
PROTECTION: Root-of-Trust for IO
in Compromised Platforms

Aritra Dhar
ETH Zurich

aritra.dhar@inf.ethz.ch

Enis Ulqinaku
ETH Zurich

enis.ulqinaku@inf.ethz.ch

Kari Kostiainen
ETH Zurich

kari.kostiainen@inf.ethz.ch

Srdjan Capkun
ETH Zurich

srdjan.capkun.inf.ethz.ch

Abstract—Security and safety-critical remote applications
such as e-voting, online banking, industrial control systems and
medical devices rely upon user interaction that is typically
performed through web applications. Trusted path to such remote
systems is critical in the presence of an attacker that controls
the user’s computer. Such an attacker can observe and modify
any IO data without being detected by the user or the server.
We investigate the security of previous research proposals and
observe several drawbacks that make them vulnerable. Based on
these observations we identify novel requirements for secure IO
operation in the presence of a compromised host.

As a solution, we propose PROTECTION, a system that
ensures IO integrity using a trusted low-TCB device that sits
between the attacker-controlled host and the IO devices. PRO-
TECTION intercepts the display signal and user inputs from the
keyboard and mouse, and overlays secure UI on top of the
HDMI frames generated by the untrusted host. The guiding
design principles of PROTECTION are: (i) integrity of user
input and output cannot be considered separately, (ii) all user
input modalities need to be protected simultaneously, and (iii)
integrity protection should not rely on error prone user tasks
like checking the presence of security indicators. By following
these guidelines, PROTECTION achieves strong protection for
IO integrity. We also propose an extension of PROTECTION
for IO confidentiality, implement a plug-and-play prototype, and
evaluate its performance.

I. INTRODUCTION

Web-based interfaces are very prevalent to remotely config-
ure safety-critical systems such as remote PLCs [1] or medical
devices [2], and other security-sensitive applications such as
online payments, e-voting, etc. The high complexity of modern
operating systems, software, and hardware components has
shown that computer systems largely remain vulnerable to
attacks. A compromised computer threatens the integrity and
the confidentiality of any interaction between the user and
a remote server. It can easily observe and/or manipulate the
sensitive IO data exchanged between the user and the remote
server, or even trick the user to perform unintended actions.

The recent introduction of trusted computing architectures
like Intel’s SGX has enabled secure computations and secure
data storage on otherwise untrusted computing platforms.
However, such architectures do not directly enable secure user

interaction because IO operations are handled by the operating
system. Additionally, the recent microarchitectural attacks have
shown that execution environments inside enclaves, like the
one provided by SGX, can be compromised as well.

Trusted path provides a secure channel between the user
(specifically human interface device - HID) and the end-
point, which is typically a trustworthy application running
on the host. Trusted path ensures that user inputs reach the
intended application unmodified, and all the outputs presented
to the user are generated by the legitimate application. Trusted
path to the local host is a well-researched area where many
solutions focus on using trusted software components such
as a trusted hypervisor. Zhou et al. [3] proposed a generic
trusted path on x86 systems with a pure hypervisor-based
design. SGXIO [4] employs both a hypervisor and Intel SGX.
However, hypervisors are hard to deploy, have a large TCB,
and are impractical in real-world scenarios as most of the
existing verified hypervisors offer a minimal set of features.

Trusted external devices are another way to realize secure
IO between a user and a remote server. Transaction confirma-
tion devices [5], [6] allow the user to review her input data on
a trusted device that is physically separated from the untrusted
host. These approaches suffer from poor usability, security
issues due to user habituation and are only limited to simple
inputs. In Section II-B, we provide a more detailed discussion
on the security and the usability of transaction confirmation
devices. Bump in the Ether [7] and IntegriKey [8] use external
embedded devices to sign input parameters. However, such
solutions do not support output integrity; hence, the attacker
can execute UI manipulation attacks to trick the user into
providing incorrect inputs.

Fidelius [9] combines the previous ideas of Bump in the
Ether and trusted overlay to protect keyboard inputs from a
compromised browser using external devices and a JavaScript
interpreter that runs inside an SGX enclave. Fidelius maintains
overlays on display, specifically on the input text boxes to
hide sensitive user inputs from the browser. We investigate
the security of Fidelius and discover several issues. Fidelius
imposes a high cognitive load to the users as they need to mon-
itor continuously different security indicators (two LED lights
and the status bar on the screen) to guarantee the integrity
and confidentiality of the input. Furthermore, the attacker can
manipulate labels of the UI elements to trick the user into
providing incorrect input. The lack of mouse support, which
may appear only as functional limitation, exposes Fidelius
to early form submission attacks. The host can emulate a
mouse click on the submit button before the user completes

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24112
www.ndss-symposium.org

all fields of a form. This allows the attacker to perform an
early form submission with incomplete input - a violation of
input integrity. Fidelius is also vulnerable to microarchitectural
attacks on SGX enclaves [10] that extract attestation keys and
relay attacks [11] that redirects all user data to the attacker’s
platform.

The drawbacks of the existing systems show that ensuring
the integrity and confidentiality of the IO in the presence
of an untrusted host is a non-trivial problem and requires
a comprehensive solution. All of the previous trusted path
solutions neither protect both input and output simultaneously,
nor do they consider different modalities of input. We discuss
such drawbacks in details, along with some of the relevant
solutions in Section II-B.

Our solution. The shortcomings of the existing literature
provide the groundwork of our system named PROTECTION.
PROTECTION is built on the following observations: i) input
integrity is possible only when both input and output integrity
are ensured simultaneously, ii) all the input modalities are
needed to be protected as they influence each other, and
iii) high cognitive load results in user habituation errors.
PROTECTION uses a trusted low-TCB auxiliary device that
we call IOHUB which works as a mediator between all user
IO devices and the untrusted host. Instead of implementing
a separate network interface, the IOHUB uses the host as an
untrusted transport - reducing attack surface.

Integrity. PROTECTION ensures output integrity by sending
an encoded UI to the host that only the IOHUB can overlay
on a part of the screen. The overlay is possible as the IOHUB
intercepts the display signal between the host and the monitor.
The overlay generated by the IOHUB ensures that the host
cannot manipulate any output information on that overlaid part
of the screen; hence, it can not trick the user. IOHUB supports
a subset of HTML5 UI elements that are frequently used in
the majority of web applications. The IOHUB focuses user
attention on the overlaid part of the screen by dimming out the
rest (also known as the lightbox technique which is one of the
possible ways to focus user attention) when the user moves the
mouse pointer on the overlaid UI. By doing so, PROTECTION
aids the user to be more attentive to the security-critical UI
on the screen. Note that PROTECTION does not require any
change in the user interaction for IO integrity. Only the input
devices that are connected to the IOHUB can interact with the
overlaid UI elements, making them completely isolated from
the untrusted host. All the inputs are signed by the IOHUB
and sent to the remote server - ensuring input integrity.

Confidentiality. PROTECTION provides IO confidentiality
as i) all the input to the IOHUB is encrypted and signed,
and ii) the overlay information sent from the remote server is
encrypted and can only be decrypted by the IOHUB. However,
the user needs to perform a small task such as triggering a
secure attention sequence (SAS), or looking for a secret image,
security indicator etc. to distinguish the trusted overlay.

Deployment. IOHUB is a fully plug-and-play device that is
compatible with any host system regardless of their architec-
ture or OS and does not require the user to install any software
on the host. Note that our realization of PROTECTION uses an
external device. However, the current system architecture can
be modified, e.g., IOHUB can be integrated into the graphics

processor.

Our contributions. We now summarize our contributions:

(i) Identification of IO security requirements: We identify
new requirements for trusted path based on the drawbacks of
the existing literature: i) unless both output and input integrity
are secured simultaneously, it is impossible to achieve any
of the two, and ii) without protecting the integrity of all the
modalities of inputs, none could be achieved (Section II-B).
(ii) System for IO integrity: We describe the design of

PROTECTION, a system that provides a remote trusted path
from the server to the user, in an attacker-controlled environ-
ment. The design of PROTECTION leverages a small, low-
TCB auxiliary device that acts as a root-of-trust for the IO.
PROTECTION ensures the integrity of the UI, specifically the
integrity of mouse pointer and keyboard input. PROTECTION
is further designed to avoid user habituation (Sections III and
IV).
(iii) System for IO confidentiality: We also describe an

extension of PROTECTION that provides IO confidentiality,
where user needs to execute an operation like SAS to identify
the trusted overlay on the display (Section V).
(iv) Implementation and evaluation: We also implement

a prototype of PROTECTION and evaluate its performance
(Sections VII, VIII, and Appendix B).

II. PROBLEM STATEMENT

In this section, we motivate our work in the context of
ensuring the integrity and confidentiality of IO data between
the user and the remote servers. We also analyze existing
research works that tackle the relevant problem. We explain
how these works lack a proper solution and report the obser-
vations we derive from them. Lastly, we present the required
security properties of PROTECTION that we obtain from the
observations.

A. Motivation: Secure IO with Remote Safety-critical System

A user communicates with a remote server through a
host system that is typically a standard PC (specifically x86
architecture), which gives the host access to the raw IO data
that is exchanged between the user and the remote server.
The host consists of large and complex system software such
as the operating system, device drivers, applications such
as a browser, and a diverse set of hardware components
that expose the host to a large attack surface. (#4)Due to
cost and convenience, general-purpose PCs are prevalent in
many safety-critical application domains such as industrial
plants and hospitals. For example, the WannaCry ransomware
incident showed that NHS hospitals relied on Windows XP
platforms [12], [13].

An adversary that controls the user’s host can alter user
intentions, i.e., it can perform arbitrary actions on behalf of the
user, modify the input parameters, or show wrong information
to the user. Such an adversary is very powerful and difficult to
be detected or prevented by a remote server. Hence, existing
defense standards for web UI are ineffective as the browser
is untrusted also. The consequences of such attacks might
be severe when applications that control remote safety-critical
systems are targeted. The attacker can pass the wrong input to

2

Trusted path

A. Transaction confirmation Device B. Trusted intermediary

B1. Hypervisor-based B2. External HW B3. System TEE

VButton [16]

TruZ-Droid [17]

PROTECTION

Uni-dir [5]

Overshadow [18]

SGXIO [4] Fidelius [9]

Fig. 1: Existing trusted path solutions.

a remote safety-critical system such as a medical device, power
plant, etc., or leak sensitive information such as credentials for
e-banking, candidate preference in the e-voting, etc.

B. Analysis of Existing and Strawman Solutions

There are two broad categories of existing solutions that
address the problem of trusted paths for IO devices in the
presence of a compromised host as illustrated in Figure 1:
A. Solutions where unprotected user interaction first happens
and then a trusted component (transaction confirmation device)
is used to ensure input integrity, and B. Solutions where a
trusted component captures the user’s input/output and then
securely mediates them to the destination. The trusted compo-
nent can be a hypervisor, or an external hardware, etc.

A. Transaction confirmation devices. Filyanov et. al [5]
proposed a transaction confirmation device that requires the
user to use a separate device to confirm the input parameters.
Systems such as ZTIC [6] use an external device with display
and smartcard attachment to ensure the integrity of the user
inputs. Android OS also provides a similar mechanism to
confirm protected transactions [14]. However, these approaches
suffer from three significant drawbacks: i) the risk of user
habituation – users confirming transactions without looking
to the actual data [15], ii) usability – interacting with a
small device can be cumbersome, and iii) only simple UI
can be supported – transaction confirmation is not suitable for
complex interaction, rather than simple text-based inputs.

B1. Trusted hypervisor-based solutions. Trusted hypervisors
and secure micro-kernels are also alternatives to achieve a
Trusted path. Zhou et al. [3] proposed a generic trusted path
on x86 systems in pure hypervisor-based design. SGXIO [4]
combines a TEE and a hypervisor to mitigate the shortcomings
of TEEs like SGX (e.g., OS controls the IO operations).
Nevertheless, solutions based on hypervisors require a large
TCB. Formally verified hypervisors offer limited functionali-
ties, therefore making them impractical for average users. One
can also argue that a hypervisor that provides a rich set of
functionalities has a code size comparable to an actual OS.
Also, systems employing TEEs such as Intel SGX open up
new attack surfaces that can be exploited by microarchitectural
attacks [10].

B2. External hardware-based solutions. Several existing
works propose a trusted path that utilizes an external trusted
device. IntegriKey [8] uses a trusted external device that con-
tains a small program that signs all user inputs and sends the
signed input to the remote server. The device works as a second
factor for input integrity as the remote server verifies if the
signed input matches with the input that is sent by the browser
running on the untrusted host. However, as the external device
is completely oblivious to the display information that the

Textbox in focus

OS triggers click

Fig. 2: Early form submission attack is possible on Fidelius [9].
The user selects and edits the field Units while the OS triggers
add button, causing misconfiguration of a remote safety-critical PLC
(Control by Web X-600M [1]).

untrusted host renders, not only IntegriKey but also similar
systems that do not consider output integrity are vulnerable to
UI manipulation attacks. For example, assume that the user’s
intended input to a textbox is 100. She types the correct value,
but the host maliciously renders 10 on the screen by not
showing the last zero. Thinking that she might have mistyped,
the user types another 0 that makes the recorded input from
the user 1000. This attack violates input integrity as the host
can now submit 1000 to the remote server as a valid input,
although it does not represent the user’s intention.

→ Observation 1: The lack of output integrity – the render of
user inputs on the screen – compromises input integrity.

Fidelius [9] addresses the problem with output integrity by
rendering overlays using an external trusted device. Fidelius
uses the trusted external device and Intel SGX to create a
secure channel between the user IO devices and a remote
server. The device intercepts user keystrokes and does not
deliver any event to the untrusted host when the user types to
secured text fields. Additionally, Fidelius renders an overlay
with the user inputs on the screen, which is inaccessible by
the host. This way, the untrusted host does not have access to
raw inputs while the user sees them rendered on the screen
as usual. A small, trusted bar on display is also overlaid by
the device that shows the remote server’s identity and the text
field that is currently selected. However, we observe a number
of security and functional issues in Fidelius that we explain in
the following.

The overlay contains only the render of the user inputs into
text fields, but the rest of the screen is rendered by the untrusted
host. This allows an attacker to modify the instructions on the
UI, such as changing the unit of the input (typically described
in the label of a text field) that could result in an incorrect
input. This problem could be mitigated if the trusted bar
includes the legitimate labels of the text fields also, although
it would significantly increase the cognitive load to users.

Fidelius already introduces a high cognitive load to users
as they need to monitor multiple security indicators simul-
taneously before filling up one text field. Previous research
works [15], [19], [20] have shown that systems that require
users to observe multiple security indicators do not guarantee
security in practice. Also, in specific scenarios, even the
training to properly explain these indicators to users could be
a significant drawback for a real deployment.

3

→ Observation 2: If the protected output is provided out-of-
context, users are more likely not to verify it. Therefore input
integrity can be violated.

Fidelius does not consider the integrity of the mouse
pointer and its interaction with UI elements, which broadens
the attack surface. The lack of mouse support may appear to
be a functional limitation, but it has non-trivial security issues.
The OS can arbitrarily trigger a mouse click on the submit
button of a form while the user is typing and therefore send
incomplete data to the server - early form submission attack.
This attack could cause the misconfiguration of a remote
system, as illustrated in Figure 2. Early form submission may
appear to be similar to clickJacking attack, but the fundamental
difference between them is that in clickjacking, the browser
and OS are considered to be trusted. An untrusted OS can
simply issue mouse clicks.

Moreover, Fidelius is also vulnerable to clickjacking at-
tacks where the attacker can spawn a fake mouse pointer and
trick the user into following it while the real mouse pointer
is on a sensitive text field protected by the system. This
allows the attacker to fool the user into providing (possibly
incorrect) input, while the user thinks that she is interacting
with a non-sensitive text field. To prevent such attacks, the user
has to look at the security indicators continuously even when
she is not doing any security-sensitive task, which is a very
strong assumption. Thus, not supporting the mouse causes the
integrity violation of the keyboard input also.

→ Observation 3: If not all the modalities of inputs are secured
simultaneously, none of them can be fully secured.

Finally, the design of Fidelius [9] is strictly limited to
text-based fields only. As Fidelius does not provide output
integrity of the forms, it cannot provide confidentiality to other
UI elements such as radio buttons, drop-down menus, sliders,
etc. Microarchitectural attacks on Intel SGX [10] increase the
attack surface of the system significantly.

B3. System TEE-based solutions. VButton [16] uses ARM
TrustZone (TZ) to securely render UI buttons and receive user
input from them. This is possible on mobile devices because
the TZ architecture support flags on the system bus that indi-
cate whether an IO device like touchscreen communicates with
a trusted TZ application or the untrusted OS. Such solutions
are infeasible for us because i) secure communication between
IO peripherals and TEE applications (like SGX enclaves) is
not supported in the x86 architecture – a similar system in
x86 would require changes to the system architecture, TEE
architecture and IO devices, ii) such solutions require TEE-
aware applications and do not work with current browsers. Our
goal is to design a solution that can be deployed on current
the x86 architecture and used with existing popular browsers.

Strawman solution: Capturing screenshot. This strawman
solution uses a trusted device that takes a screenshot when the
user executes an action, e.g., mouse click to submit a form.
The device then signs the snapshot and transmits it to the
server along with the signed input. The remote server verifies
the signature and then uses image/text analysis to extract the
information from the UI elements such as labels on buttons or
markers of a slider, etc. Therefore, the server would detect if
the host has manipulated UI elements when presented to the
user.

This method is vulnerable to attacks because it does not
capture the spatiotemporal user context. This implies that the
attacker may show some spacial information on the screen to
influence the user that may not be captured by the snapshot.
Furthermore, taking a full-screen snapshot could also reveal
private information of the user from other applications. Sim-
ilarly, taking a snapshot does not guarantee that a specific
UI has been presented on the screen as the attacker may
render the legitimate UI shortly before the device captures the
snapshot. One way to mitigate this problem is to capture a
video of user interaction. But such a method requires the host
to send large amounts of data to the server, while the server
should support video processing for different browsers, which
is both time and CPU intensive. Lastly, adversarial machine
learning techniques [21], [22] make the image/text recognition
techniques insecure against advanced adversaries.

C. Requirements of Security and Functional Properties

We can summarize the above-discussed limitations of pre-
vious solutions as the following requirements for our solution:

R1. Inter-dependency between input and output. The first
and second observations from the existing solutions show that
the output and input security depend on each other, and they
should be considered together. Otherwise, the attacker can
manipulate the output to influence the user input.

R2. Inter-dependency between all input modalities. Existing
web interfaces allow users to complete forms by using different
modalities for the user input, namely the keyboard, the mouse,
and the touchpad. The third observation shows that a secure
system should protect all user input modalities simultaneously
to achieve input integrity (against early-form submission and
clickjacking).

R3a. No cognitive load for IO integrity. A system that
protects IO operations should introduce minimal or no cog-
nitive load to its users for input integrity. The system should
guarantee the output integrity of the legitimate information
necessary to complete a form and avoid asking the user to
interact with an external device or monitor security indicators
out-of-context.

R3b. User attention for IO confidentiality. Preserving the
confidentiality of user inputs against a compromised host is
a challenging task because the host can trick the user into
revealing her inputs when the system is not active. Therefore,
requiring users to perform a small action, e.g., press a key
before entering confidential inputs is a valid tradeoff between
usability and security.

R4. Small trust assumptions and deployability. Our goal
is to provide the rich set of IO and security features with
minimal trust assumptions that do not rely on a trusted OS,
specialized hypervisor, or TEEs such as Intel SGX. Preferably,
the solution should be easy to set up for users, i.e., plug-and-
play, and integrate well with the existing infrastructure.

III. SYSTEM OVERVIEW & MAIN TECHNIQUES

In this section, we present an overview of our solution:
PROTECTION. On the high-level, PROTECTION uses the con-
cept of the bump in the wire (such as bump in the ether [7]) to
provide integrity and confidentiality to the user IOs between

4

IOHubHost

Frames

Input forward

IO signals

Network

Server

Fig. 3: High-level approach overview of our solution. The IOHUB
connects the trusted IO devices and the attacker-controlled host.

the IO devices and the remote server. PROTECTION achieves
this by utilizing a trusted embedded device as a mediator
between all the IO devices and the untrusted host. Hence, our
approach falls into the category B2 (external HW) in Figure 1.
We call this trusted intermediary IOHUB.

A. System and Attacker Model

We consider a typical scenario where the user wants to
interact with a trusted remote web server via an attacker-
controlled host. The model is depicted in Figure 3, which
shows the untrusted host, the remote server, and the user IO
devices. We only assume that the monitor, keyboard, mouse
(in a word all the IO devices that we need to protect from the
malicious host), and the IOHUB are trusted. (#4)One benefit
of an external trusted device is that regulations may prevent
modifications of systems such as medical devices. However,
retrofitting them with external devices, such as the IOHub, is
usually possible.

The IOHUB works as a mediator between all the IO devices
and the host. Note that the IOHUB has no network capability
to communicate with the server directly, instead it relies on
the host and uses it as an untrusted transport. We also assume
that the IOHUB comes with preloaded certificates and keys
that allow the IOHUB to verify the signatures signed by the
server and sign data such as the user input.

Deployment options. There are several possible ways to
deploy the PROTECTION system. Here we outline two example
cases. The first example deployment is one where a service
provider, like a bank issues a IOHUB device to each of
its customers. In such a deployment, the issued IOHUB is
intended to be used with a single application like a web-based
online banking application, and it is pre-configured with the
public key certificate of that application server (e.g., online
banking server). The pre-installed certificate allows the IOHUB
to verify messages signed by the correct application server. The
service provider (i.e., the issuer of the IOHUB) can ask what
OS the customer uses and configure OS-specific settings like
the used SAS value to the issued device (see Section V-B for
details).

In another example deployment, the IOHUB is issued by a
third-party vendor, and it is intended to be used to protect the
user interaction of various security-critical online services. In
such a deployment, the IOHUB can be pre-configured with the
public key of its issuer and a white-list of trusted application

Attacker’s view User’s view on the monitor Focusing user’s attention

a b c

Fig. 4: PROTECTION’s high-level approach shows that the IOHUB
generates UI overlay to protect IO integrity and confidentiality. a) The
attacker only sees the non-protected UI elements, and the protected
form is encrypted and encoded (in our case, the IOHUB could decode
a QR code and decrypt). b) shows the IOHUB generated form overlay
that is hidden from the host. The protected part of the screen provides
integrity and confidentiality of all user IO. c) shows that the IOHUB
dims out (lightbox) the rest of the screen when the user moves her
mouse pointer over the protected region to focus user attention.

server certificates. The issuer of the device can issue authenti-
cated updates to the white-list after its deployment if needed.
Attacker model and capabilities. Our attacker model assumes
that the host (OS, installed applications, and hardware) and the
network are attacker-controlled. The attacker can intercept, and
arbitrarily manipulate (such as create, drop, or modify) the user
IO data between the user and the remote server. Furthermore,
we assume that the attacker can not break the physical security
of the IOHUB (more discussion in Section VI-C).

B. High-level Description of the System

PROTECTION is built upon the security requirements and
functional properties that are described in Section II-C. IOHUB
is active only when the user visits sensitive web applications
that require PROTECTION security. Initially, the remote server
signs and delivers the sensitive UI elements to the host in
a format that is understandable by IOHUB. Next, the host
transfers the sensitive UI to IOHUB, and the IOHUB verifies
the signature to prevent manipulations by the host. As seen
in a running example depicted in Figure 4, the IOHUB then
renders the UI with sensitive elements into an overlay on top
of the HDMI frame received from the host. Note that the host
cannot access or modify the overlay generated by the IOHUB.
Also, the overlay covers only a part of the screen, allowing the
other feature-rich content on the webpage to run unmodified.
Therefore, this ensures that sensitive UI elements are presented
to the user as expected by the remote server – output integrity.
For the overlay, we use QR-codes to transfer data from the host
to the device because we avoid using extra software/hardware
for a separate channel, and it is easy to visualize.

When the user interacts (types or moves the pointer)
with the overlay, IOHUB does not forward any event from
the keyboard or the mouse to the host. The interaction is
maintained solely by IOHUB, which renders on-screen user
inputs and therefore offers a user experience that is identical
to a typical one as if the IOHUB is not present. The user clicks
on the submit button triggers the submission procedure, which

5

consists of the IOHUB signing the user inputs and sending it to
the server. Note that the text fields of the form and the submit
button are inside the overlay, which is inaccessible by the host,
hence the attacker cannot execute the early form submission or
clickjacking attacks. Finally, the server verifies the signature
of IOHUB to guarantee that the host has not altered the data.
Therefore, the IOHUB ensures input integrity for all modalities
of input.

For integrity guarantees, PROTECTION uses well-known
user attention focusing mechanisms. Unlike systems like Fi-
delius, these mechanisms do not introduce any cognitive load
to the users as PROTECTION does not rely on multiple
security indicators. Mechanisms such as lightbox aid the user
to distinguish the IOHUB overlay on the screen from the rest.
Thus, the untrusted host cannot trick the user into following
malicious instructions when the user interacts with sensitive
UI elements. In the case where confidentiality is required, the
user manually triggers SAS, (#7)using a well-known sequences
of keys such as Ctrl+Alt+Del that highlights the sensitive
UIs using mechanisms such as lightbox (see Section V-B for
details). For confidentiality, the host cannot observe the overlay
and user input as they are encrypted by the TLS key between
the IOHUB and the server.

IV. PROTECTION FOR IO INTEGRITY

In this section, we provide the technical details of PRO-
TECTION that guarantees the integrity of IO operations.

A. IOHUB Overlay of UI Elements

As we explained in the previous sections, both output and
input integrity are necessary to be protected to achieve any
of them. PROTECTION ensures output integrity by isolating
a part of the display that cannot be observed or modified
by the untrusted host. IOHUB intercepts the HDMI frame
from the host and injects a render of the sensitive UI on
the screen. The overlay provides output integrity because it
restrains the attacker from drawing on top of it to trick the
user into providing incorrect inputs.

(#3)Our goal is to minimize the TCB, and thus the IOHUB
does not run a browser, i.e., it cannot interpret or render
HTML, JavaScript, etc. Given this constraint, one strawman
solution could be sending UI bitmaps from the server to
the IOHUB, and the IOHUB could send back the mouse
click and the corresponding location. IOHUB could download
these pre-generated form bitmaps from the server, and such a
solution would handle static forms, but not for dynamic forms.
Downloading all possible form bitmaps would be prohibitively
expensive.

To achieve a more generic and efficient solution, we
follow a different approach. The IOHUB comes with a small
interpreter routine that is similar to render engines of browsers
in functionality, but drastically smaller in size because it only
renders a limited number of HTML5 UI elements according
to their position, dimension, and label. The interpreter routine
reads a given specification and renders the respective UI. The
specification is a simple JSON file that defines how the content
of the overlay should be rendered, e.g., number of elements,
order, types, and labels.

The process of rendering the overlay on the screen has two
phases: (i) convert the existing sensitive form to specification,
and (ii) specification to overlay.

(i) Secure form → Specification. The W3C UI security
policy [23] recommends developers to annotate the security-
critical UI elements of a page to protect them against malicious
JS running on the browser. We use a similar technique by
asking developers to manually annotate the sensitive elements
in the HTML code (as protect=“true” attribute). Then
For every request, the PROTECTION server-side component
parses the HTML source, adds a random identifier (id) to the
form element, signs it, add the signature to the form and
then delivers it to the user’s browser. The id serves as session
identification to prevent the attacker from re-submitting an old
input data from the user. On the host-side, PROTECTION JS
parses the tagged HTML source and produces a specification
that can be interpreted by the IOHUB. An example of a speci-
fication is presented in Specification 1. In our implementation,
the PROTECTION JS encodes the specification in a QR code.
(#5)We choose QR codes to encode UIs as it is one of many
robust ways to encode data on a visual channel such as HDMI
stream. Figure 5 shows the transformation between the step ¬
and . The step is processed by IOHUB in the next phase
and is not visible to the user.

(ii) Specification → Overlay. IOHUB performs the next
phase, which starts with the detection of the encoded spec-
ification (QR-code) in the HDMI frames. Then the IOHUB
validates the signature, renders the overlay according to the
specifications, and presents it to the user. The IOHUB overlay
is depicted in ® in Figure 5, which is the final UI shown to
the user. Note that the user does not see the QR code as it gets
decoded and overlaid by the IOHUB on the fly.

IOHUB uses the specification to determine the particular
UI element that the user interacts with. When the user clicks
on a text field, IOHUB allows the user to type input to it. UI
elements in the overlay take inputs only from input devices
(mouse and keyboard). Therefore a malicious host cannot
inject or modify any input of the user.

B. Focusing User Attention

In the previous section, we explain how PROTECTION
provides output integrity for the overlay generated by the
IOHUB. However, the attacker can show fake information to
the user on the untrusted part of the display space that may
potentially influence her inputs. An advanced adversary could
craft malicious directions and present to the user as part of the
overlay.

To mitigate these attacks, we employ techniques that are
proposed against similar threats in the context of browser-
based security. The goal of these techniques is to focus user
attention on the sensitive UI elements she is interacting with.
Huang et al. [24] proposes two main techniques that are shown
to be effective and can easily be adopted by the IOHUB.
The first technique is called Lightbox, and it dims out the
non-overlaid part of the screen, which is generated by the
untrusted host. The second technique consists of freezing
display frames from the host when the user enters into the
overlaid UI. This way, a malicious host cannot grab the user’s
attention by showing an animation or exploiting other tricks.

6

OK Cancel

Sensitive field 1

Sensitive field 2

Sensitive form

Normal field

Sensitive form

Normal field

<form action="/some_action“, signature = “0x45AB…”, id = “0x0ab”>
Sensitive field 1: <input type="text" name=“tb_1” protect=“true”>

Sensitive field 2: <input type="text" name=“tb_2” protect=“true”>

<button type="submit" value="Submit” protect=“true”>Submit</button>
<button type="reset" value="Reset” protect=“true”>Reset</button>

Normal field: <input type="text" name=“textbox_3">

</form>

Sensitive form

Normal field

Sensitive field 1

OK Cancel

Sensitive field 2

Q
R

 c
o

d
e

ge
n

er
at

io
n

O
ve

rl
ay

Integrity protected

Sensitive field 1:Data_1 Sensitive field 2:Data_2 Action:OK Sign(payload)

Payload

1 2 3
Verified UI from secure_site.io

Data_1

Data_2

4Data to the browser 5

Fig. 5: Transformation of UI elements: HTML → encoded specification → IOHUB generated UI overlay. ¬ The actual webpage and the
corresponding HTML source shows the UI elements that requires integrity protection. These UI elements are transformed into an encoded
UI specification (our PROTECTION prototype uses QR code that encodes a UI specification, e.g., Specification 1) by the PROTECTION JS.
The QR code. ® AThe QR code decoded and overlaid on the HDMI stream by the IOHUB. ¯ Upon the user’s action on the overlaid UI
elements, the device signs all the input data. ° The IOHUB sends these signed input data them to the remote server. Note that the intermediate
QR code transformation () is not visible by the user.

Specification 1: Protected UI specification language. The UI speci-
fication shows the JSON formatted UI specification that is generated
from the HTML source provided in the UI illustrated in Figure 5.

1 {"formId": "form1", "formName": "form1",
2 "domain": "secure_site.io",
3 "size": "400*400", "SAS": "5:LB",
4 "ui": [{"id":"textbox_1", "type":"textbox",
5 "label":"Sensitive field 1",
6 "text":"secret data 1",
7 "RE":(A-Z)*.(A-Z)*},
8 {"id":"textbox_2", "type":"textbox",
9 "label":"Sensitive field2 ",

10 "text":"secret data 2"},
11 {"id":"b1", "type":"button",
12 "label":"OK", "trigger":"true"},
13 {"id":"b2", "type":"button",
14 "label":"Cancel", "trigger":"false"}],
15 "signature": "0x45AB...", "id": "0x0ab.."}

Lightbox offers more security guarantees because it blocks the
untrusted screen completely, but is more intrusive to the user.
While freezing is less intrusive but does not remove potential
malicious information from the screen.

Lightbox mitigates the attacks presented above. The paper
shows that the Lightbox and freezing are effective in 98%
and 97% of the time (baseline: 69% effectiveness when no
protection is provided), respectively, making them suitable
candidates for PROTECTION. For more details of the user
study, refer to Table 2 in [24]. We assume that a similar result
should be expected in PROTECTION due to the similarity of the
application space (web applications). IOHUB uses Lightbox as
the default technique, but depending on the specific form, the
developers can select the appropriate technique.

(#9)When the focusing mechanism (e.g., LightBox) is ac-
tive, the user can still interact with the UI elements and browser
button outside the secure UI elements as the IOHUB does not
control those. Browser back button does not influence the state
of the overlaid UI as long as it does not remove/change the
QR code on the web page.

OK

(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥𝑛, 𝑦𝑛)

(𝑥1, 𝑦1)

(𝑥2, 𝑦2)

(𝑥𝑛, 𝑦𝑛)

IOHub side mouse trace Incoming frames + mouse detection
1 2

𝚫𝒙, 𝚫𝒚
= (𝑥𝑖 − 𝑥𝑖−1, 𝑦𝑖 − 𝑦𝑖−1)

Click Click

𝑡1

𝑡2

𝑡𝑛

.

.

.

𝑓1

𝑓2

𝑓𝑛

.

.

.

Fig. 6: Pointer tracking. ¬ The IOHUB captures the raw mouse
events (∆x,∆y) from the mouse that is attached to the IOHUB.
The IOHUB captures the frames from the HDMI channel and checks
into the designated pixel position (xi +∆x, yi +∆y) if there exists a
pointer. t1, t2, . . . tn are the time instances when the IOHUB receives
the mouse data. f1, f2, . . . fn are the corresponding HDMI frames
that the IOHUB intercepts.

Automated activation. The technique to focus user attention
(dimming out or freezing the non-overlaid part of the screen) is
triggered automatically in specific situations: The user moves
the mouse pointer over the overlaid UI, or the user starts
typing into a sensitive UI element. The advantage of the
automated trigger is that the user does not need to remember to
activate the mechanism. Hence the system is resilient from user
habituation and does not require the user to monitor security
indicators actively or perform specific actions. Note that the
automated activation provides security to user IO data only
when the integrity of the data is considered.

C. Continuous Tracking of Mouse Pointer in the HDMI Frame

The triggering of the focusing mechanism poses a challeng-
ing task to PROTECTION because the IOHUB does not know
the exact position of the mouse pointer. We cannot rely on the
compromised host to communicate the pointer position reliably

7

to IOHUB. Furthermore, the host’s pointer is not visible when
the user interacts with the overlay rendered by the IOHUB as
the IOHUB always draws on top of the HDMI frames of the
host.

IOHUB could employ image analysis over the frame re-
ceived from the host to learn the pointer position. However, we
avoid this method because image analysis is time-consuming
and vulnerable to adversarial images. In our approach, the
IOHUB intercepts mouse events and HDMI frames, so it can
track the pointer based on mouse data and correlate it with the
actual position in the HDMI frame (using shape detection in a
small area). Then, the IOHUB overlays a mouse pointer that
is prominent and easy to follow by the user.

A malicious host can still show a fake pointer to trick
the user into following it, but when the focusing mechanism
is active (the user interacting with sensitive elements), only
the pointer overlaid by IOHUB is visible. This way, the
pointer tracking and the pointer overlay address three major
challenges: i) both the IOHUB and the user have the same
sense of the pointer position, ii) IOHUB precisely knows when
to trigger the focusing mechanism, and iii) the user can interact
with the overlaid UI seamlessly.

1) Calibration: When the user connects the IOHUB for the
first time after booting up, the IOHUB performs an automated
calibration to find the pointer. The IOHUB simulates the mouse
and pushes the pointer to the top-right corner of the screen.
Then the IOHUB searches the pointer at this position in the
HDMI frames and starts tracking the pointer afterward. Note,
that at any point, if the IOHUB loses track of the mouse
pointer, the calibration process is repeated the first moment
the user visits a website that employs PROTECTION.

2) Pointer detection: The IOHUB ensures pointer integrity
by tracking the mouse movements using the raw data from the
mouse and the HDMI frame. Figure 6 illustrates the main idea:

¬ Shows raw mouse data that notify the displacement events
(∆x,∆y) over x and y axis which are fired over time series
t1, . . . , tn. Note that the initial pointer position is known to
the IOHUB from calibration phase where (x0, y0) = (0, 0).

 Shows the HDMI frames f1, . . . fn where the IOHUB
expects the mouse pointer to be found. For efficiency, the
IOHUB only scans a small portion of the HDMI frames
(200 × 200 square pixels) that is enough to cover a mouse
pointer. Since the operating system can treat mouse movements
slightly different according to their algorithm, this step serves
to adjust the position difference.

3) Overlay of the mouse pointer: The IOHUB draws a
mouse pointer overlay on top of the actual mouse pointer. The
host mouse pointer is neither visible on top of the overlay nor
it can interact with the IOHUB’s overlay. The overlaid mouse
pointer is visible on top of the overlay, and it offers the same
user experience as the host-rendered mouse pointer.

4) Coping with the disappearing pointer: Many OS offer
a feature where the mouse pointer disappears from the screen
when the user types in a text editor/browser. When the user
moves her mouse, the cursor appears again in the same position
where it disappeared in the first place. From the IOHUB’s
perspective, it is hard to distinguish between this case and

Frame + overlay

Frames

IOHub DisplayHost Server

Mouse trace

Verify

Frame + overlayM
o

u
se

Fo
rm

HTTP request
response

Frames

Submit data

Send data

Record inputs +
update overlay

Fig. 7: Flow of the PROTECTION main protocol. The figure shows
the sequence of events for two example scenarios: mouse movement
and filling up a web-form.

the attacker deliberately removing the mouse pointer from
the screen. To handle this case, the IOHUB listens to all
the keyboard inputs – the keyboard is also connected to the
IOHUB. Therefore, when the IOHUB gets a keystroke event, it
expects the cursor to disappear from the screen. Then, IOHUB
continues tracking the pointer from the moment that the mouse
sends events - this way, the IOHUB ensures the consistency
of the pointer position.

5) Handling different mouse cursors: The IOHUB is
preloaded with template images of the mouse pointer for
detection. For our PROTECTION prototype implementation,
we use the default cursors provided by the Ubuntu OS. This
allows the IOHUB to identify the cursor when it changes on
the screen, e.g., from pointer to a hand when the user hovers
the pointer over a link on the browser.

6) Handling mouse acceleration: The IOHUB uses the
default mouse acceleration parameters of libinput to cope
with the pointer acceleration. As the IOHUB emulates itself
as a keyboard, at the time of initialization, the IOHUB sends a
command to the host to set the default acceleration. In case the
host changes the mouse acceleration, the IOHUB will fail to
detect the mouse in the HDMI stream. We consider this case
as a denial of service.

7) Entering/exiting secure mode with keyboard: (#6)In
our implementation of PROTECTION, entering and exiting the
secure mode is performed by moving the mouse pointer into
or out of the protected UI area (sensitive web form). This
could similarly be done with the keyboard. The user could use
the TAB button that selects the QR code (that is an image on
the webpage) on the browser. When the QR code is selected,
PROTECTION JS triggers a change in the JSON specification
that is encoded in the QR code. E.g., the specification contains
a parameter named selected that defines if the user is
inside the secure mode or not. By changing this parameter, the
PROTECTION JS signals the IOHUB that the user is currently
in the secure mode. While inside the secure mode, the IOHUB
handles the TAB signal from the keyboard, allowing the user
to switch UI elements within the secure UI. When the user
reaches at the end of the secure UI, the device returns control
back to the PROTECTION JS when the user presses TAB.

D. Protected User Interaction

When the user finishes providing her input via input
devices (mouse and keyboard), the IOHUB sends these values
(with signature to ensure integrity) to the remote server.

8

Sending these signed input values to the server requires an
upstream channel from the IOHUB to the server.

Upstream channel. The data from the IOHUB to the remote
server is transmitted using the PROTECTION JavaScript snip-
pet as a helper. The IOHUB emulates itself as a composite
human interface device (HID) when it is connected to the host.
The IOHUB emulates keystrokes that transmit encoded data
to the PROTECTION JavaScript snippet, which then forwards
them to the remote server.

Sending input data. Figure 7 depicts the user interactions in
a sequence diagram. The user input transmission procedure
is illustrated in Figure 5. This has two phases: record and
transmit as described in the following:

(i) Record. After the UI elements are correctly overlaid on
the screen, the users can interact with these UI elements. The
user interaction with the overlaid UI element is no different
than a standard UI. The UI specification encodes the behavior
of all generated UI elements, making the IOHUB aware of
the semantics of the UI objects. E.g., when a user selects
a text box and types on with her keyboard, the IOHUB
intercepts all keystrokes and renders the characters on the
overlay. When user enters input data in the rendered overlay
UI elements (such as textbox, button, slider, radio button, etc.),
the IOHUB records that in a (key, value) pair where the key
is the identifier of the UI element (id in Specification 1) and
the value is the user provided value. The type of the UI
elements determines what information to record. For example,
the IOHUB records all keystrokes when a textbox is selected,
the value corresponding to the position of the slider is recorded
when the user interacts with a slider, etc. One example of the
recording of the input data corresponding to the UI illustrated
in Figure 5 and Specification 1 is:

Record =(tb_1, Data_1); (tb_2, Data_2)

(ii) Transmit. In the transmit phase, the IOHUB waits for the
user to select a UI element that has a trigger capability,
e.g., a submit button on a web-form. A trigger element can
change the state of the overlaid form, e.g., submit the data
of the form to the remote server or reset it. More details are
provided in the implementation of PROTECTION in Section B.
When the user clicks the OK button, the device signs Record
with its embedded private key. One such signed packet is also
illustrated in Figure 5. The IOHUB sends the signed packet to
the remote server using the upstream channel.

Upon receiving the signed input data from the IOHUB, the
remote accepts the input if the signature verification is success-
ful. Note, if an input field is annotated as protect=“true”,
the server does not accept any input without the IOHUB
signature. This prevents the attacker-controlled host to submit
data.

Changing browser tabs or browsers. The IOHUB sup-
ports multiple browsing tabs across multiple browsers. The
UI specification contains formId and domain that works
as the unique identifier for a specific form served from a
specific web server. The IOHUB can maintain multiple parallel
TLS connection to web servers. Depending on the observed
formId and domain (refer to Specification 1), the device
retrieves the data that is entered by the user. This way even if

Specification 2: HTML page from the remote server that contains
the encrypted UI specification for IO confidentiality.

1 <form action="/some_action">
2 Text box 1:

3 <input type="text" name="text_box_1">
4
 text box 2:

5 <input type="text" name="text_box_2">
6 <encrypted_qr><!-encrypted UI specification->
7 0x4a5c4... </encrypted_qr>
8 <script> [JS outputs QR code that encodes
9 encrypted specification] </script>

10 </form>

the user switches tabs, the IOHUB can still allow editing the
forms across tabs.

Input validation. Input validation, i.e., checking the input
against a recommended input policy (e.g., regular expression)
is one of the most widely used JavaScript functionalities,
and it is a critical part of input integrity. The remote server
sends the regular expression in the UI specification (RE in
Specification 1) that the IOHUB uses to validate the user input.

Fallback for legacy clients. PROTECTION is backward-
compatible with the clients who do not use the IOHUB. This
is achieved by the remote server by showing a QR code briefly
on the screen when the user visits the PROTECTION-enabled
webpage. The IOHUB intercepts the QR code and sends a
signal to the server about its presence. In the absence of the
IOHUB, the remote server does not send the PROTECTION
JS to the host that acts as a communication channel between
the IOHUB and the remote server. Note that the fallback
mechanism is application-specific, and the service provider
could decide if the fallback is detrimental to security.

V. PROTECTION FOR IO CONFIDENTIALITY

In the previous sections, we describe how the PROTEC-
TION JavaScript and the IOHUB together ensure the integrity
of the IO. We now augment the design of PROTECTION to
achieve IO confidentiality alongside the IO integrity. One of
the major components for achieving IO confidentiality is to
establish a secure channel (i.e., a TLS channel) between the
remote server and the IOHUB. TLS ensures that the untrusted
host does not read or modify any data exchanged between the
user and the remote server.

A. IO Operations

Establishing TLS. The IOHUB and the server create TLS
using the public certificates. The TLS uses the emulated
keystroke streams and HDMI as the upstream and downstream
channels, respectively, as described in Section IV. Implemen-
tation details are provided in Section B.

Output confidentiality. Output confidentiality ensures that
information sent from the remote server and the visual render
of the user’s input is hidden from the host. To enable output
confidentiality, the UI overlay mechanism that is described in
Section IV-A is modified slightly. The difference is that the
specification is not generated in the host side, but rather in the
server. A small server-side module that is very similar to PRO-
TECTION JS transforms the UI elements to the UI specification
(one example is provided in Specification 1) and encrypts
it with the TLS session key. The encrypted specification is
delivered to the client browser inside the <encrypted_qr>

9

Text box 1

Text box 2

Render at host’s side + disabled pointer

Option 1

Option 2

OK Cancel

Decoded and
Decrypted UI

HTML + overlay on IOHub + rendered pointer

Text box 1

Text box 2

Pointer
information
to the host

rendered pointer
overlaid by the
IOHub

QR code with
encrypted UI
specification

Static pointer

Verified UI from secure_site.io1

2

Option 1

Option 2

OK Cancel
Overlay

Verified UI from secure_site.io

3

Fig. 8: PROTECTION IO confidentiality. The figure shows ¬
the browser render of the webpage in Specification 2 where the
PROTECTION JavaScript produces the encrypted QR code. shows
the UI overlay that is decrypted and decoded by the IOHUB. ® shows
the user’s view when the IOHUB overlays the UI on the HDMI frame,
and the user starts to interact with the UI.

tag in the HTML file which is then encoded (as a QR-code)
by the PROTECTION JS. The IOHUB decodes the QR code
from the intercepted HDMI frames, decrypts the specification
and renders the overlay accordingly. One example is provided
in the HTML Snippet 2 with the corresponding UI illustrated
in Figure 8. This feature of PROTECTION allows the remote
server to send securely private information to the user in the
presence of a compromised host, e.g., bank account statements,
or any other confidential message.

Input Confidentiality. When the user enters her mouse pointer
into the overlaid UI area, the IOHUB stops transmitting any
mouse or keyboard event to the host, making it completely
oblivious of any mouse movement or keystroke during that
time. However, the user can still see her inputs on the screen
as the IOHUB renders the plaintext character on the overlaid
UI elements, therefore making them visible only to the user.
Likewise, when the user selects a UI element, for example,
a radio button that is shown in Figure 8, the IOHUB stores
the selected value in the recorded data. On form submission,
IOHUB encrypts the recorded data with the TLS key and sends
them to the remote server.

B. Focusing User Attention

The IO confidentiality could be viewed as a similar prob-
lem to phishing where the user provides the inputs to an
attacker-generated UI (or a phishing webpage) that leaks
the sensitive information. Similar to the phishing protection
mechanisms, IO confidentiality requires additional attention/-
operations from the user. Secure Attention Sequence (SAS)
is a sequence of trustworthy actions (such as keystrokes
Ctrl+Alt+Del in Windows) executed by the user. SAS
prevents an untrusted system from triggering an event that
is otherwise sensitive to the user. Note that SAS is a well-
researched topic in the context of UI/UX design. PROTECTION

adapts an off-the-shelf SAS mechanism that provides a visual
aid for the user to distinguish overlaid UI and the mouse
pointer location. SAS is crucial for IO confidentiality as the
untrusted host can trick the user into inputting her sensitive
information on a forged form. Hence, the user needs to remem-
ber the SAS to distinguish IOHUB generated UIs from host
generated UIs. Note that the automated activation is insufficient
as at any given time, the host can maliciously emulate the
automated activation to trick the user into providing sensitive
information to an illegitimate UI.

Note that SAS is one of many ways to inform the user
securely about the trusted overlay on the screen generated by
the IOHUB. Evaluation of the effectiveness of SAS over other
attention focusing mechanisms is out-of-scope of this paper.
Hence, PROTECTION uses SAS as an example of the attention
focusing mechanism for confidentiality. In principle, PROTEC-
TION could be integrated with other proposed approaches such
as security indicators, or secret images [25], [26].

(#7)UI protection profile. The remote server can set a
configurable UI protection profile per overlaid protected UI
(i.e., QR code). The protection policy is defined in the SAS
attribute in the example specification provided in Specifica-
tion 1. The policy dictates how the UI would respond to the
SAS provided by the user. By default, the overlaid UI is locked
from the user and requires the SAS keystroke from the user to
unlock the sensitive UI. This information is overlaid on the UI
to remind the user to execute it. One example UI protection
policy could be 5:LB (refer to Specification 1), which denotes
IOHUB invokes a lightbox on the HDMI frames except for
the UI overlay and the mouse pointer overlay for a cool-down
period of 5 seconds. The form remains locked for this cool-
down period.

The design of the PROTECTION system is independent
of the secure attention sequence (SAS) value. In principle,
each issuer that deploys IOHUB devices to users (see Sec-
tion III-A) could define its own custom SAS and configure
the deployed IOHUB devices to intercept that key sequence.
Our recommendation, however, is that the IOHUB issuers
follow established platform-specific SAS values. For example,
if a IOHUB device is issued for the purposes of protecting
user interactions on a Windows platform, we recommend that
the device issuer pre-configures the IOHUB to intercept the
Windows-specific Ctr+Alt+Del sequence. Similarly, if a
IOHUB device is deployed to be used on another OS, it should
be pre-configured to intercept the SAS sequence commonly
used on that platform. (In cases where the same IOHUB device
would be used on multiple different platforms, it could be
either configured to intercept multiple SAS values or it could
use a single SAS value that the issuer needs to communicate
to its user.)

VI. SECURITY ANALYSIS

A. Integrity

Modifying IO operations. As only the IOHUB can interact
with the overlaid UI, the attacker can not manipulate the IO
operations with the overlaid UI. Moreover, the attacker cannot
submit arbitrary data to the remote server because the latter
accepts only inputs signed by the IOHUB.

10

Early form submission. This attack is not possible as the
input devices (both mouse and keyboard) are connected to the
IOHUB, and only the IOHUB can interact with the overlaid
UI. This makes it impossible for the attacker to emulate a click
on the overlaid part of the screen.

Attack on the mouse pointer tracking and overlay. The at-
tacker may try to defeat the PROTECTION pointer tracking and
overlay mechanism described in Section IV-C by introducing
a malicious pointer that is visually more appealing to the user.
Note that the IOHUB overlaid mouse pointer is prominent and
hard to miss. One can visualize it as an arms race between the
attacker and the IOHUB to grab the user’s attention. We argue
that this is a suboptimal strategy for the attacker as both of the
pointers will be visible on the screen that causes suspicion to
the user. Also, when the real mouse pointer enters the overlaid
area, the untrusted part, including the malicious mouse pointer,
will be hidden by the focusing mechanism. Hence, we can
conclude that executing clickjacking-like attacks is not possible
in PROTECTION.

Replay attack. The remote server adds a random identifier
(id) in the form specification alongside the signature. With
this identifier, the server keeps track of the user input. When
the server receives a form submission data, it first checks if
the user submitted with the same identifier sent by the server.
Otherwise, the server rejects the data.

Not rendering QR code. The host may deny sending the QR
code over the HDMI channel. We consider this to be a denial
of service and does not compromise the integrity of the IO
data.

Redirection. The attacker could redirect the user to a phish-
ing website that renders visually identical UI to that of the
legitimate website. A redirection attack cannot break the
integrity of the input because a legitimate remote server always
requires the signed input from the user. Without a valid signed
specification, the IOHUB never renders an overlay or sign any
input.

Malicious instruction on the screen. The attacker may put a
malicious instruction/label on the untrusted part of the screen
to influence user inputs. However, when the user starts inter-
acting with the overlaid UI, the default focusing mechanism
(Lightbox) highlights only the secure UI and hides the rest of
the screen.

Replication of Lightbox. The attacker can replicate the
lightbox on any part of the screen. However, this does not
compromise the integrity of the input as the legitimate remote
server only accepts signed input from the IOHUB.

Multiple HIDs. The attacker can emulate multiple HIDs to
avoid the tracking of the mouse pointer. However, this attack
is ineffective as the IOHUB only tracks the mouse pointer that
is connected to it (over USB interface).

BadUSB. BadUSB [27] is out-of-scope of this paper as in
the attacker model (Section III-A), we assume that all the IO
devices that are connected to the IOHUB are trusted.

Mouse acceleration/updates. The attacker can change the
mouse acceleration or provide erratic mouse updates on the
screen. Such manipulations only cause the IOHUB to lose
track of the mouse pointer and stop relaying the mouse
signal to the host altogether. The IOHUB uses the acceleration

parameters from the default libUSB driver to cope with the
mouse acceleration. Hence, such manipulation does not affect
security.

(#11)Malicious QR codes. The attacker may put fake
QR codes on the webpage. Note that the IOHUB verifies the
signature from the HTML forms to check the integrity using
the pre-configured or white-listed server certificate. This way,
the IOHUB does not render any overlays from malicious QR
codes.

B. Confidentiality

Redirection. The attacker could redirect the user to a phishing
website that renders visually identical UI to that of the le-
gitimate website. Redirection compromises the confidentiality
of user inputs only when the user does not trigger the SAS
mechanism. The IOHUB is only activated when it detects
specifications signed from the whitelisted (maintained in the
memory) servers.

(#10)Fake SAS instructions. The attacker may put fake
instructions on the screen that attempt to trick the user into
typing a false SAS sequence and then revealing her sensitive
information to the attacker. This attack is not possible as long
as the user follows the instructions it received from the issuer
of the IOHUB and only types in secrets after using the correct
SAS value (such as Ctr+Alt+Del). Recall from Section V-B
that the SAS value is defined by the issuer of the IOHUB and
that the SAS keystrokes are always first intercepted by the
IOHUB. (The user is expected to trigger the SAS only when
there exists a QR code on the screen that is correctly signed by
the remote server. In case there is no QR code or a malformed
QR code on the screen, the IOHUB warns the user.)

Side-channel leakages. Even though, the IOHUB ensures that
no mouse or keyboard event arrives at the untrusted host
when the user executes some operation over the overlaid UI,
one can not rule out all side-channel leakages. Depending on
the application, the amount of time that the user spends or
the entry/exit position of the mouse pointer may reveal some
information to the attacker. IOHUB could allow the remote
server to specify additional policies in the specification to
prevent such side-channel attacks, e.g., a minimum amount
of time that the device should not forward any event to the
host after the user enters the overlay. We leave as future work
defining such policies and integrating them on PROTECTION.

Mode Switching. The host could remove the QR code when
the user is typing confidential data in the sensitive form. The
absence of the QR code makes the IOHUB to assume that
the secure session has ended, and the IOHUB forwards the
plaintext keystrokes and mouse movement to the host. To
prevent the leakage of the input data, the IOHUB continues to
overlay and operate on the overlay until the user clicks submit
or cancel (or any UI element that has a trigger capability).
This way, the IOHUB locks the UI from the attacker until the
user finishes her session.

C. Attacks toward IOHUB

In PROTECTION trust model, we assume that the IOHUB
is trusted. However, in the real-world, embedded systems are
often vulnerable to attacks as the attacker can use the connec-
tion interfaces to reprogram the IOHUB. (#1)It is also possible

11

Device

Arduino
Due

Arduino
Zero

Input
device

Raspberry
pi 4

HDMI
interceptor

Display

1

2
34

5

67
8 9

U
SB

 in
H

D
M

I o
u

t

(a) The figure shows the basic components and connections
between them in our PROTECTION prototype.

1

4

6 8

7

9

3
2

5

(b) PROTECTION prototype uses Arduino Due and Zero micro-
controller board and a Raspberry Pi 4 SBC. The highlighted
numbers correspond to the labels in Figure 9a.

Fig. 9: PROTECTION prototype. Figure 9a and 9b shows the
schematic and a photo of the PROTECTION prototype respectively.

to develop the IOHUB using formally verified languages such
as embedded Rust. However, we consider making a security-
hardened IOHUB is engineering intensive and out-of-scope of
this paper.

Downgrade attack. The host can block the initial QR code
from the server to the IOHUB. By doing so, the host forces
the server to downgrade the security of the webpage, i.e.,
not serving the PROTECTION JS. For integrity, this is not a
security threat as the server does not accept any input from the
host that is not signed by the IOHUB. Hence, the downgrade
attack works as a denial of service, which is out-of-scope of
this paper.

VII. PROTECTION PROTOTYPE

In this section we provide an overview of our PROTEC-
TION prototype implementation. Due to space constrains full
implementation details are given in Appendix B.

Setup. Here, we describe our prototype implementation of
PROTECTION as an auxiliary device. Figure 9 depicts the
PROTECTION prototype in two parts: Figure 9a shows the
block diagram of our prototype with various components and
connections, and Figure 9b shows a photo of the actual proto-
type that highlights all the components described in the block
diagram. The prototype IOHUB is connected to a desktop
computer with 3.40 GHz Intel Core i7-6700 processor with 8
GB RAM running Ubuntu 18.04.2 LTS. The IOHUB uses off-
the-shelf devices and has the following components (we use
the same numbering as shown in Figure 9a and Figure 9b):

(i) Computing component. We use a Raspberry Pi 4 (±)
to implement the computing component that executes all
the IOHUB logic that includes analyzing the HDMI frames,
rendering the overlays, executing the TLS protocol, etc. One
could use an ASIC to further improve the performance and
reduce the code base of the component. The Pi is connected
to the display over HDMI (´) interface. The code base of the
Pi primarily consists of Python and Java.
(ii) Input interceptor. The input interceptor is composed

of an Arduino Due (®) and an Arduino Zero (¯) that is
connected to the input device over USB () interface. The
input interceptor has a USB out interface that connects to the
host (°) that relays all the user inputs to the host.
(iii) HDMI interceptor. The HDMI interceptor (²) is imple-

mented using a B101 HDMI to CSI-2 Bridge [28] that takes
the HDMI channel (³) from the host and convert it to the
camera input signal to the Raspberry Pi 4.

VIII. PROTOTYPE EVALUATION

We evaluate the performance of our prototype by measur-
ing the overheads introduced by PROTECTION to the system
and whether they influence the user’s interaction. Initially, we
measure the default latency introduced by IOHUB when the
user interacts with applications that do not require protection.
Table II provides the relevant latencies and the accuracy of
the pointer detection. The delay in forwarding keystrokes
is 170 µs, and for frames is 21.76 ms. This allows the
IOHUB to achieve the maximum display frame rate of 47.69
per second (e.g., most of the movies are shot and shown
in 24-30 fps). However, an optimized implementation of
the technique to encode information in the HDMI frame
would reduce the processing time of a frame significantly and
increase further the frame rate as a result. The B101 HDMI to
CSI HDMI interceptor has a hardware limit of 25 frames at
1080p resolution. (#12)We report 0.997 accuracy of the pointer
detection mechanism that involves image analysis and pointer
motion tracking. The accuracy is evaluated from 4196 captured
frames. We observe that the misdetection happens only when
the pointer is not completely visible, i.e., the pointer is on the
border of the screen and the OS displays it partially. Note that
one could improve the logic of IOHUB to run the adjustment
phase (see Section IV-C) only when the pointer is within the
screen completely.

Our prototype of PROTECTION does not require the user
to install any additional software in her machine to facilitate
the communication between the remote server and the IOHUB.
Instead, the IOHUB communicates with the remote server by
using the host as an untrusted transporter. Therefore, we start
by measuring the delay of sending data from the device to the
host and vice versa:

IOHUB → host. The IOHUB transmits data (encrypted) to
the host by simulating keystrokes. In our system, IOHUB
sends the keystrokes in a chunk of 256 bytes of data to the
host. The keystroke has an average latency of 5 ms, which is
undetectable by humans.

Host → IOHUB. The host sends data to the device by
encoding them into the HDMI frame. The QR-code is gen-
erated locally in the browser and displayed on the screen. For
a specification of a form with two/four elements, QR-code

12

Security Requirements
{

R1
R4 R2 R3a/b

Category Solutions

Trust Assumption IO Security Features Usability
Hardware Software Input Output

Requires External Isolated Hypervisor/ Keyboard Pointer Touch Display No PnPTEE trusted HW API/Drivers OS SI
Shadowcrypt [29] 4 4 4 4
Browser-based [30] 4 4 o 4
InContext [18] 4 4 4
Overshadow [18] 4
Virtual ghost [31] 4
TrustVisor [32] 4
Inktag [33] 4
Splitting interfaces [34] 4 4 4

SP3 [35] 4 4
SGX IO [4] 4 4 4 4H

yp
er

vi
so

r/
O

S-
ba

se
d

SchrodinText [36] 4 4 4
BASTION-SGX [37] 4 4 4
Slice [38] o
TrustOTP [39] 4 4 o 4
VeriUI [40] 4 4 o o
AdAttester [41] 4 4 o o
TruZ-Droid [17] 4 4 4 o 4
TrustUI [42] 4 o o o 4
VButton [16] 4 4 o 4 4
CARMA [43] 4 4 4
PROXIMITEE [11] 4 4 o 4 4 4

T
E

E
-b

as
ed

Fidelius [9] 4 4 4 4 o
FPGA-based [44] 4 4 4
IntegriKey [8] 4 o o 4 4

E
xt

er
na

l
H

W

Terra [45] 4 o

PROTECTION 4 4 4 4 4 4 4

4 requires/supports o partially requires/supports

TABLE I: Summary of existing trusted path solutions by their trust assumptions, security features, and usability. A lower trust assumption,
a high number of security features and high usability are desired from a trusted path solution. SI and PnP stand for security indicator and plug
and play respectively. The table also categorizes the trust assumptions, IO security features and usability in-terms of the required security and
functional properties that we list in Section II-C).

Operation Average time/accuracy
Detecting mouse pointer (A) 1.76 ms
Detection QR code (B) 14 ms
Decoding QR code + Overlay (C) 6 ms
Effective display latency (A+ B + C) 21.76 ms
Mouse latency 250 µs
Keyboard latency 170 µs
#12 Image analysis accuracy of mouse pointer 0.997

TABLE II: IOHUB performance. The table shows the latency and
accuracy corresponding to PROTECTION prototype operations.

generation takes 14 ms. The IOHUB detects the QR-code,
decodes it, and creates the overlay. This process takes 6 ms
for the same form considered previously.

Initial Page Load. The first time the user visits a web
page that employs PROTECTION, the remote server, and
the IOHUB should exchange a cryptographic key to protect
the communication. This step requires only one additional
xmlHttpRequest to the server; therefore the delay is rel-
atively low. Initially, the browser encodes the server’s public
key into a QR-code that is decoded by the IOHUB, which
sends the response to the server by simulating the keystrokes.

Frame processing for mouse. IOHUB processes every frame
of the host for pointer detection. This takes 1.76ms, which
does not impact the frame rate. The image analysis routine
achieves an accuracy of 0.997.

Keystroke latency. The IOHUB intercepts all user’s
keystrokes and forwards them to the host or renders on the
screen. When rendering on the screen, the latency is 170 µs.

Projects LOC
Chromium (Google Chrome) [46] 25, 163, 547Browser Mozilla Firefox [47] 20, 928, 358

JS Engine Chrome V8 [48] 2, 009, 183
Firefox SpiderMonkey [49] 2, 908, 550
Ubuntu 19.10 w/o kernel 600, 712
Arch Linux w/o kernel 71, 188OS
Linux Kernel 36, 680, 915

IOHUB

HDMI interceptor + overlay 1, 911
USB stack 893
Crypto stack 3, 500
RPi tiny core Linux 121, 899

TABLE III: PROTECTION code-base comparison (#8)with respect
to some of the open-source browsers, JS engines and OSs.

Cursor latency. Similarly to keystrokes, the IOHUB intercepts
mouse events also. However, the latency of event forwarding
is 250 µs.

Codebase comparison. In Table III, we provide the code
base and executable binary sizes of IOHUB with respect to
some of the most popular open-source browsers, JavaScript
interpreter engines and OS’s. All of the codes are measured
with the cloc open-source code line counting tool. The table
shows that PROTECTION has a significantly lower code base,
resulting in a smaller attack surface.

IOHUB cost. (#1)We estimate that our IOHUB prototype costs
around 140 USD (Rpi4 = $35 + HDMI-CSI =$30 + Due = $35
+ Zero = $40). An integrated, mass-produced device would be,
of course, significantly cheaper.

13

IX. RELATED WORK

In Table I, we summarize the existing research work based
on their trust assumptions, IO security features, and usability.
Note that it is desirable to have a lower trust assumption,
higher security features, and higher usability. The trust as-
sumption is further refined into hardware trust assumption that
includes TEE and external trusted hardware, and software trust
assumption, which includes isolated device drivers/APIs and
trusted hypervisor/OS. The IO security features involve input
that includes keyboard, pointer and touch input, and output
that only includes the display. Lastly, the usability aspect is
divided into two, the requirement of security indicator (SI),
and if the solution supports plug-and-play (PnP). PnP implies
that the solution can be integrated into the existing system
without introducing any major changes into them and supports
different architectures and OS out of the box.
Interpreting the table. The top of the table provides the
required security and functional properties that are provided
by PROTECTION. We list these properties in Section II-C. The
trust assumption requires as minimum assumptions as possible
(property R4). High number of IO security features are more
desirable because of properties R1 and R2. The last category
that is the usability of a system (in terms of low cognitive load
on the users – R3a and R3b) can be improved if the security is
not dependent on a security indicator, and the system provides
a plug & play solution. Hence the systems with more entries
in this category have better usability.

X. CONCLUSION

PROTECTION provides a remote trusted path in the pres-
ence of an attacker-controlled host. The guiding principles
behind our solutions are that (i) user input and output integrity
cannot be considered separately, (ii) all user input modalities
must be protected simultaneously, and (iii) user input integrity
protection should not rely on user tasks that are prone to
habituation and easily forgotten. By following these principles,
we design a novel system that provide strong user input
integrity protection in the presence of powerful adversary that
controls the entire host platform.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
and our shepherd Kevin Butler. This research has been partially
supported by the Zurich Information Security and Privacy
Center (ZISC).

REFERENCES

[1] “X-600m | web enabled i/o controller,” https://www.controlbyweb.com/
x600m.

[2] “Inpen smart insulin delivery system | by companion medical.”
[Online]. Available: https://www.companionmedical.com/

[3] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune, “Building
verifiable trusted path on commodity x86 computers,” in 2012 IEEE
Symposium on Security and Privacy. IEEE, 2012, pp. 616–630.

[4] S. Weiser and M. Werner, “Sgxio: generic trusted i/o path for intel
sgx,” in Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy. ACM, 2017.

[5] A. Filyanov, J. M. McCuney, A.-R. Sadeghiz, and M. Winandy, “Uni-
directional trusted path: Transaction confirmation on just one device,” in
2011 IEEE/IFIP 41st International Conference on Dependable Systems
& Networks (DSN). IEEE, 2011, pp. 1–12.

[6] T. Weigold and A. Hiltgen, “Secure confirmation of sensitive transaction
data in modern internet banking services,” in 2011 World Congress on
Internet Security (WorldCIS-2011). IEEE, 2011.

[7] J. M. McCune, A. Perrig, and M. K. Reiter, “Bump in the ether:
A framework for securing sensitive user input,” in Proceedings of
USENIX Annual Technical Conference (USENIX ATC), Jun. 2006.
[Online]. Available: /publications/papers/mccunej_bite.pdf

[8] A. Dhar, D.-Y. Yu, K. Kostiainen, and S. Capkun, “Integrikey: End-
to-end integrity protection of user input,” Cryptology ePrint Archive,
Report 2017/1245, 2017, https://eprint.iacr.org/2017/1245.

[9] S. Eskandarian, J. Cogan, S. Birnbaum, P. C. W. Brandon, D. Franke,
F. Fraser, G. Garcia, E. Gong, H. T. Nguyen, T. K. Sethi et al., “Fidelius:
Protecting user secrets from compromised browsers,” in 2019 IEEE
Symposium on Security and Privacy (SP). IEEE, 2019.

[10] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel sgx kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium USENIX Security 18),
2018.

[11] A. Dhar, I. Puddu, K. Kostianen, and S. Čapkun, “Proximitee: Hard-
ened sgx attestation by proximity verification,” in Proceedings of the
Tenth ACM Conference on Data and Application Security and Privacy
(CODASPY ’20), 2020.

[12] A. Berry, “Wannacry malware profile,” May 2017. [On-
line]. Available: https://www.fireeye.com/blog/threat-research/2017/05/
wannacry-malware-profile.html

[13] M. Field, “WannaCry cyber attack cost the NHS £92m as
19,000 appointments cancelled,” The Telegraph, Oct. 2018. [On-
line]. Available: https://www.telegraph.co.uk/technology/2018/10/11/
wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/

[14] “Android protected confirmation: Taking transaction security to the
next level,” Oct 2018. [Online]. Available: https://android-developers.
googleblog.com/2018/10/android-protected-confirmation.html

[15] B. B. Anderson, A. Vance, C. B. Kirwan, J. L. Jenkins, and D. Eargle,
“From warning to wallpaper: Why the brain habituates to security
warnings and what can be done about it,” Journal of Management
Information Systems, 2016.

[16] W. Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and H. Guan,
“Vbutton: Practical attestation of user-driven operations in mobile apps,”
in Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2018.

[17] K. Ying, A. Ahlawat, B. Alsharifi, Y. Jiang, P. Thavai, and W. Du,
“Truz-droid: Integrating trustzone with mobile operating system,” in
Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 2018, pp. 14–27.

[18] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Wald-
spurger, D. Boneh, J. Dwoskin, and D. R. Ports, “Overshadow: a
virtualization-based approach to retrofitting protection in commodity
operating systems,” ACM SIGOPS Operating Systems Review, vol. 42,
no. 2, pp. 2–13, 2008.

[19] S. Egelman, L. F. Cranor, and J. Hong, “You’ve been warned: an
empirical study of the effectiveness of web browser phishing warnings,”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2008, pp. 1065–1074.

[20] J. Sobey, R. Biddle, P. C. Van Oorschot, and A. S. Patrick, “Exploring
user reactions to new browser cues for extended validation certificates,”
in European Symposium on Research in Computer Security. Springer,
2008.

[21] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world attacks on
deep learning models,” arXiv preprint arXiv:1707.08945, 2017.

[22] C. Sitawarin, A. N. Bhagoji, A. Mosenia, P. Mittal, and M. Chiang,
“Rogue signs: Deceiving traffic sign recognition with malicious ads
and logos,” arXiv preprint arXiv:1801.02780, 2018.

[23] “User interface security and the visibility api.” [Online]. Available:
https://www.w3.org/TR/UISecurity/

[24] L.-S. Huang, A. Moshchuk, H. J. Wang, S. Schecter, and C. Jackson,
“Clickjacking: Attacks and defenses,” in Presented as part of the 21st
USENIX Security Symposium (USENIX Security 12), 2012, pp. 413–
428.

14

https://www.controlbyweb.com/x600m
https://www.controlbyweb.com/x600m
https://www.companionmedical.com/
/publications/papers/mccunej_bite.pdf
https://eprint.iacr.org/2017/1245
https://www.fireeye.com/blog/threat-research/2017/05/wannacry-malware-profile.html
https://www.fireeye.com/blog/threat-research/2017/05/wannacry-malware-profile.html
https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/
https://www.telegraph.co.uk/technology/2018/10/11/wannacry-cyber-attack-cost-nhs-92m-19000-appointments-cancelled/
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://www.w3.org/TR/UISecurity/

[25] J. Lee, L. Bauer, and M. L. Mazurek, “The effectiveness of security
images in internet banking,” IEEE Internet Computing, Jan 2015.

[26] C. Marforio, R. Jayaram Masti, C. Soriente, K. Kostiainen, and
S. Čapkun, “Evaluation of personalized security indicators as an
anti-phishing mechanism for smartphone applications,” in Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems,
ser. CHI ’16. New York, NY, USA: ACM, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2858036.2858085

[27] “Badusb - on accessories that turn evil,” 2014.
[Online]. Available: https://srlabs.de/wp-content/uploads/2014/07/
SRLabs-BadUSB-BlackHat-v1.pdf

[28] Admin, “B101 hdmi to csi-2 bridge (15 pin fpc),” Dec 2016. [Online].
Available: https://auvidea.eu/b101-hdmi-to-csi-2-bridge-15-pin-fpc/

[29] W. He, D. Akhawe, S. Jain, E. Shi, and D. Song, “Shadowcrypt:
Encrypted web applications for everyone,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 1028–1039.

[30] Z. E. Ye, S. Smith, and D. Anthony, “Trusted paths for browsers,” ACM
Transactions on Information and System Security (TISSEC), 2005.

[31] J. Criswell, N. Dautenhahn, and V. Adve, “Virtual ghost: Protecting
applications from hostile operating systems,” ACM SIGARCH Computer
Architecture News, 2014.

[32] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“Trustvisor: Efficient tcb reduction and attestation,” in Security and
Privacy (SP), 2010 IEEE Symposium on. IEEE, 2010.

[33] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel,
“Inktag: Secure applications on an untrusted operating system,” in ACM
SIGARCH Computer Architecture News. ACM, 2013.

[34] R. Ta-Min, L. Litty, and D. Lie, “Splitting interfaces: Making trust be-
tween applications and operating systems configurable,” in Proceedings
of the 7th symposium on Operating systems design and implementation.
USENIX Association, 2006.

[35] J. Yang and K. G. Shin, “Using hypervisor to provide data secrecy
for user applications on a per-page basis,” in Proceedings of the fourth
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments. ACM, 2008.

[36] A. A. Sani, “Schrodintext: Strong protection of sensitive textual content
of mobile applications.” in MobiSys, 2017.

[37] T. Peters, R. Lal, S. Varadarajan, P. Pappachan, and D. Kotz, “Bastion-
sgx: Bluetooth and architectural support for trusted i/o on sgx,” in
Proceedings of the 7th International Workshop on Hardware and
Architectural Support for Security and Privacy, ser. HASP ’18. ACM,
2018.

[38] A. M. Azab, P. Ning, and X. Zhang, “Sice: a hardware-level strongly
isolated computing environment for x86 multi-core platforms,” in Pro-
ceedings of the 18th ACM conference on Computer and communications
security. ACM, 2011.

[39] H. Sun, K. Sun, Y. Wang, and J. Jing, “Trustotp: Transforming smart-
phones into secure one-time password tokens,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015.

[40] D. Liu and L. P. Cox, “Veriui: Attested login for mobile devices,” in
Proceedings of the 15th Workshop on Mobile Computing Systems and
Applications. ACM, 2014, p. 7.

[41] W. Li, H. Li, H. Chen, and Y. Xia, “Adattester: Secure online mobile
advertisement attestation using trustzone,” in Proceedings of the 13th
Annual International Conference on Mobile Systems, Applications, and
Services. ACM, 2015.

[42] W. Li, M. Ma, J. Han, Y. Xia, B. Zang, C.-K. Chu, and T. Li,
“Building trusted path on untrusted device drivers for mobile devices,”
in Proceedings of 5th Asia-Pacific Workshop on Systems. ACM, 2014,
p. 8.

[43] A. Vasudevan, J. McCune, J. Newsome, A. Perrig, and L. Van Doorn,
“Carma: A hardware tamper-resistant isolated execution environment on
commodity x86 platforms,” in Proceedings of the 7th ACM Symposium
on Information, Computer and Communications Security. ACM, 2012.

[44] A. Brandon and M. Trimarchi, “Trusted display and input using screen
overlays,” in ReConFigurable Computing and FPGAs (ReConFig), 2017
International Conference on. IEEE, 2017.

[45] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: A
virtual machine-based platform for trusted computing,” in ACM SIGOPS
Operating Systems Review. ACM, 2003.

[46] Chromium, “chromium/chromium,” Sep 2019. [Online]. Available:
https://github.com/chromium/chromium

[47] Mozilla, “mozilla/gecko-dev,” Sep 2019. [Online]. Available: https:
//github.com/mozilla/gecko-dev

[48] “V8 javascript engine.” [Online]. Available: https://chromium.
googlesource.com/v8/v8.git

[49] “Getting spidermonkey source code.” [Online].
Available: https://developer.mozilla.org/en-US/docs/Mozilla/Projects/
SpiderMonkey/Getting_SpiderMonkey_source_code

[50] [Online]. Available: https://www.w3.org/TR/2012/
WD-html-markup-20121025/

[51] S. Blake-Wilson and A. Menezes, “Authenticated diffe-hellman key
agreement protocols,” in International Workshop on Selected Areas in
Cryptography. Springer, 1998, pp. 339–361.

[52] “picamera.” [Online]. Available: https://picamera.readthedocs.io/en/
release-1.13/

APPENDIX

A. Proof for IO Integrity

In this appendix, we provide a formal proof of the follow-
ing property: without protecting both input and output integrity,
none of them can be achieved.

Interaction protocol. To simplify the proof, we model the
interaction between the user, the host, and the remote server
as a finite state automaton (FSA). The interactions between
the server (S), the user (U) and host (H) are depicted in the
FSA in Figure 10.

SHU

m[m′]

(I, [m′]) (I, [m′])

Fig. 10: Finite state machine that depicts the interaction between the
user (U), host (H) and the server (S).

S sends a message m to H. One can assume m to be the
HTML, JavaScript, and other data send from S as a HTTP
response. We denote [m] to be the render of m by the H.
As H is malicious, it can transform m to m′. Note that
the transformation is public knowledge and is deterministic.
If m 6= m′ then given [m] and [m′], S can determine
that [m] 6= [m′]. We denote the user input to be I , which
corresponds to a specific [m]. In this model, we simplify the
user input by assuming that the U only provides an input I
only after observing a message transformation [m]. The user
provides both her input I and transformation [m′] observed by
her to H. The interaction loop between H and U can continue
until U finishes her input. After every input H hands over new
message transformation to U (either result of the input or new
message from S or both). Once the user provides all her inputs,
H send the pairs (I, [m′]) to S.

We also define two mappings:

Input() : [m]→ I

Transform() : m, I → [m′], ∃i ∈ I : i = φ

15

http://doi.acm.org/10.1145/2858036.2858085
https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://srlabs.de/wp-content/uploads/2014/07/SRLabs-BadUSB-BlackHat-v1.pdf
https://auvidea.eu/b101-hdmi-to-csi-2-bridge-15-pin-fpc/
https://github.com/chromium/chromium
https://github.com/mozilla/gecko-dev
https://github.com/mozilla/gecko-dev
https://chromium.googlesource.com/v8/v8.git
https://chromium.googlesource.com/v8/v8.git
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Getting_SpiderMonkey_source_code
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Getting_SpiderMonkey_source_code
https://www.w3.org/TR/2012/WD-html-markup-20121025/
https://www.w3.org/TR/2012/WD-html-markup-20121025/
https://picamera.readthedocs.io/en/release-1.13/
https://picamera.readthedocs.io/en/release-1.13/

U H S

m

[m′]1

I1, [m
′]1

...

...
[m′]n

In, [m
′]n

I1, I2, ..., In

[m′]1, [m
′]2, ..., [m

′]n

Fig. 11: Protocol transcript between the S, U and H that shows one
trace from the FSM depicted in Figure 10.

Both of them are bijective.

One trace of the protocol transcript is depicted in Figure 11.
As described in the FSM, S receives traces of message trans-
formation ([m′]1, [m′]2, . . . , [m′]n) and corresponding inputs
(I1, I2, . . . , In). From these traces S could determine of all
the [m′]i are in proper form by verifying if [m]i = [m′]i.

Definition A.1. Input integrity Assume that S handed a
message m to H where the proper message transformation
is [m]. The host changes the message transformation to [m′]
where [m′] 6= [m]. We also define correct U input to be I
when H sends a correct message transformation [m] to U . We
define input integrity as the property where the S does not
accept input I ′ where I ′ 6= Ifrom U if the H changes the
message transformation.

Definition A.2. Output integrity Assume that S handed a
message m to H where the proper message transformation
is [m]. Output integrity defines that in all circumstances, U
receives the correct message transformation [m] from H.

Verification process. S checks ∀i = 1 . . . n

[m′]i = Transform(mi−1, Ii−1)

where I0 = φ.

Theorem 1. If U does not send all the transformations till
[m′]i corresponding to the input Ii, input integrity can not be
achieved.

Proof: If U does not attach all the transformation till
[m′]i, i.e., [m′]1, [m

′]2, . . . , [m
′]i−1, [m

′]i corresponding to
inputs I1, I2, . . . , Ii−1, Ii, then the server can not verify all the
transformations corresponding to the input. H could modify a
specific [m]x to influence U input.

Theorem 2. If the channel from U and S is not authenticated,
input integrity is not achievable. But the channel from S to U
does not require to be secure as long a U provides the message
transformation [m′]i corresponding to every input Ii.

Proof: The proof is trivial. If the channel from U to S is
not authenticated, any input provided by U can be manipulated

by H without a trace. Hence input integrity is not achievable.
As long as U sends message transformation along with the
input, a manipulated message transformation bt H would be
detectable by S (see Theorem 1).

Theorem 3. Ensuring output integrity also ensures input
integrity provided there is an authenticated channel from U
to S.

Proof: This proof is also trivial. As we describe in the
Definition A.1 and A.2, if all the message transform from H
[m′] = [m], and H always executes transform() properly,
the input integrity is preserved. As PROTECTION ensures
output integrity and all the input from the user is signed by
the IOHUB, PROTECTION preserves input integrity.

B. Implementation of PROTECTION Components

In the following, we provide the implementation details
of the PROTECTION components presented in the previous
sections.

QR code generation & UI specification. QR code generation
phase is executed by PROTECTION JS that transforms the
UI elements of a sensitive web form to a UI specification
encoded in a QR code (we use QRCode.js, a JavaScript library
to produce QR codes). Section IV-A provides the high-level
concept of generating the QR code from the webpage UI
elements. UI elements that require IO integrity protection
can be marked by the developers in the HTML source. As
illustrated in Figure 5, the HTML UI elements: ‘Sensitive
field 1’ and ‘Sensitive field 2’ have the additional
attribute protect=“true”.

The PROTECTION JS iterates through the HTML elements
that have the protect attribute enabled and extracts the
information such as the name of the label or the type of the UI
element. IOHUB uses preloaded size parameters to specify the
size of a text field, button, etc. in case the size is not explicitly
mentioned in the HTML source. One important attribute for a
UI element in the specification is the trigger. For example,
in Specification 1, the OK and the cancel buttons have an
attribute trigger. This attribute is Boolean can be either
true (corresponding to OK) or false (corresponding to
Cancel) value. The value true denotes that the OK button
can submit the values that are provided by the user. The false
attribute denotes that hitting the cancel button abort the form
altogether.

The QR code generation phase is between ¬ and in Fig-
ure 5 where the PROTECTION JavaScript snippet transforms
the UI elements to a UI specification language in a QR code
that can be interpreted by the IOHUB. The UI specification
corresponding to the HTML source (in Figure 5) is provided
in Specification 1. Note that the specification is highly flexible,
allowing adjustable size for the form, individual UI elements,
gaps between them, etc. This allows the IOHUB to faithfully
recreate the UI that is very close to the actual form UI that
the served by the web severer.

Bitmap generation. The IOHUB reads the QR code from
the HDMI frame and generate the UI overlay bitmap from it.
We have used the piCamera library to intercept the HDMI
frames and generate the UI on top of it. Our PROTECTION

16

Remote server’s
certificate
(Downstream
channel)

Certificate of the IOHub
(Upstream channel)

IOHub

1
2

3
4

Fig. 12: Establishing TLS. A snapshot of the key exchange web page
that is used to communicate the public certificates of the device and
the remote server.

prototype implements the most frequently used HTML input
elements [50] that are common in sensitive forms.

Detection of mouse pointer. Initially, when the system boots
up the IOHUB perform the calibration phase (see Section
IV-C1) to synchronize its coordinates of the pointer with the
host. The detection of the mouse pointer is implanted partially
on the raspberry pi 4 (± in Figure 9), while the mouse
intercepting is done in the Arduino Due (® in Figure 9). The
Due gathers the raw mouse data (in terms of displacement
measurements (∆xi,∆yi)) and sends them to the Pi over
Serial interface. To guarantee that the IOHUB and the
host interpret displacement events likewise, the Pi performs an
adjustment operation. This operation consists of the IOHUB
detecting the exact position of the host pointer in the HDMI
frame by analyzing a small square of the frame (200 x 200 px)
around its pointer coordinates. Considering that the IOHUB
gets raw HDMI frames and pointer images are static, we
use the lightweight template matching algorithm of the
OpenCV library for the detection.

Implementation of the upstream channel. The upstream
channel, i.e., the data from the IOHUB to the remote server is
transmitted using the PROTECTION JavaScript snippet that is
served by the remote web server. The PROTECTION JavaScript
snippet uses a hidden text field to accept data coming from the
IOHUB. The IOHUB emulates itself as a composite human
interface device (HID) when it is connected to the host.
The IOHUB emulates keystrokes that transmit encoded data
(base64) to the PROTECTION JavaScript snippet that is sent
to the remote server via XMLHttpRequest call.

Establishing TLS. For the IO confidentiality, the IOHUB
and server create a TLS channel. When the user opens up a
secure webpage, key exchange is the first step that takes place.
We assume that the remote server already has the IOHUB’s
certificate, or some offline registration takes place. An instance
of the key exchange protocol of PROTECTION is illustrated in
Figure 12. The flow of the key exchange mechanism is as the
following:

¬ The server delivers a web page with a QR code that
encodes the signed public key of the server (server hello in
TLS).
 The device captures every frame until it detects a QR

code. Then, it decodes the QR code and verifies the public

HDMI frame Cropped frame Detected cursor
Cursor

template

1 2 3 4

Fig. 13: Cursor detection on the HDMI frame. The figure shows
PROTECTION mouse pointer tracking. ¬ shows the captured HDMI
frame captured by B101 HDMI to CSI bridge. shows the cropped
HDMI frame based on the mouse position received by the IOHUB.
® shows the detected mouse pointer. For testing, we program the
IOHUB to put a rectangle around the pointer. ¯ shows one of the
pointer templates that we used in our OpenCV routine.

key and derives the shared secret using Diffie-Hellman proto-
col [51].
® The device then sends its signed public certificate to the

host, which forwards it to the server.
¯ The remote server gets the signed certificate from the

IOHUB, verifies it, and finally derives the shared secret.

HID Drivers. We use Arduino prototype development board
as the HID drivers. Figure 9b shows an Arduino Due, and a
Zero board where the Due connects to the HIDs via the native
USB port and the Zero relays the HID data to the Raspberry
Pi (RPi). The Due and the Zero boards are connected over
I2C interface. As both Due and Zero only have one native
USB port on each of them, we were forced to use two boards
as an HID interceptor and relay. The Zero relays the HID
signals both to the connected host (over native USB) and to
the RPi (over serial interface). The connection from the Zero
to the host is one way and emulates a composite HID. While
the connection between the Zero and the RPi is bidirectional.
The HID drivers are implemented using the native Arduino
keyboard and mouse library. On the RPi, no HID drivers
were needed as the RPi receives processed HID data from the
Zero (for the pointer: displacement over x and y-axis and for
keyboard, ASCII characters).

HDMI Interceptor, Relay and Overlay. The RPi along with
the Auvidea B101 HDMI to CSI bridge, acts as the HDMI
interceptor and relay. The B101 board converts HDMI signals
from the host as a camera input (via the CSI interface) to the
RPi. This allows the RPi to access the HDMI frames as a
stream of JPEG frames. The HDMI out of the RPi acts as the
relay that connects to the monitor. On the RPi, we use Picamera
API [52] to access the HDMI frames. The B101 is capable
of processing 25 frames at 1080p resolution. Hence, this is
the hardware bottleneck of our implementation. However, the
upcoming B112 board could solve this performance issue.

On the RPi, the overlay and HDMI out is implemented
using Java SWT. Using SWT, we create a full-screen window
that is shown on the monitor. The SWT class polls the HDMI
frames and process them as individual JPEG images via the
BufferedImage class. This allows the overlays to be drawn
on the HDMI images efficiently. The Java program uses a QR
code interpreter to extract the UI specification. Based on the UI
specification, it creates the geometrical shapes (corresponding
to the UI elements) and draw them on the frames. In the current

17

implementation of the PROTECTION, the UI elements such as
button, text-field, radio button etc. are preloaded in the IOHUB
memory. Note that the current implementation of IOHUB is
based on the RPi. But one could implement such functionality
on an FPGA, reducing the TCB even more.

Mouse Pointer Tracking. The pointer tracing is also executed
in the aforementioned Java program using simple object detec-

tion technique suppled by the OpenCV API. Figure 13 shows
one screenshot of the pointer detection. The Figure shows the
entire HDMI frame, the cropped frame of resolution 200×200
px (based on the mouse input data), the detected pointer in
the cropped frame and the cursor template that is used by the
object detection algorithm.

18

	Introduction
	Problem Statement
	Motivation: Secure IO with Remote Safety-critical System
	Analysis of Existing and Strawman Solutions
	Requirements of Security and Functional Properties

	System Overview & Main Techniques
	System and Attacker Model
	High-level Description of the System

	ProtectIOn for IO Integrity
	IOHub Overlay of UI Elements
	Focusing User Attention
	Continuous Tracking of Mouse Pointer in the HDMI Frame
	Calibration
	Pointer detection
	Overlay of the mouse pointer
	Coping with the disappearing pointer
	Handling different mouse cursors
	Handling mouse acceleration
	Entering/exiting secure mode with keyboard

	Protected User Interaction

	ProtectIOn for IO Confidentiality
	IO Operations
	Focusing User Attention

	Security Analysis
	Integrity
	Confidentiality
	Attacks toward IOHub

	ProtectIOn Prototype
	Prototype Evaluation
	Related Work
	Conclusion
	References
	Appendix
	Proof for IO Integrity
	Implementation of ProtectIOn Components

