
Packet-Level Signatures for Smart Home Devices

Rahmadi Trimananda, Janus Varmarken, Athina Markopoulou, Brian Demsky
University of California, Irvine

{rtrimana, jvarmark, athina, bdemsky}@uci.edu

Abstract—Smart home devices are vulnerable to passive in-
ference attacks based on network traffic, even in the presence of
encryption. In this paper, we present PINGPONG, a tool that can
automatically extract packet-level signatures for device events
(e.g., light bulb turning ON/OFF) from network traffic. We
evaluated PINGPONG on popular smart home devices ranging
from smart plugs and thermostats to cameras, voice-activated
devices, and smart TVs. We were able to: (1) automatically extract
previously unknown signatures that consist of simple sequences
of packet lengths and directions; (2) use those signatures to detect
the devices or specific events with an average recall of more than
97%; (3) show that the signatures are unique among hundreds
of millions of packets of real world network traffic; (4) show that
our methodology is also applicable to publicly available datasets;
and (5) demonstrate its robustness in different settings: events
triggered by local and remote smartphones, as well as by home-
automation systems.

I. INTRODUCTION

Modern smart home devices are seeing widespread adop-
tion. They typically connect to the Internet via the home Wi-
Fi router and can be controlled using a smartphone or voice
assistant. Although most modern smart home devices encrypt
their network traffic, recent work has demonstrated that the
smart home is susceptible to passive inference attacks [3],
[10]–[13], [19], [29], [44], [45]. An eavesdropper may use
characteristics of the network traffic generated by smart home
devices to infer the device type and activity, and eventually
user behavior. However, existing passive inference techniques
have limitations. Most can only identify the device type and
whether there is device activity (an event), but not the exact
type of event or command [10]–[13], [29], [44], [45]. Others
only apply to a limited number of devices from a specific
vendor [19], or need more information from other protocols
(e.g., Zigbee/Z-Wave) [3], [54] and the application source
code [54]. Inference based on traffic volume analysis can be
prevented by traffic shaping [3], [10]. Finally, many of these
attacks assume that IP traffic is sniffed upstream from the
home router, while the scenario where a local attacker sniffs
encrypted Wi-Fi traffic has received less attention [10], [23].

In this paper, we experiment with a diverse range of smart
home devices, namely 19 popular Wi-Fi and Zigbee devices
(12 of which are the most popular smart home devices on
Amazon) from 16 popular vendors, including smart plugs,
light bulbs, thermostats, home security systems, etc. During
our analysis of the network traffic that these devices generate,

we observed that events on smart home devices typically result
in communication between the device, the smartphone, and the
cloud servers that contains pairs of packets with predictable
lengths. A packet pair typically consists of a request packet
from a device/phone (“PING”), and a reply packet back to the
device/phone (“PONG”). In most cases, the packet lengths are
distinct for different device types and events, thus, can be used
to infer the device and the specific type of event that occurred.
Building on this observation, we were able to identify new
packet-level signatures (or signatures for short) that consist
only of the lengths and directions of a few packets in the
smart home device traffic. In this paper, we show that these
signatures: (1) can be extracted in an automated and systematic
way without prior knowledge of the device’s behavior; (2) can
be used to infer fine-grained information, e.g., event types;
(3) correspond to a variety of different events (e.g., “toggle
ON/OFF” and “Intensity”/“Color”); and (4) have a number of
advantages compared to prior (e.g., statistical, volume-based)
approaches. More specifically, this paper makes the following
contributions.

New Packet-Level Signatures. We discover new IoT device
signatures that are simple and intuitive: they consist of short
sequences of (typically 2-6) packets of specific lengths, ex-
changed between the device, the smartphone, and the cloud.
The signatures are effective:
1) They detect event occurrences with an average recall of

more than 97%, surpassing the state-of-the-art techniques
(see Sections II and V-B).

2) They are unique: we observe a low false positive rate
(FPR), namely 1 false positive per 40 million packets in
network traces with hundreds of millions of packets (see
Section V-C).

3) They characterize a wide range of devices: (i) we extract
signatures for 18 out of the 19 devices we experimented
with, including the most popular home security devices
such as the Ring Alarm Home Security System and Arlo
Q Camera (see Section V-A); (ii) we extract signatures for
21 additional devices from a public dataset [39], including
more complex devices, e.g., voice-command devices, smart
TVs, and even a fridge (see Section V-F).

4) They are robust across a diverse range of settings: (i) we
extract signatures both from testbed experiments and pub-
licly available datasets; and (ii) we trigger events in differ-
ent ways, i.e., using both a local and a remote smartphone,
and using a home automation system.

5) They can be extracted from both unencrypted and en-
crypted traffic.

6) They allow quick detection of events as they rely only on
a few packet lengths and directions, and do not require any
statistical computation.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24097
www.ndss-symposium.org

Automated Extraction of Packet-Level Signatures. We
present PINGPONG, a methodology and software tool that:
(1) automates the extraction of packet-level signatures without
prior knowledge about the device, and (2) detects signatures
in network traces and real network traffic. For signature
extraction, PINGPONG first generates training data by repeat-
edly triggering the event, for which a signature is desired,
while capturing network traffic. Next, PINGPONG extracts
request-reply packet pairs per flow (“PING-PONG”), clusters
these pairs, and post-processes them to concatenate pairs into
longer sequences where possible. Finally, PINGPONG selects
sequences with frequencies close to the number of triggered
events as the final signatures. The signature detection part of
PINGPONG leverages the simplicity of packet-level signatures
and is implemented using simple state machines. PINGPONG’s
implementation and datasets are made available at [49].

The remainder of this paper is structured as follows.
Section II outlines related work and puts PINGPONG in
perspective. Section III presents the threat model (including
two distinct adversaries: a WAN sniffer and a Wi-Fi snif-
fer), our experimental setup, and an illustrative example of
packet-level signatures in smart plugs. Section IV presents
the design of the PINGPONG system, including extraction
and detection of signatures. Section V presents the evaluation
of PINGPONG, using our own testbed experiments, as well
as several external—publicly available—datasets. Section VI
presents an in-depth discussion on possible defenses against
packet-level signatures. Section VII concludes and outlines
directions for future work. Further details on discussion and
evaluation results are provided in the technical report [48].

II. RELATED WORK

Table I summarizes the properties of PINGPONG and
compares it to the other IoT traffic analysis approaches.

Network Signatures for IoT devices. A growing body of
work uses network traffic (metadata) analysis to characterize
the type and activity of IoT devices. A series of papers
by Apthorpe et al. [10]–[13] use traffic volume/shape-based
signatures to infer IoT device activity, but cannot always de-
termine the exact type of the event. Furthermore, the signatures
corresponding to different traffic shapes are intuitive, but not
automatically extracted. The authors propose stochastic traffic
padding (STP) to mitigate volume-based inference attacks.

HomeSnitch [33] by OConnor et al. identifies IoT activity
using a key observation that is similar to ours, i.e., the client
(the IoT device) and the server take turns in a request-
reply communication style. HomeSnitch and PINGPONG both
exclude IP addresses, port numbers, and DNS information
from their event inference methodologies, but differ in terms
of the granularity of the features they use: HomeSnitch uses
statistics derived from the entire client-server dialog, whereas
PINGPONG considers the direction and length of each indi-
vidual packet. Interestingly, the most important feature used
in HomeSnitch is the average number of bytes sent from the
IoT device to the server per turn. This result aligns with the
main observation of this paper, i.e., packet lengths of individual
requests (and replies) uniquely identify device events.

A recent paper by Ren et al. [39] presents a large-scale
measurement study of IoT devices and reveals how these

Approaches for IoT Network Traffic Signatures
Vol. Nest Machine Learning ZigBee/ PING

+DNS device [33] [3] [44] Z-Wave PONG
based [19] [45] device
[10]–
[13]

[54]

(1) Signature can detect
Device X X X X X X X
type
Event × X X X × X X
type

(2) Applicability to devices
> 15 × × X X X × X
Models

(3) Observation points/threat models
LAN × X X X X N/A X
WAN X × × × × N/A X
Wi-Fi X × × X × N/A X

(4) Signature characteristics
Feat. Traffic TCP 13, (795) 12 Packet Packet

vol., conn. ADU 197 length length
DNS size, & dir. & dir.

proto.
Inter- X × X × × X X
pretable
Auto. × × X X X X X
Extract.

(5) Resilient against defenses
VPN × × × × × N/A X
Traffic × × × × × N/A X
shaping

TABLE I. PINGPONG’S PROPERTIES VS. ALTERNATIVE APPROACHES
(X= YES; × = NO).

devices operate differently in the US and the UK with respect
to Internet endpoints contacted, exposure of private informa-
tion, etc. We use that dataset to evaluate our methodology in
Section V-F. The paper also presents a classifier that can infer
event types spanning many device categories; this, however, is
not the focus of the paper. Other well-known measurement
studies and publicly available IoT network traffic datasets
include YourThings [5], [6] and [45], which we use in our
evaluation in Section V-C.

Other papers consider specific types of devices or proto-
cols. Copos et al. [19] analyze network traffic of the Nest
Thermostat and Nest Protect (only) and show that the ther-
mostat’s transitions between the Home and Auto Away modes
can be inferred. Other work [3], [54] focus on Zigbee/Z-Wave
devices and leverage specialized Zigbee/Z-Wave sniffers.

Most event inference techniques rely on machine learn-
ing [29], [44], [45] or statistical analysis of traffic time
series [3], [19], [33], [39]. Limitations of these approaches
include: the inability to differentiate event types [29], [44], [45]
(e.g., distinguishing ON from OFF), and lack of resistance to
traffic shaping techniques [3], [19], [33], [39] such as [10]. On
the other hand, our work identifies simple packet exchange(s)
between the device/smartphone and the cloud that uniquely
identify event types. At the same time, PINGPONG’s classifica-
tion performance (recall of more than 97%) is better than most
statistical approaches: [3] reported 90% accuracy, [19] reported
88% and 67% accuracy, and [39] reported some F1 scores as
low as 0.75. Unsupervised learning techniques may be hard
to interpret, especially for large feature sets (e.g., 197 features
in [3]). PINGPONG also uses clustering to identify reoccurring
packet pairs, but provides an intuitive interpretation of those
pairs: they correspond to a request and the subsequent reply.

2

Background Traffic
Smart Home

Devices

Router

eth0

Cloud

Smartphone

Wi-Fi Device
wlan1

Ethernet
Device

eth1

Cabled
Wi-Fi

WAN Sniffer

Wi-Fi Sniffer

Pho
ne

-C
lou

d Device-Cloud

Phone-Device

Controller

Fig. 1. Our experimental setup for studying smart home devices. “Wi-Fi
Device” is any smart home device connected to the router via Wi-Fi (e.g.,
Amazon and WeMo plugs). “Ethernet Device” is any smart home device
connected to the router via Ethernet (e.g., SmartThings hub that relays the
communication of Zigbee devices). Smart home device events may result in
communication between Phone-Cloud, Device-Cloud, or Phone-Device. There
may also be background traffic from additional computing devices in the home.

Network Traffic Analysis beyond IoT. There is a large body
of work in the network measurement community that uses traf-
fic analysis to classify applications and identify anomalies [26],
[27], [32], attacks [20], or malware [8], [37]. There has also
been a significant amount of work on fingerprinting techniques
in the presence of encryption for web browsing [14], [17], [18],
[21], [24], [25], [28], [30], [35], [36], [51], and variable bit-rate
encodings for communication [52], [53] and movies [42]. For
these examples, the underlying protocols are well understood,
while PINGPONG can work with (and is agnostic to) any
arbitrary, even proprietary, application-layer protocol.

Defenses. Related to profiling and fingerprinting is also the
body of work on defenses that obfuscate traffic signatures.
Examples include [31], [36] that use packet padding and
traffic injection techniques to prevent website fingerprinting. In
Table I, we mention two general defense approaches: (1) traffic
shaping that refers broadly to changing the shape of traffic
over time; and (2) VPN that brings multiple benefits such
as encryption (that our signatures survive), and multiplex-
ing of several flows. We partly evaluate these defenses (see
Appendix C in [48]). A VPN also provides a natural place to
implement additional defenses (e.g., packet padding, which is
discussed in Section VI).

III. PROBLEM SETUP

In this section, we first present our threat model. Then,
we present the smart home environment and the passive
inference attacks we consider. We also discuss a key insight
we obtained from manually analyzing network traffic from
the simplest devices—smart plugs. The packet sequences we
observed in smart plugs inspired the PINGPONG methodology
for automatically extracting signatures.

A. Threat Model

In this paper, we are concerned with the network traffic of
smart home devices leaking private information about smart
home devices and users. Although most smart home devices
encrypt their communication, information can be leaked by

No. Device Name Model Details
1. Amazon plug Amazon Smart Plug
2. WeMo plug Belkin WeMo Switch
3. WeMo Insight plug Belkin WeMo Insight Switch
4. Sengled light bulb Sengled Element Classic
5. Hue light bulb Philips Hue white
6. LiFX light bulb LiFX A19
7. Nest thermostat Nest T3007ES
8. Ecobee thermostat Ecobee3
9. Rachio sprinkler Rachio Smart Sprinkler Controller

Generation 2
10. Arlo camera Arlo Q
11. Roomba robot iRobot Roomba 690
12. Ring alarm Ring Alarm Home Security System
13. TP-Link plug TP-Link HS-110
14. D-Link plug D-Link DSP-W215
15. D-Link siren D-Link DCH-S220
16. TP-Link light bulb TP-Link LB-130
17. SmartThings plug Samsung SmartThings Outlet (2016

model)
18. Kwikset lock Kwikset SmartCode 910
19. Blossom sprinkler Blossom 7 Smart Watering Controller

TABLE II. THE SET OF SMART HOME DEVICES CONSIDERED IN THIS
PAPER. DEVICES HIGHLIGHTED IN GREEN ARE AMONG THE MOST

POPULAR ON AMAZON.

traffic metadata such as the lengths and directions of these
encrypted packets.

We consider two different types of adversaries: a WAN
sniffer and a Wi-Fi sniffer. The adversaries differ in terms of
the vantage point where traffic is inspected and, thus, what
information is available to the adversary. The WAN sniffer
monitors network traffic in the communication between the
home router and the ISP network (or beyond) [10]–[13]. This
adversary can inspect the IP headers of all packets, but does not
know the device MAC addresses to identify which device has
sent the traffic. We assume a standard home network that uses
NAT: all traffic from the home is multiplexed onto the router’s
IP address. Examples of such adversaries include intelligence
agencies and ISPs. The Wi-Fi sniffer monitors encrypted IEEE
802.11 traffic, and has not been as widely studied [10], [23].
We assume that the Wi-Fi sniffer does not know the WPA2 key,
and thus only has access to the information sent in clear text—
the MAC addresses, packet lengths, and timing information. As
packets are encrypted, the Wi-Fi sniffer does not have access
to network and transport layer information.

For both adversaries, we assume that the adversary knows
the type of the smart home device that they wish to target
and passively monitor. Thus, they can train the system on
another device of the same type offline, extract the signature
of the device, and perform the detection of the signature on
the traffic coming from the smart home they target. We assume
that the devices encrypt their communication and thus neither
adversary has access to the clear-text communication.

B. Smart Home Environment and Experimental Testbed

Experimental Testbed. Figure 1 depicts our experimental
setup, which resembles a typical smart home environment.
We experiment with 19 widely-used smart home devices from
16 different vendors (see Table II). We attempted to select
a set of devices with a wide range of functionality—from
plugs to cameras. They are also widely used: these devices are
popular and they come from well-known vendors. The first 12

3

TP-Link D-Link SmartThings

TP-Link

t t

556
TLSv1.2
Application Data

1293

a) Toggle On

TP-Link

t t

b) Toggle Off

t

t

Phone

Phone

TCP :
:

557
TLSv1.2
Application Data

1294

TCP :
:

Internet Host

Internet Host

Phone Internet Host

t t

1117

613

a) Toggle On

Phone

t t

1118

613

b) Toggle Off
TLSv1.2 Application Data

TLSv1.2 Application Data

Internet Host

Phone Internet Host 1

t

t

699

511

TLSv1.2
Application Data

t

136

612

136

777

a) Toggle On

Application Data

Application Data

Phone

t

700

511

136

616

136

780

b) Toggle Off

Application Data

Application Data

TLSv1.2
Application Data

Internet Host 2

Internet Host 1

t

t

Internet Host 2

TABLE III. PACKET-LEVEL SIGNATURES OF TP-LINK, D-LINK, AND SMARTTHINGS SMART PLUGS OBSERVABLE BY THE WAN SNIFFER. THE
NUMBERS REPRESENT PACKET LENGTHS, WITH RED INDICATING THAT THE LENGTH IS DIFFERENT FOR ON VS. OFF, AND THE ARROWS REPRESENT

PACKET DIRECTIONS.

(highlighted in green) are the most popular on Amazon [7]:
(1) each received the most reviews for its respective device
type and (2) each had at least a 3.5-star rating—they are
both popular and of high quality (e.g., the Nest T3007ES and
Ecobee3 thermostats are the two most-reviewed with 4-star
rating for thermostats). Some devices are connected to the
router via Wi-Fi (e.g., the Amazon plug) and others through
Ethernet. The latter includes the SmartThings, Sengled, and
Hue hubs that relay communication to/from Zigbee/Z-Wave
devices: the SmartThings plug, Kwikset doorlock, Sengled
light bulb, and Hue light bulb.

Each smart home device in Figure 1 is controlled from
the smartphone using its vendor’s official Android application.
In Figure 1, the smartphone is connected to a local network,
which the devices are also connected to. When the smartphone
is connected to a remote network, only the Device-Cloud com-
munication is observable in the local network—the smartphone
controls a device by communicating with its vendor-specific
cloud, and the cloud relays the command to the device. The
controller represents the agent that operates the smartphone to
control the smart home device of interest. This may be done
manually by a human (as in Section III-C) or through software
(as in Section IV). Additionally, there are other computing
devices (e.g., laptops, tablets, phones) in the house that also
generate network traffic, which we refer to as “Background
Traffic”. The router runs OpenWrt/LEDE [34], a Linux-based
OS for network devices, and serves as our vantage point for
collecting traffic for experiments. We run tcpdump on the
router’s WAN interface (eth0) and local interfaces (wlan1
and eth1) to capture Internet traffic as well as local traffic for
all Wi-Fi and Ethernet devices. We use the testbed to generate
training data for each device, from which we in turn extract
signatures (Section V-A). In Section V-B, the same testbed is
used for testing, i.e., to detect the presence of the extracted
signatures in traffic generated by all the devices as well as by
other computing devices (background traffic).

Communication. Smart home device events may result in
communication between three different pairs of devices, as
depicted in Figure 1: (1) the smartphone and the smart home
device (Phone-Device); (2) the smart home device and an
Internet host (Device-Cloud), and (3) the smartphone and
an Internet host (Phone-Cloud). The idea behind a passive
inference attack is that network traffic on any of these three

communication paths may contain unique traffic signatures that
can be exploited to infer the occurrence of events.

C. Motivating Case: Smart Plugs

As an illustrative example, let us discuss our manual
analysis of 3 smart plugs: the TP-Link plug, the D-Link plug,
and the SmartThings plug. Data for the manual analysis was
collected using the setup in Figure 1. For each device, we
toggled it ON, waited for approximately one minute, and then
toggled it OFF. This procedure was repeated for a total of 3
ON and 3 OFF events, separated by one minute in between.
Timestamps were manually noted for each event. The PCAP
files logged at the router were analyzed using a combination
of scripts and manual inspection in Wireshark.

New Observation: Packet Pairs. We identified the traffic
flows that occurred immediately after each event and observed
that certain pairs of packets with specific lengths and directions
followed each ON/OFF event: the same pairs consistently
showed up for all events of the same type (e.g., ON), but
were slightly different across event types (ON vs. OFF). The
pairs were comprised of a request packet in one direction, and
a reply packet in the opposite direction. Intuitively, this makes
sense: if the smart home device changes state, this information
needs to be sent to (request), and acknowledged by (reply), the
cloud server to enable devices that are not connected to the
home network to query the smart home device’s current state.
These exchanges resemble the ball that moves back and forth
between players in a game of pingpong, which inspired the
name for our software tool.

Table III illustrates the observed packet exchanges. For the
TP-Link plug, we observed an exchange of 2 TLS Application
Data packets between the plug and an Internet host where the
packet lengths were 556 and 1293 when the plug was toggled
ON, but 557 and 1294 for OFF. We did not observe any pattern
in the D-Link plug’s own communication. However, for ON
events, the controlling smartphone would always send a request
packet of length 1117 to an Internet host and receive a reply
packet of length 613. For OFF, these packets were of lengths
1118 and 613, respectively. Similarly for the SmartThings
plug, we found consistently occurring packet pairs in the
smartphone’s communication with two different Internet hosts
where the lengths of the request packets were different for ON

4

and OFF events. Thus, this request-reply pattern can occur in
the communication of any of the three pairs: Phone-Device,
Device-Cloud, or Phone-Cloud (see Figure 1).

Key Insight. This preliminary analysis indicates that each type
of event is uniquely identified by the exchange of pairs (or
longer sequences) of packets of specific lengths. To the best
of our knowledge, this type of network signature has not been
observed before, and we refer to it as a packet-level signature.

IV. PINGPONG DESIGN

The key insight obtained from our manual analysis in
Section III-C was that unique sequences of packet lengths
(for packet pairs or longer packet sequences) typically follow
simple events (e.g., ON vs. OFF) on smart plugs, and can
potentially be exploited as signatures to infer these events.
This observation motivated us to investigate whether: (1) more
smart home devices, and potentially the smartphones that
control them as well, exhibit their own unique packet-level
sequences following an event, (2) these signatures can be
learned and automatically extracted, and (3) they are suffi-
ciently unique to accurately detect events. In this section, we
present the design of PINGPONG—a system that addresses the
above questions with a resounding YES!

PINGPONG automates the collection of training data, ex-
traction of packet-level signatures, and detection of the oc-
currence of a signature in a network trace. PINGPONG has
two components: (1) training (Section IV-A), and (2) detection
(Section IV-B). Figure 2 shows the building blocks and flow of
PINGPONG on the left-hand side, and the TP-Link plug as an
example on the right-hand side. We use the latter as a running
example throughout this section.

A. Training

The training component is responsible for the extraction
of packet-level signatures for a device the attacker wants to
profile and attack. It consists of 5 steps (see Figure 2).

Data Collection. The first step towards signature generation
is to collect a training set for the device. A training set is a
network trace (a PCAP file) that contains the network traffic
generated by the device and smartphone as a result of events;
this trace is accompanied by a text file that contains the set of
event timestamps.

PINGPONG partially automates training set collection by
providing a shell script that uses the Android Debug Bridge
(adb) [9] to issue touch inputs on the smartphone’s screen.
The script is run on a laptop that acts as the controller in
Figure 1. The script is tailored to issue the sequence of touch
events corresponding to the events for which a training set is
to be generated. For example, if a training set is desired for
a smart plug’s ON and OFF events, the script issues a touch
event at the screen coordinates that correspond to the respective
buttons in the user interface of the plug’s official Android
app. As device vendors may choose arbitrary positions for the
buttons in their respective Android applications, and since the
feature sets differ from device to device, the script must be
manually modified for the given device. The script issues the
touch sequence corresponding to each specific event n times,

Training

Pair Clustering

Signature
Creation

Data Collection

Trace Filtering

Signature File

Network Trace
(Training Dataset)

Input

Event Triggers Device

TP-Link Plug

TCP Connections

<..., C-556, S-1293, ...>
<..., C-237, S-826, ...>
<..., C-129, S-123, ...>

...

ON event cluster

<C-556, S-1293>
<C-556, S-1293>

...

ON event signature

Packet Pairs

<C-556, S-1293>
…

<S-237, C-826>
…

<C-129, S-123>
...

Detection

Signature Matching

Matched Events
Event 1 Event 2 Event n

Network Trace

TCP Connections

<..., …, ...,...,…,, ...>
<..., C-556, S-1293, ...>
<..., …, ...,...,…,, ...>
<..., C-556, S-1293, ...>
<..., …, ...,...,…,, ...>
<..., C-556, S-1293, ...>
<..., …, ...,...,…,, ...>

...

Matched ON Events

<C-556, S-1293>
<C-556, S-1293>
<C-556, S-1293>

...

Signature
Validation

System Example

Fig. 2. Left: PINGPONG Overview. Right: TP-Link plug is used as a running
example throughout this section.

each separated by m seconds.1 The results reported in this
paper use n = 50 or n = 100 depending on the event type (see
Section V-A). The script also outputs the current timestamp
to a file on the laptop when it issues an event. To collect a
training set, we do the following: (1) start tcpdump on the
router’s interfaces; (2) start the script; (3) terminate tcpdump
after the n-th event has been issued. This leaves us with a set
of PCAP files and event timestamps, which constitute our raw
training set.

We base our signature generation on the traces collected
from the router’s local interfaces as they are the vantage points
that provide the most comprehensive information: they include
both local traffic and Internet traffic. This allows PINGPONG
to exhaustively analyze all network packets generated in the
communications between the device, smartphone, and Internet
hosts on a per device basis. As signatures are based entirely
on packet lengths and directions, signatures present in Internet

1We selected m = 131 seconds to allow sufficient time such that there is
no overlap between events. Section V-G provides more explanation for this
choice with respect to other parameters.

5

C->S
556, 1293
f: 50

S->C
[238-240], [826-830]
f: 98

C->S
[310-312], [352-357]

f: 100
C->S
339, 329
f: 50

C->S
[271-273], [499-505]
f: 50

C->S
[364-365], [1061-1070]

f: 50

Pairs 1

Sequences 1

Signature Creation

Pair 1.1

Sequence 1.1

556

1293

C

S

C

556

1293

C

S

C

339

329

C

S

C

Pair Clustering

365

1067

S

C

C
272

502

S

C

339

329

C

S

C
364

1070

S

C

C
273

503

S

C

Pair 1.1

Pair 2.1

Sequence 2.1

Sequence 1.1

Pair 3.1

(a) TP-Link Plug

(b) Arlo Camera

Pairs 2

Pairs 1

Pairs 3

Sequences 1

Sequences 2

556

1293

C

S

C

1

339

329

C

S

C
365

1068

S

C

C
272

499

S

C

2 50

1 2 50

S1: C-339 S-329 C-[364-365] S-[1061-1070]
S2: C-[271-273] S-[499-505]

Signature notation

Packet
Pairs

Packet
Sequences

Set of Packet Sequences of 50

Set of Packet Sequences of 50

Sequence 2.1

Pair 3.2

Sequence 2.50

Pair 3.50

Pair 1.2

Pair 2.2

Sequence 1.2

Pair 1.50

Pair 2.50

Sequence 1.50

Pair 1.2

Sequence 1.2

Pair 1.50

Sequence 1.50

List of Packet Sequence Sets (= Packet-level signature)

Sequences 1

Sequences 2

Sequences 1

Fig. 3. Pair clustering and signature creation for 2 extreme cases—TP-Link plug has the simplest signature with only 1 pair (see our initial findings in
Table III). The Arlo camera has a more complex signature with 1 sequence of 2 pairs and 1 sequence of 1 pair. The left subfigure, in every row, depicts the
packet lengths in one packet pair (Pc1 , Pc2). Notation: C->S means a pair where the first packet’s direction is Client-to-Server and the second packet’s direction
is server-to-client, and vice versa for S->C; f: 50 means that the pair appears in the clustering with a frequency of 50; Signature notation shows a
summary of 2 sets of 50 instances of packet sequences. Example: C->S 556, 1293 f: 50 means that the pair of packets with lengths 556 (client-to-server)
and 1293 (server-to-client) appear 50 times in the cluster.

traffic (i.e., Device-Cloud and Phone-Cloud traffic) are appli-
cable on the WAN side of the router, despite being extracted
from traces captured within the local network

Trace Filtering. Next, PINGPONG filters the collected raw
training set to discard traffic that is unrelated to a user’s
operation of a smart home device. All packets, where neither
the source nor destination IP matches that of the device or the
controlling smartphone, are dropped. Additionally, all packets
that do not lie within a time window t after each timestamped
event are discarded. We selected t = 15 seconds to allow
sufficient time for all network traffic related to the event to
complete. We also performed a sensitivity study that confirmed
this was a conservative choice (see Section V-G).

PINGPONG next reassembles all TCP connections in the
filtered trace. Given the set of reassembled TCP connections,
we now turn our attention to the packets P that carry the TCP

payload. For TLS connections, P is limited further to only be
the subset of packets that are labeled as “Application Data” in
the unencrypted TLS record header [41]. By only considering
packets in P , we ensure that the inherently unpredictable
control packets (e.g., TCP ACKs and TLS key negotiation) do
not become part of the signature as P only contains packets
with application layer payload.

We next construct the set P ′ by forming packet pairs
from the packets in P (see Definition IV.1). This is motivated
by the following observation: the deterministic sequence of
packets that make up packet-level signatures often stem from
a request-reply exchange between the device, smartphones, and
some Internet hosts (see Section III-C). Furthermore, since a
packet pair is the simplest possible pattern, and since longer
patterns (i.e., packet sequences—see Definition IV.2) can be
reconstructed from packet pairs, we look for these packet pairs
in the training set. For the TP-Link plug example in Figure 2,

6

PINGPONG reassembles <..., C-556, S-1293, ...>,
<..., C-237, S-826, ...>, etc. as TCP connections.
Then, PINGPONG extracts <C-556, S-1293>, <C-237,
S-826>, etc. as packet pairs.

Definition IV.1. Packet Pair. Let Pc be the ordered set of
packets with TCP payload that belong to TCP connection
c, let Pci denote the i-th packet in Pc, and let C and S
each denote client-to-server and server-to-client packet
directions, respectively, where a client is a smartphone or
a device. A packet pair p is then p = (C−Pci , S−Pci+1

)
or p = (S−Pci , C−Pci+1

) iff Pci and Pci+1
go in

opposite directions. Otherwise, if Pci and Pci+1
go in

the same direction, or if Pci is the last packet in Pc, the
packet pair p = (C−Pci , nil) or p = (S−Pci , nil) is
formed, and packet Pci+1 , if any, is paired with packet
Pci+2 .

Pair Clustering. After forming a set of packet pairs, relevant
packet pairs (i.e., those that consistently occur after an event)
must next be separated from irrelevant ones. This selection also
needs to take into account that the potentially relevant packet
pairs may have slight variations in lengths. Since we do not
know in advance the packet lengths in the pairs, we use an
unsupervised learning algorithm: DBSCAN [22].

DBSCAN is provided with a distance function for com-
paring the similarity of two packet pairs, say p1 and p2. The
distance is maximal if the packet directions are different, e.g.,
if p1 is comprised of a packet going from a local device to
an Internet host followed by a packet going from an Internet
host to a local device, while p2 is comprised of a packet going
from an Internet host to a local device followed by a packet
going from a local device to an Internet host. If the packet
directions match, the distance is simply the Euclidean distance

between the two pairs, i.e.,
√
(p11 − p12)

2
+ (p21 − p22)

2, where
pij refers to the packet length of the i-th element of pair
j. DBSCAN’s parameters are ε and minPts, which specify
the neighborhood radius to consider when determining core
points and the minimum number of points in that neighborhood
for a point to become a core point, respectively. We choose
ε = 10 and minPts = bn − 0.1nc, where n is the total
number of events. We allow a slack of 0.1n to minPts to
take into account that event-related traffic could occasionally
have missing pairs, for example caused by the phone app not
responding to some of the automated events. We study the
sensitivity of PINGPONG parameter values in Section V-G.

Figure 3(a) illustrates the pair clustering process for TP-
Link plug. There are 50 ON and 50 OFF actions, and there
must be at least 45 (n = 50 =⇒ minPts = b50−0.1×50c =
45) similar packet pairs to form a cluster. Two clusters are
formed among the data points, i.e., those with frequencies
f: 50 and f: 98, respectively. Since these two clusters
contain similar packet pairs that occur during t, this indicates
with high confidence that the packets are related to the event.

Signature Creation. Given the output produced by DBSCAN,
PINGPONG next drops all clusters whose frequencies are not in
the interval [bn− 0.1nc, dn+ 0.1ne] in order to only include
in the signature those clusters whose frequencies align closely
with the number of events n. Intuitively, this step is to deal

with chatty devices, namely devices that communicate contin-
uously/periodically while not generating events. Consequently,
PINGPONG only picks the cluster Pairs 1 with frequency
50 for the TP-Link plug example in Figure 3 as a signature
candidate since 50 is in [bn− 0.1nc, dn+ 0.1ne] = [45, 55]
when n = 50, whereas 98 is not. As a pair from this cluster
occurs exactly once during t, there is high confidence that the
pair is related to the event.

PINGPONG next attempts to concatenate packet pairs in
the clusters so as to reassemble the longest packet sequences
possible (see Definition IV.2), which increases the odds that
a signature is unique. Naturally, packet pair concatenation is
only performed when a device has more than one cluster. This
is the case for the Arlo camera, but not the TP-Link plug.
Packet pairs in clusters x and y are concatenated iff for each
packet pair px in x, there exists a packet pair py in y such that
px and py occurred consecutively in the same TCP connection.
If there are more pairs in y than in x, the extra pairs of y are
simply dropped. The result is referred to as a set of packet
sequences (see Definition IV.3) and is considered for further
concatenation with other clusters if possible.

Definition IV.2. Packet Sequence. A packet sequence s
is formed by joining packet pairs p1 and p2 iff p1 and p2
are both in Pc (same TCP connection) and the packets
in p1 occur immediately before the packets in p2 in Pc.
Note that the packet sequence s resulting from joining p1
and p2 can be of length 2, 3, or 4, depending on whether
or not the second element of p1 and/or p2 is nil.

Definition IV.3. Set of Packet Sequences. A set of packet
sequences S is a set of similar packet sequences. Two
packet sequences s1 and s2 are similar and thus belong
to the same set S iff they (1) contain the same number
of packets, (2) the packets at corresponding indices of s1
and s2 go in the same direction, and (3) the Euclidean
distance between the packet lengths at corresponding
indices of s1 and s2 is below a threshold—packet lengths
in packet sequences inherit the slight variations that stem
from packet pairs.

Figure 3(b) shows how pair clustering produces 3
clusters around the pairs <C-339, S-329> (i.e., clus-
ter Pairs 1), <C-[364-365], S-[1061-1070]> (i.e.,
cluster Pairs 2), and <C-[271-273], S-[499-505]>
(i.e., cluster Pairs 3) for the Arlo camera. The notation
C-[l1 − l2] or S-[l1 − l2] indicates that the packet length
may vary in the range between l1 and l2. Each pair from cluster
Pairs 1 and each pair from cluster Pairs 2 are then con-
catenated into a sequence in Sequences 1 (a set of packet
sequences) as they appear consecutively in the same TCP
connection, i.e., Pair 1.1 with Pair 2.1, Pair 1.2
with Pair 2.2, ..., Pair 1.50 with Pair 2.50. The
cluster Pairs 3 is finalized as the set Sequences 2 as
its members appear in different TCP connections than the
members of Sequences 1. Thus, the initial 3 clusters of
packet pairs are reduced to 2 sets of packet sequences. For
the TP-Link plug, no concatenation is performed since there
is only a single cluster, Pairs 1, which is finalized as the
set Sequences 1.

7

Finally, PINGPONG sorts the sets of packet sequences
based on the timing of the sets’ members to form a list
of packet sequence sets (see Definition IV.4). For example,
for the Arlo camera, this step produces a list in which the
set Sequences 1 precedes the set Sequences 2 because
there is always a packet sequence in Sequences 1 that
precedes a packet sequence in Sequences 2. The purpose
of this step is to make the temporal order of the sets of packet
sequences part of the final signature. If no such order can
be established, the set with the shorter packet sequences is
discarded. Manual inspection of some devices suggests that the
earlier sequence will often be the control command sent from
an Internet host followed by the device’s acknowledgment of
the command, while the later sequence will stem from the
device initiating communication with some other Internet host
to inform that host about its change in status.

Definition IV.4. List of Packet Sequence Sets. A list of
packet sequence sets is a list that contains sets of packet
sequences that are sorted based on the occurrence of the
set members in time. Set Sx goes before set Sy iff for
each sequence sx in Sx, there exists a sequence sy in Sy

that occurred after sx within t.

Signature Validation. Before finalizing the signature, we val-
idate it by running the detection algorithm (see Section IV-B)
against the raw training set that was used to generate the
signature. If PINGPONG detects at most n events, and the
timestamps of detected events match the timestamps for events
recorded during training, the signature is finalized as a valid
packet-level signature (see Definition IV.5) and stored in a
signature file. A signature can fail this check if it detects more
events than the actual number of events in the training set (i.e.,
false positives). This can happen if the packet sequences in the
signature frequently appear outside t.

Definition IV.5. Packet-level Signature. A packet-level
signature is then a list of packet sequence sets that has
been validated and finalized.

Signature File. A signature file stores a packet-level signature.
Figure 3 shows that the TP-Link plug signature consists of 50
instances of packet sequences in set Sequences 1, but only
one instance will be used during detection since all 50 are iden-
tical. Figure 3(b) shows the signature file (on the right-hand
side) for the Arlo camera. It is a list that orders the two sets
of packet sequences, Sequences 1 and Sequences 2.
Sequences 1 is comprised of 50 packet sequences, each
comprised of two packet pairs. Sequences 2 is comprised
of another 50 packet sequences, each comprised of a single
packet pair. Since the sequences vary slightly in each set, all
unique variations are considered during detection.

B. Detection

For signature detection, PINGPONG treats a network trace
as a stream of packets and presents each individual packet to
a set of state machines. A state machine is maintained for
each packet sequence of the signature for each flow, i.e., TCP
connection for the WAN sniffer or layer-2 flow for the Wi-
Fi sniffer. A packet is only presented to the state machines
associated with the flow that the packet pertains to. A state

machine advances to its next state if the packet matches the
next packet (in terms of length and direction) in the modeled
packet sequence. The state machines respond differently to
packets that do not match the expected next packet depending
on whether detection is applied at layer-2 or layer-3. For layer-
2, such packets are simply ignored, whereas for layer-3 such
packets cause the state machine to discard the current partial
match. When a state machine reaches its terminal state, the
packet sequence match is reported to a secondary module. This
module waits for a packet sequence match for each packet
sequence of the signature and verifies the inter-sequence timing
constraints before finally declaring a signature match. Please
see Appendix A in [48] for a more detailed explanation of the
detection.

V. EVALUATION

In this section, we present the evaluation of PINGPONG. In
Section V-A, we show that PINGPONG automatically extracted
event signatures for 18 devices as summarized in Table IV—
11 of which are the most popular devices on Amazon (see
Table II). In Section V-B, we used the extracted signatures to
detect events in a trace collected from a realistic experiment on
our smart home testbed. Section V-C discusses the results of
negative control experiments: it demonstrates the uniqueness
of the PINGPONG signatures in large (i.e., with hundreds of
millions of packets), publicly available, packet traces from
smart home and office environments. Section V-D discusses
the results of our experiments when devices are triggered
remotely from a smartphone and via a home automation
service. Section V-E shows the uniqueness of signatures for
devices from the same vendor. Section V-F discusses our
findings when we used PINGPONG to extract signatures from a
public dataset [39]. Finally, Section V-G discusses the selection
and sensitivity of the parameters used to extract signatures.

A. Extracting Signatures from Smart Home Devices

Training Dataset. In order to evaluate the generalizability of
packet-level signatures, we first used PINGPONG to automate
the collection of training sets (see Section IV-A) for all
19 smart home devices (see Table II). Training sets were
collected for every device under test, individually without
any background traffic (see Figure 1). The automation script
generated a total of 100 events for the device. For events with
binary values, the script generated n = 50 events for each
event type (e.g., 50 ON and 50 OFF events). For events with
continuous values, the script generated n = 100 events (e.g.,
100 intensity events for the Sengled light bulb).

Results Summary. For each training set, we used PINGPONG
to extract packet-level signatures (see Section IV-A) for each
event type of the respective device. In summary, PINGPONG
extracted signatures from 18 devices (see Table IV). The
signatures span a wide range of event types: binary (e.g.,
ON/OFF) and non-binary (e.g., light bulb intensity, color, etc.).
Similar to our manual observation described in Section III-C,
we again see that these events are identifiable by the request-
reply pattern.

Table IV presents the signatures that PINGPONG identified.
Each line in a signature cell represents a packet sequence set,
and the vertical positioning of these lines reflects the ordering

8

Device Event Signature Communication Duration (ms) Matching (Per 100 Events)
Min./Avg./Max. WAN FPR Wi-Fi FPR

Snif. Snif.
Plugs

Amazon plug ON S1: S-[443-445] Device-Cloud 1,232 / 2,465 / 4,537 98 0 99 0
S2: C-1099 S-235

OFF S1: S-[444-446]
S2: C-1179 S-235

S3: C-1514 C-103 S-235
WeMo plug ON/OFF S1: PH-259 PH-475 D-246 Phone-Device 33 / 42 / 134 - - 100 0

WeMo Insight plug ON/OFF S1: PH-259 PH-475 D-246 Phone-Device 32 / 39 / 97 - - 99 0

TP-Link plug ON S1: C-556 S-1293 Device-Cloud 75 / 85 / 204 99 0 - -
OFF S1: C-557 S-[1294-1295]
ON S1: PH-112 D-115 Phone-Device 225 / 325 / 3,328 - - 99 0

S2: C-556 S-1293 &
ON S1: PH-112 D-115 Device-Cloud

S2: C-557 S-[1294-1295]
D-Link plug ON/OFF S1: S-91 S-1227 C-784 Device-Cloud 4 / 1,194 / 8,060 95 0 95 0

S2: C-1052 S-647
ON S1: C-[1109-1123] S-613 Phone-Cloud 35 / 41 / 176 98 0 98 0
OFF S1: C-[1110-1124] S-613

SmartThings plug ON S1: C-699 S-511 Phone-Cloud 335 / 537 / 2,223 92 0 92 0
S2: S-777 C-136

OFF S1: C-700 S-511
S2: S-780 C-136

Light Bulbs
Sengled light bulb ON S1: S-[217-218] C-[209-210] Device-Cloud 4,304 / 6,238 / 8,145 97 0 - -

S2: C-430
S3: C-466

OFF S1: S-[217-218] C-[209-210]
S2: C-430
S3: C-465

ON S1: C-211 S-1063 Phone-Cloud 4,375 / 6,356 / 9,132 93 0 97 0
S2: S-1277

OFF S1: C-211 S-1063 S-1276
Intensity S1: S-[216-220] Device-Cloud 16 / 74 / 824 99 2 - -

C-[208-210]
Intensity S1: C-[215-217] Phone-Cloud 3,916 / 5,573 / 7,171 99 0 99 0

S-[1275-1277]
Hue light bulb ON S1: C-364 Device-Cloud 11,019 / 12,787 / - - - -

S2: D-88 & 14,353
OFF S1: C-365 Phone-Device

S2: D-88
TP-Link light bulb ON S1: PH-198 D-227 Phone-Device 8 / 77 / 148 - - 100 4

OFF S1: PH-198 D-244
Intensity S1: PH-[240-242] D-[287-289] Phone-Device 7 / 84 / 212 - - 100 0
Color S1: PH-317 D-287 Phone-Device 6 / 89 / 174 - - 100 0

Thermostats
Nest thermostat Fan ON S1: C-[891-894] S-[830-834] Phone-Cloud 91 / 111 / 1,072 93 0 93 1

Fan OFF S1: C-[858-860] S-[829-834]
Ecobee thermostat HVAC Auto S1: S-1300 C-640 Phone-Cloud 121 / 229 / 667 100 0 99 0

HVAC OFF S1: C-1299 C-640
Fan ON S1: S-1387 C-640 Phone-Cloud 117 / 232 / 1,776 100 0 100 0
Fan Auto S1: C-1389 C-640

Sprinklers
Rachio sprinkler Quick Run S1: S-267 C-155 Device-Cloud 1,972 / 2,180 / 2,450 100 0 100 0

Stop S1: C-496 C-155 C-395
Standby/Active S1: S-299 C-155 C-395 Device-Cloud 276 / 690 / 2,538 100 0 100 0

Blossom sprinkler Quick Run S1: C-326 Device-Cloud 701 / 3,470 / 8,431 96 0 96 0
S2: C-177 S-505

Stop S1: C-326
S2: C-177 S-458

S3: C-238 C-56 S-388
Quick Run S1: C-649 S-459 C-574 S-507 Phone-Cloud 70 / 956 / 3,337 93 0 93 0

S2: S-[135-139]
Stop S1: C-617 S-431
Hibernate S1: C-621 S-493 Phone-Cloud 121 / 494 / 1,798 95 0 93 0
Active S1: C-622 S-494

S2: S-599 C-566 S-554 C-566

9

Device Event Signature Communication Duration (ms) Matching (Per 100 Events)
Min./Avg./Max. WAN FPR Wi-Fi FPR

Snif. Snif.
Home Security Devices

Ring alarm Arm S1: S-99 S-254 C-99 Device-Cloud 275 / 410 / 605 98 0 95 0
S-[181-183] C-99

Disarm S1: S-99 S-255 C-99
S-[181-183] C-99

Arlo camera Stream ON S1: C-[338-339] S-[326-329] Phone-Cloud 46 / 78 / 194 99 2 98 3
C-[364-365] S-[1061-1070]

S2: C-[271-273] S-[499-505]
Stream OFF S1: C-[445-449] S-442

D-Link siren ON S1: C-1076 S-593 Phone-Cloud 36 / 37 / 65 100 0 98 0
OFF S1: C-1023 S-613

Kwikset door lock Lock S1: C-699 S-511 Phone-Cloud 173 / 395 / 2,874 100 0 100 0
S2: S-639 C-136

Unlock S1: C-701 S-511
S2: S-647 C-136

Others
Roomba robot Clean S1: S-[1014-1015] C-105 Phone-Cloud 123 / 2,038 / 5,418 91 0 94 0

S-432 C-105
Back-to-station S1: S-440 C-105

S-[1018-1024] C-105
Average 97.05 0.18 97.48 0.32

TABLE IV. SMART HOME DEVICES FOUND TO EXHIBIT PHONE-CLOUD, DEVICE-CLOUD, AND PHONE-DEVICE SIGNATURES. PREFIX PH INDICATES
PHONE-TO-DEVICE DIRECTION AND PREFIX D INDICATES DEVICE-TO-PHONE DIRECTION IN SIGNATURE COLUMN.

of the packet sequence sets in the signature (see Section IV-A
for the notation).

PINGPONG performed well in extracting signatures: it has
successfully extracted packet-level signatures that are observ-
able in the device’s Phone-Cloud, Device-Cloud, and Phone-
Device communications (see Table IV). Although the traffic
is typically encrypted using TLSv1.2, the event still manifests
itself in the form of a packet-level signature in the Phone-Cloud
or Device-Cloud communication. PINGPONG also extracted
signatures from the Phone-Device communication for some
of the devices. These signatures are extracted typically from
unencrypted local TCP/HTTP communication between the
smartphone and the device.

Smart Plugs. PINGPONG extracted signatures from all 6 plugs:
the Amazon, WeMo, WeMo Insight, TP-Link, D-Link, and
SmartThings plugs. The Amazon, D-Link, and SmartThings
plugs have signatures in the Phone-Cloud or Device-Cloud
communication, or both. The TP-Link plug has signatures
in both the Device-Cloud and Phone-Device communications.
Both the WeMo and WeMo Insight plugs have signatures in the
Phone-Device communication. In general, the signatures allow
us to differentiate ON from OFF except for the WeMo, WeMo
Insight, TP-Link plugs’ Phone-Device communication, and D-
Link plug’s Device-Cloud communication (see Table IV).

Light Bulbs. PINGPONG extracted signatures from 3 light
bulbs: the Sengled, Hue, and TP-Link light bulbs. The Sengled
light bulb has signatures in both the Phone-Cloud and Device-
Cloud communications. The Hue light bulb has signatures in
both Device-Cloud and Phone-Device communications. The
TP-Link light bulb has signatures only in the Phone-Device
communication. Table IV shows that PINGPONG also extracted
signatures for events other than ON and OFF: Intensity and
Color.

Thermostats. PINGPONG extracted signatures for both the
Nest and Ecobee thermostats. Both thermostats have Phone-
Cloud signatures. The signatures allow us to differentiate Fan

ON/OFF/Auto events. The Ecobee thermostat’s signatures also
leak information about its HVAC Auto/OFF events.

Sprinklers. PINGPONG extracted signatures from both the
Rachio sprinkler and Blossom sprinkler. Both sprinklers have
signatures in both the Device-Cloud and Phone-Cloud com-
munications. The signatures allow us to differentiate Quick
Run/Stop and Standby/Hibernate/Active events.

Home Security Devices. A highlight is that PINGPONG ex-
tracted signatures from home security devices. Notably, the
Ring alarm has signatures that allow us to differentiate
Arm/Disarm events in the Device-Cloud communication. The
Arlo camera has signatures for Stream ON/OFF events, the
D-Link siren for ON/OFF events, and the Kwikset lock for
Lock/Unlock events in the Phone-Cloud communication.

Roomba robot. Finally, PINGPONG also extracted signatures
from the Roomba robot in the Phone-Cloud communica-
tion. These signatures allow us to differentiate Clean/Back-
to-station events.

Signature Validity. Recall that signature validation rejects a
signature candidate whose sequences are present not only in
the time window t, but also during the subsequent idle period
(see Section IV-A). We saw such a signature candidate for
one device, namely the LiFX light bulb. PINGPONG captured
a signature candidate that is present also in the idle period
of the TCP communication and then rejected the signature
during the validation phase. Manual inspection revealed that
the LiFX light bulb uses unidirectional UDP communication
(i.e., no request-reply pattern) for events.

B. Smart Home Testbed Experiment

Testing Dataset. To evaluate the effectiveness of packet-level
signatures in detecting events, we collected a separate set
of network traces and used PINGPONG to perform detection
on them. We used the setup in Section III-B to collect one
dataset for every device. Our smart home setup consists of 13

10

of the smart home devices presented in Table II: the WeMo
plug, WeMo Insight plug, Hue light bulb, LiFX light bulb,
Nest thermostat, Arlo camera, TP-Link plug, D-Link plug, D-
Link siren, TP-Link light bulb, SmartThings plug, Blossom
sprinkler, and Kwikset lock. This fixed set of 13 devices was
our initial setup—it gives us the flexibility to test additional
devices without changing the smart home setup and needing
to rerun all the experiments, yet still includes a variety of
devices that generate background traffic. While collecting a
dataset, we triggered events for the device under test. At the
same time, we also connected the other 12 devices and turned
them ON before we started the experiment—this allows the
other devices to generate network traffic as they communicate
with their cloud servers. However, we did not trigger events
for these other devices. For the other 6 devices (the Amazon
plug, Sengled light bulb, Ecobee thermostat, Rachio sprinkler,
Roomba robot, and Ring alarm), we triggered events for the
device under test while having all the 13 devices turned on. To
generate additional background traffic as depicted in Figure 1,
we set up 3 general purpose devices: a Motorola Moto g6
phone that would play a YouTube video playlist, a Google
Nexus 5 phone that would play a Spotify song playlist, and
an Apple MacBook Air that would randomly browse top 10
websites [4] every 10-500 seconds. We used this setup to
emulate the network traffic from a smart home with many
active devices.

Results Summary. Table IV presents the summary of our
results (see column “Matching”). We collected a dataset with
100 events for every type of event—for binary events (e.g.,
ON/OFF), we triggered 50 for each value. We performed
the detection for both the WAN sniffer and Wi-Fi sniffer
adversaries. For both adversaries, we have a negligible False
Positive Rate (FPR) of 0.25 (0.18 for the WAN sniffer and 0.32
for the Wi-Fi sniffer) per 100 events for every event type.

C. Negative Control Experiment

If the packet-level signatures are to be used to detect
events in traffic in the wild, they must be sufficiently unique
compared to other traffic to avoid generating false positives.
We evaluated the uniqueness of the signatures by performing
signature detection on 3 datasets. The first 2 datasets serve
to evaluate the uniqueness of the signatures among traffic
generated by similar devices (i.e., other smart home devices),
while the third dataset serves to evaluate the uniqueness of
the signatures among traffic generated by general purpose
computing devices.

Dataset 1: UNSW Smart Home Traffic Dataset. The first
dataset [45] contains network traces for 26 smart home devices
that are different from the devices that we generated signatures
for. The list can be found in [50]. The dataset is a collection
of 19 PCAP files, with a total size of 12.5GB and a total of
23,013,502 packets.

Dataset 2: YourThings Smart Home Traffic Dataset. The
second dataset [5], [6] contains network traces for 45 smart
home devices. The dataset is a collection of 2,880 PCAP files,
with a total size of 270.3GB and 407,851,830 packets. There
are 3 common devices present in both YourThings and our set
of 18 devices: the WeMo plug, Roomba robot, and TP-Link
light bulb.

Dataset 3: UNB Simulated Office-Space Traffic Dataset.
The third dataset is the Monday trace of the CICIDS2017
dataset [43]. It contains simulated network traffic for an office
space with two servers and 10 laptops/desktops with diverse
operating systems. The dataset we used is a single PCAP file
of 10.82GB, with a total of 11,709,971 packets observed at
the WAN interface.

False Positives. For datasets 1 and 3, we performed signature
detection for all devices. For dataset 2, we only performed
signature detection for the 15 of our devices that are not present
in YourThings to avoid the potential for true positives. We
used WAN sniffer detection for devices with Phone-Cloud and
Device-Cloud signatures, and Wi-Fi sniffer detection for all
devices.

WAN Sniffer. There were no false positives across 23,013,502
packets in dataset 1, 1 false positive for the Sengled light bulb
across 407,851,830 packets in dataset 2, and 1 false positive
for the Nest thermostat across 11,709,971 packets in dataset 3.

Wi-Fi Sniffer. PINGPONG detected some false positives due
to its more relaxed matching strategy (see Section IV-B).
The results show that the extracted packet-level signatures are
unique: the average FPR is 11 false positives per signature
across a total of 442,575,303 packets from all three datasets
(i.e., an average of 1 false positive per 40 million packets).

Further analysis showed that signatures comprised of a
single packet pair (e.g., the D-Link plug’s Phone-Cloud sig-
natures that only have one request and one reply packet)
contributed the most to the average FPR—FPR is primarily
impacted by signature length, not device type. Five 3-packet
signatures generated 5, 7, 16, 26, and 33 false positives,
while one 4-packet signature generated 2 false positives. There
were also three outliers: two 4-packet signatures generated
46 and 33 false positives, and a 6-packet signature generated
18 false positives. This anomaly was due to PINGPONG
using the range-based matching strategy for these signatures
(see Appendix A in [48]). Furthermore, the average of the
packet lengths for the signatures that generated false positives
is less than 600 bytes: the packet lengths distribution for
our negative datasets shows that there are significantly more
shorter packets than longer packets.

D. Events Triggered Remotely

Our main dataset, collected using our testbed (see Sec-
tion V-A), contains events triggered by a smartphone that
is part of the local network (i.e., the smart home testbed).
However, smart home devices can also be controlled remotely,
using home automation frameworks or a remote smartphone.
In this section, we summarize our results for these scenarios.
Please see Appendix B in [48] for details.

Home Automation Experiment (IFTTT). We integrated
IFTTT into our existing infrastructure for triggering device
events. IFTTT provides support for 13 out of our 18 devices:
no support was provided at the time of the experiment for
the Amazon plug, Blossom sprinkler, Roomba robot, Ring
alarm, and Nest thermostat. The main finding is that, from
the supported 13 devices, PINGPONG successfully extracted
Device-Cloud signatures for 9 devices and 12 event types.

11

Comparison of Device-Cloud Signatures. We also compared
the Device-Cloud signatures of the TP-Link plug, the D-Link
plug, and the Rachio sprinkler. Our results show that the
majority of Device-Cloud signatures are the same or very
similar across 3 different ways of triggering the devices: local
smartphone, remote smartphone, and IFTTT.

E. Devices from the Same Vendor

Since the signatures reflect protocol behavior, a natural
question to ask is whether devices from the same vendor, which
probably run similar protocols, have the same signature. In our
testbed experiment, we had already extracted signatures from
2 TP-Link devices: the TP-Link plug and TP-Link light bulb
(see Table IV). We also acquired, and experimented with, 4
additional devices from TP-Link. We defer the detailed results
to Table X in [48]. In summary, we found that packet-level
signatures have some similarities (e.g., the TP-Link two-outlet
plug and TP-Link power strip have similar functionality and
have packet lengths 1412B and 88B). However, they are still
distinct across different device models and event types, even
for devices with similar functionality (e.g., the TP-Link plug,
TP-Link two-outlet plug, and TP-Link power strip).

F. Public Dataset Experiment

In this section, we apply the PINGPONG methodology to a
state-of-the-art, publicly available IoT dataset: the Mon(IoT)r
dataset [39]. First, we show that PINGPONG successfully
extracted signatures from new devices in this dataset, thus
validating the generality of the methodology and expanding
our coverage of devices. Then, we compare the signatures
extracted from the Mon(IoT)r dataset to those extracted from
our testbed dataset, for devices that were present in both.

The Mon(IoT)r Dataset. The Mon(IoT)r dataset [39] contains
network traces from 55 distinct IoT devices.2 Each PCAP file
in the dataset contains traffic observed for a single device
during a short timeframe surrounding a single event on that
device. Moreover, the authors provide timestamps for when
they performed each event. As a result, we can merge all PCAP
files for each device and event type combination into a single
PCAP file, and directly apply PINGPONG to extract signatures,
similarly to how we extracted signatures from the training set
we collected using our testbed.

We only considered a subset of the 55 devices in the
Mon(IoT)r dataset, due to a combination of limitations of
the dataset and of our methodology. In particular, we did not
apply PINGPONG to the following groups of devices in the
Mon(IoT)r dataset: (1) 3 devices with nearly all PCAP files
empty; (2) 6 devices with a limited number (three or less)
of event samples;3 and (3) 13 devices that only communicate
via UDP (PINGPONG’s current implementation only considers
TCP traffic). Next, we report results from applying PINGPONG
to the remaining 33 devices in the Mon(IoT)r dataset. Out of
those, 26 are exclusive to the Mon(IoT)r dataset, while seven

2The paper [39] reports results from 81 physical devices, but 26 device
models are present in both the US and the UK testbed, thus there are only 55
distinct models.

3We consider this to be too few samples to have confidence in the extracted
signatures. In contrast, the traces for the remaining devices generally had 30–
40 event samples for each device and event type combination.

are common across the Mon(IoT)r dataset and our testbed
dataset.

Devices only in the Mon(IoT)r Dataset. We ran PINGPONG’s
signature extraction on the traces from the 26 new devices
from the Mon(IoT)r dataset. PINGPONG successfully extracted
signatures for 21 devices and we summarize those signatures in
Table V. Some of these devices provide similar functionality as
those in our testbed dataset (e.g., bulbs, cameras). Interestingly,
we were also able to successfully extract signatures for many
new types of devices that we did not have access to during our
testbed experiments. Examples include voice-activated devices,
smart TVs, and even a fridge. This validates the generality of
the PINGPONG methodology and greatly expands our coverage
of devices.

There were also 5, out of 26, new devices that PINGPONG
originally appeared to not extract signatures from. However,
upon closer inspection of their PCAP files and PINGPONG’s
output logs, we observed that those devices did actually exhibit
a new type of signature that we had not previously encountered
in our testbed experiments: a sequence of packet pairs with
the exact same pair of packet lengths for the same event. The
default configuration of PINGPONG would have discarded the
clusters of these packet pairs during the signature creation of
the training phase (see Section IV-A), because the number of
occurrences of these pairs is higher than (in fact a multiple
of) the number of events. However, based on this intuitive
observation, PINGPONG can easily be adapted to extract those
signatures as well: it can take into account the timing of
packet pairs in the same cluster instead of only across different
clusters, and concatenate them into longer sequences. We note
that these frequent packet pairs can be either new signatures for
new devices, or can be due to periodic background communi-
cation. Unfortunately, the Mon(IoT)r dataset does not include
network traces for idle periods (where no events are generated),
thus we cannot confirm or reject this hypothesis.

Common Devices. We next report our findings for devices
that are present in both the Mon(IoT)r dataset and in our
own testbed dataset, referred to as common devices. There
were already 6 common devices across the 2 datasets, and
we acquired an additional device after consulting with the
authors of the paper: the Blink camera. We excluded 2 common
devices: (1) the Nest thermostat as it was tested for different
event types; and (2) the Hue light bulb as it has a unique
signature that PINGPONG cannot use to perform matching—it
is a combination of Device-Cloud (visible only to the WAN
sniffer) and Phone-Device communications (visible only to
the Wi-Fi sniffer). Table VI summarizes the results for the
5 remaining common devices. First, we report the complete
signatures extracted from each dataset. The signatures reported
in Table IV were obtained from data collected throughout
2018. For the WeMo Insight plug and TP-Link plug, we
repeated our testbed data collection and signature extraction in
December 2019 to facilitate a better comparison of signatures
from the same devices across different points in time. Then, we
compare the signatures extracted from the two datasets for the
common devices: some of the signatures are identical and some
are similar. Such a comparison provides more information than
simply training on one dataset and testing on the other.

12

Device Event Signature Duration (ms)
Cameras

Amazon camera Watch S1: S-[627-634] C-[1229-1236] 203 / 261 / 476
Blink hub Watch S1: S-199 C-135 C-183 S-135 99 / 158 / 275

Photo S1: S-199 C-135 C-183 S-135 87 / 173 / 774
Lefun camera Photo S1: S-258 C-[206-210] S-386 C-206 17,871 / 19,032 / 20,358

S2: C-222 S-198 C-434 S-446 C-462 S-194 C-1422 S-246 C-262
S3: C-182

Recording S1: S-258 C-210 S-386 C-206 13,209 / 15,279 / 16,302
S2: C-222 S-198 C-434 S-446 C-462 S-194

Watch S1: S-258 C-210 S-386 C-206 14,151 / 15,271 / 16,131
S2: C-222 S-198 C-434 S-446 C-462 S-194

Microseven camera Watch S1: D-242 PH-118 1 / 5 / 38
ZModo doorbell Photo S1: C-94 S-88 S-282 C-240 / S1: S-282 C-240 C-94 S-88 1,184 / 8,032 / 15,127

Recording S1: C-94 S-88 S-282 C-240 / S1: S-282 C-240 C-94 S-88 305 / 7,739 / 15,137
Watch S1: C-94 S-88 S-282 C-240 / S1: S-282 C-240 C-94 S-88 272 / 7,679 / 15,264

Light Bulbs
Flex light bulb ON/OFF S1: PH-140 D-[346-347] 4 / 44 / 78

Intensity S1: PH-140 D-346 4 / 18 / 118
Color S1: PH-140 D-346 4 / 12 / 113

Wink hub ON/OFF S1: PH-204 D-890 PH-188 D-113 43 / 55 / 195
Intensity S1: PH-204 D-890 PH-188 D-113 43 / 50 / 70
Color S1: PH-204 D-890 PH-188 D-113 43 / 55 / 106

Voice Command Devices
Allure speaker Audio ON/OFF S1: C-658 C-412 89 / 152 / 196

Volume S1: C-[594-602] 217 / 4,010 / 11,005
S2: C-[92-100]

Amazon Echo Dot Voice S1: C-491 S-[148-179] 1 / 23 / 61
Volume S1: C-[283-290] C-[967-979] 1,555 / 2,019 / 2,423

S2: C-[197-200] C-[147-160]
Amazon Echo Plus Audio ON/OFF S1: S-100 C-100 1 / 5 / 28

Color S1: S-100 C-100 1 / 4 / 18
Intensity S1: S-100 C-100 1 / 4 / 11
Voice S1: C-[761-767] S-437 1,417 / 1,871 / 2,084

S2: C-172 S-434
Volume S1: C-172 S-434 2 / 13 / 40

Amazon Echo Spot Audio ON/OFF S1: S-100 C-100 1 / 8 / 233
Voice S1: C-246 S-214 1,220 / 1,465 / 1,813

S2: C-172 S-434
Volume S1: C-246 S-214 1,451 / 1,709 / 1,958

S2: C-172 S-434
Google Home Voice S1: C-1434 S-136 9 / 61 / 132

Volume S1: C-1434 S-[124-151] 8,020 / 9,732 / 10,002
S2: C-521 S-[134-135]

Google Home Mini Voice S1: C-1434 S-[127-153] 1 / 29 / 112
Volume S1: C-1434 S-[135-148] 5 / 47 / 123

Harman Kardon Voice S1: S-1494 S-277 C-1494 2,199 / 2,651 / 3,762
Invoke speaker S2: S-159 S-196 C-1494

Volume S1: S-159 S-196 C-1418 C-1320 S-277 223 / 567 / 793
S2: S-196 C-[404-406]

Smart TVs
Fire TV Menu S1: C-468 S-323 16 / 18 / 20
LG TV Menu S1: PH-204 D-1368 PH-192 D-117 43 / 90 / 235
Roku TV Remote S1: PH-163 D-[163-165] 578 / 1,000 / 1,262

S2: PH-145 D-410
S2: PH-147 D-113

Samsung TV Menu S1: PH-[237-242] D-274 2 / 7 / 15
Other Types of Devices

Honeywell thermostat ON S1: S-635 C-256 C-795 S-139 C-923 S-139 1,091 / 1,248 / 1,420
OFF S1: S-651 C-256 C-795 S-139 C-923 S-139
Set S1: C-779 S-139 86 / 102 / 132

Insteon hub ON/OFF S1: S-491 C-623 76 / 100 / 1,077
S2: C-784 C-234 S-379

Samsung fridge Set S1: C-116 S-112 177 / 185 / 185
View Inside S1: C-116 S-112 177 / 197 / 563

TABLE V. SIGNATURES EXTRACTED FROM THE DEVICES ONLY IN THE MON(IOT)R [39] DATASET.

Identical Signatures. For the WeMo Insight plug and Blink
camera, the signatures extracted from the Mon(IoT)r dataset
and our dataset (December 2019) were identical. Since the
signatures obtained from our own dataset do not have any

variations in packet lengths, we used PINGPONG’s exact
matching strategy (see Section IV-B) to detect events in the
Mon(IoT)r dataset, and we observed a recall rate of 97% or
higher for both devices (see Table VI).

13

Device Event Signature Duration (ms) Matching
Min./Avg./Max./St.Dev. WAN FPR Wi-Fi FPR

Sniffer Sniffer
WeMo Insight plug ON/OFF ∗S1: PH-475 D-246 29 / 33 / 112 / 9 - - 98.75% 0

†S1: PH-475 D-246 31 / 42 / 111 / 15
Blink camera Watch ∗S1: C-331 S-299 C-139 267 / 273 / 331 / 8 100% 0 100% 0

†S1: C-331 S-299 C-139 170 / 269 / 289 / 19
Photo ∗S1: C-331 C-123 S-139 S-123 S-187 C-1467 281 / 644 / 1,299 / 348 97.37% 0 97.50% 0

†S1: C-331 C-123 S-139 S-123 S-187 C-1467 281 / 742 / 2,493 / 745
TP-Link plug ON ∗S1: C-592 S-1234 S-100 70 / 74 / 85 / 2 100% 0 - -
(Device-Cloud) OFF ∗S1: C-593 S-1235 S-100

ON †S1: C-605 S-1213 S-100 16 / 19 / 29 / 2
OFF †S1: C-606 S-1214 S-100

TP-Link plug ON ∗S1: PH-172 D-115 406 / 743 / 10,667 / 1,417 - - 100% 0
(Phone-Device & S2: C-592 S-1234 S-100
Device-Cloud) OFF ∗S1: PH-172 D-115

S2: C-593 S-1235 S-100
ON †S1: PH-172 D-115 197 / 382 / 663 / 165

S2: C-605 S-1213 S-100
OFF †S1: PH-172 D-115

S2: C-606 S-1214 S-100
Sengled light bulb ON ∗S1: S-[217-218] C-[209-210] 4,304 / 6,238 / 8,145 / 886 - - - -

S2: C-430
S3: C-466

OFF ∗S1: S-[217-218] C-[209-210]
S2: C-430
S3: C-465

ON †S1: S-219 C-210 354 / 2,590 / 3,836 / 859
S2: C-428

S3: C-[478-479]
OFF †S1: S-219 C-210

S2: C-428
S3: C-[478-480]

TP-Link light bulb ON ∗S1: PH-258 D-288 8 / 77 / 148 / 42 - - - -
OFF ∗S1: PH-258 D-305
ON †S1: PH-258 D-227 17 / 92 / 224 / 46
OFF †S1: PH-258 D-244

TABLE VI. COMMON DEVICES IN THE MON(IOT)R AND OUR TESTBED EXPERIMENTS. ∗ SIGNATURE: TRAINING ON OUR TESTBED. † SIGNATURE:
TRAINING ON MON(IOT)R [39]. MATCHING: TRAINING ON TESTBED, DETECTION ON MON(IOT)R. THE NUMBER OF EVENTS VARY (AROUND 30-40) PER

EVENT TYPE—THE RESULT IS PRESENTED IN % FOR CONVENIENCE.

Similar Signatures. For the TP-Link plug and Sengled light
bulb, the signatures extracted from the Mon(IoT)r dataset are
slightly different from those extracted from our own dataset:
some packet lengths at certain positions in the sequence are
different (by a few and up to tens of bytes), and these
differences appear to be consistent (i.e., all signatures from
both datasets appear to be completely deterministic as they
do not contain packet length ranges). For example, the TP-
Link plug’s ON event is C-592 S-1234 S-100 in our
experiment vs. C-605 S-1213 S-100 in Mon(IoT)r. To
understand the cause of these discrepancies, we examined
the TP-Link plug in further detail—between the two devices,
its signatures exhibit the largest difference in packet lengths
across datasets. Through additional experiments on the TP-
Link plug, we identified that changes to configuration param-
eters (e.g., user credentials of different lengths) could cause
the packet lengths to change. However, the packet lengths are
deterministic for each particular set of user credentials.

For devices that exhibit this kind of behavior, an attacker
must first train PINGPONG multiple times with different user
credentials to determine to what extent these configuration
changes affect the packet lengths in the signatures. Moreover,
the signature matching strategy should not be exact, but must
be relaxed to allow for small variations in packet lengths.
To this end, we implemented relaxed matching that augments

the matching strategies discussed in Section IV-B.4 We ran
PINGPONG with relaxed matching on the TP-Link plug with
a delta of 21B, and successfully detected 100% of events.
Furthermore, by performing the negative control experiments
described in Section V-C, we verified that the increase in
FPR due to relaxed matching is negiligible. For dataset 1,
relaxed matching results in two FPs for the Wi-Fi sniffer. For
dataset 3, relaxed matching results in seven FPs for the Wi-Fi
sniffer and one FP for the WAN sniffer. In comparison, exact
matching only produces one false positive for the Wi-Fi sniffer
for dataset 3. We note that the total number of packets across
these datasets is 440 million. However, relaxed matching may
eliminate the ability to distinguish event types for signatures
that only differ by a few bytes (e.g., the packet lengths for the
TP-Link plug’s ON and OFF signatures differ by one byte).

Signature Evolution.We observed that some signatures change
over time, presumably due to changes to the device’s commu-
nication protocol. The WeMo Insight plug’s signature changed
slightly from our earlier dataset from 2018 (see Table IV) to
our latest dataset collected in December 2019 (see Table VI):

4In relaxed matching, a delta equal to the greatest variation observed in
packet lengths is applied to the packets that vary due to configuration changes.
For the TP-Link plug, we observed that the first packets differ by 13B in the
the Device-Cloud signatures from the two datasets (i.e., 13 = 605 − 592 =
606− 593) and the second packets differ by 21B (i.e., 21 = 1234− 1213 =
1235− 1214), thus a delta of 21B is used.

14

the first PH-259 packet is no longer part of the signature. Both
of these datasets were collected using the same testbed with
the same user accounts, but with different device firmware
versions. Therefore, the change is probably due to changes in
the communication protocol, introduced in firmware updates.
This is further backed by the observation that the WeMo
Insight plug’s signature extracted from the Mon(IoT)r dataset
(collected in April 2019) is identical to the signature extracted
from our December 2019’s dataset. This implies that there has
been a protocol change between 2018 and April 2019, but the
protocol has then remained unchanged until December 2019.

Similarly, the TP-Link light bulb’s signature has changed
slightly from our first to our second in-house dataset (see Ta-
bles IV and VI), and is also slightly different for the Mon(IoT)r
dataset.5 The signatures from our 2018 dataset and those from
the Mon(IoT)r dataset differ in the first packet (PH-198 vs.
PH-258, an offset of 60 bytes), and the signatures from the
Mon(IoT)r dataset and those from our December 2019 differ in
the second packet (D-227 vs. D-288 and D-244 vs. 305,
an offset of 61 bytes). Thus, we also suspect that there is
a signature evolution due to firmware updates for the TP-
Link light bulb. Signature evolution is a limitation of our
approach, and is elaborated on in Section VII. Nevertheless,
an attacker can easily overcome this limitation simply by
repeating PINGPONG’s training to extract the latest signatures
from a device right before launching an attack.

G. Parameters Selection and Sensitivity

Clustering Parameters. We empirically examined a range
of values for the parameters of the DBSCAN algorithm. We
tried all combinations of ε ∈ {1, 2, ..., 10} and minPts ∈
{30, 31, ..., 50}. For those devices that exhibit no variation
in their signature related packet lengths, e.g., the TP-Link
plug, the output of the clustering remains stable for all values
of ε and minPts < 50. For such devices, keeping ε at a
minimum and minPts close to the number of events n reduces
the number of noise points that become part of the resulting
clusters. However, our experiments show that there is a tradeoff
in applying strict bounds to devices with more variation in their
packet lengths (e.g., the D-Link plug), strict bounds can result
in losing clusters that contain packet pairs related to events.
For the D-Link plug, this happens if ε < 7 and minPts > 47.
In our experiments, we used our initial values of ε = 10 and
minPts = 45 (i.e., minPts = bn− 0.1nc with n = number of
expected events) from our smart plugs experiment (i.e., the TP-
Link plug, D-Link plug, and SmartThings plug) that allowed
PINGPONG to produce the packet-level signatures we initially
observed manually (see Section III-C). We then used them as
default parameters for PINGPONG to analyze new devices and
extracted packet-level signatures from 15 more devices.

Time Window and Signature Duration. We also measured
the duration of our signatures—defined as the time between the
first and the last packets of the signature. Table IV reports all
the results. The longest signature duration measured is 9,132
ms (less than 10 seconds) for the Sengled light bulb’s ON/OFF
signatures from the Phone-Cloud communication. This justifies
our choice of training time window t = 15 seconds during

5We also repeated our experiments for the TP-Link light bulb to further
understand this phenomenon.

trace filtering and signature validation (see Section IV-A).
This conservative choice also provides slack to accommodate
other devices that we have not evaluated and that may have
signatures with a longer duration. This implies that events can
be generated every 15 seconds or longer. We conservatively
chose this duration to be 131 seconds to give ample time for
an event to finish, and to easily separate false positives from
true positives.

VI. POSSIBLE DEFENSES

There are several broad approaches that can obfuscate
network traffic to defend against passive inference attacks that
analyze network traffic metadata:
1) Packet padding adds dummy bytes to each packet to

confuse inference techniques that rely on individual packet
lengths, and less so volume. Packets can be padded to a
fixed length (e.g., MTU) or with a random number of bytes.

2) Traffic shaping purposely delays packets to confuse infer-
ence techniques that rely on packet inter-arrival times and
volume over time.

3) Traffic injection adds dummy packets in patterns that look
similar (e.g., have the same lengths, inter-arrival times or
volume signature etc.) as the real events, thus hiding the
real event traffic in a crowd of fake events.

The above approaches can be implemented in different ways
and can also be combined (e.g., on the same VPN). Since
our signatures rely on unique sequences of individual packet
lengths, packet padding is the most natural defense and there-
fore discussed in depth below. We defer discussion of traffic
shaping and traffic injection to Appendix C in [48]. We first
provide a brief overview of packet padding in the literature.
We then discuss how packet padding may be implemented
to obfuscate packet-level signatures. Finally, we evaluate the
efficacy of packet padding for the TP-Link plug.

Packet Padding in the Literature. Packet padding has al-
ready been studied as a countermeasure for website fingerprint-
ing [15], [16], [21], [28]. Liberatore and Levine [28] showed
that padding to MTU drastically reduces the accuracy of a
Jaccard coefficient based classifier and a naive Bayes classifier,
both of which use a feature set very similar to packet-level
signatures: a vector of <direction, packet length> tuples. Dyer
et al. [21] later showed that such padding is less successful
against more advanced classifiers, such as the support vector
machine proposed by Panchenko et al. [36] that also considers
coarse-grained features such as total traffic volume. Cai et
al. [15], [16] improved [21] by providing a strategy to control
traffic flow that better obfuscates the traffic volume as a result.
Although applied in a different context, these prior works
indicate that packet padding should successfully guard against
a packet-level signature attack. The question then becomes
where and how to implement the padding mechanism.

Possible Implementations. Next, we discuss the potential
benefits and drawbacks of different packet padding implemen-
tations. We consider a VPN-based implementation, padding at
the application layer, and TLS-based padding.

VPN. One option is to route traffic from the smart home
devices and the smartphone through a VPN that pads outbound
tunneled packets with dummy bytes and strips the padding

15

off of inbound tunneled packets: a technique also considered
in [10]. The smart home end of the VPN may be implemented
either directly on each device and smartphone or on a mid-
dlebox, e.g., the home router. The former provides protection
against both the WAN and Wi-Fi sniffers as the padding
is preserved on the local wireless link, whereas the latter
only defends against the WAN sniffer. However, an on-device
VPN may be impractical on devices with limited software
stacks and/or computational resources. The middlebox-based
approach may be used to patch existing devices without
changes to their software. Pinheiro et al. [38] provide an
implementation in which the router is the client-side end of the
VPN, and where the padding is added to the Ethernet trailer.

Application Layer and TLS. Another option is to perform the
padding at the application layer. This has at least three benefits:
(1) it preserves the padding across all links, thus provides
protection against both the WAN and Wi-Fi sniffers; (2) it
imposes no work on the end user to configure their router to use
a VPN; and (3) it can be implemented entirely in software. An
example is HTTPOS by Luo et al. [31], which randomizes the
lengths of HTTP requests (e.g., by adding superfluous data to
the HTTP header). One drawback of application layer padding
is that it imposes extra work on the application developer.
This may be addressed by including the padding mechanism in
libraries for standardized protocols (e.g., OkHttp [47]), but a
separate implementation is still required for every proprietary
protocol. A better alternative is to add the padding between
the network and application layers. This preserves the benefits
of application layer padding highlighted above, but eliminates
the need for the application developer to handle padding. As
suggested in [21], one can use the padding functionality that
is already available in TLS [40].

Residual Side-Channel Information. Even after packet
padding is applied, there may still be other side-channels, e.g.,
timing and packet directions, and/or coarse-grained features
such as total volume, total number of packets, and burstiness,
as demonstrated by [21]. Fortunately, timing information (e.g.,
packet inter-arrival times and duration of the entire packet
exchange) is highly location dependent (see the comparison
of signature durations in Table VI), as it is impacted by the
propagation delay between the home and the cloud, as well
as the queuing and transmission delays on individual links
on this path. Exploiting timing information requires a much
more powerful adversary: one that uses data obtained from a
location close to the smart home under attack. The work of
Apthorpe et al. on traffic shaping [13] and stochastic traffic
padding (STP) [10] may aid in obfuscating timing, volume,
and burstiness.

Efficacy of Packet Padding. The discussion has been qual-
itative so far. Next, we perform a simple test to empirically
assess the efficacy of packet padding for the TP-Link plug.

Setup. We simulated padding to the MTU by post-processing
the TP-Link plug testbed trace from Section V-B (50 ON and
50 OFF events, mixed with background traffic) using a simpli-
fied version of PINGPONG’s detection that only considers the
order and directions of packets, but pays no attention to the
packet lengths. We focus on the WAN sniffer because it is the
most powerful adversary: it can separate traffic into individual
TCP connections and eliminate the confusion that arises from

multiplexing. We used the TP-Link plug’s two-packet signa-
tures for ON and OFF events (see Table IV) as the Phone-
Device communication is not visible on the WAN. We consider
the packet padding’s impact on transmission and processing
delays to be negligible. We assume that the adversary uses all
available information to filter out irrelevant traffic. Specifically,
the adversary uses the timing information observed during
training to only consider request-reply exchanges that comply
with the signature duration.6 Moreover, since the TP-Link
plug uses TLSv1.2 (which does not encrypt the SNI), the
adversary can filter the trace to only consider TLS Application
Data packets to the relevant TP-Link host(s) in the no-VPN
scenarios.

VPN-Based Padding. To simulate VPN-based packet padding,
we consider all packets in the trace as multiplexed over a single
connection and perform signature detection on this tunnel. This
results in a total of 193,338 positives, or, put differently, more
than 1,900 false positives for every event. This demonstrates
that VPN-based packet padding works well for devices with
short signatures (e.g., a single packet pair).

TLS-Based Padding. From the training data, the adversary
knows that the signature is present in the TP-Link plug’s
communication with events.tplinkra.com. To simulate
TLS-based packet padding, we performed signature detection
on the TLS Application Data packets of each individual
TLSv1.2 connection with said host. As expected, this produced
a total of 100 detected events, with no FPs. Intuitively, this
is because the only TLS Application Data packets of these
connections are exactly the two signature packets, and the
device only communicates with this domain when an event
occurs.

Hybrid. We next explore how multiplexing all of the TP-Link
plug’s traffic over a single connection affects the false positives
(the plug communicates with other TP-Link hosts). This is
conceptually similar to a VPN, but only tunnels application
layer protocols and can be implemented in user space (without
TUN/TAP support). To simulate such a setup, we filtered
the trace to only contain IPv4 unicast traffic to/from the
TP-Link plug, and dropped all packets that were not TLS
Application Data. We then performed detection on the TLS
Application Data packets, treating them as belonging to a
single TLS connection. For this scenario, we observed 171
positives. While significantly better than TLS-based padding
for individual TLS connections, the attacker still has a high
probability (more than 50%) of guessing the occurrence of
each event (but cannot distinguish ON from OFF).

Recommendations. Based on the above insights, we recom-
mend VPN-based packet padding due to its additional obfus-
cation (encryption of the Internet endpoint and multiplexing
of IoT traffic with other traffic) as TLS-based padding seems
insufficient for devices with simple signatures and little back-
ground traffic. For more chatty devices, multiplexing all device
traffic over a single TLS connection to a single server may
provide sufficient obfuscation at little overhead.

6t = 0.204s =⇒ d0.204 + 0.1 × 0.204se = 0.224s (see Table IV and
Appendix A in [48])

16

VII. CONCLUSION AND DISCUSSION

Summary. We designed, implemented, and evaluated PING-
PONG, a methodology for automatically extracting packet-level
signatures for smart home device events from network traffic.
Notably, traffic can be encrypted or generated by proprietary
or unknown protocols. This work advances the state-of-the-art
by: (1) identifying simple packet-level signatures that were not
previously known; (2) proposing an automated methodology
for extracting these signatures from training datasets; and (3)
showing that they are effective in inferring events across a
wide range of devices, event types, traces, and attack models
(WAN sniffer and Wi-Fi sniffer). We have made PINGPONG
(software and datasets) publicly available at [49]. We note
that the new packet-level signatures can be used for several
applications, including launching a passive inference attack,
anomaly detection, etc. To deal with such attacks, we outlined
a simple defense based on packet padding.

Current Limitations and Future Directions. PINGPONG has
its limitations and can be extended in several directions.

First, in order to extract the signature of a new device, one
must first acquire the device and apply PINGPONG to train
and extract the corresponding packet-level signatures. This is
actually realistic for an attacker with minimal side information,
i.e., one who knows what device they want to attack or who
wants to distinguish between two different types of devices.
One direction for future work is to extend PINGPONG by
finding “similar” known behaviors for a new device, e.g., via
relaxed matching of known and unknown signatures.

Second, a signature may evolve over time, e.g., when a
software/firmware update changes a device’s communication
protocol. Whoever maintains the signature (e.g., the attacker)
needs to retrain and update the signature. We observed this
phenomenon, for example, for the TP-Link plug. This can
be handled by relaxed matching since the packet sequences
tend to be mostly stable and only evolve by a few bytes (see
Section V-F).

Third, there may be inherent variability in some signatures
due to configuration parameters (e.g., credentials and device
IDs) that are sent to the cloud and may lead to slightly different
packet lengths. In Section V-F, we saw that this variability is
small: from a few to tens of bytes difference and only for
some individual packets within a longer sequence. An attacker
could train with different configuration parameters and apply
relaxed matching when necessary (only on packets with length
variations).

Other possible improvements include: profiling and sub-
tracting background/periodic traffic during signature creation,
and unifying the way we account for small variation in the
signatures in the training and detection—PINGPONG currently
supports range-based matching (see Appendix A in [48]) and
relaxed matching as separate features. Another limitation is
that our methodology currently applies only to TCP—not
to UDP-based devices that do not follow the request-reply
pattern.

Conclusion. We believe that the new packet-level signatures
identified by PINGPONG are a simple, intuitive, and universal
means for profiling IoT devices. However, we see PINGPONG

only as a building block, which is part of a bigger toolbox for
IoT network traffic analysis. We believe that it can and should
be combined with other complementary ideas, e.g., traffic
shape/volume-based signatures, semi-supervised learning, etc.

ACKNOWLEDGMENT

This project was supported by the National Science
Foundation under grants CNS-1649372, CNS-1703598, OAC-
1740210, CNS-1815666, CNS-1900654 and a UCI Seed Fund-
ing Award at UCI. The authors would like to thank the
anonymous NDSS reviewers for their valuable feedback, which
helped significantly improve the paper. We would also like to
thank Anastasia Shuba for her insights and advice during the
project’s early stages.

REFERENCES

[1] IFTTT. https://www.ifttt.com/, September 2018.
[2] If motion detected by D-Link motion sensor, then turn on D-Link

smart plug. https://ifttt.com/applets/393508p-if-motion-detected-by-d-
link-motion-sensor-then-turn-on-d-link-smart-plug, January 2020.

[3] A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen,
H. Aksu, M. Conti, A.-R. Sadeghi, and A. S. Uluagac. Peek-a-Boo:
I see your smart home activities, even encrypted! arXiv preprint
arXiv:1808.02741, 2018.

[4] Alexa. Top sites in United States. https://www.alexa.com/topsites/
countries/US, November 2018.

[5] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. SoK: Security
evaluation of home-based IoT deployments. In 2019 2019 IEEE
Symposium on Security and Privacy (SP), volume 00, pages 208–226.

[6] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose. Yourthings
scorecard. https://yourthings.info/, 2019.

[7] Amazon. https://www.amazon.com/smart-home/b/?ie=UTF8&node=
6563140011&ref =sv hg 7, March 2019.

[8] B. Anderson and D. McGrew. Identifying encrypted malware traffic
with contextual flow data. In Proceedings of the 2016 ACM Workshop
on Artificial Intelligence and Security, AISec ’16, pages 35–46, New
York, NY, USA, 2016. ACM.

[9] Android.com. Android debug bridge (adb). https://developer.android.
com/studio/command-line/adb, November 2018.

[10] N. Apthorpe, D. Y. Huang, D. Reisman, A. Narayanan, and N. Feamster.
Keeping the smart home private with smart(er) IoT traffic shaping.
Proceedings on Privacy Enhancing Technologies, 2019(3), 2019.

[11] N. Apthorpe, D. Reisman, and N. Feamster. Closing the blinds: Four
strategies for protecting smart home privacy from network observers.
CoRR, abs/1705.06809, 2017.

[12] N. Apthorpe, D. Reisman, and N. Feamster. A smart home is no castle:
Privacy vulnerabilities of encrypted IoT traffic. CoRR, abs/1705.06805,
2017.

[13] N. Apthorpe, D. Reisman, S. Sundaresan, A. Narayanan, and N. Feam-
ster. Spying on the smart home: Privacy attacks and defenses on
encrypted IoT traffic. CoRR, abs/1708.05044, 2017.

[14] G. D. Bissias, M. Liberatore, D. Jensen, and B. N. Levine. Privacy
vulnerabilities in encrypted HTTP streams. In Proceedings of the 5th
International Conference on Privacy Enhancing Technologies, PET’05,
pages 1–11, Berlin, Heidelberg, 2006. Springer-Verlag.

[15] X. Cai, R. Nithyanand, and R. Johnson. CS-BuFLO: A congestion
sensitive website fingerprinting defense. In Proceedings of the 13th
Workshop on Privacy in the Electronic Society, pages 121–130. ACM,
2014.

[16] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg. A
systematic approach to developing and evaluating website fingerprinting
defenses. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 227–238. ACM, 2014.

[17] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. Touching from a
distance: Website fingerprinting attacks and defenses. In Proceedings of
the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, pages 605–616, New York, NY, USA, 2012. ACM.

17

[18] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-channel leaks in
web applications: A reality today, a challenge tomorrow. In 2010 IEEE
Symposium on Security and Privacy, pages 191–206. IEEE, 2010.

[19] B. Copos, K. Levitt, M. Bishop, and J. Rowe. Is anybody home?
Inferring activity from smart home network traffic. In Security and
Privacy Workshops (SPW), 2016 IEEE, pages 245–251. IEEE, 2016.

[20] R. Doshi, N. Apthorpe, and N. Feamster. Machine learning DDoS de-
tection for consumer internet of things devices. CoRR, abs/1804.04159,
2018.

[21] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. Peek-a-boo,
i still see you: Why efficient traffic analysis countermeasures fail. In
2012 IEEE symposium on security and privacy, pages 332–346. IEEE,
2012.

[22] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996.

[23] M. Ghiglieri and E. Tews. A privacy protection system for HbbTV
in Smart TVs. In 2014 IEEE 11th Consumer Communications and
Networking Conference (CCNC), pages 357–362, Jan 2014.

[24] J. Hayes and G. Danezis. K-fingerprinting: A robust scalable website
fingerprinting technique. In Proceedings of the 25th USENIX Confer-
ence on Security Symposium, SEC’16, pages 1187–1203, Berkeley, CA,
USA, 2016. USENIX Association.

[25] D. Herrmann, R. Wendolsky, and H. Federrath. Website fingerprinting:
Attacking popular privacy enhancing technologies with the multinomial
naı̈ve-bayes classifier. In Proceedings of the 2009 ACM workshop on
Cloud computing security, pages 31–42. ACM, 2009.

[26] Y. Jin, E. Sharafuddin, and Z.-L. Zhang. Unveiling core network-
wide communication patterns through application traffic activity graph
decomposition. In Proceedings of the Eleventh International Joint
Conference on Measurement and Modeling of Computer Systems,
SIGMETRICS ’09, pages 49–60, New York, NY, USA, 2009. ACM.

[27] T. Karagiannis, K. Papagiannaki, and M. Faloutsos. Blinc: Multilevel
traffic classification in the dark. In Proceedings of the 2005 Conference
on Applications, Technologies, Architectures, and Protocols for Com-
puter Communications, SIGCOMM ’05, pages 229–240, New York,
NY, USA, 2005. ACM.

[28] M. Liberatore and B. N. Levine. Inferring the source of encrypted http
connections. In Proceedings of the 13th ACM conference on Computer
and communications security, pages 255–263. ACM, 2006.

[29] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, and J. Lloret. Net-
work traffic classifier with convolutional and recurrent neural networks
for internet of things. IEEE Access, 5:18042–18050, 2017.

[30] L. Lu, E.-C. Chang, and M. C. Chan. Website fingerprinting and iden-
tification using ordered feature sequences. In Proceedings of the 15th
European Conference on Research in Computer Security, ESORICS’10,
pages 199–214, Berlin, Heidelberg, 2010. Springer-Verlag.

[31] X. Luo, P. Zhou, E. W. W. Chan, W. Lee, R. K. C. Chang, and
R. Perdisci. HTTPOS: Sealing information leaks with browser-side
obfuscation of encrypted flows. In Proceedings of the Network and
Distributed System Security Symposium (NDSS), February 2011.

[32] T. T. Nguyen and G. Armitage. A survey of techniques for internet
traffic classification using machine learning. Commun. Surveys Tuts.,
10(4):56–76, Oct. 2008.

[33] T. OConnor, R. Mohamed, M. Miettinen, W. Enck, B. Reaves, and A.-
R. Sadeghi. HomeSnitch: Behavior transparency and control for smart
home IoT devices. In Proceedings of the 12th Conference on Security
and Privacy in Wireless and Mobile Networks, WiSec ’19, pages 128–
138, New York, NY, USA, 2019. ACM.

[34] OpenWrt/LEDE Project. https://openwrt.org/about.

[35] A. Panchenko and F. Lanze. Website fingerprinting at internet scale. In
NDSS, 2016.

[36] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. Website fingerprint-
ing in onion routing based anonymization networks. In Proceedings of
the 10th annual ACM workshop on Privacy in the electronic society,
pages 103–114. ACM, 2011.

[37] R. Perdisci, W. Lee, and N. Feamster. Behavioral clustering of http-
based malware and signature generation using malicious network traces.
In Proceedings of the 7th USENIX Conference on Networked Systems

Design and Implementation, NSDI’10, pages 26–26, Berkeley, CA,
USA, 2010. USENIX Association.

[38] A. J. Pinheiro, J. M. Bezerra, and D. R. Campelo. Packet padding
for improving privacy in consumer IoT. In 2018 IEEE Symposium
on Computers and Communications (ISCC), pages 00925–00929, June
2018.

[39] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun,
and H. Haddadi. Information exposure from consumer IoT devices:
A multidimensional, network-informed measurement approach. In
Proceedings of the Internet Measurement Conference, pages 267–279,
2019.

[40] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3.
RFC 8446, RFC Editor, August 2018.

[41] E. Rescorla and T. Dierks. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246, Aug. 2008.

[42] T. S. Saponas, J. Lester, C. Hartung, S. Agarwal, and T. Kohno. Devices
that tell on you: Privacy trends in consumer ubiquitous computing.
In Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium, SS’07, pages 5:1–5:16, Berkeley, CA, USA, 2007.
USENIX Association.

[43] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani. Toward generating
a new intrusion detection dataset and intrusion traffic characterization.
2018.

[44] A. Sivanathan, H. H. Gharakheili, A. R. Franco Loi, C. Wijenayake,
A. Vishwanath, and V. Sivaraman. Classifying IoT devices in smart
environments using network traffic characteristics. IEEE Transactions
on Mobile Computing, (01):1–1.

[45] A. Sivanathan, D. Sherratt, H. H. Gharakheili, A. Radford, C. Wi-
jenayake, A. Vishwanath, and V. Sivaraman. Characterizing and
classifying IoT traffic in smart cities and campuses. In 2017 IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), pages 559–564, May 2017.

[46] Square, Inc. Whats going to happen with IFTTT? https://square.github.
io/okhttp/, 2019.

[47] Stacey Higginbotham. OkHttp. https://staceyoniot.com/whats-going-
to-happen-with-ifttt/, 2019.

[48] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky. Ping-
pong: Packet-level signatures for smart home device events. http:
//arxiv.org/abs/1907.11797.

[49] R. Trimananda, J. Varmarken, A. Markopoulou, and B. Demsky. Ping-
pong: Packet-level signatures for smart home devices (software and
dataset). http://plrg.ics.uci.edu/pingpong/.

[50] UNSW. List of smart home devices. https://iotanalytics.unsw.edu.au/
resources/List Of Devices.txt, November 2018.

[51] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg. Effective
attacks and provable defenses for website fingerprinting. In 23rd
{USENIX} Security Symposium ({USENIX} Security 14), pages 143–
157, 2014.

[52] C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M. Masson.
Uncovering spoken phrases in encrypted voice over IP conversations.
ACM Transactions on Information and System Security, 13(4):35:1–
35:30, Dec. 2010.

[53] C. V. Wright, L. Ballard, F. Monrose, and G. M. Masson. Language
identification of encrypted VoIP traffic: Alejandra y Roberto or Alice
and Bob? In Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium, SS’07, pages 4:1–4:12, Berkeley, CA,
USA, 2007. USENIX Association.

[54] W. Zhang, Y. Meng, Y. Liu, X. Zhang, Y. Zhang, and H. Zhu. HoMonit:
Monitoring smart home apps from encrypted traffic. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’18, pages 1074–1088, New York, NY, USA, 2018. ACM.

18

