33]
Input: Initial eviction set E; Target address x;
Output: Minimal Eviction Set E to Evict x;

1: while |E| > SetAssociativity do
2: Access all candidate addresses of E;
3: t1 ← measure the time it takes to access x;
4: e← select a candidate address at random from E;
5: E = E \ {e};
6: Access all candidate addresses of E;
7: t2 ← measure the time it takes to access x;
8: if t1 − t2 > threshold then
9: E = E ∪ e;

10: end if
11: end while
12: // iteration terminates upon |E| = SetAssociativity;
13: return E;

attacker from finding minimal eviction sets, the foundation of
conflict-based cache timing attacks. While efficient randomized
mapping solutions for L1 caches have been proposed [24], [25],
[43], solutions for securing LLCs still suffer from practical
inefficiency [34], [35], [42], [45].

Random Replacement on L1 caches. It aims to fully achieve
randomized mapping. The pioneering solution, NewCache [25],
[43], randomly selects a cache line and replaces it with the
accessed memory block upon a cache miss. Then an access
enforces a search through all cache lines. Because of the small
size of L1 caches, NewCache can guarantee fast search. Built
upon NewCache, Random Fill Cache [24] further randomizes
the selection of which block to put in cache. Specifically, it
may not cache a requested block. Instead, the requested block
is directly sent to the processor while a randomly fetched
block adjacent to the demanded one from memory will be
cached. Random Fill Cache requires both hardware and software
changes. It suits better to applications that have random memory
access patterns.

Dynamic Remapping on LLC caches. Since it is hard to
enforce global search over a large LLC, solutions for protecting
LLCs are double-edged in that 1) they first introduce implicit
mapping to lengthen the time for finding eviction sets, and 2)
then they conduct dynamic remapping to change the mapping
strategy for defeating the attacker’s accumulated inference.
Implicit memory-to-cache mapping can be achieved by either
permutation tables [42] or encryption units [34], [35], [45].
RPcache [42] uses permutation tables indexed by the index
bits of an address. The indexed entry features the cache set
index the address maps to. To address the storage overhead
of permutation tables, CEASER [34] hides memory-to-cache
mapping using encryption. It encrypts a physical address and
uses the encryption result as the cache set index. However,
once permutation rules [42] or encryption keys [34] are fixed,
an address will always map to the same cache set. This
deterministic mapping again leaves the door open for cache
timing attacks. Toward a double defense over implicit mapping,
dynamic remapping periodically changes the memory-to-cache
mapping strategy. Remapping frequency should be sufficiently
high such that the attacker cannot get enough time to find a
minimal eviction set targeting a specific mapping. For example,
to secure an 8 MB 16-way LLC against the O(|E|2) attack

TABLE I. COMPARISON OF PHANTOMCACHE WITH EXISTING
RANDOMIZED MAPPING SOLUTIONS FOR LLC.

NOTES: ∗RPCACHE, CEASER, CEASER-S, AND SCATTERCACHE
ACHIEVE RANDOMIZED MAPPING THROUGH DYNAMIC REMAPPING. WITHIN

A REMAPPING INTERVAL, MEMORY-TO-CACHE MAPPING IS ESSENTIALLY
DETERMINISTIC. NOTE THAT DYNAMIC REMAPPING IS ALSO REFERRED TO

AS RE-KEYING [45].
#RPCACHE SUPPORTS DIRECT CACHE SEARCH BY QUERYING THE ADDRESS

MAPPING IN PERMUTATION TABLES. STORAGE OVERHEAD INDUCED BY
LARGE PERMUTATION TABLES MAY LIMIT ITS USAGE IN LLC [34].

Legend: CF: Crypto-Free; DS: Direct Search;
Legend: HO: Hardware Only; LA: LLC Applicability;
Legend: DRF: Dynamic-Remapping Free
Solution CF DRF DS HO LA

RPcache∗ [42] 3 7 3 7 3#

CEASER∗ [34] 7 7 3 3 3
CEASER-S∗ [35] 7 7 3 3 3
ScatterCache∗ [45] 7 7 3 7 3
PhantomCache 3 3 3 3 3

with 0.50% performance overhead, where E is the average
cardinality of initial sample addresses, CEASER needs to remap
a line every 100 accesses.

As the O(|E|) attack emerges [35], [40], dynamic remap-
ping has been augmented with skewed cache design to control
overhead [35], [45]. A skewed cache divides the cache space
into partitions [36]. Each partition contains a number of
consecutive ways from all cache sets. For example, a two-
way skewed-associative cache over a traditional 16-way cache
divides the cache into two partitions, one contains the first
8 ways from all sets while the other contains the second 8
ways from all sets. The property for security leverage is that
each partition has a different address mapping function. To
evict an address, an attacker now needs to fill sets the address
may map to on all partitions. Since a fixed mapping strategy
of each partition is vulnerable, dynamic remapping is still
needed. CEASER-S [35] extends CEASER under a skewed
cache. Against the attack that requires that each eviction address
should map to the same set with the victim address on all
partitions, it leads to only 1% slowdown when remapping a
line every 100 accesses. However, ScatterCache [45] finds that
an attacker can more easily find eviction sets with partially-
congruent addresses. In other words, each eviction address
can map to the same set with the victim address on one or
more partitions while all eviction addresses jointly cover all
possible sets of the victim address. Apparently, this attack is
more challenging to defend. The state-of-the-art ScatterCache
can secure 2 MB 16 way LLC with 2% slowdown and 5%
storage overhead per cache line while requiring both hardware
and software changes [45].

In comparison, our PhantomCache does not require dynamic
remapping or software change. To secure an 8-bank 16 MB 16-
way LLC, it brings only 0.50% slowdown and 0.50% storage
overhead per cache line. The shake-off of dynamic remapping
is because PhantomCache randomly maps an address across
several sets across the entire LLC. We efficiently integrate
PhantomCache design into the multi-banked LLC architecture
(Section IV-E). In contrast, the number of possible mapping
location for an address by skewed-cache based solutions is equal
to the number of locations in only one set of the undivided
cache. This is why they need dynamic remapping to preserve
security at the cost of efficiency [35], [45].
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III. OVERVIEW

In this section, we present PhantomCache, an LLC-favorable
countermeasure against conflict-based cache timing attacks
without inefficient dynamic remapping (Table I). It guarantees
efficiency by our newly proposed localized randomization tech-
nique. Localized randomization bounds randomized memory-to-
cache mapping of an address within only a limited number of
randomly selected cache sets. The intrinsic mapping random-
ization enables PhantomCache as effective against eviction
set minimization as the fully randomized NewCache [25],
[43]. Meanwhile, searching a block touches also the limited
cache sets and can be efficiently implemented by a practical
hardware supporting parallel access. This makes PhantomCache
as LLC favorable as CEASER [34], CEASER-S [35], and
ScatterCache [45]. However, PhantomCache relieves from
frequent, inefficient dynamic remapping as it does not involve
deterministic mapping.

A. Motivation

Essentially, if we could limit randomization space without
sacrificing security of randomized mapping, we can achieve fast
cache search. This instantly motivates us to explore localized
randomization. That is, we randomize the mapping of an address
within a limited number of cache sets, instead of across the
entire cache. The intrinsic property of randomness hinders the
attacker from minimizing an eviction set. Traditionally, the
criterion for removing an eviction address is that the remaining
eviction set can still prime the target cache set to evict the target
address [33], [40]. It leverages the fact that, in traditional caches,
an eviction set including at least m (i.e., set associativity)
relevant addresses must be sufficient for priming the target cache
set. However, localized randomization makes this criterion non-
deterministic and hard to exploit. Consider n addresses, each
of which maps to r cache sets but all share a common cache
set. Given set associativity m, we derive the probability of
priming the common cache set by accessing the n addresses
as the following.

Prprime(n) =

n∑
i=m

Ci
n × (

1

r
)i × (

r − 1

r
)n−i. (1)

In this scenario, even if the eviction set includes m relevant
addresses, accessing all its addresses cannot necessarily prime
the target set. Thus, the attacker needs to repeat accessing the
whole eviction set rm times on average to figure out whether it
includes enough relevant addresses. This increases the attacker’s
cost rapidly with the growth of r, which motivates us to explore
more about localized randomization.

B. Methodology

Toward practically efficient obfuscation of cache conflicts,
the key idea of localized randomization consists of two phases
of randomness. First, for each address, we randomly select a
predefined number of candidate sets for it. The selection uses
the address and a random mapping function to compute cache
set indices. Second, we randomly select one candidate set for
mapping the address. As shown in Figure 3, PhantomCache
enforces localized randomization through modified placement
and search policies while it does not touch the replacement
policy.

cache access

candidate set

indices computation

parallel search

physical address

read/write access

hit?

read a block from cache to memory; or write a block to cache from memory

memory fetch

random gen: p 

LRU replacement

empty line 

available?

set selection:

pth candidate set

placement

yes

no

yes

no

Fig. 3. Cache access handling of PhantomCache.

Placement policy. PhantomCache places a block into a ran-
domly selected cache set among several candidate sets. The
indices of the candidate sets are computed using the block’s
address and random salts. Given r candidate cache sets to use,
we introduce r random salts for cache configuration. These
random salts are initialized using an on-chip pseudo-random
number generation (PRNG) upon machine booting. We can
compute the candidate set indices for an address as:

C = {ci | ci = F (address, salti) for ∀i ∈ [0, r − 1]}. (2)

We require that the memory-to-cache mapping function F
should generate candidate sets randomly and independently
among different addresses. We, however, do not simply du-
plicate the block into all of the candidate cache sets. That
would lead to an impractical cache fatigue. We select only one
candidate set at random for placement as the following.

SelectedSetIndex = ci for i = PRNG(r), (3)

where PRNG(r) generates a random number ranging from 0
to r − 1.

Search policy. PhantomCache needs to search a block in all
its candidate sets. Upon a cache access, we first compute the
indices of all candidate sets by Equation 2. We then compare
the address’s tag field against those cached in each set. A
matching indicates a cache hit. Otherwise, a cache miss occurs;
the CPU needs to fetch the block from memory and place it
in cache. Since a small number of candidate sets are sufficient
for security guarantee (Section III-A and Section V), it is
feasible to implement parallel search in hardware. Although
fully parallelism is difficult to realize because that needs a
multi-port cache, we can use a multi-banked cache to improve
parallelism.

Replacement policy. PhantomCache imposes no modification
on the replacement policy. When placing a block into a cache
set, if there is no available cache line, one cached block needs
to be replaced. We simply follow the replacement policy in
use such as the commonly used LRU policy.

IV. DESIGN

In this section, we detail the PhantomCache design. Phan-
tomCache logics only reside in the LLC management module,
serving as a transparent layer between the L2 cache and LLC.
The key challenge is how to optimize the extra access latency
while implementing randomized localization. We explore a
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series of design strategies toward only a single clock cycle
overhead per access and a dlog2 re-bit storage overhead per
cache line, where r is the number of candidate sets for randomly
mapping an address. PhantomCache can be efficiently integrated
into the multi-banked LLC architecture.

A. Architecture: Localized Randomization

As with existing randomized mapping solutions, we imple-
ment PhantomCache logics mainly through a random memory-
to-cache mapping function. As shown in Figure 4, it functions
transparently to the cache and memory. The cache still passively
accepts an access request and returns the requested data block
upon a read hit or continues with caching in the data block
upon a write hit. Upon a cache miss, however, the access
request is directed to memory1. The corresponding data block
is then fetched from memory and written to a cache set. The
replacement policy (i.e., LRU) decides which cache line to
use in the cache set. The placement policy decides which
cache set to use for caching a data block with a specific
physical address. This is the part that localized randomization
shines forth. As discussed in Section III-B, our newly proposed
localized randomization technique bounds randomized mapping
within only several candidate cache sets across the entire cache.
Since any candidate set is likely to be selected, searching a data
block needs to walk through all its candidate sets. Moreover,
since the memory-to-cache mapping function is modified, we
accordingly modify the address restoration process as well.
When a dirty data block is written back from cache to memory,
the cached metadata should be sufficient for calculating the
original memory address.

B. Memory-to-Cache Mapping

Randomness is the ultimate design goal of the memory-to-
cache mapping function. Toward randomized mapping, the part
of an address used for calculating the cache set index should
guarantee uniqueness. In current memory hierarchy, addresses
within the same data block always map to the same cache line.
We therefore need only a block-wise address uniqueness using
the tag and index bits (Figure 2). Since these two fields alone
always generate the same cache set index, we can introduce
r random salts for r-degree PhantomCache. Specifically, we
calculate the indices of r candidate sets using the address’s
tag and index bits as well as one of the r salts after another.
Toward localized randomization of PhantomCache, a random

1Note that a unit called memory controller coordinates the transmission
of control messages and data blocks between the cache and memory. Since
PhantomCache does not modify the memory access principle, we omit the
memory controller in Figure 4 for simplicity.

saltleft

tag

hash

index bits

saltright

cachexor

xor xor
cache index

Fig. 5. Memory-to-cache mapping of PhantomCache.

selector is used for selecting one of the r candidate sets for
placement.

PhantomCache leverages fast built-in hardware random
number generators (HRNGs) on modern CPUs to generate
random salts. For example, an Intel CPU [2] can use an entropy
source to generate a random stream of bits at a high rate
of 3 Gbps. A pair of 256-bit sequences from the entropy
source is used as seeds to generate up to 1,022 128-bit random
numbers, which are stored in a random number pool in hardware.
As with existing hardware-level randomization schemes [35],
[45], PhantomCache can directly request r random numbers
from the random number pool. This avoids the delay of
random number generation upon requests. Furthermore, we
need another step of randomness to select one of r candidate
sets for block placement. The scale of r is decisive for
security. Consider an extreme case when r = 1. In this case,
PhantomCache degenerates to deterministic mapping that is
vulnerable to conflict-based cache timing attacks. We thus
require a sufficiently large r to secure PhantomCache. However,
a larger r imposes a higher performance overhead due to
searching across all the r candidate sets for every data access.
The analytical results in Section V and experimental results
in Section VII show that PhantomCache can secure a 16 MB
16-way LLC with a small r = 8 and only 0.50% performance
degradation. To select one from 8 candidate sets for data
placement upon each LLC miss, PhantomCache needs only 3
random bits. This should not incur observable latency to the
memory-to-cache mapping process.

While preserving mapping randomness, we need to min-
imize the so-caused cache overhead. The address portion in
a cache line should support both data search and address
restoration. Traditionally, the tag of a memory address is cached.
Since we use an address’s tag and index bits and a salt to
calculate the cache set index, a straightforward solution needs
to at least store the tag and index bits in a cache line. This
necessitates a wider cache. We optimize cache overhead such
that index bits are not cached. The optimization leverages the
fact that addresses with the same index bits (or tag) must have
different tags (or index bits). The mapping randomness can
still hold if we feed the tag and index bits separately into the
mapping function. Besides, to guarantee mapping invisibility to
attackers, a salt is divided into saltleft and saltright, which are
used respectively at the beginning and ending of the mapping
function. Because a physical address is split into the tag and
the index bits, we respectively XOR saltleft and saltright with
them after they are input to the mapping function to minimize
the attacker’s control over the mapping result. This idea comes
from the key whitening technique that is commonly used in
block cipher algorithms such as AES [10].

As shown in Figure 5, we first compute over the tag and
saltleft. The result then goes through another computation
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Algorithm 2 LFSR based Toeplitz Hash [20]
Input: message
Output: result

1: result := 0;
2: state := LFSR’s initial state;
3: for each bit b of message from LSB to MSB do
4: // LSB: Least Significant Bit; MSB: Most Significant Bit;
5: if b == 1 then
6: result := result⊕ state;
7: end if
8: state := LFSR’s next state;
9: end for

together with index bits and saltright. Note that the second
round of computation essentially involves XORing the index
bits with saltright. The new result is taken as the cache
set index. Then we only need to cache the tag and the
random number for specifying the adopted salt. This way,
cache overhead is minimized to only a dlog2 re-bit random
number per cache line. When we use r = 8 to guarantee
a strong security for an 16 MB 16-way LLC (Section V),
PhantomCache introduces only 0.50% storage overhead per
cache line. Furthermore, the length of salts decides security. The
longer the salts are, the more robust they are against brute-force
attacks. Current PhantomCache makes salt length exactly equal
to the length of the tag together with index bits. It incurs only
insignificant modification to increase salt length. For example,
we can add a third part to the salt and concatenate it with the
input of the hash function in Figure 5. Our security analysis in
Section V shows that that the current two-part salt is already
sufficient to withstand brute-force attacks.

Any random hash function suffices to guarantee randomness
of the mapping function. Since PhantomCache requires r
candidate sets, we need implement r such mapping functions
to support parallel mapping. We adapt the LFSR based
Toeplitz hash [12], [20] toward a single–clock-cycle hash
function (Section IV-C) with affordable hardware complexity
(Section VII-I).

C. Single–Clock-Cycle Hash

The hash function for mapping should be hardware-efficient
and guarantee strong randomness. We select the LFSR based
Toeplitz hash that satisfies both requirements. An LFSR is a shift
register that generates a new state using a linear function and
the current state [20]. The LFSR based Toeplitz hash iteratively
generates the hash result of an input message (Algorithm 2).
Starting from the LSB, each iteration XORs the current state
to the result if the message bit is one (lines 5-7). Then LFSR
derives the next state for use in the next iteration (line 8).
Realization of the LFSR based Toeplitz hash [12], [20], however,
uses sequential logic. The message needs to be processed bit
by bit, incurring a high latency when it is long.

We adapt the LFSR based Toeplitz hash toward a single–
clock-cycle hash function using combinational logic. The state
values are pre-computed and stored in registers at boot time.
These state values can be directly input to the hash circuit
without the delay of re-generation upon each hash computation.
As shown in Figure 6, the combinational logic circuit requires

state0

state1

state2

statet-1

statet-2

m[0]m[1]m[2]  m[t-2]m[t-1]

 
 

  

  

hash result

Fig. 6. Single–clock-cycle hash function by implementing the LFSR based
Toeplitz hash [20] using combinational logic.

only AND gates and XOR gates. The hash input message is
the XOR result of a t-bit tag and a salt. For each AND gate, a
message bit with value one makes the corresponding LFSR state
go through the XOR gates. Since the message is as long as the
tag field, which should be shorter than the up to 64-bit memory
address in modern architecture. The number of XOR gates in the
critical path is at most log2 64 = 6. The number of gate delays
supported in a clock cycle is determined by several factors
such as circuit wiring, clock frequency, lithography, and energy
restriction. Typically, modern processors can process 15∼20
gate operations in one clock cycle [34]. Our hash function in
Figure 6 with a critical path of 7 gates (i.e., 1 AND gate and
6 XOR gates) thus brings only a single clock cycle latency in
most cases. For some processors with an extremely high clock
frequency, only 4∼5 gate operations may fit in a single clock
cycle. In this case, our hash function may bring a latency of
two clock cycles, on par with state-of-the-art cache protection
schemes [35], [45]. Even if the mapping latency is two clock
cycles, the performance degradation by PhantomCache is still
only 1.34% (Section VII).

Randomness. Given an m-bit message M with an n-bit hash
output, the randomness of the LFSR based Toeplitz hash is
quantified by the following probability-inequality [20]:

∀M 6= 0, c, Pr(h(M) = c) ≤ m

2n−1
, (4)

where c denotes a certain hash output. In our case, consider
an LLC with 214 sets and 64-byte cache lines. Given 64-bit
physical addresses, we have 14-bit index bits and tags of 64-14-
log2 64=44 bits. PhantomCache uses tags as the hash input and
index bits as the hash output. By Formula 4, the probability
of a randomly picked tag being hashed to a given set is below

44
214−1 = 0.5%, which shows no significant mapping bias.

Security. Admittedly, using a hardware-efficient hash function
and simple XOR operations may not be cryptographically
secure. However, the application scenario of PhantomCache is
different from a typical cryptographic scenario. The attacker is
assumed to know only the victim physical address and can only
observe cache conflicts. Because of the adoption of random salts,
the attacker can neither control the input of the hash function
nor know the output of the hash function. This increases the
difficulty to create hash collisions deliberately. Furthermore,
we explore the LFSR based Toeplitz hash as a low-overhead
choice. If this hash function is found to be insecure, we can
replace it with other more secure ones with a longer latency
than one clock cycle (e.g., the ones used in [34], [45]) as long
as they can make the memory-to-cache mapping invisible. This
does not affect the key idea of PhantomCache, that is, localized
localization. In other words, the essential goal of our mapping
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Fig. 7. Parallel search of PhantomCache.

function is to hide the explicit correlation between the physical
address and the set index. Such techniques have been well
studied in previous solutions [34], [35], [45]. We consider them
independent of our localized-randomization technique. This is
also why we analyze salt robustness against only brute-force
attacks as with existing solutions [35], [45] (Section V).

D. Cache Access

Upon a cache access, PhantomCache enforces parallel
search over all r candidate sets of the requested address
(Figure 7). We need to check all candidate sets because localized
randomization may have mapped the requested address to any
of them. With r mapping function units (Figure 7), we first
compute the indices of r candidate sets each using one of
the r salts and the requested address. Tag fields of all cache
lines in the r sets are selected to compare with the requested
address’s tag in parallel2. According to the mapping design
(Figure 5), a matching of both the tag field and random number
in a cache line yields a cache hit. Otherwise, a cache miss
occurs and we need to fetch the requested block from memory
to one of the r candidate sets at random. Since we have
computed all the indices of candidate sets and stored them
in index registers during search, we can directly generate a
random number to select one therein. This avoids index re-
computation and so caused overhead. Then we follow LRU to
place the fetched block into the selected cache set. Meanwhile,
the random number used for set selection should also be cached
for the sake of address restoration (Section IV-F).

The total extra access latency brought by the mapping
function is only one clock cycle. The critical path of the
mapping function consists of 10 gates—7 gates of the hash
function (Figure 6) and 3 other XOR gates (Figure 5). Given
that modern processors can process 15˜20 gate operations per
clock cycle [34], the mapping function brings an extra access
latency of only one clock cycle.

E. Parallel Search

In order to realize parallel search, we need a multi-banked
cache. However, because in PhantomCache any combination
of sets may become the candidate sets of an address, accessing
all of them in parallel yields a multi-banked cache with exactly
one set per bank. Given the large number of sets on an LLC, a
set-grained multi-banked LLC is power hungry and will raise
manufacture challenges. Therefore, we further propose a parallel
search strategy that leverages the existing multi-banked LLC

2Note that in traditional set-associative caches, cache lines in a cache set
are also checked in parallel. With a multi-banked cache, we are able to check
multiple cache set in parallel
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Fig. 8. Address restoration of PhantomCache.

architecture with only a few banks (e.g., 8). Each bank contains
an equal number of sets. This design may partially sacrifices
parallelism because more than one of the r candidate sets may
map to the same bank. In other words, since we still randomly
map an address to any r sets across the entire LLC, it is hard
to always guarantee that r sets map to r banks, especially when
the LLC has fewer than r banks. A design challenge is then
how to synchronize all the r access requests corresponding to
an address. Among the r accesses, a hit succeeds the original
access request while all misses lead to a cache miss. Once
they go to different banks, different queue lengths on each
bank may make the r accesses complete asynchronously. This
confuses the CPU as a miss comes after a hit of the same
address request. Then the CPU needs to handle the cache miss
by fetching the corresponding data block from memory even
though it is already cached.

We modify the LLC queue management policy to support
PhantomCache. For each address request, we inflate it to r
requests. Each inflated request targets a possible set the address
maps to. According to which bank a set belongs to, these
inflated requests are scheduled to different bank queues. Once
an inflated request is served, we use its result to update the
status of the original request in the LLC queue. Specifically, we
maintain a counter and a hit indicator for each original request
in the LLC queue. If the inflated request is a hit, the counter
is incremented, the hit indicator is enabled, and the cached
data block is immediately sent to the L2 cache. Otherwise,
we only increment the counter. For an original request in the
LLC queue, if after all its r inflated requests get served and
the hit indicator is enabled, it can be removed from the queue.
If its counter becomes r and the hit indicator is not set, the
original request encounters a cache miss and invoke memory
access. Thanks to the pipelined optimization of modern caches
[32], [37] where consecutive requests can be handled without
multiplying the access latency3, PhantomCache introduces a
limited performance overhead. For example, given r = 8 that
guarantees a strong security on an 8-bank 16 MB 16-way LLC
(Section V), PhantomCache brings only 0.50% performance
slowdown on average (Section VII-F).

F. Address Restoration

We need to restore memory addresses of blocks when
writing them from cache back to memory. Address restoration
takes place when dirty blocks are evicted from cache upon
replacement or process termination. As aforementioned, address
restoration requires both the tag and index bits of a memory
address. The tag field is already stored in the cache line. We
further restore index bits as in Figure 8. As aforementioned in

3For example, LLC needs 20 clock cycles to handle an individual request,
but it takes only 21 cycles to handle two consecutive requests because they
are handled in pipeline.
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Figure 5, index bits are used for determining the cache set index
through an XOR with a hash output and saltright. The hash
input is the XOR result of the tag and saltleft. Since the random
number for specifying the salt is also cached, we can find the
salt and divide it into saltleft and saltright, XOR saltleft
with the tag, and hash the XOR result. Finally, XORing the
hash output with the set index and saltright restores the index
bits. With the tag and index bits, we can restore the memory
address and write back the evicted block to the corresponding
memory location.

V. SECURITY

In this section, we analyze the security of PhantomCache.
Localized randomization significantly obfuscates cache conflicts
and costs the attacker an unreasonable long time to find a
minimal eviction set or crack salts. For example, under Phan-
tomCache with 8 candidate sets, the eviction set minimization
process takes the attacker more than 500 years even if it uses
the state-of-the-art O(|E|) algorithm. A number of 8 candidate
sets can already enforce more than 136 years to crack a salt.
We also randomly initialize the salts upon machine booting.
This renders salt cracking more impractical.

A. Threat Model

Following related work [34], [35], [45], we are concerned
with an attacker that knows the victim address. The attacker can
launch a conflict-based attack as long as it obtains a minimal
eviction set for the victim address. Therefore, we consider an
attack successful if the attacker finds a minimal eviction set.

We make the following assumptions in favor of the attacker.
These assumptions are commonly accepted in the literature
[34], [35], [45].

• The attacker knows the exact physical address accessed
by the victim process.

• The attacker possesses abundant initial addresses that
contain sufficient addresses for forming a minimal
eviction set. It may choose to run the classic O(|E|2)
algorithm or the state-of-the-art O(|E|) algorithm
(Section II-B).

• The attacker can make memory accesses and measure
access latency.

• The attacker is interfered with no noise during the
attack. That is, it is the only entity that makes memory
accesses until a minimal eviction set is found.

• Regarding PhantomCache specifics, the attacker can be
aware of the design of the mapping function, such as
the hash function. However, it cannot know the exact
salts that are used for computing the exact cache set
indices for an address. The attacker may try to crack
the salts.

B. Security Goal

As with existing solutions [34], [35], [45], the security goal
of PhantomCache is to prevent the attacker from finding a
minimal eviction set within a reasonable time. Specifically, a
defense is considered as providing strong security if it can

hinder eviction set minimization for more than 100 years [34].
PhantomCache achieves the security goal via three subgoals.

Scarcity of eviction addresses. Sufficient eviction addresses
are necessary for the attacker to form a minimal eviction set.
PhantomCache significantly raises the bar for feasible eviction
addresses. It no longer maps an address to a determined cache
set. Instead, each address may be randomly mapped to one of
its candidate sets. It becomes impractical for the attacker to
simply find eviction addresses that share all the same candidate
sets (Section V-C). The attacker then has to resort to eviction
addresses that share only part of their candidate sets. However,
which candidate set an address really maps to is random upon
it is cached. This further boosts the difficulty of eviction set
minimization.

Hardness of eviction set minimization. Given that there
always have sufficient addresses mapping to the same cache
set, one can hardly prevent the existence of minimal eviction
sets. A countermeasure thus aims to obstruct the process of
eviction set minimization. As with hardware-level randomiza-
tion schemes [35], [45], PhantomCache essentially enforces
such obstruction through randomizing the memory-to-cache
mapping. The difference is that PhantomCache leverages our
proposed localized randomization technique toward a more
efficient protection (Section V-D).

Hardness of salt cracking. Salts play a critical role for
defending against eviction set minimization. If the attacker
knows the salts, it can greatly ease the eviction set minimization
process. This is because that it can use the salts to easily
compute the candidate set for any physical address. To test
the validity of a salt, the attacker could use it to calculate a
set of addresses with a common candidate set. Then it repeats
accessing these addresses. If the common candidate set can be
primed, the attacker can make sure that the salt is currently
used by the system. Such a cracking process induces heavy
memory accesses, which associate with a long access time.
Our analysis shows that PhantomCache is robust against salt
cracking with a sufficiently long endurance time (Section V-E).

We next detail how PhantomCache satisfies these security
subgoals—scarcity of eviction addresses, hardness of eviction
set minimization, and hardness of salt cracking—in Section V-C,
Section V-D, and Section V-E, respectively.

C. Scarcity of Fully-Congruent Addresses

The most intuitive way to launch a conflict-based cache
timing attack in PhantomCache is to utilize addresses whose
candidate sets are exactly the same. Such addresses are called
fully-congruent addresses [45]. Given m× r fully congruent
addresses, the attacker can use them to form an eviction set.
To prime all the r candidate sets of the victim address, the
attacker keeps accessing the whole eviction set and measures
the latency. Note that if all the r candidate sets are primed,
the attacker will not observe any cache conflicts in his access
because all the m× r memory blocks are already in the cache.
After an iteration of access without any cache conflicts, the
attacker will stop the priming phase and trigger a victim access,
after which the attacker will start the probe phase. However, we
will next show that there may not be sufficient fully-congruent
addresses in the system.

9



Consider the Intel HasWell core i7-3720QM processor,
where the LLC includes 8,192 sets and each set holds 12 lines of
64-byte data [33]. Assume that in an r-degree PhantomCache
where a physical address has r candidate sets, the attacker
needs to find 12 × r fully-congruent addresses to form an
eviction set. Because of randomized mapping, the r possible
cache sets are independent of each other. The possibility
that two randomly selected addresses are fully-congruent is

1
8192r . Thus, finding 12 × r fully-congruent addresses needs
12× r × 8192r × 64 = 3×r×8192r

4 KB on average. This result
shows that the space cost grows exponentially with r, where
the base is the number of sets in the cache. Note that even if
r is only set to 2, the needed space still grows to an enormous
scale: 96 GB. In any system, the maximum memory space
of a process is limited, which indicates that when r is large
enough, the attacker can never find enough fully-congruent
addresses because they do not exist in the available memory
space. Assume that the maximum memory space is M , cache
associativity is m, the degree of PhantomCache is r, the capacity
of data in a cache line is c, and the number of sets in the cache
is s. Then, the minimum r to guarantee the scarcity of fully-
congruent addresses is the minimum r satisfying the following
constraint:

m× r × sr × c ≥M. (5)

Because of the scarcity of fully-congruent addresses, the
attacker has to resort to partially-congruent addresses, whose
candidate sets overlap with the victim address’s. Such addresses
are abundant in the memory space. For example, if the cache has
c cache sets in total, the attacker can always find 2 addresses that
have a candidate set in common out of c

r addresses. Partially-
congruent addresses can be used to prime one or more candidate
set of the victim address. Thus, with multiple groups of partially-
congruent addresses, the attacker may be able to prime all the
candidate sets of the victim address. We refer to such a group of
partially-congruent addresses as an eviction set for the common
candidate cache set. However, we find that even if we have
loosed the requirement for eviction sets, it is still extremely
difficult to find a minimal eviction set.

D. Hardness of Eviction Set Minimization

To obtain a minimal eviction set for the target address (i.e.,
victim address), the attacker must go through a minimization
process. This is natural because according to the LRU replace-
ment policy, cache conflicts only occur when some cache sets
are filled up. We have assumed that the attacker is the only
entity making memory accesses during the attack. If the attacker
accesses a small group of random addresses, it can hardly fill
up any cache set and observe cache conflicts. Therefore, the
attacker needs to begin with a large number of addresses and
manage to minimize them into a minimal eviction set.

As demonstrated in Algorithm 1 [26], [30], the minimization
process starts with an initial set E of candidate addresses and
proceeds by removing unnecessary addresses therein. Consider
a cache with c cache sets in total. If the attacker randomly
picks an address, the possibility that the address’s candidate
sets includes sx, a certain candidate set of the target address
x, is r

c . To form an initial E including m relevant addresses,

TABLE II. TIME FOR EVICTION SET MINIMIZATION UNDER
PHANTOMCACHE USING r CANDIDATE CACHE SETS.

r O(|E|2) algorithm O(|E|) algorithm
2 13 days 0.7 seconds
4 584 years 6.5 days
6 170,682 years 7.8 years
8 9,583,986 years 584 years

the attacker needs c
r ×m addresses on average 4.

Before removing one or more addresses from the initial
set E, the attacker needs to test if the remaining addresses
are still sufficient to fill up sx. In other words, there are still
at least m addresses remained whose candidate sets include
sx. In traditional caches, the attacker only needs to test once.
Specifically, it first accesses x together with all the remaining
addresses. Then it reloads x and measures latency. If x is
observed to be evicted, then the remaining addresses are
sufficient to fill up sx.

PhantomCache drastically increases the difficulty of the
preceding tests of address removal. Because every address may
map to one of r candidate sets, the probability that all the
m partially-congruent addresses map to the same target cache
set sx is only 1

rm . If one or more of them do not map to
the target cache set, x cannot be evicted. This means that the
attacker needs to repeat the test for at least rm times to avoid
removing addresses that should be retained. To summarize,
PhantomCache brings an O(rm) blowup to the complexity
of existing minimization algorithms (both O(|E|2) [33] and
O(|E|) [35], [40]).

We now calculate the number of memory accesses by
both types of algorithms to minimize an eviction set in
PhantomCache. We start with the well-investigated and widely
exploited minimization algorithm with an O(|E|2) complexity
[26], [30], [33], [40]. Given c

r × m addresses in the initial
eviction set E, the attacker removes one address after accessing
the remaining addresses for rm times per iteration. The iterative
address-removal process ceases upon the completion of the
iteration with only m addresses left. We accordingly calculate
the total number of memory accesses in the c

r ×m−m+ 1
iterations as follows.

c
r×m∑
i=m

rm×i = 1

2
×(c×m

r
+m)×(c×m

r
−m+1)×rm. (6)

For the O(|E|) algorithm, although the complexity is linear
with respect to |E|, the constant coefficient varies. So far,
the best result is achieved in [35], that is, 37 × |E|. In our
calculation, we consider an extreme case with the coefficient
as only one in favor of the attacker. Then the total number of
memory accesses approximates as the follows.

c×m

r
× rm. (7)

Table II provides the time cost for the attacker to find a
minimal eviction set on an Intel Xeon E5-4620 CPU with
a 16-way 16 MB LLC. In this case we have m = 16 and

4The attacker can also start with more addresses, but that will only take it
more time to minimize the eviction set because finally only m addresses are
needed.
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c = 16,384. We lower bound the memory access time by L1-
cache access time, that is, approximately 2 ns. When we set
r as 4, the O(|E|2) algorithm costs the attacker more than
500 years. For the O(|E|) algorithm, r = 8 suffices to take
the attacker 500+ years for finding a minimal eviction set. In
comparison with global randomization across all the c = 16,384
sets, PhantomCache uses only a limited randomization space
to achieve a strong security guarantee.

However, we have only proved the security of Phantom-
Cache against existing minimization algorithms with a remove-
and-test style [40]. It is possible that new attacks with less
complexity than state-of-the-art O(|E|) or new minimization
style other than remove-and-test will emerge. Such attacks may
break the defense of PhantomCache as well as related schemes
[34], [35], [45]. To the best of our knowledge, a general lower
bound for remove-and-test algorithms or even all minimization
algorithms still remains an open question. This is also why we
cannot provide a further analysis or proof besides the current
findings over the state-of-the-art O(|E|) algorithm.

E. Hardness of Salt Cracking

If the attacker usurps a privilege of directly using physical
addresses to access memory, the secrecy of salts becomes
critical. Otherwise, the attacker can bypass the hard minimiza-
tion process. This is because that it can easily find a minimal
eviction set by computing the candidate sets of each physical
address. Therefore, salts should be robust against cracking. To
further increase the attacker’s leverage, we assume that the
attacker can compute indices of candidate sets fairly fast and
omit so caused time cost in the following analysis. Since a
salt consists of two parts respectively for XORing with the tag
field and index bits (Section IV-B), the length of a salt is equal
to that of both fields. Given that typical modern processors
use 64-bit physical addresses and 64-byte data blocks, the
length of a salt is 64 − log2 64 = 58 bits. Through a brute-
force attack, the attacker needs to test 257

r salts on average
to find a correct salt among r ones. A simple way to test a
salt is using the salt to calculate a group of addresses with
a common candidate set, and then accessing them to check
whether the common candidate set can be primed. At least
m such addresses are required to prime an m-way cache set.
Therefore, testing a salt requires at least m memory accesses5.
Because using different salts likely computes different group
of addresses, most memory accesses during salt testing lead
to main-memory accesses. Considering that the attacker can
parallelize memory accesses in a multi-bank memory with b
channels, the total number of memory accesses to crack one
salt is m× 257

r ×
1
b .

Consider a system with a 16-way LLC, a 4-channel memory,
and a typical main memory access latency of 60 ns [21]. When
we configure a highly secure r = 8 (Section V-D), the attacker
need take more than 136 years to crack a salt. Given that
the r salts are randomly initialized upon machine booting,
it is impractical for the attacker to bypass the eviction set
minimization process by cracking the salts.

We may also increase the salt cracking hardness by
introducing the salt randomness upon the addresses. Currently,

5In fact, m memory accesses can only prime the cache set with a 1
rm

probability. A reliable test needs much more than m accesses.

each salt is divided into two parts, saltleft and saltright with
the same size as that of tag bits and index bits, respectively.
Given a specific salt, then it splits into the same two parts to
XOR with different addresses. If we use longer salts, we can
perform some address-specific computation over a long salt
such that different addresses may generate different saltleft
and saltright from the same salt. This way, we can further
randomize the inputs and therefore increase the randomness of
address mapping. This surely will increase the hardness of salt
cracking by learning the address mapping pattern.

F. Global Protection versus Selective Protection

Selective protection has been explored to find a trade-
off between security and efficiency. In contrast with global
protection that enforces protection on all cache accesses,
selective protection enforces protection on only data of security
interest and leaves other data simply following traditional cache
accesses. For example, PLcache can assign cache partitions to
data worthy of protection [42]. Corresponding processes access
these data using proprietary locks granted to them. Selective
protection is usually considered as a straightforward extension.

However, we find that selective protection is infeasible for
PhantomCache due to security breach. Specifically, Phantom-
Cache uses localized randomization that 1) deterministically
chooses r candidate sets for an address to map and 2) randomly
maps the address to one of the r sets. According to the security
analysis in Section V-C, PhantomCache enforces an rm blowup
for the number of memory accesses to the attacker, where
m represents set associativity. When selective protection is
used, localized randomization applies to only data of security
interest. Consider a victim address under protection for example.
The attacker is not enforced with localized randomization and
thus its accesses still follow deterministic mapping. If this
is the case, the attacker can again use existing eviction set
minimization algorithms to form an eviction set for a specific
cache set fairly fast. Since the victim address has r candidate
sets in PhantomCache, the attacker only needs to repeat the
testing step in the algorithm for r times. That is, under selective
protection, the attack overhead is subject to an r blowup, which
is marginal in comparison with the rm scale by global protection
of PhantomCache and therefore much less secure. For example,
given a 16-way 16 MB LLC with 16,384 sets and r = 8
candidate sets for PhantomCache address mapping (Table II),
selective protection can drastically degenerate security in that
a minimal eviction set found in at least 9,583,986 years under
global protection can be found in only 0.024 seconds. Therefore,
we do not suggest to use selective protection for PhantomCache;
we consider only the global protection mode in what follows.

VI. IMPLEMENTATION

We implement PhantomCache using ChampSim [1], a trace-
based microarchitecture simulator. It models a full-fledged CPU
of out-of-order cores with a 3-level on-chip cache hierarchy.
This makes ChampSim well accepted in academia for evaluating
cache performance. For example, it is the designated simulator
for the Cache Replacement Championship at ISCA ’17 and the
Data Prefetching Championship at ISCA ’19. PhantomCache
implementation enforces our localized randomization technique
over the conventional cache access management in ChampSim.
As discussed in Sections III and IV, key components include
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TABLE III. EXPERIMENT SETUP.

Module Configuration

Processor 1∼8 cores, 3.2 GHz,
out-of-order 256-entry ROB

Private L1 I/D cache 64-set, 8-way, 32 KB
Private L2 cache 512-set, 8-way, 256 KB
Shared LLC 2∼16 MB, 8-bank, 16-way, 20 cycles

Memory

800 MHz (DDR 1.6GHz),
1∼2 channels,
8-Banks each, 2 KB row buffers,
tCAS-tRCD-tRP: 11-11-11

the set index calculation unit, the cache search unit, and
the cache replacement unit. Since ChampSim features a non-
inclusive cache by default, it should be first modified to support
inclusion. To this end, we add a back_invalidate func-
tion and modify handle_fill and handle_writeback
procedures in the cache module. When a data block is replaced,
back_invalidate is invoked to evict the data block in
higher-level caches as well if it exists therein.

As with hardware-only randomized mapping solutions (e.g.,
NewCache [25] and CEASER [34]), our modification over the
inclusion-enabled ChampSim touches only the LLC module.
It remains as a transparent layer between the L2 cache6

and memory controller. To handle a memory access request,
ChampSim searches the addressed data block through higher-
level caches to lower-level caches until a cache hit returns. If
all of the L1 cache, L2 cache, and LLC return cache misses, the
memory access request is directed to memory. The addressed
data block is then fetched from memory to each level of
the cache hierarchy. To keep the interfaces for L2-LLC and
LLC-memory communication intact, PhantomCache modifies
the read and write procedures inside the LLC module. The
modification for both procedures lies mainly in the handling
of cache search and cache replacement. For the search process,
we add the single–clock-cycle hash function (Section IV-C)
and call it in the get_set function. This function returns
the indices of a set of candidate sets rather than a single
set index determined by the index bits of the requested
address. To perform cache search and invalidation over all
these candidate sets, we also modify the check_hit and
invalidate_entry functions. A cache miss triggers the
replacement process by randomly selecting one of the candidate
sets. The data block fetched from memory is then placed into
the selected cache following LRU.

VII. EVALUATION

Workloads. We evaluate PhantomCache performance by run-
ning workloads from the SPEC CPU 2017 benchmark package
[3]. Specifically, we use all the 20 benchmarks from the
SPECspeed 2017 Integer and SPECspeed 2017 Floating Point
suites. For each benchmark, a representative slice is selected
for fast simulation with performance estimates comparative to
full-execution simulation [17]. Such a representative slice can
be obtained using SimPoint [17] and Pin [27]. The workloads
corresponding to the representative slices of all 20 adopted
benchmarks are readily available in ChampSim. When running
a workload only consisting of a single benchmark on a multi-
core CPU, every core is running the same benchmark. We

6This is because ChampSim features a 3-level cache. The L2 cache is exactly
from which the LLC receives an access request.
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Fig. 9. Comparison of resistance to eviction set minimization.

also evaluate the performance using mixed workloads that are
generated by randomly selecting n out of the 20 benchmarks on
an n-core CPU. Each selected benchmark is then pinned to a
different core [34], [46]. We run at least 2 billion instructions per
workload. The first 1 billion instructions are used for warming
up the cache while the other 1 billion or more instructions are
used for collecting performance statistics.

Metrics. We evaluate PhantomCache using three performance
metrics—instructions per cycle (IPC), misses per 1,000 in-
structions (MPKI) of LLC, and miss rate of LLC. To evaluate
how PhantomCache impacts cache performance, we normalize
all these metrics using the ratio of PhantomCache’s metrics
to that of the baseline cache without modification. A higher
normalized IPC indicates a better performance, exceeding 100%
if PhantomCache outperforms baseline. Moreover, a lower
normalized MPKI or normalized miss rate demonstrates a better
performance. To measure aggregate performance, we further
report the geometric mean of normalized IPC and the average
of normalized MPKI and normalized miss rate.

Results. Based on the configuration in Table III, the results
show that, to secure an 8-bank 16 MB 16-way LLC against
the powerful O(|E|) attack, PhantomCache introduces a 1.20%
slowdown on average among all 20 SPEC CPU 2017 bench-
marks (Figure 10). When taking into account the same set
of 17 benchmarks as the state-of-the-art ScatterCache [45],
PhantomCache introduces an only 1.06% slowdown on average,
being 2x more efficient than ScatterCache. In terms of mixed
workloads, PhantomCache brings a much smaller slowdown of
0.50% on average.

A. Resistance to Eviction Set Minimization

We first evaluate the effectiveness of PhantomCache against
eviction set minimization. Following recent related work [34],
[35], [45], we run the sate-of-the-art O(|E|) eviction set mini-
mization algorithm on a traditional cache and PhantomCache,
respectively. The security metric we use is the number of
cache sets accessed during each iteration of the algorithm. (The
term “accessed” means that among all the memory accesses in
this iteration, at least one address maps to that cache set.). If
the eviction set minimization process succeeds, we expect to
observe a noticeable decrease in the number of accessed cache
sets as the iteration proceeds.

We configure a 16 MB 16-way LLC with 16,384 cache
sets. The initial eviction set consists of 16,384× 16 randomly
picked addresses. The size of the initial set guarantees a high
possibility that there are sufficient addresses to form an eviction
set for the target cache line.
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(a) 1-core CPU, 2 MB LLC, 1-channel DRAM IPC MPKI Miss Rate
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(b) 4-core CPU, 8 MB LLC, 2-channel DRAM IPC MPKI Miss Rate
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(c) 8-core CPU, 16 MB LLC, 2-channel DRAM IPC MPKI Miss Rate

Fig. 10. PhantomCache performance with metrics normalized over baseline.

As shown in Figure 9, the O(|E|) algorithm completes the
eviction set minimization process in a traditional cache after
only 48 iterations. However, in PhantomCache, the number of
accessed cache sets of each iteration remains the same even
after 10,000 rounds. The result shows that the most powerful
eviction set minimization algorithm so far does not work in
PhantomCache. An attacker gains no progress of minimization
in PhantomCache as in a traditional cache.

B. Processor Capacity

To evaluate how PhantomCache affects cache performance,
we start with experiments under various processor capacity
settings. Processor capacity differs mainly in the number
of cores, the size of LLC, and the number of channels
connecting to memory. We consider both single-core and
multi-core processors. Each core is usually assigned with a
2 MB cache [18]. For randomization degree, we use r = 8
by default as it guarantees a strong security level. Figure 10
reports the normalized performance metrics on three different
processors. PhantomCache imposes only an average normalized-
IPC degradation of 0.05%, 1.02%, 1.20% on the 1-core, 4-core,
and 8-core processors, respectively. The corresponding increase
of normalized MPKI is 0.08%, 0.14%, and 0.41%. Normalized
miss rate shows a much smaller growth up to 1.40%. The
performance of PhantomCache, however, does not necessarily
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Fig. 11. Impact of calculation latency on PhantomCache performance.
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Fig. 12. Impact of randomization degree on PhantomCache performance.

lead to performance degradation for all workloads. For example,
the lbm workload and the leela workload in Figure 10(c)
improves the performance by 0.73% and 0.34%, respectively. To
evaluate how salt choice affects performance, we run multiple
trials of small workloads (each with 0.1-billion instructions)
with different salts per run. The results show little effect on
performance by different salts. This mainly attributes to strong
randomness of the mapping function (Section IV-C). Moreover,
a single trial of a workload with 1-billion or more instructions
may suffice to quantify the average over multi-trial of the same
workload [34], [46].

We understand the slight impact of PhantomCache on
processor performance as follows. First, it takes extra access
latency because of newly introduced components such as the
hash function. Since all the introduced operations complete
in only one clock cycle (Section IV-D), the extra latency
cannot fluctuate overall performance in comparison with a
20 clock-cycle LLC hit and a 100+ clock-cycle memory access.
Second, since PhantomCache changes the mapping pattern of
LLC, conflict misses are affected. Addresses that map to the
same set in the baseline cache can map to different sets in
PhantomCache. While lessening cache conflicts in this set, the
remapped addresses may increase cache conflicts in other sets.
This feature has an unpredictable influence on MPKI and miss
rate. Some workloads may happen to enjoy fewer cache misses
while others may suffer more. As shown in Figure 10, the
overall impact on performance is as minimal as 1.20%. Note
that the state-of-the-art ScatterCache does not test the three
benchmarks of gcc, wrf, and cam4 due to compilation failure
[45]. They happen to be the major contribution to performance
degradation in our test as shown especially in Figure 10(b) and
Figure 10(c). Toward an objective comparison, we recalculate
the overall performance degradation of PhantomCache without
considering gcc, wrf, and cam4. The result is decreased to
1.06%, which is 2x more efficient than ScatterCache with 2%
performance degradation [45].
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Fig. 13. Impact of LLC capacity on PhantomCache performance.

C. Calculation Latency

PhantomCache simply uses XOR and a hash function to
efficiently calculate the candidate sets of a requested data
block. Since the calculation process is necessary for each
LLC access, its latency is performance critical. We evaluate
the impact of calculation latency using an 8-core CPU, a
16 MB LLC, and a 2-channel DRAM. Figure 11 shows the
performance of PhantomCache with the calculation latency
ranging from 0 cycles to 4 cycles. A 4-cycle latency decreases
normalized IPC by 1.53%. As expected, a lower latency
yields a better performance. Based on our current design,
PhantomCache promises only one clock cycle latency. This
decreases normalized IPC by only 1.20%.

D. Randomization Degree

So far, we report all performance statistics using a number
of r = 8 candidate sets for an address. We choose it because
of its strong security guarantee. As shown in Table II, 8-degree
PhantomCache costs an attacker more than 500 years to find
a minimal eviction set. A smaller r = 6, however, can also
impede the eviction set minimization process for as long as 7.8
years. This should be sufficient for securing most computers.
One may thus become curious about how PhantcomCache
performs using fewer candidate sets. We evaluate the impact
of randomization degree using an 8-core CPU, a 16 MB LLC,
and a 2-channel DRAM. Figure 12 shows the normalized
performance of PhantomCache with a randomization degree of
2, 4, 6, and 8. We observe that the performance is relatively
insensitive to randomization degree. This encourages adopters
of PhantomCache to strive for an even stronger security
than 8 candidate sets provide, as long as they consider the
corresponding hardware cost affordable.

E. LLC Capacity

As the original goal of PhantomCache is LLC friendliness,
we further evaluate the scalability of PhantomCache as LLC
capacity increases. We evaluate the impact of LLC capacity
using an 8-core CPU, a 2-channel DRAM, and an LLC with
varying capacity. Figure 13 shows the normalized IPC of
PhantomCache in an 8 MB, 16 MB, 32 MB, and 64 MB
LLC. As expected, a workload performs better upon a larger
LLC. This is because of the intrinsic cache property that a
larger cache guarantees fewer memory accesses, which is much
slower than cache accesses. Furthermore, in comparison with
the baseline cache, the average performance degradation by
PhantomCache using an 8 MB, 16 MB, 32 MB, and 64 MB
LLC is at most 1.20%. This demonstrates that PhantomCache
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Fig. 14. Impact of bank numer on PhantomCache performance.

can efficiently secure large LLCs against conflict-based cache
timing attacks.

F. Bank Number

We evaluate how PhantomCache affects cache performance
when we realize it using multi-banked LLCs with different
number of banks. Specifically, we use a 16 MB 16-way LLC and
divide it to different numbers of banks. “No Bank” corresponds
to when the cache is not divided. In this case, PhantomCache
has no parallelism to enjoy and has to sequentialize all cache
accesses. Figure 14 reports the performance results. Generally,
the performance degradation decreases as the number of
banks increases. For the no-bank PhantomCache, the average
performance degradation is within 2.27%. For the 8-bank
PhantomCache, the average performance degradation is only
1.20%.

G. Sliced LLC

Beyond the multi-banked structure, we further adapt Phan-
tomCache to recent sliced LLCs and evaluate its performance.
Modern Intel CPUs use sliced LLCs where the LLC is split
into different slices. A physical address maps to a slice through
some special hash function [29]. The hash function is designed
to guarantee that consecutive memory lines can be distributed
across different slices and thus can be read by different cores
in parallel to improve efficiency. However, the slice mapping
function of existing sliced LLCs is deterministic [29]. It does
not apply to PhantomCache that requires randomized mapping.
For adapting PhantomCache to an s-slice LLC, we choose to
use the log s most significant bits of the computed set index
by PhantomCache as the slice ID. Since the set index is a
hash result of the physical address and a random salt, it has
intrinsic randomness. Taking its s most significant bits can also
guarantee randomness. This further ensures that consecutive
addresses be distributed across different slices.

We compare the performance of the preceding adapted
PhantomCache with that of the baseline sliced LLC that
uses the reverse-engineered hash function [29] of an Intel
sliced LLC. We run both approaches on an 8-core CPU with
16 MB 8-slice LLC with 8 candidate sets for PhantomCache
and report the results in Figure 15. In terms of normalized
IPC, PhantomCache introduces a performance degradation of
1.52% (and 1.38% without including gcc, wrf, and cam4)
to the baseline sliced LLC. The performance degradation is
slightly larger than previous 1.20% on the multi-banked LLC.
It implies that the slice mapping function of PhantomCache
does impact on the effect of memory access parallelism across
different slices. Since currently we simply use the 3 most
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Fig. 15. PhantomCache performance with metrics normalized over the baseline
sliced LLC.

significant bits of the computed set index for slice mapping,
it is challenging to reserve the property of evenly mapping
consecutive addresses to different slices as the baseline sliced
LLC. Improving the slice mapping of PhantomCache toward
such a property certainly improves PhantomCache performance.
However, such an improvement may or may not bring much
intricacy to hardware and is left for future work.

H. Mixed Benchmark

As with some related work [34], [35], [46], we also evaluate
PhantomCache performance using mixed workloads. On an n-
core CPU, a mixed workload is generated by randomly selecting
n out of the 20 benchmarks. During experiment execution,
each of the n selected benchmarks is pinned to a different
core. This resembles the environment of a real system where
different applications run on different cores in parallel. We
run 10 mixed workloads for both 4-core CPU and 8-core CPU.
PhantomCache is configured as default with r = 8 and mapping
latency of 1 clock cycle on an 8-bank LLC. Figure 16 reports
the performance comparison with the baseline 8-bank LLC. We
observe that PhantomCache performs better on mixed workloads
than on individual benchmarks. For example, it introduces an
only 0.50% average performance degradation to an 8-core CPU
with an 8-bank 16 MB 16-way LLC (Figure 16(b)).

We analyze the slight performance overhead of Phantom-
Cache as follows.

Limited miss rates on L1 and L2 caches. By design, the
higher-level L1 and L2 caches, can satisfy most of the proces-
sor’s memory accesses. In contrast, the LLC has much less
visibility to the memory activity [26]. Therefore, slower LLC
handling may not contribute too much to overall slowdown.

Pipelined cache optimization. Modern caches are optimized
with pipelined cache-requests handling. That is, n consecutive
requests do not necessarily cause n times latency as that of a
single request.

Parallelism over multiple banks. Multiple banks mitigate
the contention caused by the 8 inflated requests for every
original requests. The more the banks, the more requests can
be processed in parallel.

Bank assignment unevenness. Most workloads may not fully
utilize the multi-banked LLC. We observe that it is uncommon
that multiple cores access the LLC at the same time. Some
banks that stay idle in the baseline cache will be made full use
of in PhantomCache. This further reduces contention and thus
increase PhantomCache performance.
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Fig. 16. PhantomCache performance with metrics normalized over baseline
using mixed workloads.

I. Hardware Overhead

The hardware complexity of PhantomCache design depends
on the system configuration. Consider a system using r-degree
PhantomCache, an m-way set associative cache, and physical
addresses with t-bit tags and i-bit index bits.

Logic overhead. The logic overhead in LLC mostly stems
from the mapping logic. The mapping function contains a
hash with 2 × t × i 2-input AND gates and (t + 2 × i) 2-
input XOR gates (Figure 5). Thus, all r mapping units contain
r× (t+2× t× i+2× i) 2-input gates, consisting of r× t× i
AND gates and r × (t× i+ t+ 2i) XOR gates.

Under our default LLC with t = 44, i = 14, m = 16,
and r = 8, the total logic overhead is 10,432 2-input gates.
Specifically, it includes 4,928 AND gates and 5,504 XOR gates.
In terms of gate equivalent (GE), an AND gate typically has
the same size as 1.5 NAND gates and an XOR gate typically
has the same size as 2 NAND gates. The logic overhead of the
mapping function is around 18,400 GEs.

The logic overhead of PhantomCache is less than two times
of the logic overhead of 128-bit AES encryption, which is
around 10,000 GEs [4]. This is considered affordable in modern
CPUs.

Storage overhead. PhantomCache needs extra storage space
for salts, cache set indices, and LFSR state values. The r salts
take up r×(t+i) bits, the r cache set indices take up r×i bits,
and the t state values take up t× i bits. Using our default LLC
with t = 44, i = 14, and r = 8, the extra storage overhead is
only 1,192 bits (149 bytes). Besides, each cache line stores
an extra dlog2 re-bit random number for indexing salts. When
r = 8, it takes up 3 bits and introduces around 0.50% storage
overhead per cache line.

J. Energy Overhead

Energy overhead is a major concern of PhantomCache
because it multiplies the number of requests in every access.
The energy consumption of a cache is mainly composed of two
parts: static power and dynamic power. Static power is generally
referred as leakage power of the cache and dynamic power is
consumed when the cache is accessed [7]. PhantomCache only
affects the dynamic power of LLC because it only increases the
cache activity during cache access. Regarding dynamic power,
PhantomCache is similar to a normal set-associative cache with
an r times higher associativity. We evaluate the case of 16MB,
8-bank, 16-way LLC with 8 candidate sets and compare it with
a baseline LLC with no candidate sets.
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TABLE IV. POWER CONSUMPTION OF PHANTOMCACHE IN
COMPARISON WITH BASELINE USING A 16 MB 8-BANK, AND 16-WAY LLC.

PHANTOMCACHE USES 8 CANDIDATE SETS.

LLC Power Consumption (watt)
static power dynamic power overall power

Baseline 7.69 1.21 8.89
PhantomCache 7.91 6.97 14.87

We use Xilinx Vivado 2018.2 [14] to estimate static energy
overhead of PhantomCache. Without loss of generality, we
choose the device xc7k325tffg676 of the Xilinx Kintex-7 family
as an instance. The static energy overhead arises from the
mapping circuit PhantomCache introduces for mapping an
address to r candidate sets. The static power consumption
of the introduced mapping circuit is only 0.22 W (r = 8),
which is marginal in comparison with 7.69 W consumed by
the entire baseline 8-bank LLC. Note that the analysis using
Xilinx Vivado emulates an FPGA while PhantomCache is to
be implemented on an ASIC. This means that the estimation
result is an overestimation.

We then use CACTI 6.0 [31] to estimate dynamic energy
overhead of PhantomCache. To estimate the dynamic power
consumption of PhantomCache, we use CACTI to evaluate
the energy consumption of read and write operations in a
128-way set-associative LLC. It depends on two factors. One
is the respective power consumption of a single read or
write access. The other is the respective count of read or
write accesses generated by a benchmark. In general, more
accesses consumer more power for any LLC including both the
baseline and PhantomCache. Since PhantomCache performs
each read access by searching all r candidate sets, the more read
accesses a benchmark contains, the more power PhantomCache
consumes than the baseline does. Based on the performance
measurement in Section VII-G, we use ten mixed workloads
with each includes 1-billion instructions from 8 randomly
selected benchmarks. They are sufficiently generic in terms
of both diversity and scale. In total, these workloads generate
51,686,150 read accesses and 34,842,011 write accesses over
the baseline LLC. For PhantomCache, the number of read
accesses is 51,844,724 and the number of write accesses is
34,701,023. It introduces 0.31% more read accesses and 0.40%
less write accesses. On average, a mixed workload consumes
1.21 W on the baseline LLC and 6.97 W on PhantomCache.

Table IV summarizes the power consumption of Phan-
tomCache in comparison with the baseline. PhantomCache
consumes 67.27% more power than the baseline LLC.

This result is counterintuitive because it seems that Phan-
tomCache should have consumed multiple times of energy. Two
reasons may account for the result. First, the extra requests
produced by PhantomCache only access the tag array in the
cache to search for the target block while data array is not
accessed. Second, the static power of PhantomCache remains
nearly the same as the traditional cache, which mitigates the
impact of increased dynamic power.

VIII. CONCLUSION

We have studied the idea of exploiting localized random-
ization against conflict-based cache timing attacks. It proves
to have the same strong defense effect as global randomiza-
tion countermeasures and avoids the inefficient mechanisms

in preceding global randomization designs such as random
replacement and dynamic remapping. We implement localized
randomization through PhantomCache. The analysis of its
security shows that the attacker cannot successfully launch
a conflict-based cache timing attack within 100 years when the
degree of PhantomCache is set to 8. Finally, we implement
PhantomCache using ChampSim and the evaluation shows that
PhantomCache only brings a 0.50% performance degradation
and affordable hardware overhead.
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