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Abstract—Intermediary web services such as web proxies,
web translators, and web archives have become pervasive as a
means to enhance the openness of the web. These services aim to
remove the intrinsic obstacles to web access; i.e., access blocking,
language barriers, and missing web pages. In this study, we refer
to these services as web rehosting services and make the first
exploration of their security flaws. The web rehosting services use
a single domain name to rehost several websites that have distinct
domain names; this characteristic makes web rehosting services
intrinsically vulnerable to violating the same origin policy if not
operated carefully. Based on the intrinsic vulnerability of web
rehosting services, we demonstrate that an attacker can perform
five different types of attacks that target users who make use
of web rehosting services: persistent man-in-the-middle attack,
abusing privileges to access various resources, stealing credentials,
stealing browser history, and session hijacking/injection. Our
extensive analysis of 21 popular web rehosting services, which
have more than 200 million accesses per day, revealed that these
attacks are feasible. In response to this observation, we provide
effective countermeasures against each type of attack.

I. INTRODUCTION

While the architecture of the web follows the fundamental
Internet design framework — the End-to-End principle [53]—
several web services that deviate from the principle have
been developed to enhance the openness of the web. Typical
examples of such services include web proxy, web translator,
and web archive, which all aim to enhance the openness of
the web in the following ways: Web proxies enable a user to
access websites that are blocked by nations and institutes. Web
translators help a user to understand a web document written
in a foreign language that is difficult for the user to read.
Web archives enable a user to access a version of previously
published web content, which is not available presently due to
several reasons such as expiration, maintenance, or blocking.
All these technologies work on top of a middle box, which we
call “web rehosting” throughout this paper.

With the increase in the number of web users, web rehost-
ing services have become pervasive. For instance, according
to the web traffic statistics provided by SimilarWeb [55],

one of the most popular web proxy services, ProxySite [51]
had more than 20 million accesses per day in September
2019. The world’s top search engine companies such as
Google, Microsoft, Baidu, and Yandex offer web translator
services. Google website translator alone supports over 100
languages [22], [55] and serves over 80 million accesses
per day from all over the world. Through an analysis of
anonymized access logs collected from Wayback Machine
servers in February 2012, AlNoamany et al. [3] reported that
the service had about 82 million accesses per day. All these
web rehosting services have become popular because they
enhance the openness of the web. Furthermore, they are easy
to use, as a user can simply access such services by using a
normal browser and inputting a URL of interest; unlike other
alternative solutions such as an HTTP proxy1, VPN, or Tor,
they do not require setting changes and the installation of
special applications.

As web rehosting services offer enhanced web access
to various websites, an attacker has an incentive to exploit
them because users may input privacy-sensitive information
while accessing rehosted websites via a web rehosting service.
For instance, a user who uses a web proxy to access to a
webmail service needs to input the credential of the webmail
account via the web proxy. Similarly, content rewriting on
web rehosting services is useful for inciting and intimidating
users. An attacker may want to abuse the web translator to
create fake news by completely rewriting an original news
article while giving the fake article the appearance of the
translated version of the original article shown by the web
translator. Given this background, this work addresses the
generic security flaws of web rehosting services. To the best of
our knowledge, this is the first study to focus comprehensively
on the services with the property of rehosting websites and
identify the security problems in common. Based on the
observations found through an analysis of various rehosting
services, we propose a Proof-of-concept (PoC) attack model
and evaluate its feasibility.

The key idea of the attacks is to leverage the fact that
a single domain name provided by a web rehosting service
is used to access multiple rehosted websites; this “melting
pot of origins” situation allows an attacker to bypass the
filtration of the same origin policy (SOP). A malicious website
rehosted by an attacker to the web rehosting has the same

1In this paper, we call proxies with web-based interfaces (i.e., a type of web
rehosting services) web proxies and distinguish them from HTTP proxies.
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origin as the rehosted websites. The malicious site enables the
attacker to tamper, steal, and/or take control of the various
resources of a victim’s browser when the victim accesses to
rehosted websites. Using this vulnerability, we demonstrate
that an attacker can perform the following five attacks, which
exploit different resources: (1) persistent man-in-the-middle
(MITM) attack, (2) abusing privileges to access resources,
(3) stealing credentials, (4) stealing browser history, and (5)
session hijacking and injection.

Our attacks exploit both traditional and modern browser
features: service workers [23] and application cache (App-
Cache) [67] for (1), browser permissions for (2), password
manager for (3), localStorage [46] for (4), and cookies for
(4) and (5). We note that of the five attacks, the persistent
MITM attack, which is enabled by abusing the service worker
or AppCache, is quite powerful in the sense that it can be
executed even under a secured channel — HTTPS. In this
attack, an attacker, who should be outside the network path in a
realistic attack scenario, does not need to intercept the HTTPS
channel. Once a victim accesses a rehosted malicious website,
an attacker can manipulate any requests/responses made by
the victim and rehosted websites. The attack is sustained until
the browser data is manually cleaned up; hence, the attack is
persistent.

To verify the feasibility of the attacks, we collected 21
popular web rehosting services and tested whether or not
these web rehosting services are vulnerable to the attacks.
We found that 18 services were vulnerable to at least one
of the attacks. The persistent MITM attack was effective on
13 web rehosting services, including prominent services such
as Google Translate, Wayback Machine (web archive), and
Hide My Ass (web proxy). We also revealed that around 40%
of the top-10K websites including sensitive categories (e.g.,
porn, dating, and piracy) had a unique fingerprintable record
in their cookie and localStorage, implying that the browser
history theft, which leverages fingerprints, will succeed when
these websites are accessed by a victim via a web rehosting
service.

The contributions of our study are summarized as fol-
lows:

• This is the first study to shed light on the security flaws of
web rehosting services, which offer enhanced accessibility
to various web services.

• We present five attacks derived from the vulnerability in-
trinsic to web rehosting services.

• We demonstrate the feasibility of the attack through the
extensive analysis of 21 web rehosting services.

• We provide effective countermeasures against the attacks.

The remainder of the paper is organized as follows: Sec-
tion II presents a background of the web technologies targeted
in this study. In Section III, we present the threat model and
the descriptions of derived attacks under the threat model.
Section IV demonstrates the feasibility of attacks through
experiments using 21 of the popular web rehosting services.
Section V discusses the coverage of our study, human fac-
tors, and ethical considerations. Section VI presents effective
countermeasures against the threats. In Section VII, we review
related works in comparison with ours. We conclude our study
in Section VIII.
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Fig. 1. Overview of web rehosting services.

II. BACKGROUND

In this section, we review the background of web technolo-
gies that are targeted in the proposed attack.

A. Web Rehosting in the Wild

Figure 1 presents a high-level overview of web rehosting
services. Upon receiving a request from a user to access a
website, the web rehosting service fetches the content of the
website on behalf of the user, transforms the content following
the context of the service, and presents the transformed content
to the user. Most web rehosting services with this character-
istic can be classified into three categories: web proxy, web
translator, and web archive (several exceptions are discussed
in Section V-A). While web rehosting services are used for
various purposes, their usage is common — a user simply
accesses a web rehosting service and inputs a URL of interests.
The simplicity of the web rehosting services has made it
possible for many people to use it easily. Besides, the services
are available to people who are non tech-savvy, people on a
network with limited ports, and even people using a shared
PC at libraries or schools. These advantages well explain the
reasons why other tools such as Tor or VPNs, which require
a change of setting and/or installation of a special application,
may not be adopted as an alternative solution under certain
circumstances.

Table I summarizes the 21 web rehosting services we
studied in this work. The list contains 11 web proxy services,
7 web translator services, and 3 web archive services. The
estimated number of daily accesses is over 200 million in total
according to SimilarWeb [55], implying that these services
are widely used. Of the 21 services, only three services
have not adopted the HTTPS scheme as of September 2019.
Note that we anonymized two services at the request of their
providers: Service-α denotes web-proxy services using an
open-source software as the backend system. The software has
been redistributed by a third party and has kept unmaintained
for several years. Service-β represents a web translator which
is popular in a certain country.

B. Advanced Web Features

In this section, we describe the advanced web features
that are targeted by attacks that compromise web rehosting

2These web translator services except for Weblio and PROMT Online have
two separated domain names for website translation and text translation. We
only showed the data for the website translation.
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TABLE I. A LIST OF WEB REHOSTING SERVICES EXAMINED IN THIS
STUDY. SERVICE-α AND SERVICE-β HAVE BEEN ANONYMIZED AT

REQUEST OF THEIR PROVIDERS.

Category Rehosting Service Scheme #Accesses / Day [55]
ProxySite [51] HTTPS 20.14M
Hide My Ass! [25] HTTPS 4.64M
Hide me [24] HTTPS 4.49M
Sitenable Web Proxy [56] HTTPS 2.50M
FilterBypass [14] HTTPS 1.26M

Proxy ProxFree [50] HTTPS 1.18M
toolur [61] HTTPS 0.92M
hidester [26] HTTPS 0.76M
GenMirror [16] HTTPS 0.41M
UnblockVideos [63] HTTPS 0.38M
Service-α HTTP/S –
Google Translate [20] HTTPS 80.45M
Bing Translator [41] HTTPS 2.62M
Weblio [68] HTTPS 2.30M

Translator2 PROMT Online [49] HTTP 0.58M
Service-β HTTPS –
Yandex.Translate [70] HTTPS 0.18M
Baidu Translate [4] HTTP N/A
Wayback Machine [30] HTTPS 45.42M

Archive Google Cache [19] HTTP/S 41.50M
FreezePage [15] HTTP N/A

services.

Service Worker. A service worker [23] is a modern web
feature for both desktop and mobile platforms. It is supported
by major browsers such as Chrome, Edge, Safari, Firefox, and
Opera. It is an event-driven web worker written in JavaScript.
It works independently with the main browser thread and
provides rich features such as background data synchronization
and push notification handling. A notable feature of a service
worker is that it can proxy all the requests and responses
between a web client and servers, and modify the content.
Thus, it offers quite powerful capabilities.

A service worker inherently implements strong security
constraints to prevent its powerful capabilities from being
exploited. First, it only works on web services that are op-
erated in a secure context, i.e., HTTPS or local. Second, the
service worker, which ensures compliance with the SOP, is
associated with the origin and URL path and only operates
on a URL whose path contains the service worker script or
the lower. Accordingly, if a web server environment sep-
arates operation areas by their subdomain names or URL
paths like generic hosting services do, one cannot register a
service worker that targets a website that is operated under
the same web server but has a different subdomain name
or URL path. Finally, a browser requires that the MIME
type of the service worker script be specific to JavaScript,
text/javascript, application/javascript, and
application/x-javascript; otherwise, it does not reg-
ister the service worker.

Application Cache. The HTML5 standard provides an ap-
plication caching mechanism (AppCache [67]) that allows a
web application to run offline. This feature has the following
three advantages: (1) Offline browsing — users can browse
websites even when they are offline. (2) Speed — as the
cached resources reside in storage of browsers, they are loaded
quickly. (3) Reduced workload — a browser downloads only
changed resources from the server; hence, the cache mech-
anism reduces the workload of the network and server. To
achieve (1), the offline browsing AppCache provides a cached
alternative resource instead of a fallback page displayed due

to network or server errors.

Since the HTML 5.1 standard was released in November
2016, AppCache has been deprecated [67]. It is recommended
that developers use the service worker API as an alternative
solution. However, as of September 2019, AppCache still
works with the latest versions of browsers, including Chrome,
Firefox, Opera, IE, and Safari. The constraints of AppCache
are similar to those for a service worker. The chief difference
is that AppCache works independently of paths for pages on
the same origin.

Browser Permissions. In HTML5, web browsers support
accessing various resources such as geolocation, camera, mi-
crophone, and notifications. Access to these resources re-
quires permission through user interaction, and a permission
is granted to each resource for the realms with the same
origin [65]. As with the features shown above, this access
control assumes that a different website runs on a different
domain name. However, the access granted via a web rehosting
service violates this assumption.

Browser-based Password Managers. Presently, major
browsers such as Chrome, Firefox, Opera, IE, and Safari all
come with a built-in password manager. In general, a password
manager works in the following manner. First, a user visits a
website and enter a password to be authenticated to a service
running on the website. Then, the browser will ask the user
whether or not to save the password. If the user permits saving
of the password, the browser will store it on the user’s device
or associated database running on cloud. When you revisit
the website later, the browser autofills the stored password.
As the password managers attempt to identify the password
associated with a website by checking the domain name of
the website, web rehosting services, which use a single domain
name to host multiple websites, could violate the fundamental
assumption made by the password managers, i.e., different
websites should have different domain names.

C. Pitfalls of Cookies

Finally, we present several pitfalls of cookies that lead to
their exploitation by attacks.

Access from JavaScript. Cookies written in HTTP headers
have an HttpOnly flag. If this flag is set to true, the cookie
cannot be accessed from the JavaScript. However, for most
cookies handled by web rehosting services, the flag is set
to false, implying that cookies set when a victim visited a
malicious website can be accessed by the JavaScript running
on the malicious website. Meanwhile, cookies written by a
JavaScript can be accessed by another JavaScript.

Session Cookie. In general, by leaving the expiration date
unset, a cookie is treated as a session cookie [44]. Technically,
a session cookie should disappear when a browser ends the
session. In practice, however, configuring the “Continue where
you left off” setting in a browser keeps the session cookie
alive. As we will show in Section IV-C, some browsers set
this as the default during installation. Besides, in the mobile
platforms, the session cookie does not disappear automatically
even when a browser ends a session. Thus, deploying session
cookies is not a countermeasure against attacks that exploit
cookies.
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Fig. 2. Origin unification that occurs when web pages are rehosted

Cookie Bomb. Web servers deny requests with request headers
that are too large, e.g., the maximum size in Apache is 8,190
bytes by default. If a browser has many and large cookies
for a website, it will always return a server error, as the
cookies are attached to the request header. Homakov [28]
named the DoS attack resulting from this behavior as Cookie
Bomb. We will demonstrate in section III-B1 that by combining
it with the ability of AppCache to rewrite fallback pages, a
more advanced attack can be established against users of web
rehosting services.

III. THREAT MODEL AND ATTACKS

In this section, we first present a threat model based
on origin unification, which is a property common to web
rehosting. We then propose five attacks targeting web rehosting
users under our threat model.

A. Threat Model based on Origin Unification

The mechanism used by web rehosting to handle web pages
of different domain names is shown in Figure 2. Each origin
of a web page is converted into the same origin as the web
rehosting service. The origin contains a schema, domain, and
port. The SOP, the major principle of web security, restricts a
document or script loaded from one origin to interact with a
resource from another origin [45].

Because of the SOP, a script placed on the page with
evil.example was not able to access the resource stored
by pages with a.example and b.example. Given pages
with different domain names, however, web rehosting re-
hosts the pages under a single domain name; hence, this
mixture of origins makes the SOP ineffective in rehosted
pages. In general, services that concern SOP violation adopt
the sandbox mechanism to isolate the domain name of
the service itself (web-rehosting.example) from the
sandboxed domain name for untrustworthy rehosted pages
(rehosted.example). We argue that the SOP problem
still remains; among rehosted pages in the sandboxed domain
name (rehosted.example) a script of a certain page still
affects resources of other pages, while the browser resource
in web-rehosting.example is isolated from that of
rehosted.example owing to the SOP.

We assume that an attacker first rehosts the prepared
page with the malicious script on the web rehosting service
that has the aforementioned problem. The attacker inputs

evil.example to the web rehosting service; then, a URL
like https://rehosted.example/rehost?url=
https://evil.example is generated. Next, the attacker
induces the victim user to access that rehosted malicious page
through the conventional web attack scenarios (e.g., drive-
by download, phishing, and cross-site request forgery). The
attacker can efficiently attract victims by using malvertising,
spam email, and social media posts with the link to the re-
hosted malicious page. Note that some web rehosting services,
which prohibit hotlinking (i.e., direct link to the rehosted page)
by validating referrers or HTTP sessions, make the attack
difficult3. Finally, the attack is triggered when the victim user
accesses the generated URL.

To make the attack more efficient, attackers can use a
landing page embedding multiple iframe tags pointing to
malicious pages rehosted by various web rehosting services.
With a single visit to that page, the victim user becomes
susceptible to attacks targeting multiple web rehostings. The
landing page does not need to be rehosted. There are several
options for impersonating a domain name: wrapping by a
shortened URL or redirect service and injection to legitimate
sites by XSS and website falsification. These techniques are
not unique to our attacks, but are generally used for deceiving
web users.

In this study, we provide novel attacks targeting web
rehosting services that leverage both traditional resources such
as cookies and the recent powerful resources of HTML5 and
progressive web apps (PWA), which caused unexpected usage
of resources when web rehosting architecture was designed.

B. Attacks against Web Rehosting

Based on our threat model, we propose five attacks widely
applicable to web rehostings. We first summarize these attacks
in Table II. Our attacks affect both past and future activities of
the victim visit to the rehosted malicious page. We classified
these attacks into two types: exploiting resources to know what
web rehosting users have read/written before now (i.e., before
visit), and parasitizing resources to monitor and tamper with
the victim’s browser from this time (i.e., after visit).

We explain each of the five attacks as follows.

1) Persistent MITM: This is a new kind of MITM attack
that works persistently after being attacked by an off-path
attacker by exploiting service workers or AppCache. We sum-
marize the differences between a service worker and AppCache
in Table III.

We found that an attacker can register a malicious service
worker on the origin provided by web rehosting services.
Listing 1 shows an example of a general HTML to register
a service worker. In this case, sw.js under the root path
(/) is registered corresponding to the origin of this HTML
(same as the origin of sw.js). An attacker can implement
the functionality into sw.js, which reads and rewrites web
requests and responses. Listing 2 shows how to register a ma-
licious service worker on the origin provided by web rehosting
(rehosted.example). We note that a service worker on a

3If the victim user accesses the rehosted malicious page via another rehosted
page, the attack still works.
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TABLE II. ATTACKS AGAINST WEB REHOSTING SERVICES. IMPACTED TIMING INDICATES WHETHER AN ATTACK IS CARRIED OUT BEFORE OR AFTER
THE TARGET USER’S VISIT TO A MALICIOUS SITE.

Attacks Exploited Resources Impacted Timing Assumption of User Behavior
Persistent MITM Service Worker, AppCache after visit (none)
Privilege Abuse Camera, Microphone, Location, Notification, etc. both gave permission at any rehosted website
Credential Theft Password Manager both saved password at any rehosted website
History Theft Cookie (written by JavaScript), localStorage before visit (none)
Session Hijacking and Injection Cookie (written by HTTP header) both is logged in (hijacking)

Web
Rehosting Original 

website

Malicious SW

Attacker
Malicious 
website

Request rehosted 
malicious page

Request

Respond with
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Fig. 3. Overview of the attack abusing service worker

certain origin, i.e., rehosted.example, cannot be regis-
tered from a page on another origin, i.e., evil.example.
When the target visits the rehosted malicious page as we
presented in our threat model, the malicious service worker
script is registered and it begins the persistent MITM attack
because the origin of the service worker script is the same as
that of the page the victim visited.

Listing 1. Code to register service worker
1 <script>
2 if ('serviceWorker' in navigator) {
3 navigator.serviceWorker.register('/sw.js

')
4 .then(function (registration) {
5 }).catch(function (error) {
6 // registration failed
7 });
8 };
9 </script>

Listing 2. How to assign the rehosted service worker. The origin of this
HTML and sw.js is rehosted.example.
1 navigator.serviceWorker.register('https:

//rehosted.example/rehost?url=https:
//evil.example/sw.js')

The overview of the attack abusing a service worker is
shown in Figure 3. An attacker rehosts the malicious page
that contains the above HTML to register a malicious service
worker on a victim user. Once a victim user visits the rehosted
malicious page, the malicious service worker compromises
the victim’s browser and permanently compromises all web

communications via that web rehosting. Therefore, the victim’s
sensitive information is leaked to the attacker as long as
the victim uses that web rehosting. The service worker can
perform diverse attack scenarios, such as modify the nuance
of new articles, replace movies, inject ads, display a phishing
page, and replace downloaded files with malware. While
this persistent MITM attack gives attackers almost the same
benefits as the traditional MITM attack, the persistent MITM
attack is more powerful for the following reasons: there is no
need to directly intercept communications on the network path,
permanent eavesdropping once the service worker is registered
occurs, and HTTPS-enabled pages are affected. Unfortunately,
current browsers do not have an easily understandable user
interface to check registered service workers. To determine
whether the service worker is registered, a user should open
the developer console and carefully inspect the setting of
the service worker. As we mentioned in Section II-B, a
service worker has restrictions that ensure secure execution.
We present, in Section III-C, a method to circumvent the
restrictions by leveraging the rehosting rules of web rehosting.

AppCache also enables the attacker to perform a persistent
MITM attack without a service worker. The procedure of the
attack using AppCache is similar to that using a service worker.
The attacker first rehosts a malicious manifest file and then
rehosts an HTML file including the URL of the rehosted
manifest file. At this time, the attacker writes the fallback rule
in the manifest file, which lists two URIs: the first is the page to
be rewritten (wildcard available), and the second is the fallback
page as a Listing 3:

Listing 3. AppCache Manifest File to replace fallback pages
1 CACHE MANIFEST
2
3 FALLBACK:
4 * /rehost?url=https://evil.example/replace.

html

The attacker, in the rule, defines pages to be rewritten and
the rehosted malicious page for rewriting. Both URLs must be
relative and in the same origin. Owing to using a fallback rule,
AppCache can only rewrite fallback pages to return an error
status code (e.g., 400, 403, 404, and 500). However, by writing
huge cookies to the browser of the victim on the rehosted
malicious page, the attacker can force all requests from the
victim to the web rehosting server to fall back (similar to the
Cookie Bomb in Section II-C). The attacker tampers all the
pages visited by the victim via the web rehosting service, even
with AppCache.

As we described in Section II-B, the scope of AppCache
(i.e., the origin) is wider than that of service workers (i.e.,
the origin and the path), so AppCache may be effective for
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TABLE III. COMPARISON BETWEEN SERVICE WORKERS AND
APPCACHE

Resource Service Worker AppCache
text/javascript

MIME-Type application/javascript text/cache-manifest
application/x-javascript

Origin scope - Same origin - Same origin
Path scope - Same and lower directory - Any path

of SW script
Page scope - Any page - Fallback page

- Any page
(with Cookie Bomb)

Fig. 4. Example of location permission request on a (legitimate) rehosted
page in Wayback Machine.

web rehostings for which an attack using a service worker is
unsuccessful. The scope indicates the range of pages where a
service worker or AppCache work.

2) Privilege Abuse: Web pages sometimes request for
permission to make use of the hardware resources of a web
user such as a camera or GPS, even if the page is rehosted. The
permission corresponds to the origin. Therefore, in the case of
web rehosting, the permission is shared with all the rehosted
pages. Figure 4 shows an example of a location permission
request when a user visits a legitimate website rehosted on
Wayback Machine. Once the user clicks “Allow,” an attacker
can divert the permission by using the rehosted malicious
page later. In other words, the attacker can stealthily access
resources (e.g., GPS, camera, and microphone) previously
permitted on other rehosted benign pages.

Moreover, the attacker can distribute Web Push notifica-
tions by combining the malicious service worker with the
permission for the notification. In such a case, while the
browser process is running, there is a risk that the browser will
always receive the Web Push notifications from the attacker.
The notifications can contain messages for phishing, harmful
images, and URL links to malicious websites [36].

This attack does not affect certain web rehosting services
where a rehosted page is loaded in iframe and its domain is
different from that for the top-level browsing context. In this
case, iframe’s sandbox mechanism automatically denies any
permission requests without a user’s interaction; hence, the
attack always fails.

3) Credential Theft: The credentials stored in the
browser’s built-in password manager4 correspond to the origin
of the page. When a browser access a certain page, credentials
corresponding to the origin of the page are automatically input
to the login form by the autofill function of the password
manager. There are a lot of pages of originally different
services on web rehosting. Once a user logs into Facebook

4Though details are omitted owing to space limitations, we confirmed that
our attack also works on third-party password managers that have an autofill
function such as Lastpass [35] and DashLane [11] in the same manner.

or Twitter via web rehosting and saves the credentials in
the browser, the password manager automatically fills the
credential in the form when the user accesses the rehosted
malicious page with the form for the ID and password. By
using malicious JavaScript, the attacker can steal the credential
that is input to the form even if it is not submitted to the page.
We note that whether password manager autofill credentials
depends on not only the origin but also the structure of the form
(e.g., string in the action attribute) to be filled [54]. However,
the attacker can construct an ideal form in rehosted malicious
pages that satisfy the conditions for the browser to autofill
credentials.

This attack is successful on mainly web proxy services
because they should support login function for rehosted pages.
The services that require users to log into the service to browse
content like Facebook are often subject to state-sponsored
censorship. The most popular web proxy service we examined
advertises the ability of that service to circumvent censorship
against Facebook. Therefore, our assumption that the user logs
into the service through a web proxy is realistic. We discuss
the feasibility of this attack in detail in Section V-B.

4) History Theft: A JavaScript code using cookies and
localStorage is common among modern websites. The data
is separately stored in each origin, so rehosted pages conse-
quently share the data in cookies and localStorage. An attacker
can abuse such data for fingerprinting visited websites; then,
a victim user’s browsing history is stolen by the attacker.

The data usually consists of the key–value pair. The
characters of the key used in cookies or localStorage are
statically defined in each website, and the characters of the
value are often dynamically assigned. Therefore, we use the
key for fingerprinting. We empirically found that value in
localStorage in a certain page is stored in a JSON format.
If the JSON data has an associative array structure, the
attacker can recursively parse it and extract additional keys
for fingerprinting.

We found that the expiration time of cookies is usually
set as the time generated by adding a certain period (e.g., one
month) to the time of website access. For a page that uses such
a cookie, an attacker can also possibly infer the accessed time
of a target user from the expiration time of the cookie. The
effectiveness of the fingerprinting approach will be examined
in Section IV.

5) Session Hijacking and Injection: As we explain in
detail later in Section III-C, a web proxy relays the cookies
in the HTTP header to transparently ensure HTTP sessions
between the browser and original page. A web proxy attaches
a newly issued cookie with the HTTP header from the rehosted
page. When a user logs in to a certain service through a
web proxy, the user’s browser stores the cookie newly issued
by the web proxy. The attacker can steal this cookie and
hijack HTTP sessions of the original page from the rehosted
malicious page using JavaScript. The cookies used in history
theft described in the previous subsection are written using
JavaScript and those used in this attack are written using HTTP
header; however, both can be stolen using JavaScript. Even
though setting the HttpOnly flag on the relayed cookie is
effective as a countermeasure against this attack, most of the
web rehostings do not adopt it. Note that a session cookie does
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not work as a countermeasure, as mentioned in Section II-C.

An attacker can also inject a session into the victim’s
browser and force the victim to log in to the account prepared
by the attacker. This concept, session injection 5, is useful
for tracking the victim’s future behavior. For example, Google
stores the search history log of google accounts on the user
activity page. Video sites and shopping sites automatically
record the history log of content viewed by users like YouTube
and Amazon for each account. Thus, such a log indicates the
victim’s online behavior, which can be retrieved at any time
by the attacker.

Session hijacking only applies to users who actively log
in to a web service through web rehosting, whereas session
injection applies to users who do not log into the service on
their own will. We note that the victim may suspect the session
injection because they will browse the service while logging
into a strange account prepared by the attacker.

C. Rehosting Rules

Attacks described in Section III-B strongly depend on the
rules adopted by web rehosting services; we call such rules
rehosting rules, and they include the mechanism used by a
web rehosting service to rewrite a URL, the file type that can
be rehosted, and how the browser resources are handled. We
introduce commonly adopted rehosting rules and how attackers
abuse these rules to manipulate browser resources.

URL Rewriting. The most fundamental rule is URL rewriting.
We present how each component of a URL, i.e., scheme,
domain name, and path are changed to be rehosted.

In most cases, the scheme of the rehosted page is changed
to the scheme provided by the web rehosting services. Ex-
ceptions include Google Cache (web archive), which uses the
original scheme of the rehosted website, and Service-α (web
proxy), which depends on the server’s configuration owing to
the OSS application. If a web rehosting service uses only an
HTTP scheme, there is, of course, the risk of a MITM attack
from remote attackers on the network path. Our key insight
is that both the persistent MITM attack (Section III-B1) using
a service worker and AppCache, and privilege abuse (Sec-
tion III-B2) using resource requesting permissions are effective
on only HTTPS-enabled web rehosting services because those
resources need to be operated in a secure context.

We introduced the threat model (Section III-A) on the
basis of the origin unification for rehosted pages. In ad-
dition to this case, there are some web rehosting services
that use several subdomains, e.g., us.rehosted.example
and eu.rehosted.example for rehosted pages, which are
mainly for load-balancing. This is not an obstacle for our
attacks because an attacker can rehost malicious pages on each
subdomain by repeating requests to rehost even in this case and
make a victim access those rehosted malicious pages by using
a single landing page containing iframe tags.

Web rehosting provides mainly two types of URL nam-
ing conventions for rehosted pages: (1) URL query con-
vention (used by web proxy and web translator) and (2)

5This is the same type of attack called session fixation.

UNIX-path like convention (used by web archive). An ex-
ample of the former is https://rehosted.example/
rehost?url=evil.example and an example of the lat-
ter is https://rehosted.example/evil.example/.
Between them, there is only a trivial difference in URL parsing
at the server-side, but there is a significant difference at the
client-side. The scope in case of the service worker refers to
the path located at the service worker script (i.e., sw.js)
as mentioned in Section III-B1. In the case of URL query
convention, a registered service worker affects all the rehosted
pages. On the other hand, in the case of UNIX-path like
convention, a registered service worker cannot affect them
except for the rehosted page of evil.example.

In addition, some web rehosting services eliminate
JavaScript code from the page; hence, the attacks cannot
succeed in such services.

Rehostable File Type. Web proxy and web archive services
can rehost any kind of content with the original MIME Type.
An attacker can exploit this rule to place a malicious service
worker script or an AppCache manifest file on the origin of
rehosted pages. On the other hand, web translator services gen-
erally only rehost files with a MIME Type for HTML or plain
text. However, we found that, for web translator, the JavaScript
file is automatically rehosted when the HTTP-scheme URL of
the JavaScript is set at the src attribute of the script tag
in the page. The reason for this exceptional behavior is to
avoid security errors caused by a mixed content problem [12],
that is, the inconsistency of the scheme of the rehosted HTML
page (HTTPS) and that of the rehosted resource page (HTTP).
According to such exceptional behavior, the URL at the src
attribute is converted into the URL of the rehosted JavaScript,
so an attacker can use this URL as the malicious service worker
script on the origin of the rehosted pages.

Handling Browser Resources. While the origin of the re-
hosted page will be changed to that provided by web rehosting,
web rehosting does not rewrite the JavaScript code6. Thus, all
resources and permissions that are stored via JavaScript on the
rehosted benign page are simply accessible from the rehosted
malicious page.

The handling of cookies derived from the HTTP header
depends on the web rehosting category. Wayback Machine
disables cookie storing by adding a specific prefix to the
header name such as x-archive-orig-set-cookie.
Other web archives and web translators simply discard the
Set-Cookie header. In contrast, the web proxy implicitly
or explicitly relays cookies in the HTTP header in order
to reconstruct the HTTP session between a browser and the
rehosted page. The handling of the cookies among browsers,
web services, and web rehosting is shown in Figure 5. When
a browser logs in to a web service, a cookie named sid
with key, 1234 as the value is generated. If the browser
accesses the web service (e.g., a.example) via a web proxy
explicitly relaying cookies, the name of the cookie is changed
to c[a.example][/][sid]. At this time, the relayed
cookie stored in the web browser is linked to the domain
name of the web proxy. When the browser tries to access

6Although it does not affect attack success, Wayback Machine rewrites
google analytics code on archived pages to optimize access analysis as an
exceptional behavior.
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Fig. 5. HTTP cookie relaying in a web proxy.

a.example, the server of the web proxy converts the name
of the cookie into its original name and adds it to the request to
access a.example. At the web proxy that implicitly relays
cookies, the cookie between a.example and the server of
the web proxy is mapped to a corresponding cookie between
the browser and the server of the web proxy from a translation
table. The table associates users using the web proxy with the
sessions of rehosted website. Both methods of cookie relay
transparently maintain HTTP sessions between web browsers
and web servers. Our attack can directly hijack sessions or
inject session IDs for web proxy services that explicitly relay
cookies. For web proxy services that implicitly relay cookies,
our attacks can still hijack sessions or inject the generated
session IDs although the original session IDs are hidden.

IV. FEASIBILITY ANALYSIS

In this section, we analyze the feasibility of the attacks we
introduced in Section III-B. We first examine whether the 21
popular web rehosting services are vulnerable to our attacks.
We then investigate the fingerprintability of websites to assess
the effectiveness of the history theft attack. Finally, we analyze
the differences in the resource access behaviors of browsers.

A. Vulnerable Rehosting Services in the Wild

We conducted vulnerability checks on services by actually
attacking them. We targeted 21 web rehosting services listed
in Section II-A. Note that neither the servers nor users were
impacted, as our experiment only checked for unexpected
accessibility to client-side browser resources in our own testing
environment.

Surprisingly, against 18 of the investigated services, at least
one of our attacks succeeded. Of those, three services denied
hotlinking, limiting the feasibility of the attacks; however, the
rest, including those run by world-famous providers such as
Google, Bing (Microsoft), and Baidu, allow hotlinking. On the
other hand, against FreezePage, GenMirror, and FilterBypass,
all the attacks were infeasible as the services all force-remove
JavaScript code included in webpages when rehosting them.

The three web rehosting services adopting HTTP are
vulnerable to typical MITM attacks over the network path,
while the remaining 16 only needed to consider the risks
of attacks feasible only in a secure context. There were 13
services vulnerable to persistent MITM attack, and 12 of them
are vulnerable to the service worker attack, which is the most
powerful of our attacks.

For these services, the attacker can steal the victim’s
activities and privacy-sensitive information, rewrite a part or
all of the viewed content, and replace binary files or movies;
these can lead to malware infection, phishing, or even political
instigation. If the web rehosting service and rehosted website
are both trustworthy, e.g., reading a CNN news article through
Google Translate, it is difficult for a user to notice if the
content has been modified by an attacker. For web rehosting
services such as UnblockVideos, it is possible to replace a
movie file with an attacker-prepared one. To monetize this
attack more directly, the attacker can usually insert advertising
and a cryptominer [9], [39], [62].

As another interesting case study, Google Translate has a
feature that translates user-uploaded local files such as PDF
and Word documents. We noticed that the domain of the
website showing the translation result is the same as that
of the rehosting website. This means that a user, who has
accessed an attacker-prepared malicious site before and has
a service worker implanted, can have the translated version
of their uploaded documents stolen by the attacker. Thus, if
a document with classified or privacy information is uploaded
for translation, which is not a rare use case, it will be stolen
by a third party under this attack.

The rest of the services are not vulnerable to the attacks
that use the service worker owing to the path constraints on the
service workers or the inability to rehost JavaScript code. Of
these, for Wayback Machine, a URL is specified UNIX-path
like, but an attacker can instead use AppCache, which works
regardless of the path to replace all fallback requests with a
webpage prepared by an attacker. Furthermore, we confirmed
that by saving 100 cookies of 200 bytes with a JavaScript
code on the rehosted malicious page, all pages fall back on
the Wayback Machine. All the pages viewed by the victim,
therefore, can be replaced with pages prepared by the attacker,
even in the Wayback Machine.

We noticed that translators provided by Google, Yandex,
Bing, Baidu, and PROMT place rehosted content in iframe,
which is protected by a sandbox attribute. These services were
safe against privilege abuse attacks, but the rest of the services
were vulnerable to them. We found that a flaw enabling the
credential theft attack is present in all of the investigated
web proxy services. Furthermore, a browsing history theft is
feasible against all investigated services that had JavaScript
enabled. For the number of fingerprintable websites, refer to
Section IV-B.

For all web proxy services that adopt explicit relay of
sessions described in Section III-C, we found that it is possible
to hijack the session or inject an attacker’s session. Moreover,
even in cases where the implicit relay is adopted, such as
in Sitenable Web Proxy and ProxFree, it is still possible
to steal the session used for managing web rehosting users;
consequently, it is possible to hijack the session of rehosted
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TABLE IV. VULNERABILITIES OF THE 21 SERVICES INVESTIGATED. VULNERABLE ( ) AND SECURE (#). “HOTLINK” SHOWS WHETHER A THIRD
PARTY WHO DID NOT GENERATE THE URL OF THE REHOSTED PAGE CAN ACCESS IT, WHILE “SW” STANDS FOR SERVICE WORKER. “note” INDICATES AN

EXCEPTIONAL VULNERABILITY DETAILED IN THE BODY.

At least one Persistent MITM Privilege Credential History Session
Category Rehosting Service Scheme Hotlink Vulnerability SW AppCache Abuse Theft Theft Hijacking & Injection

ProxySite HTTPS no        
Hide My Ass! HTTPS yes       #
Hide me HTTPS no        
Sitenable Web Proxy HTTPS yes        
FilterBypass HTTPS no # # # # # # #

Proxy ProxFree HTTPS yes        
toolur HTTPS yes        
hidester HTTPS no        
GenMirror HTTPS no # # # # # # #
UnblockVideos HTTPS yes        
Service-α HTTP/S yes/no        
Google Translate HTTPS yes   # # —  —
Bing Translator HTTPS yes  # # # —  —
Weblio HTTPS yes  # #  —  note

Translator PROMT Online HTTP yes  # # # —  —
Service-β HTTPS yes   #  —  —
Yandex.Translate HTTPS yes    # —  —
Baidu Translate HTTP yes  # # # —  —
Wayback Machine HTTPS yes  #   —  note

Archive Google Cache HTTP/S yes  # #  —  —
FreezePage HTTP yes # # # # — # —

websites that are internally associated. All of the relayed
cookies were without an expiration date, but as mentioned
in Section II-C, this does not prevent a hijacking attack. On
the other hand, Hide My Ass! adopts an implicit relay, and
additionally, the session of web rehosting itself was protected
by a cookie’s HttpOnly option; in this case, there is no risk
of session hijacking.

For Weblio and Wayback Machine, a user cannot login
to a rehosted website as these services are not web proxies,
but a user can still login to the service itself. These services
provide additional features to logged-in users; for example,
Weblio offers a vocabulary book or a console for viewing
exam results, and Wayback Machine allows a user to view
the list of uploaded or favorited webpages. For these services,
we discovered that the login session of the service itself
can be hijacked using procedures similar to those described
in Section III-B5. With a hijacked session, an attacker can
view the activities associated with the user account and steal
personal information such as user names and email addresses
from the profile page.

B. Evaluation of Fingerprinting

We have shown that many of the web rehosting services
are vulnerable to the browsing history theft. The history theft
exploits the availability of the website fingerprints, which are
extracted from the data written to the browser storage by
each website. This section evaluates the effectiveness of the
fingerprinting technique used for the browsing history theft.
We evaluate the effectiveness of the following three aspects:
1) fingerpritability of websites, 2) lifetime of fingerprints, and
3) fingerprints that leak the time of visits to websites.

1) Testing the Fingerprintability of Websites: To generate
a fingerprint of a website, we combine the keys extracted from
the following three sources: keys contained in the cookie, keys
contained in the localStorage, and the keys contained in the
JSON dictionary, which is extracted from the values contained
in the localStorage. To evaluate the distinguishability of the
generated fingerprints, we performed experiments using the

websites listed in the Alexa top-10K [2]. Of the 10K websites,
we eliminated the ones that did not complete the session
within 15 seconds. As a result, we found 6,500 websites were
reachable via the web rehosting services. We visited each
website twice via a web rehosting service. We used ProxySite
as a web rehosting service for this experiment because of its
fast response. We do not believe that using any of the service
significantly affects fingerprintability. The browser used for the
experiments was cleaned up, i.e., delete browsing data, after
we visited a website. This was performed every time.

Let W be a set of websites to be examined and F (w) be
a fingerprint of a website w ∈W. F (w) is determined as

F (w) = K(w, 1) ∩K(w, 2),

where K(w, n) is a set of keys extracted from the website w
for the n-th trial (n ∈ {1, 2}). That is, if we found a set of keys
that appeared in both trials, we extract them as the fingerprint
of the website. A fingerprint, F (w), is distinguishable (unique)
if it satisfies the following condition:

F (w) *
⋃

∀x∈W\{w}

F (x).

We tested the condition shown above for the 6,500 web-
sites which were accessible. We found that the fraction of
websites uniquely identifiable by our proposed fingerprint
was 39.1% (2,541). Table V presents the top-10 categories
for the fingerprintable websites. We have identified these
categories based on the Alexa [2] list. We found that the
categories of fingerprintable websites contained the ones that
are preferred by people with specific attributes, such as anime
and programming, as well as the ones that everyone visits,
such as news and portals. This observation implies that an
attacker can estimate the profile of victims by the history theft
attack. Moreover, we found fingerprintable websites, including
sensitive sites such as porn, dating, and piracy websites.
The examples taken into consideration were porn[.]com,
theporndude[.]com, tinder[.]com, match[.]com,
pirate-bay[.]net and nyaa[.]si. The visits of a user
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TABLE V. TOP 10 CATEGORIES OF FINGERPRINTABLE WEBSITES.

Category # domains
E-mail 210
Chat 125
Adult 124
Videos 116
News 72
Animation 57
Portals 55
Encyclopedias 48
Programming 43
Photos 40

to these websites may be used for further attacks, such as social
engineering.

Although we recognize that the identifiable rate depends
on the size of W, setting it to 10k is not an overestimation
for the following reasons. First, as previous studies [1], [10]
showed, most Internet traffic is concentrated on top-ranked
websites; therefore, users rarely have keys issued by the
websites less popular than the top-10k. Second, a website often
stores data with a unique key due to the use of third-party
modules. For instance, a website with a code for the Google
tag manager [21], which is part of the traffic analysis suite,
writes a cookie with a unique ID for each website as a key.
For more precise fingerprinting, we need to consider pages that
change over time and pages other than the main page of each
domain name. We leave these issues for our future work.

2) Lifetime of Fingerprints: The evaluation above did not
consider the expiration of the cookie. However, cookies will
be deleted after the expiration date, leading to a decrease in
the uniqueness of a fingerprint. In addition, as mentioned in
Section II, cookies that do not have an expiration date are
treated as session cookies, which will or will not be deleted
when the browser process is terminated, depending on the
user’s environment. Note that unlike cookies, localStorage will
keep the data persistently. To study the impact of elapsed time
on the uniqueness of fingerprints, we performed an experiment
that simulates the deletion of expired cookies after a user visits
a website. We assume that a user visits each website just once.

Figure 6 shows the change of availability for website
fingerprints. Two scenarios are shown: when all the session
cookies are alive and when they are expired. When the elapsed
time is zero, the percentages of available fingerprints are 100%
(for session cookies that are alive) and 96.4% (for session
cookies that are expired). After one day of user visits, the
percentages drop to 69.4% and 64.2%, respectively. Cookies
that do not need to be stored for a long time often have an
expiration date of fewer than 24 hours. The declining trend
after day two becomes mild as a cookie with a long lifetime
and a persistent localStorage key contributes to the uniqueness
of the fingerprints.

As several websites set the expiration date in units of
months, such as one, two, or three months, we can see small
spikes at the 30th, 60th, and 90th days. The percentages of
available fingerprints on day 364 are 64.3% (session cookie
alive) and 58.6% (session cookie expired), but on day 365,
they drop to 59.7% (session cookie alive) and 53.6% (session
cookie expired) in only one day. This phenomenon reflects the
fact that many websites have set the expiration date for cookies
to exactly one year. To summarize, we found that more than
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Fig. 6. Relationship between the elapsed time (days) after a user visits a
website and the fraction of fingerprintable websites.

TABLE VI. LIST OF INVESTIGATED BROWSERS.

Browser Abbreviation Version
Google Chrome Chrome 76.0.3809.132
Mozilla Firefox Firefox 69.0
Microsoft Internet Explorer IE 11.0.140
Microsoft Edge Edge 42.17134.1.0
Apple Safari Safari 12.1.2
Opera Opera 62.0.3331.116
Brave Browser Brave 0.68.132
Google Chrome for mobile Chrome-M 76.0.3809.132

50% of website fingerprints still work for the history theft for
one year after the website visit.

3) Fingerprints Leaking User Visit Time: As the cookie
expiration time is typically set to the visit time plus a period
of time, the visit time can be deduced by subtracting this
increment from the cookie expiration time contained in the
fingerprint. This estimation makes it possible for an attacker
to track users more precisely by reflecting the time series of
website transitions. We identified a website with a cookie with
the unique key that has a constant difference between the
access time and the expiration date, that is, a website that
adds a certain value to the access time and sets the expiration
date. As a result, we found that 73.6% of fingerprints leaked
visit time.

C. Resource Accesses Behavior for Each Browser

We now discuss the browser differences in resource access
behavior and their impact on attack success and failure. We
investigated eight browsers as shown in Table VI: Chrome,
Firefox, IE, Edge, Safari, and Opera which are major PC
browsers; Brave [6] which is known for its strong privacy
policy; and the mobile version of Chrome. All versions are
latest as of September 2019.

The results are shown in Table VII. As a service worker
and AppCache are both available on all browsers, with the only
browser not supporting a service worker being IE, all browsers
are susceptible to persistent MITM attacks.

We then investigated the behavior when attempting priv-
ileged access. Browsers labeled “ask once” have especially
high risk of privilege abuse because once resource access is
permitted, it will not require confirmation for accesses after
that. For browsers with the label “selective”, users are asked
to select whether or not to remember the permitted state, and
the attack succeeds only if a user selects yes.
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TABLE VII. DIFFERENCES IN RESOURCE ACCESS BEHAVIOR FOR
EACH BROWSER. BEHAVIORS HIGHLIGHTED IN BOLD ARE HIGHLY

VULNERABLE. SW STANDS FOR SERVICE WORKER AND PM STANDS FOR
PASSWORD MANAGER.

III-B1 III-B2 III-B3 III-B4 & B5
Browser SW AppCache Privilege PM Session Cookie
Chrome available available ask once autofill keep by config
Firefox available available selective autofill keep by config
IE unavailable available selective autofill never keep
Edge available available ask once autofill never keep
Safari available available selective manual keep by config
Opera available available ask once autofill keep by default
Brave available available ask once manual keep by default
Chrome-M available available ask once autofill keep by default

Regarding password managers, browsers labeled “autofill”
automatically fill the password field with a saved password
upon page load, making credential theft feasible. On the other
hand, browsers labeled “manual” focus the login form element
but do not fill unless explicitly directed by a user, so the
attack is highly infeasible. Note that the password managers for
Firefox, IE, and Edge do not autofill when multiple credentials
are stored for a single origin. That is, the attack succeeds if the
victim stores only a single credential in the password manager
through single web rehosting. The password manager for
Chrome, Opera, and Chrome-M always autofill the credential
that was used most recently.

Lastly, regarding session cookies, browsers labeled “keep
by default” do not remove session cookies on quitting the
browser. For browsers with “keep by config,” by changing the
configuration to save tabs on quitting, session cookies will not
be removed. For these two groups, as an attacker will have a
longer opportunity to steal session cookies, there is a higher
risk of session hijacking and history theft. Note that cookies
relayed in web proxy services are mostly session cookies,
so are also vulnerable under this environment. On the other
hand, browsers labeled “never keep” delete session cookies on
quit, which will make website fingerprinting more difficult by
decreasing the number of websites identified.

V. DISCUSSION

A. Coverage of Our Experiments

In our experiment, we investigated 21 popular web re-
hosting services spanning across our three categories, and we
believe that this coverage should be sufficient for capturing
the overall characteristics of each category. For web translator
and web archive, the services we chose are those with a
dominant market share, and by their nature, the rest of the
services in these categories are likely to be similar as the
chosen ones. On the other hand, since web proxy services are
often used for anonymization and censorship avoidance, they
may exhibit regional or infrastructural differences, implying
that services in the long-tail are non-negligible; we believe that
our investigation of a wide variety of web proxies including
OSS (Service-α) sheds light on unexplored services based on a
common architecture, i.e., using a single origin to rehost many
websites on different origins.

Another notable point is that there exist several web
rehosting services that do not fit into our three categories.
Tor2web [60] rehosts websites deployed on the Onion network
to make them accessible from the public network. GitHack [52]
rehosts user-specified GitHub files by giving them appropriate

MIME types, making them renderable by a browser. Zone-
H [72] archives compromised websites and allows users to
conduct security analysis on them. More of such services are
expected to exist, but we believe they are not so significant in
terms of user impact. Most importantly, our analysis based on
observation of rehosting rules will be able to check services
that we did not directly cover in this paper. We claim that this
is a broad contribution to the research community and web
service providers.

Finally, we recognize that we did not discuss every possible
attack on web rehosting. Lerner et al. [38] demonstrated that
the iframe feature can be exploited to manipulate archived
websites. This attack is based on the property that the origin
of the iframe’s parent and child pages is unified in web
archives. The persistent XSS proposed by Steffens et al. [58]
is also useful for compromising web rehosting services. This
is an attack that persistently establishes XSS for websites
that reflect the strings contained in cookies or localStorage
without sanitization. Although its ability (inserting JavaScript
into some rehosted websites) is a subset of our persistent
MITM (manipulating the content of all rehosted websites), it is
harder for web rehosting services to defend against persistent
XSS resulting from flaws in the rehosted website, not the web
rehosting service.

B. Human factors

Web rehosting services, with tens of millions of users, have
become quite popular on the modern Internet. In this paper,
we have presented a critical threat that commonly lies within
these services and proved that many services are actually
vulnerable to it. On the other hand, we have not presented
results that support our findings from the perspective of how
users make use of these services in reality. For example, the
privilege abuse and credential theft threat assume that users
have explicitly granted permissions, such as allowing websites
they have visited in the past through a web rehosting service
to access browser resources or storing credentials in password
manager. We are not certain to what extent this assumption
holds true in reality, but considering the following points,
we believe that it is safe enough to assume that users would
grant permission without suspicion. The required permission
resources are commonly requested by popular websites. For
example, for geolocation information, one of the resources for
which permission is required, is essential for route navigation
and optimization of search results. In addition, the four most
popular password managers have already had over 60 millions
of users [31], and automated password filling has become a
more common practice [48]. Furthermore, as the web rehosting
service and rehosted page are legitimate websites, it is unlikely
that users who are unaware of the threat may believe that the
rehosted websites are legitimate.

Moreover, the success of some of our attacks, namely
session hijacking and attacks against password managers,
highly depends on whether a user would actually login to
such services through web rehosting. SNSes offering freedom
of speech are high-priority targets in countries with censor-
ship [5], [8], [17], and actually, eight out of eleven popular web
proxies we investigated in this paper advertise their capability
to be compatible with Facebook, which requires users to login.
Considering these points, the use of a web proxy for SNS with
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a login state to avoid censorship appears to make sense, though
quantitatively showing this tendency would require additional
research.

C. Ethical considerations

As most of the web rehosting services investigated in
this paper were found to be vulnerable to at least one of
our proposed attacks, we have shared the details on the
threat and possible countermeasures with the affected service
providers. Several service providers have responded to us and
are now taking action to address the vulnerabilities we have
demonstrated. Note that we anonymized the service names the
provider asked us not to name in this paper. Additionally, we
are in the process of making proposals to JPCERT/CC [32],
which is a vulnerability coordinator in Japan, to add a topic
on our threat model to their publications such as guidelines
and cheat sheets that promote building secure websites.

VI. DEFENSES

All Attacks. The root cause of these vulnerabilities is that web
resources that are originally designed to be placed in different
origins are mixed into the same origin. A straightforward
solution to this threat would be to not only use a separate
domain name for separating rehosting websites and rehosted
websites, but also generate a different subdomain for each
rehosted website. A major drawback of this solution is that
already-generated URLs, which may be referred from some-
where else, will become invalid. This solution would especially
impact web archive services, as many of the websites archived
are linked from a large number of external websites. The
service to investigate the number of backlinks [43] showed
that the Wayback Machine archives are linked from more than
4 million pages as of September in 2019. Moreover, they may
even be referred from printed publications such as academic
papers and court records [38], making replacement of such
links unrealistic. Redirecting access to an old URL to a new
URL will solve this issue.

Furthermore, as some of the web proxy services listed in
Section IV-A have already been adopted, generating a tentative
URL inaccessible by a third person would be viable mitigation.
This can be implemented in a similar manner as a general
CSRF prevention approach, i.e., by using a POST method
instead of GET method for submitting a URL to a web
rehosting service and authenticating with a token given only
to the user who sent the request. A major drawback of this
approach is that it cannot be applied to web rehosting services
that assume the sharing of generated URLs to a third person
like web archive services.

Switching to a browser’s private mode is an effective
countermeasure that can be taken on the user-side to com-
pletely prevent or mitigate some of our attacks. For example,
service worker and AppCache are disabled in the private
mode of Edge and Firefox. They are enabled in the private
mode of Chromium-based browsers but are deleted on closing
the browser window. In all browsers, password manager is
disabled, and cookies and localStorage are deleted on closing
the browser.

Persistent MITM. To prevent a persistent MITM attack,
we need to restrict the behavior of the service worker and

the AppCache. When requesting for a service worker script,
the browser includes Service-Worker: script in the
request header. A web rehosting server can prevent registration
of a malicious service worker by denying requests having this
header. This obviously would also block the registration of a
legitimate service worker, but none of current web rehosting
services rewrite the URLs used as the argument of a function,
that is, service workers do not function on current web rehost-
ing services/rehosted websites. Thus, this countermeasure can
be adopted without any substantial drawback. For AppCache,
the use of this function is declared by the manifest attribute of
an HTML tag, so force-removing this attribute from rehosted
pages should prevent its abuse.

Privilege Abuse. Any access to a browser resource from a
webpage inside a sandbox-attributed iframe will fail without
raising a permission request. Thus, instead of directly loading
the content of a rehosted page at the top level, loading it
inside a sandbox-attributed iframe would ensure that users do
not grant permission to web rehosting. This has already been
adopted in some services such as Google Translate, though we
are not certain if this is their intended purpose.

Credential Theft. A possible defensive approach for attacks
against password managers is to associate credentials with
domain-path pairs, instead of just domains. However, this
has been adopted by only a few browsers [7], [59], and
additionally, many web rehosting services specify the URL of
the rehosted website in a query string instead of in the rehosted
URL’s path. Thus, this defense requires not only browser-side
effort but also service-side effort to switch to a path-based
scheme for rehosted URLs.

History Theft. As the history theft attack relies on the
accuracy of website fingerprinting, preventing fingerprinting
is key to preventing the attack. One possible way to prevent
website fingerprinting is to force-remove, from all rehosted
webpages, JavaScript code that invokes access to cookies or
localStorage. This approach is not perfect as exhaustively
detecting obfuscated JavaScript code is known to be difficult.
A more aggressive approach would be to remove all JavaScript
code, but this would likely result in critical deterioration of the
website’s appearance or functionality.

Session Hijacking and Injection. Cookies for managing
login sessions are set via an HTTP Header according to the
rules noted in Section III-C. Therefore, they can be prevented
from being loaded from JavaScript code in rehosted malicious
websites by enabling the HttpOnly attribute. This is a
conventional measure for mitigating session hijacking using
XSS.

VII. RELATED WORK

A. Intermediary services and their security

While intermediary services ensure users to bypass restric-
tions based on geographic regions or circumvent censorship,
they enable attackers to mount man-in-the-middle attacks at
the vantage points of such services.

HTTP Proxy. The use of open HTTP proxies that allow
access from any user is a popular way to counter restrictions
and censorship, because it is easy for users to use with
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minimal browser’s configuration. However, many studies found
evidence that many open HTTP proxies modify web traffic.
Mani et al. disclosed malicious examples of proxies that
modify web traffic in various ways, which include injecting
ads or cryptominer into HTML content, inserting malware into
non-HTML files, and modifying TLS certificates [39]. Tsiran-
tonakis et al. found that about 5% of proxies are engaged in
some form of malicious content modification, such as injecting
ads, collecting user information, and redirecting the user to
malware pages [62]. End users of HTTP proxies are required
to use end-to-end encryption (e.g., HTTPS everywhere) and
check TLS certificates to ensure end-to-end integrity.

VPN and Tor. Similar to HTTP proxies, VPNs and Tor
are often used as tools to counter censorship and preserve
users’ privacy, although users are required to install dedicated
software or configure system settings. A VPN establishes a
virtual point-to-point connection, which is encrypted, between
end users and the remote network. Previous studies showed
evidence of traffic manipulation and information leakage in
many VPN services [29], [33]. Tor is an overlay network
composed of volunteer relay nodes that ensures anonymous
communication (anonymizing the sender of the traffic). Tor
circuits, which are essentially encrypted tunnels, terminate at
exit relays, and the user’s traffic travels all over the Internet
to its final destination. Winter et al. developed scanning
modules to provoke Tor exit relays to tamper with or snoop on
their decoy connections and detected malicious, misconfigured,
and sniffing Tor exit relays [69]. Although VPNs and Tor
have functionalities of encrypted communication and sender
anonymization, malicious intermediary servers inside the ser-
vices are detrimental to the integrity of communication similar
to the case of the HTTP proxy.

Web Rehosting. Web rehosting is also susceptible to the
same problems faced with the use of HTTP proxies, VPNs,
and Tor that malicious intermediary nodes break the integrity
of communication. However, an intermediary node of a web
rehosting service in our threat model, which is not malicious
but vulnerable, is abused by remote attackers and causes a
lack of communication integrity. To the best of our knowledge,
only a few studies have discussed exploiting vulnerable web
rehosting. In 2002, Martin et al. were the first to demonstrate
an attack against one of the web rehosting services, namely
SafeWeb [40]. SafeWeb was a web proxy service that had the
functionality to relay cookies and give web pages the same
origin; hence, session hijacking can occur because malicious
JavaScript in the rehosted page can read the cookie of other
rehosted page. Compared to the previous study [40], our
work has made significant progress in expanding target web
rehosting services (such as web translators and web archives)
and finding new attacks, which exploit browser resources from
traditional to modern. Another similar work by Lerner et
al. [38] proposes attacks that rewrite pages on the Wayback
Machine, a major web archive. The archive rewrites URLs in
archived content to make them refer to archived versions of
the same domain name. When a URL is dynamically generated
by JavaScript in <iframe>, the URL rewriting fails, and a
browser makes requests to the live web. If the response of
the request from the live web contains malicious JavaScript,
the whole archival page is compromised by that JavaScript
owning to the ineffectiveness of the SOP. This attack requires

a target website to refer to a third-party URL with the expired
domain name that the attacker can obtain. Our attacks are more
feasible; they are triggered once a victim user visits rehosted
malicious pages.

B. Abusable browser resources

Browser resources provided after HTML5 such as service
worker and AppCache, as well as traditional browser resources
such as cookies, can be abused for various attacks to accom-
plish malicious purposes.

Service Worker. The Progressive Web App (PWA) is designed
to provide native app-like rich browsing experiences even when
a browser is offline. The service worker is a key technical
component of the PWA. It is an event-driven worker script
implemented in JavaScript [23] and has the ability to intercept
network requests from the corresponding website. There has
been concerns [13], [66] that this feature could be abused
in web hosting services that share a single domain name for
different users. However, the possibility of abusing a service
worker has been overlooked for years in web rehosting, as
evidenced by the fact that our attack works even on major
services provided by the world’s top companies. We have
demonstrated that an attacker is able to deploy malicious
content and scripts on web rehosting services by exploiting
the rehosting rules, just like deploying them on web hosting
services.

Recent studies have suggested other advanced attack sce-
narios. Lee et al. demonstrated cryptocurrency mining in the
background that uses malicious service workers, and mined
Monero coins through verified 225K transactions in a day [36].
Moreover, Papadopoulos et al. developed a monitoring frame-
work to allow malicious service workers to abuse browser
resources and found the following harmful operations: DDoS
attacks, distributed password cracking, malicious data hosting,
proxies of a hidden network, and cryptocurrency mining [47].

Application Cache. AppCache, one of the features of HTML5,
allows web applications to cache content in the storage of
a web browser to enable offline access. As in the case
of service workers, AppCache has also been known to be
exploitable on web hosting services that share a single domain
for different users [42]. In addition, Lee et al. demonstrated a
timing side-channel attack using AppCache that allows a third-
party attacker to identify a cross-origin resource status (e.g.,
login status of a victim browser) [37]. Goethem et al. also
demonstrated that an attacker can reveal personally identifiable
information of a target (e.g., social accounts) by inspecting the
response time and the size of the cross-origin resource stored
in AppCache [18], [64].

Password Manager. Password managers provide helpful func-
tionalities for users: generating unique and strong passwords,
storing passwords securely, and using passwords easily (e.g.,
autofill). Silver et al. examined autofill policies in browser
built-in password managers and found that several autofill
policies enable an attacker on a malicious website to extract
passwords from the user’s password manager without any user
interaction [54]. Stock and Johns mentioned the risk of XSS-
based credential stealing from autofilled login forms [59].
Our credential theft (Section III-B3) attack also exploits this
vulnerable autofill behavior of password managers.
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Cookie. It is well known that HTTP cookies can be stolen
by cross-site scripting and eavesdropping. If the target user’s
cookie is stolen, an attacker with the stolen cookie will gain
access to personal information or account functionalities of
the target on the corresponding website. HttpOnly is an
additional attribute of cookies that prevents attackers from
remotely obtaining cookies through malicious scripts (i.e.,
XSS). HTTPS-enabled websites can protect cookies against
eavesdropping. Moreover, the HTTP Strict Transport Secu-
rity mechanism (HSTS) [27] is an HTTP header option
(Strict-Transport-Security) that enables websites
to enforce browsers to only use communication over HTTPS.
Although many studies in recent years revealed partially de-
ployed HttpOnly, HSTS, and HTTPS on websites, which
cannot ensure a cookie’s integrity, were running [34], [57],
[71], both academic and industrial efforts promote and increase
the adoption of above technologies. Unfortunately, regardless
of whether the above technologies are deployed at websites, an
attacker is able to successfully perform our session hijacking
and injection (Section III-B5) attack by leveraging the property
of the web proxy (i.e., cookie relaying).

VIII. CONCLUSION

In this work, we explored the security flaws of web
rehosting services. Their common characteristic is to offer the
service using a single origin to unify many different origins.
This “melting pot of origins” situation could violate the SOP
if not carefully handled. Based on the intrinsic vulnerability
of these services, we derived five attacks that target users
who use web rehosting services. It is noteworthy that these
five attacks exploit several browser resources, such as, service
workers, AppCache, browser permissions, password manager,
localStorage, and cookies. We argue that these modern and
traditional resources enable the attacker to track both past and
future activity of the victim. Through the extensive analyses
of 21 web rehosting services, we demonstrated that the five
attacks are feasible and thus need to be prevented.

Web rehosting, which originally aims to enhance the open-
ness of web access, paradoxically deviates from the end-to-end
integrity and gives the opportunity to compromise the commu-
nication to a third-party attacker. We are now in the process of
helping vulnerability coordinators and web rehosting providers
to deploy countermeasures. Although we revealed the flaws of
web rehosting, further unexpected flaws in the web ecosystem
may also exist and will be expanded by the evolution of web
features like HTML5 and progressive web apps. Identifying
these flaws and developing countermeasures are required to be
studied in the security research community. We hope that our
work fosters future work on more secure solutions to ensure
web security and the openness of web access.
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