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Abstract—In distributed private learning, e.g., data analysis,
machine learning, and enterprise benchmarking, it is common-
place for two parties with confidential data sets to compute
statistics over their combined data. The median is an important
robust statistical method used in enterprise benchmarking, e.g.,
companies compare typical employee salaries, insurance compa-
nies use median life expectancy to adjust insurance premiums,
banks compare credit scores of their customers, and financial
regulators estimate risks based on loan exposures.

The exact median can be computed securely, however, it leaks
information about the private data. To protect the data sets, we
securely compute a differentially private median over the joint data
set via the exponential mechanism. The exponential mechanism
has a runtime linear in the data universe size and efficiently
sampling it is non-trivial. Local differential privacy, where each
user shares locally perturbed data with an untrusted server, is
often used in private learning but does not provide the same
utility as the central model, where noise is only applied once by
a trusted server.

We present an efficient secure computation of a differentially
private median of the union of two large, confidential data sets.
Our protocol has a runtime sublinear in the size of the data
universe and utility like the central model without a trusted
third party. We provide differential privacy for small data sets
(sublinear in the size of the data universe) and prune large data
sets with a relaxed notion of differential privacy providing limited
group privacy. We use dynamic programming with a static, i.e.,
data-independent, access pattern, achieving low complexity of
the secure computation circuit. We provide a comprehensive
evaluation over multiple AWS regions (from Ohio to N. Virgina,
Canada and Frankfurt) with a large real-world data set with a
practical runtime of less than 7 seconds for millions of records.

I. INTRODUCTION

In distributed private learning two parties A, B, with
confidential data sets DA, DB respectively, want to compute
statistics of their combined data. Example applications are
data analysis, machine learning, collaborative forecasting and
enterprise benchmarking. The median is an important robust
statistical method, i.e., a few outliers in the data do not skew
the result. The median is used to represent a “typical” value
from a data set and is utilized in enterprise benchmarking,

where companies measure their performance against the com-
petition to find opportunities for improvement. Businesses
compare, e.g., typical employee salaries per department, bonus
payments or sales incentives to better assess their attractive-
ness for the labor market, and insurance companies use the
median life expectancy to adjust insurance premiums. Further,
banks compare credit scores of their customers, and financial
regulators estimate risks based on loan exposures.

Since the data are sensitive, e.g., salary or health informa-
tion, the parties want to compute the median without revealing
any of their data to each other. A solution to reveal the exact
median and nothing else was presented by Aggarwal et al. [1],
however, the exact median itself is a value from either DA or
DB , and, as shown in [13, 45], median queries can be used
to uncover the exact value of targeted individuals. To protect
the data sets and hinder targeted inference attacks we also use
differential privacy [16, 20]. Inference attacks [13, 45] rely
on median values from the actual data set. The differentially
private median, however, is a non-deterministic value from the
entire data universe and yet it is close to the actual median
with high probability. For small data sets (sublinear in the
size of the data universe) we provide differential privacy, and
for large data sets we first prune the input using the relaxed
notion of differential privacy introduced in [28]. Instead of
considering neighbors, i.e., data sets differing in one record,
the relaxed notion requires neighbors to also have the same
output w.r.t. the initial input pruning. However, we provide
empirical evidence that the relaxation is not too restrictive
on real-world data sets [11, 33, 51, 54]. A trusted third
party, called curator in differential privacy literature [18], can
implement any differentially private algorithms. However, this
trusted party requires full access to the unprotected data. To
protect the inputs without relying on a trusted third party we
use secure computation [24], i.e., the parties run a protocol
to compute a function on their respective inputs such that
nothing about their input is revealed except the function result.
Google reported using secure computation to link online ads
with offline purchases [7, 32], and government institutes use
it to detect tax fraud [8] and perform studies (e.g., [9]). In our
case, we securely compute the differentially private median
via the exponential mechanism, as it provides the best accuracy
vs. privacy trade-off for low ε (see our discussion in Section II).
The exponential mechanism from McSherry and Talwar [39]
selects a specific value, like the median, from a data universe
U , has a computation complexity linear in the size of the entire
data universe [39] and efficiently sampling it is non-trivial [18].
Also, the exponential mechanism requires exponentiations and
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divisions, increasing the secure computation complexity. Pettai
and Laud [44] securely compute the differentially private
median using the framework by Nissim et al. [43]. Unlike
their work we also considered network delay and used modest
hardware1 and our protocol is still 13 times faster for millions
of records with a latency of 25 ms.

We present an efficient protocol to securely compute the
differentially private median of the union of two large, con-
fidential data sets with computation complexity sublinear in
the size of the data universe. First, the parties prune their
own data in a way that maintains their median. Then, they
sort and merge the pruned data. The sorted data is used to
compute selection probabilities for the entire data universe.
Finally, the probabilities are used to select the differentially
private median. To optimize the runtime of our protocol we
use dynamic programming for the probability computation
with a static, i.e., data-independent, access pattern, achieving
low complexity of the secure computation circuit. We utilize
different cryptographic techniques, garbled circuits as well as
secret sharing, to combine their respective advantages, namely,
comparisons and arithmetic computations. We simplify the
probability and sampling computations to minimize direct
access to the data, which reduces secure computation overhead.
Furthermore, we compute the required exponentiations for the
exponential mechanism without any secure computation.

In summary, the contributions of our protocol combining
secure computation and differential privacy are

• selection of the differentially private median of the
union of two distributed data sets without revealing
anything else about the data,

• an improved runtime complexity sublinear in the size
of the data universe achieved by data-independent
dynamic programming and input pruning for large
data sets,

• a comprehensive evaluation with a large real-world
data set with a practical runtime of less than 7 seconds
for millions of records even with 100 ms network
delay and 100 MBits/s bandwidth.

We note that our protocol can be easily adapted to securely
compute the differentially private pth-percentile, i.e., the value
larger than p% of the data. The remainder of this paper is
organized as follows: In Section II we detail the problem
description. In Section III we describe preliminaries for our
dynamic programming protocol. In Section IV we explain
our approach and introduce definitions. Then, we present our
protocol and implementation details for the secure computation
of the differentially private median in Section V. We provide
a detailed performance evaluation in Section VI. We describe
related work in Section VII and conclude in Section VIII.

II. PROBLEM DESCRIPTION

We consider the problem of two parties computing the
differentially private median over their combined data sets.
Next, we describe implementation models and basic techniques
for differentially private algorithms.

1Our evaluation is performed with AWS t2.medium instances (4 vCPUs,
2GB RAM) compared to the 12-core 3GHZ CPU, 48GB RAM setup of [44].
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Fig. 1. Models for differentially private algorithms M. Client Ci sends a
message – raw value vi or randomized ri – to a server. The server computes
some function f over the messages, and releases the differentially private
result.

A. Models for Differentially Private Algorithms

Differentially private algorithms M can be implemented
in different models which are visualized in Figure 1. In the
central model (Figure 1a) every client sends their unprotected
data to a trusted, central server which runs M on the clear
data. The central model provides the highest accuracy as the
randomization inherent to differentially private algorithms, is
only applied once. In the local model (Figure 1b), introduced
by [34], clients apply M locally and send anonymized values
to an untrusted server for aggregation. The accuracy is lim-
ited as multiple randomizations occur. It requires enormous
amounts of data, compared to the central model, to achieve
acceptable accuracy bounds [5, 12, 30, 38]. Specifically, an
exponential separation between local and central model for ac-
curacy and sample complexity was shown by [34]. Recently, an
intermediate shuffle model (Figure 1c) was introduced [5, 12]:
An additional party is added between clients and server in the
local model, the shuffler, who does not collude with anyone.
The shuffler permutes and forwards the randomized client
values. The permutation breaks the mapping between the client
and her value, which reduces randomization requirements. The
accuracy of the shuffle model lies between the local and central
model, however, in general it is strictly weaker than the central
model [12]. As our goal is high accuracy without additional
parties, this work dismisses the shuffle model.

To combine the benefits of the local and central model,
namely, high accuracy and strong privacy, secure computation
[24] is used in related work [19, 25, 48, 52]. Secure com-
putation allows to simulate central model algorithms in the
local model. Secure computation is a cryptographic protocol
run between the clients which only reveals the computation’s
output and nothing more about their sensitive data. Hence,
secure computation of the median is superior to distributed
computation methods that reveal additional statistics (e.g.,
histograms or prefix query results) from which to compute a
(noisy) median. As Smith et al. [50] note, general techniques
that combine secure computation and differential privacy suffer
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Fig. 2. Absolute errors, averaged for 100 differentially private median
computations via exponential mechanism and Laplace mechanism with smooth
sensitivity for ε ∈ {0.1, 0.25, 0.5}.

from bandwidth and liveness constraints which render them
impractical for large data sets. Our contribution is an optimized
secure protocol for the differentially private median that runs
in seconds on million of records in real-world networks.

B. Differential Privacy Techniques

Informally, the main techniques to provide differential
privacy are additive noise, e.g., the Laplace mechanism [18],
and probabilistic selection, namely, the exponential mechanism
[39]. To compute the differentially private median we use the
exponential mechanism [39], which provides selection proba-
bilities for possible median values. A simpler, but less accurate,
alternative is the Laplace mechanism [18], which adds noise,
sampled from the Laplace distribution, to a function result,
i.e., f(D) + Laplace (∆f/ε). The noise depends on ∆f , the
sensitivity of the function, and a privacy parameter ε formalized
later. The sensitivity is the largest difference a single change in
any possible database can have on the function result. Smooth
sensitivity, developed by Nissim et al. [43], additionally ana-
lyzes the data to provide instance-specific additive noise which
is often much smaller. Li et al. [35] note that the Laplace
mechanism is ineffective for the median as the sensitivity, and
thus noise, can be high. As mentioned before, the accuracy
in the local model is limited [5, 30, 38]. However, even
in the central model with smooth sensitivity the exponential
mechanism is usually more accurate. To demonstrate this we
evaluated the absolute error of the Laplace mechanism with
smooth sensitivity and the exponential mechanism for real-
world data sets [33, 54] in Fig. 2. In general, large differences
between elements close to the median or small ε, which corre-
sponds to strong privacy guarantees, increase noise magnitudes
and thus errors even with smooth sensitivity. Furthermore,
secure computation of smooth sensitivity requires access to the
entire dataset or the error further increases2, which prohibits
sublinear secure computation with high accuracy. Thus, our
reason for using the exponential mechanism to compute the
median is two-fold: It provides the best (known) accuracy
for small ε, and, as we will show, it can be implemented as
sublinear-time secure computation.

2Smooth sensitivity approximations exist that provide a factor of 2 approx-
imation in linear-time, or an additive error of max(U)/poly(n) in sublinear-
time [43, Section 3.1.1]. Note that this error e is w.r.t. smooth sensitivity s
and the additive noise is even larger with Laplace ((s+ e)/ε).

III. PRELIMINARIES

Next we introduce preliminaries for differential privacy and
secure computation, and some notation.

A. Notation

We model a database as D = {d0, d1, . . . , dn−1} ∈ Un.
We call U data universe and assume it to be an integer range,
i.e., U = {x ∈ Z | a ≤ x ≤ b} with a, b ∈ Z. We note
that rational numbers can be expressed as integers via fixed-
point number representation.3 To simplify the description we
assume the size n of D to be even which can be ensured by
padding. Then, the median is the value dn/2−1 in sorted D. We
denote with ID = {0, . . . , n− 1} the set of indices for D and
refer to non-distinct data elements as duplicates, i.e., di = dj
with i 6= j (i, j ∈ ID). We apply union under bag semantics,
i.e., DA ∪DB is a bag containing elements from U as often
as they appear in data sets DA and DB combined4. We treat
the difference of two bags, DA\DB , as a set containing only
elements from DA that are not also in DB .

B. Differential Privacy

Differential privacy introduced by Dwork, McSherry, Nis-
sim, and Smith [16, 20] is a privacy notion, adopted by major
technology companies [15, 22, 53, 55]. Differential privacy
enables one to learn statistical properties of a data set while
protecting the privacy of any individual contained in it. Data
sets D,D′ are called neighbors or neighboring, denoted with
D ' D′, when data sets D can be obtained from D′ by adding
or removing one element, i.e., D = D′ ∪ {x} with x ∈ U or
D = D′\{y} with y ∈ D′.

Informally, a differentially private algorithm limits the
impact that the presence or absence of any individual’s data
in the input database can have on the distribution of outputs.
The formal definition is as follows:

Definition 1 (Differential Privacy). A mechanism M satisfies
ε-differential privacy, where ε ≥ 0, if for all neighboring data
sets D and D′, and all sets S ⊆ Range(M)

Pr[M(D) ∈ S] ≤ exp(ε) · Pr[M(D′) ∈ S],

where Range(M) denotes the set of all possible outputs of
mechanism M.

The above definition holds against an unbounded adver-
sary, however, due to our use of cryptography we assume a
polynomial-time bounded adversary. Mironov et al. [41] define
indistinguishable computationally differential privacy (IND-
CDP) for two-party computation (2PC) with computationally
bounded parties. The presented definition is according to [28]
for parties A,B with data sets DA, DB , privacy parameters
εA, εB and security parameter λ. Furthermore, VIEWΠ

A denotes
the view of A during the execution of protocol Π.

Definition 2 (IND-CDP-2PC). A two-party protocol
Π for computing function f satisfies (εA(λ), εB(λ))-
indistinguishable computationally differential privacy (IND-
CDP-2PC) if VIEWΠ

A(DA, ·) satisfies εB(λ)-IND-CPA, i.e.,

3A binary number of bit-length b can represent d ∈ Q as d′ ∈ Z if d =
d′ · 2−f with −2b−1 + 1 ≤ d′ ≤ 2b−1 − 1 and scaling factor 2−f , f ∈ N.

4This interpretation of union is equivalent to the sum function for bags.
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for any probabilistic polynomial-time (in λ) adversary A, for
any neighboring data sets (DB , D

′
B)

Pr[A(VIEWΠ
A(DA, DB)) = 1]

≤ exp(εB) · Pr[A(VIEWΠ
A(DA, D

′
B)) = 1] + negl(λ).

Likewise for B’s view for any neighbors (DA, D
′
A) and εA.

For notational convenience let ε = εA = εB . We operate
in the semi-honest model [24] (also called honest-but-curious)
where participants do not deviate from the protocol but try
to extract as much information from the protocol transcript
as possible. A protocol is consider secure in the semi-honest
model when the transcript does not reveal anything beyond the
computed functionality.

C. f -neighboring

He et al. [28] introduced the notion of f -neighbors: neigh-
bors that also have the same output w.r.t. to a function f . For
our security proof we require f -neighboring and adapt it to
our scenario.

Definition 3 (f -Neighbor). Given function f : Uk × U l →
O, k, l ∈ N, and DA ∈ Uk. Data sets DB and D′B are f -
neighbors w.r.t. f(DA, ·) if

1) they are neighbors, and
2) f(DA, DB) = f(DA, D

′
B).

f -neighboring for DB is similarly defined.

In [28] f -neighboring is applied to record matching, where
neighbors differ in at most one non-matching record. In our
scenario f is input pruning, the first step of our protocol which
reduces the input set size and we denote it as PRUNE. PRUNE
is a partial execution of comparison-based pruning from [1]
described in Section IV-D. We distinguish two forms of
pruning: deterministic and randomized. Deterministic pruning,
such as PRUNE, might differ between neighboring data sets and
thus potentially violate differentially privacy for its common
neighboring notion. By considering PRUNE-neighbors, where
pruning outputs are the same, neighboring data sets cannot
be distinguished, and differential privacy holds. To verify
that PRUNE-neighboring is not too restrictive and can be used
in real-world applications we evaluated neighboring data sets
from real-world data sets [11, 33, 51, 54] and found they
are all also PRUNE-neighboring albeit with limited group
privacy. See Section VI for details of the experiment. In
randomized pruning each comparison result is randomized.
The probability that the half of the data containing the median
is never discarded decreases exponentially in the number of
comparisons [29]. Hence, accuracy is significantly impacted
with high probability and we dismiss randomized pruning in
favor of PRUNE-neighboring.

D. Exponential Mechanism

The exponential mechanism, introduced by McSherry and
Talwar [39], expands the application of differential privacy
to functions with non-numerical output, and when the output
is not robust to additive noise. The exponential mechanism
selects a result from a fixed set of outputs O while satisfying
differential privacy. The mechanism is exponentially more

likely to select “good” results where “good” is quantified via a
utility function u(D, o) which takes as input a data set D ∈ Un
and a potential output o ∈ O. The utility function provides
a utility score for o w.r.t. D and all possible output values
from O. Informally, a higher score means the output is more
desirable and its selection probability is increased accordingly.
The formal definition is according to [35].

Definition 4 (Exponential Mechanism). For any utility func-
tion u : (Un × O) → R and a privacy parameter ε,
the exponential mechanism Mε

u(D) outputs o ∈ O with
probability proportional to exp

(
εu(D,o)

2∆u

)
, where

∆u = max
∀o∈O,D'D′

|u(D, o)− u(D′, o)|

is the sensitivity of the utility function. That is,

Pr[Mε
u(D) = o] =

exp
(
εu(D,o)

2∆u

)
∑
o′∈O exp

(
εu(D,o′)

2∆u

) . (1)

Median Utility Function: We focus on the median and
use the median utility function from Li et al. where rankD(x)
denotes the number of elements in D smaller than x.

Definition 5 (Median utility function). The median utility
function umed : (Un × U) → Z gives a utility score for each
x ∈ U w.r.t. D ∈ Un as

umed(D,x) = − min
rankD(x)≤j≤rankD(x+1)

∣∣∣j − n

2

∣∣∣.
Note that for the median O = U , i.e., every universe ele-

ment has to be considered as a potential output. The sensitivity
of umed is 1/2 since adding an element increases n/2 by 1/2
and j either increases by 1 or remains the same [35]. Thus,
the denominator 2∆u in the exponents of Equation (1) equals
1, and we will omit it in the rest of this work. The intuition
behind this utility definition is to use the rank of elements
to quantify their “closeness” to the median. The median itself
has the highest utility value, 0, all other elements have negative
utility. The further away an element in a sorted data set (i.e., its
rank) is from the median position, the smaller its utility. Note
that Definition 5 can be adapted to select elements of arbitrary
rank k, e.g., to find the 25th- and 75th-percentile. In this work
we focus on the secure computation of the differentially private
median but this can easily be extended to securely compute the
differentially private kth-ranked element.

E. Secure Computation

We use secret sharing as well as garbled circuits as addition
and scalar multiplication are more efficient with the former
whereas comparisons can be more efficiently implemented as
boolean circuits with the latter.

Additive Secret Sharing: We require all values to be in the
ring Z2b and perform all operations modulo Z2b . In additive
p-out-of-p secret sharing a party Pi, 1 ≤ i ≤ p, (or a separate
dealer) “splits” its secret value s ∈ Z2b into p shares and all
shares are required to reconstruct the secret. First, Pi creates
uniformly random values s1, . . . , sp−1 ∈ Z2b . Then, Pi sets
sp = s−

∑p−1
i=1 si. Intuitively, a shared secret is reconstructed

by adding all shares together, i.e., s =
∑p
i=1 si. Privacy
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follows from the fact that shares s1, . . . , sp are uniformly
random and the sum of any strict subset of the shares is also
random. We denote the sharing of s as 〈s〉 = (s1, . . . , sp).
Addition with shared secret values 〈s〉, 〈r〉 is straightforward
since 〈s〉+〈r〉 = (s1+r1, . . . , sp+rp), as is multiplication with
a public value t ∈ Z2b where t〈s〉 = (ts1, . . . , tsp). We also
write 〈s〉Pj instead of sj to highlight that it is Pj’s share of s.
In our implementation we use the ring Z264 as computations
modulo 264 are commonly supported on standard CPUs.

Garbled Circuits: A garbled circuit, first described by
Yao [56], is a general technique to securely evaluate any
function by implementing it as a boolean circuit and “garbling”
each gate’s truth table. Informally speaking, given two parties,
the four possible inputs of a garbled table are not plaintext bits
but random labels. One party is the garbler who garbles the
gates and creates the labels. The other party, called evaluator,
receives the garbled circuit and evaluates it. The garbler
includes all her input labels in the garbled circuit (which look
random to the evaluator). However, the garbler cannot learn
the evaluator’s input and cannot send both input labels per
gate to the evaluator, otherwise the garbler’s input will be
revealed. To solve this problem 1-out-of-2 oblivious transfer
(OT) [23, 47] is used: The evaluator receives only her input
label and the garbler remains oblivious. Given the input labels
for both parties the evaluator can determine (decrypt) the
output label for a gate and use it as input for the next gate. An
output translation table, also provided by the garbler, maps the
final random output label to the plain result. For a formalized
description see Appendix A.

IV. BUILDING BLOCKS FOR DP MEDIAN SELECTION

We implement an efficient, secure computation of the
exponential mechanism which selects the differentially private
median from the entire data universe U . There are two chal-
lenges for secure computation of the exponential mechanism:

• the runtime complexity is linear in |U| as probabilities
for all possible outputs in U are computed,

• the general exponential mechanism is too inefficient
with general secure computation as it requires |U|
exponentiations and divisions.

In this section we present building blocks for our practically ef-
ficient, sub-linear time protocol overcoming those challenges.

A. Overview

For now we focus on a single data set as we later prune
and merge the data sets from the two parties into one data
set. For data set D with universe U we compute the median
selection probabilities for all of U using only D by utilizing
dynamic programming. To compute the probabilities efficiently
we first define a simplified utility function utility, which
computes utility for all universe elements but only requires
D as input, in Section IV-B. The simplified utility provides
incorrect utility scores in the presence of duplicates. Thus,
we define gap to discard these incorrect scores and compute
the median selection probabilities, denoted as weight. The
sum of these probabilities is the basis for the cumulative
distribution function, which we denote with mass. Then, we
sample the differentially private median based on mass with

A B

c = mA<mB

〈Ds〉A+〈Ds〉B is
sorted DsA ∪DsB

Sample median m̂

(I) Input Pruning [1]

(II) Oblivious Merge [31]
& Secret Sharing

(IV) Median
Selection

mA=median ofDiA

Di+1
A is upper half

of DiA if c = 1 else
lower half

loop: i = 0..s− 1

mA mB

c c

DsA, 〈Ds〉A DsB

〈Ds〉B

〈gap〉A,
〈mass〉A,
〈Ds〉A,
N1
A, N

2
A

〈gap〉B ,
〈mass〉B ,
〈Ds〉B ,
N1
B , N

2
B

m̂ m̂

Generate list 〈Ds〉A
of masking values

(III) Selection
probability: Com-
pute gaps 〈gap〉A,
probability masses
〈mass〉A, draw lists
of nonces N1

A, N
2
A

Secure
computation

between A, B

Fig. 3. High-level protocol overview with comments for A, where s is the
number of pruning steps, D0

A is sorted DA, and 〈Ds〉A, 〈gap〉A, 〈mass〉A
areA’s shares for all values dsi , gaps gap(i), and massesmass(i) respectively
(i ∈ {0, . . . , |Ds| − 1}).

inverse transform sampling described in Section IV-C. To
further reduce secure computation complexity we prune the
input D in Section IV-D. A high-level overview of our protocol
is visualized in Fig. 3, and we present our full protocol in
Section V. In the first step, the parties prune their input. Then,
they securely merge and secret share their pruned data. In the
third step they compute selection probabilities and, in the last
step, sample the differentially private median.

Note that in the following we define gap, utility, and
weight such that direct access to the data D – and therefore the
need for secure computation – is minimized: Each party can
compute utility and weight without any access to D. Further-
more, gap has a static access pattern in dynamic programming,
independent of the elements in (sorted) D, which makes the
gap function data-oblivious, i.e., an attacker who sees the
access pattern cannot learn anything about the sensitive data.

B. Utility with Static Access Pattern

Recall that the exponential mechanism evaluates the utility
function umed for all elements in the data universe U . However,
per definition of umed certain outputs have the same utility,
namely, duplicates and elements in U\D. We use this obser-
vation to simplify the median utility definition and evaluate it
only for elements in D instead of the entire universe U .

Definition 6 (Median utility function). Let data set D ∈ Un
be sorted. The median utility function utility : ID → Z scores
the utility of an element of D at position i ∈ ID as

utility(i) =

{
i− n

2 + 1 if i < n
2

n
2 − i else

.

First, we prove the equivalence of utility function utility
and umed only for distinct data (D ⊆ U) then we define gap to
help with the utility computation for data sets with duplicates.
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Theorem 1 (Utility equivalence). For D ⊆ U and index i ∈
ID we have

umed(D,x) = utility(i)

for x ∈ [di, di+1) with i < n/2 and x ∈ (di−1, di] with
i ≥ n/2.

Proof: First, we show that all elements in x ∈ [di, di+1)
for i < n/2 and x ∈ (di−1, di] for i ≥ n/2 have the same
utility. The utility umed of an element x ∈ U is based on a
rank from the set Sx = {j | rankD(x) ≤ j ≤ rankD(x + 1)}
according to Definition 5. For i < n/2, x ≥ di and x + 1 <
di+1 we have rankD(x+1) = rankD(di+1). All elements in the
open range (di, di+1) have the same rank set S = {rankD(x+
1)}. The rank set for di, Sdi , is a superset of S that also
includes ranks smaller than rankD(x+1). However, rankD(x+
1) = Sdi ∩ S minimizes the term |rankD(x+ 1)− n/2| since
it is the value closest to n/2. Thus, all elements in the half-
open range [di, di+1) have the same utility. Analogously, for
i ≥ n/2 elements in (di−1, di] have the same utility.

For i ∈ ID and sorted D ⊆ U we have rankD(di) = i and
Sdi = {rankD(di), rankD(di + 1)} = {i, i+ 1}. Thus,

umed(D, di) = − min
j∈{i,i+1}

∣∣∣j − n

2

∣∣∣
=

{
i+ 1− n

2 if i < n
2

n
2 − i else

= utility(i).

Thus, the sensitivity of utility is the same as umed. We
stress that utility(i) only depends on the position i in the
sorted data. Basically, we assume all elements in D are distinct,
in this case utility(i) = umed(D, di). To only retain the correct
utility in the presence of duplicates we define gap next5.

Definition 7 (Gap). The gap function gap : ID → N0 provides
the number of consecutive elements in U with the same utility
as di with

gap(i) =


di+1 − di if i < n

2 − 1

1 if i = n
2 − 1

di − di−1 else
. (2)

Note that gap is defined for all n indices although there
are only n−1 gaps between values in D. We set the median’s
gap to 1 as it is the only element not contained in the union
of all half-open ranges. If D contains duplicates gap is zero
for all except the duplicate closest to the median. Thus, a gap
value of zero indicates incorrect utility for a duplicate and we
use this to eliminate such utility values in the following.

First, with the help of utility we define the unnormalized
selection probability, which we call weight.

Definition 8 (Weight). The weight function weight : ID → R
gives the unnormalized selection probability for an element at
index i ∈ ID as

weight(i) = exp (ε · utility(i))

where ε is the privacy parameter from Definition 1.

5Computation of utility, gap with static access is illustrated in Appendix B

TABLE I. uMED COMPARED WITH utility WITH STATIC ACCESS
PATTERN AND gap FOR SORTED D = {2, 2, 6, 6, 7, 7}, U = {1, . . . , 10}.

TO COVER UTILITY FOR ALL OF U WE ADD min(U),max(U) TO D.

index i 0 1 2 – 3 4 5 6 – 7
sorted D 1 2 2 3,4,5 6 6 7 7 8,9 10
rankD(·) 0 1 1 3 3 3 5 5 7 7

umed(D, ·) −3 −1 −1 −1 0 0 −1 −1 −3 −3
utility(i) −3 −2 −1 −1 0 0 −1 −2 −3 −3
gap(i) 1 0 4 – 1 0 1 0 – 3

min(U), max(U) Missing elements U\D

Then, we use weight and gap to define the probability
mass of elements with the same utility, which we call mass.

Definition 9 (Mass). The probability mass function mass :
ID → R at i ∈ ID is

mass(i) =

i∑
h=0

weight(h) · gap(h).

To ensure that mass covers all elements in U we append
the smallest and largest universe element to the beginning
resp. end of D before computing mass. Now, we show that
mass is the (unnormalized) cumulative density function for
the distribution defined by Mε

u(D).

Theorem 2. Let O = {d0, . . . , di} ⊆ U with D sorted,
min(U), max(U) ∈ D and i ∈ ID, then

mass(i)

R
=
∑
o∈O

Pr[Mε
u(D) = o],

with u = umed and normalization R =
∑
o′∈U

Pr[Mε
u(D) = o′].

Proof: Without duplicates utility = umed (Theorem 1),
thus, weight(i) = exp(ε · umed(D, di)) for i ∈ ID. With
duplicates weight can produce incorrect values, however,
weight(i) · gap(i) = 0 as gap is zero for all duplicates except
the one closest to the median. In other words, we eliminate
weights based on incorrect utility values as they do not alter
the sum mass[i] =

∑i
h=0 weight(h) · gap(h).

On the other hand, gap > 0 indicates the number of
consecutive elements in U with same utility, and weight(i) ·
gap(i) is their unnormalized probability mass. Thus, mass[i]
equals the sum of unnormalized probabilities for elements in
O = {min(U), . . . , di}, and mass[i]/R equals normalized
probabilities

∑
o∈O Pr[Mε

u(D) = o].

An example for utility and gap can be found in Table I.
It illustrates that utility for sorted D is just a sequence that
first increases, then decreases after the median. As mentioned
above, we add min(U) to the beginning and max(U) to the
end of D (highlighted in light gray in Table I). The utility for
“missing elements” in U\D (dark gray columns) is the same
as for the preceding or succeeding element in D. Furthermore,
gap is zero for the duplicates furthest away from the median
and otherwise indicates the number of consecutive elements in
U with the same utility (e.g., gap(2) = 4 as 2, 3, 4, 5 have the
same utility as d2 = 2).
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C. Median Sampling

We use inverse transform sampling to sample the dif-
ferentially private median from the cumulative distribution
function mass by finding an index j ∈ ID

6 such that
mass(j−1) ≤ r < mass(j) for a uniform random r. Finally,
we select an element at uniform random among the gap(j)
consecutive elements with the same utility as the element at
index j. Now, with our simplified utility, we do not need to
iterate over all elements in U , but only over elements in D
while still covering all “missing” elements (U\D) via gap.

D. Input Pruning with non-decreasing Utility

However, n might be large and we show how to prune
D via [1] before applying our median selection. Alternative
pruning approaches are used in [27, 35, 44] (see Section VII).
Next, we explain pruning, define accuracy, and present the
maximum pruning steps for a given accuracy.

PRUNE is a technique used by Aggarwal et al. [1] to
securely find the median of two parties A, B with respective
data sets DA, DB . We assume the data size of each party,
i.e., |DA|, |DB |, to be known, however, it can be hidden
via additional padding. As preprocessing, the parties A, B
sort their respective data sets DA, DB and only retain the
smallest k = d|DA| + |DB |e/2 values7. Then, they pad the
remaining data with −∞,+∞ to be of size 2dlog2(k)e in a
way that preserves the position of the median (see Appendix D
for details). In each pruning step the parties compute their
respective medians, mA,mB , perform a secure comparison
mA < mB , and use the result to discard the halves of their
data that cannot contain their mutual median, i.e., A retains the
upper half of DA if mA < mB and the lower half otherwise, B
does the opposite. After log n iterations only their exact mutual
median remains. We denote data sets DA, DB after pruning
step s as Ds

A, D
s
B and their union as Ds. Note that PRUNE does

not violate differential privacy as we only consider PRUNE-
neighboring data sets with the same comparison results similar
to [28]. The median m of D is also the median of Ds as
shown in [1, Lemma 1]. How the data D is distributed among
parties changes the intermediary outcome of the pruning, i.e.,
what elements remain in Ds

A, D
s
B . However, utility depends

on an element’s closeness to the median which remains or
increases if elements in between are removed; for details we
refer to Appendix C. Before we can find the maximum number
of pruning steps we first define what accuracy we want to
maintain after pruning. We separate the universe U in two
disjunct sets of remaining elements R and pruned elements P
where R = {x ∈ U | min(Ds) ≤ x ≤ max(Ds)} ⊆ U and
P = {x ∈ U | x < min(Ds) or x > max(Ds)} = U\R. Note
that R contains the universe elements closest to the median.

Definition 10 (Accuracy). Let u = umed, then accuracy is

pR = 1− pP =
∑
x∈R

Pr[Mε
u(Ds) = x],

i.e., pR is the probability mass of all remaining elements.

6For notational convenience let j − 1 < 0 be 0.
7If the data contains duplicates, dlog2 ne+1 bits are added to the element’s

binary representation to make it unique, which is required for the security proof
from [1, Section 3.2]. We implement the uniqueness encoding but omit it in
the presented protocol to simplify its description.

With accuracy pR > 0.5 it is more likely to select the
differentially private median among R than among P . In our
evaluation we use accuracy pR = 0.9999. The number of
pruning steps s enables a trade-off between accuracy pR and
computation complexity: smaller s leads to higher accuracy
and larger s translates into smaller input size for the secure
computation. We are interested in the maximum number of
pruning steps such that it is more likely to select an element
from R instead of P .

Theorem 3 (Upper Bound for Pruning Steps). Let D be a
data set with data universe U , ε > 0, and 0 < α < 1. The
upper bound for pruning steps s fulfilling pR ≥ α is

blog2(εn)− log2

(
loge

(
α

1− α
(|U| − 1)

))
− 1c.

Proof: We find the maximum number of pruning steps
s by examining what the maximum probability mass pP for
pruned elements can be.

First, note that the utility for all x ∈ P is the same
independent of the values in Ds: Half of the values in P
are smaller (resp., larger) than the median m of Ds, i.e.,
rankDs(x) = 0 if x < m and rankDs(x) = |Ds| otherwise.
Thus, umed(Ds, x) = −

∣∣∣0− |Ds|2

∣∣∣ = −
∣∣∣|Ds| − |D

s|
2

∣∣∣ = − n
2s+1

since |Ds| = n
2s . (Recall that D is padded before pruning such

that n is a power of two.)

As the utility, and thus selection probability, is the same
for all elements in P the probability mass pP is maximized if
|P| is maximized. The maximum for |P| is |U|−1 as R must
contain at least one element, the median m.

Let p′R, p
′
P be the unnormalized probability masses pR, pP

respectively, then

p′R = exp(εumed(Ds,m)) = 1

since R = {m} and umed(Ds,m) = 0, and

p′P = (|U| − 1) exp
(
−ε n

2s+1

)
with normalization term R = p′P + p′R. Now accuracy pR of
at least α is equivalent to

α ≤ p′R
R

=
1

(|U| − 1) exp
(
− εn

2s+1

)
+ 1

⇔ exp
(
− εn

2s+1

)
≤ 1− α
α(|U| − 1)

⇔ loge

(
α(|U| − 1)

1− α

)
≤ εn

2s+1

⇔ s ≤ log2

 εn

loge

(
α

1−α (|U| − 1)
)
− 1.

As s ∈ N we use s = blog2

(
εn

loge( α
1−α (|U|−1))

)
− 1c which

concludes the proof.

This is a worst-case analysis and a tighter upper bound can
be obtained by using |P| instead of |U|−1. However, the size
of P leaks information about D, hence, we refrain from using
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the tighter bound. Furthermore, we guarantee an accuracy of
at least α, the actual accuracy can be even higher.

Lemma 1. With s ∈ O(log(n)− log log(|U|)) the pruned data
set’s size is sublinear in the size of the data universe, i.e.,
|Ds| = n

2s ∈ O(log(|U|))8.

V. SECURE SUBLINEAR TIME DIFFERENTIALLY PRIVATE
MEDIAN COMPUTATION

We describe our full protocol in Section V-A. In Sec-
tion V-B we detail optimizations and present a runtime com-
plexity analysis in Section V-C. In Section V-D we prove the
security of our protocol.

A. Protocol Description

Our protocol uses pruning developed by Aggarwal
et al. [1], which requires padding as a pre-processing step as
described in Appendix D. The selection probabilities are com-
puted on securely sorted, pruned data realized via oblivious
merging from Huang et al. [31], detailed in Appendix E.

The notation “A:” before an operation indicates that only
party A performs the following operation, likewise for party
B, and L[i] denotes the element at index i in array L. Our
protocol has four steps, denoted with (I)–(IV).

(I): Input Pruning (Algorithm 1): Both parties prune their
data sets DA, DB to Ds

A, Ds
B via [1] using secure comparison

realized with garbled circuits.

(II): Oblivious Merge & Secret Sharing (Algorithm 2): The
parties merge their pruned data Ds

A, Ds
B into sorted Ds via

bitonic mergers from [31] implemented with garbled circuits.
Note that Ds = {ds0, . . . , ds|Ds|−1} is secret shared, i.e., A
holds shares 〈dsi 〉A, B holds 〈dsi 〉B for all i ∈ IDs .

(III): Selection Probability (Algorithm 3): The parties
compute utility, weight, and gap to produce shares of mass.
Each party P ∈ {A,B} now holds shares 〈dsi 〉P , 〈gap(i)〉P
and 〈mass(i)〉P for all i ∈ IDs ,

(IV): Median Selection (Algorithm 4): The parties recon-
struct all shares and select the differentially private median
via inverse transform sampling realized with garbled circuits.
First, they sample dsj ∈ Ds based on mass. Then, they select
the differentially private median m̂ at uniform random among
the gap(j) consecutive elements with the same utility as dsj .

B. Optimizations

To optimize the performance of the secure computation
we utilize garbled circuits as well as secret sharing to use
their respective advantages. E.g., multiplication of two b-
bit values expressed as a Boolean circuit leads to a large
circuit of size O(b2) and is more efficiently done via secret
sharing. On the other hand, comparison is more efficient with
garbled circuits. Algorithms 2, 3 are implemented with garbled
circuits. In Algorithm 1 only line 6 requires garbled circuits,
the rest is either data-independent or executed locally. Secret
shares, denoted with 〈·〉, are created in Algorithm 2, used in
Algorithm 3, and recombined in Algorithm 4. Furthermore, we

8We assume n > log(|U|), as otherwise we do not require pruning and our
input is already sublinear in the size of the universe.

Algorithm 1 PRUNE prunes DA, DB to Ds
A, Ds

B via [1].
Input: Data DA from A, DB from B, pruning steps s, median

rank k = d(|DA|+ |DB |)/2e.
Output: A has pruned data Ds

A, likewise B has Ds
B .

1: A: D0
A ← PAD(DA, k,+∞) //Appendix D

2: B: D0
B ← PAD(DB , k,−∞)

3: for i← 0 to s− 1 do
4: A: mA ← median of Di

A
5: B: mB ← median of Di

B
6: c← mA < mB

7: A: Di+1
A ← upper half of Di

A if c = 1 else lower half
8: B: Di+1

B ← lower half of Di
B if c = 1 else upper half

9: end for

Algorithm 2 MERGEANDSHARE merges Ds
A, Ds

B into sorted
Ds via [31] and secret shares it.
Input: Pruned data Ds

A from A in ascending order, array
〈Ds〉A of 2|Ds

A| random values in Z264 from A, Ds
B from

B sorted in descending order.
Output: A has secret shares 〈Ds〉A of sorted union of pruned

data, resp. B has 〈Ds〉B .
1: Ds ← Ds

A appended with Ds
B

2: MERGE(0, |Ds| − 1, Ds) //Appendix E

3: 〈Ds〉B ← Ds − 〈Ds〉A mod 264

4: return 〈Ds〉B to B

Algorithm 3 SELECTIONPROBABILITY computes the proba-
bilities for the median utility.
Input: Secret shares 〈Ds〉A from A, resp. 〈Ds〉B from B, of

the sorted data Ds, and number k of nonces.
Output: A holds secret shares 〈gap〉A of gaps and 〈mass〉A

of probability masses, also nonces N1
A, N

2
A; likewise party

B has 〈gap〉B , 〈mass〉B , N1
B , N

2
B .

1: A: 〈Ds〉A ← (0, 〈Ds〉A, 0)
2: B: 〈Ds〉B ← (min(U), 〈Ds〉B ,max(U))
3: each party P ∈ {A,B} does
4: Define arrays 〈mass〉P , 〈gap〉P of size |Ds|
5: for i← 0 to |Ds| − 1 do

6: utility ←

{
i− |D

s|
2 + 1 if i < |Ds|

2
|Ds|

2 − i else
7: weight← exp (ε · utility)

8: 〈gap[i]〉P ←


〈dsi+1〉P − 〈dsi 〉P if i < |Ds|

2 − 1

〈1〉P if i = |Ds|
2 − 1

〈dsi 〉P − 〈dsi−1〉P else
9: t← 〈mass[i− 1]〉P if i > 0 else 0

10: 〈mass[i]〉P ← t+ weight · 〈gap[i]〉P
11: end for
12: Draw lists of k nonces N1

P , N
2
P from [0,max(U) −

min(U)]
13: end each

compute the required exponentiations in Algorithm 3 line 7
without any secure computation. Next we reiterate portions of
Section IV-B but in the new context of secure computation.

Sorting via Garbled Circuits: Our utility definition requires
the data to be sorted which inherently relies on comparisons.
Comparisons are more efficiently implemented in binary cir-
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Algorithm 4 MEDIANSELECTION selects the median via
inverse transform sampling.
Input: Secret shares 〈gap〉A of gaps, 〈mass〉A of

probability masses, and 〈Ds〉A of A’s (pruned)
data, also lists of nonces N1

A, N
2
A from A;

resp. 〈gap〉B , 〈mass〉B , 〈Ds〉B , N1
B , N

2
B from B.

Output: Differentially private median m̂ of DA ∪DB .
1: R← 〈mass [|Ds| − 1]〉A+〈mass [|Ds| − 1]〉B mod 264

2: r ← RANDOMDRAW(R+ 1, N1
A, N

1
B) //Appendix F

3: Initialize j ← −1 and define d, g
4: for i← 0 to |Ds| − 1 do
5: e← 〈dsi 〉A + 〈dsi 〉B mod 264 //Recombine shares

6: gap← 〈gap[i]〉A + 〈gap[i]〉B mod 264

7: mass← 〈mass[i]〉A + 〈mass[i]〉B mod 264

8: if r < mass and j = −1 then
9: d← e; g ← gap; j ← i

10: end if
11: end for
12: x← RANDOMDRAW(g,N2

A, N
2
B)

13: m̂←

{
d+ x if j < |Ds|

2 − 1

d− x else
14: return m̂ to A, B

cuits than arithmetic circuits, hence, we use the former. We
leverage that Ds

A and Ds
B are already sorted and merge them

instead of sorting the union. Oblivious merging of two lists
of n sorted b-bit elements only requires 2bn log(n) binary
gates whereas oblivious sorting requires Θ(n log(n)) with a
large constant factor [31]. We use bitonic mergers from Huang
et al. [31] which require a bitonic list as input, i.e., a list that
monotonically increases then decreases (or vice versa). We can
generate a bitonic list by appending Ds

A sorted in ascending
order with Ds

B sorted in descending order (Algorithm 2 line 1).

Exponentiation without Secure Computation: To compute
the probabilities for i ∈ IDs we require exponentiations of the
form exp (ε · utility(i)). Note that none of the arguments are
secret, since ε is a public parameter and we defined utility to
not require data access. Therefore, we are able to compute the
required exponentiations without any secure computation.

Addition and Multiplication via Secret Sharing: We want
to compute the probability mass weight(i) · gap(i) which
requires two operations: subtractions over secret data Ds to
compute gap and multiplication of public values (weight),
with secret values (gap). Both operations are more efficiently
implemented with secret sharing.

Selection via Garbled Circuits: The median selection is
realized with inverse transform sampling which is better suited
for garbled circuits as it requires comparisons. We draw a
random r via nonces (see Appendix F) and compute the first
index j ∈ IDs such that the probability mass is larger than r:
mass(j) > r (line 8 in Algorithm 4). Note that we do not sam-
ple r from [0, 1] but from [0, R] where R = mass(|Ds| − 1),
i.e., the normalization factor from Equation (1). This allows
us to use the unnormalized probabilities and eliminates divi-
sions used in normalization. In the final step, we select the
differentially private median at uniform random among the
gap(j) consecutive elements with the same utility (and thus
probability) as dsj (line 13 in Algorithm 4).

C. Runtime Complexity Analysis

Step (I), requires s ∈ O(log n− log log |U|) compar-
isons (see Theorem 3). Step (II) requires 2b|Ds| log |Ds|
binary gates [31] for |Ds| elements with bit length b.
Steps (III) and (IV) require O(|Ds|) operations each.
Since |Ds| ∈ O(log |U|) (Lemma 1), our overall runtime
is O(max{log n− log log |U|, log |U| · log log |U|}), which is
sublinear in n for n > log |U|log |U|+1, and sublinear in |U|
otherwise.

D. Security

We combine different secure computation techniques in
the semi-honest model introduced by [24] where corrupted
protocol participants do not deviate from the protocol but
gather everything created during the run of the protocol. Our
protocol consists of multiple subroutines realized with secure
computation. To analyze the security of the entire protocol
we rely on the well-known composition theorem [24, Section
7.3.1]. Basically, a secure protocol that uses an ideal function-
ality (a subroutine provided by a trusted third party) remains
secure if the ideal functionality is replaced with a secure
computation implementing the same functionality. We consider
PRUNE-neighboring data sets (Definition 3), i.e., neighboring
data sets with the same pruning result.

Theorem 4 (Security). Our protocol securely implements the
ideal functionality of differentially private median selection
via the steps PRUNE, MERGEANDSHARE, SELECTIONPROB-
ABILITY and MEDIANSELECTION in the semi-honest model.

Proof: We use the composition theorem to analyze the
security of our protocol: We define required ideal functionali-
ties, show how they map to our garbled circuit implementation
(steps (I), (II), (IV)), and how it combines with secret sharing
(step (III)). Aggarwal et al. [1] developed the input pruning
we utilize and give a simulation-based security proof only
using comparisons as ideal functionality. PRUNE, a partial
execution of [1], allows the same simulation argument (see
Appendix G). Note that these comparisons leak nothing about
PRUNE-neighboring data sets. For the interactive computation
we require the following ideal functionalities:

• c← SECURECOMPAREideal(mA;mB).
In step (I) the ideal functionality on input mA,mB ,
i.e., median from A, B respectively, outputs the result
of comparison mA < mB as bit c to both parties.

• 〈Ds〉A, 〈Ds〉B ← MERGEANDSHAREideal(Ds
A;Ds

B).
In step (II) the ideal functionality receives as input
the pruned data Ds

A, Ds
B from A, B respectively, and

outputs the sorted, merged data as secret shares, i.e.,
〈Ds〉A, 〈Ds〉B is output to A, B respectively.

• m̂ ← MEDIANSELECTIONideal(〈gap〉A, 〈mass〉A,
〈Ds〉A; 〈gap〉B , 〈mass〉B , 〈Ds〉B).
In step (IV) party A inputs 〈gap〉A, 〈mass〉A, 〈Ds〉A,
party B inputs 〈gap〉B , 〈mass〉B , 〈Ds〉B and the ideal
functionality outputs the DP median m̂ to both.

Step (III), SELECTIONPROBABILITY, performs local compu-
tations without interaction, and does not require any ideal
functionality. We realize SECURECOMPAREideal with gar-
bled circuits in Algorithm 1 line 6. The ideal functionality
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MERGEANDSHAREideal, from merging step (II), is imple-
mented as MERGEANDSHARE in Algorithm 2 with garbled
circuits. Note that A provides the randomness for the secret
sharing, i.e., 〈Ds〉A as additional input which is not required
by the ideal functionality. Garbled circuits are also used
in the selection step (IV), where MEDIANSELECTIONideal is
implemented as MEDIANSELECTION in Algorithm 4. Addi-
tionally, to the input mentioned for the ideal functionality, the
parties also provide nonces as a source of randomness. We
rely on the established security proofs for garbled circuits in
the semi-honest model provided by Lindell and Pinkas [36].
Outputs of (II), (III) are intermediate states of our interactive
computation. As noted in [24, Section 7.1.2.3] such state can
be maintained securely among the computation parties in a
secret sharing manner. For security proofs of secret sharing we
refer to [46] and for security proofs for converting between
garbled circuits and secret sharing we refer to [14]. Alto-
gether, the execution of PRUNEideal, MERGEANDSHAREideal,
SELECTIONPROBABILITY, and MEDIANSELECTIONideal con-
stitute the ideal functionality for differentially private median.
Utilizing the composition theorem and [24, Section 7.1.2.3]
we replace the ideal functionality with secure implementations
PRUNE, MERGEANDSHARE, MEDIANSELECTION and secret
share the intermediate states.

VI. EVALUATION

Our implementation is written in C/C++ using the mixed-
protocol framework ABY developed by Demmler et al. [14].
We chose ABY as it supports secure two-party computation
based on arithmetic sharing and Yao’s garbled circuits and
provides efficient conversion between them. We implemented
two versions of our protocol – GC, with garbled circuits, and
GC + SS, with garbled circuits as well as secret sharing – to
show that using a mixed-protocol, which requires additional
conversion between the schemes, is still more efficient than
only utilizing garbled circuits. For evaluation we used the
Open Payments 2017 data set from the Centers for Medicare &
Medicaid Services (CMS) [11]. The CMS collects all payments
made to physicians from drug or medical device manufacturers
as required by the Physician Payments Sunshine Act. We eval-
uated different numbers of remaining elements after pruning
(i.e., different sizes of Ds) which is inversely proportional to
the privacy parameter ε as the number of pruning steps depends
on it (see Theorem 3). We used an accuracy value of 0.9999 to
determine the number of pruning steps. We ran the evaluation
on AWS t2.medium instances with 2GB RAM and 4 vCPUs
(where vCPU count roughly translates to thread count). As
garbled circuits and pruning are interactive protocols they
are influenced by network delay and bandwidth, therefore,
we evaluated our protocol in real networks between different
AWS regions with round trip times (RTT) of none (LAN),
12 ms (Ohio–N. Virginia), 25 ms (Ohio–Canada), and 100 ms
(Ohio–Frankfurt), with bandwidths of 1 GBits/s, 430 MBits/s,
160 MBits/s and 100 MBits/s respectively.

A. Runtime

We evaluated the runtime of GC and GC + SS, which
includes setup time (OT extensions, garbling) and online time
in seconds (or milliseconds in the LAN setting). The runtime
evaluations with increasing delays and decreasing bandwidths
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Fig. 4. Runtime without network delay and 1 GBits/s bandwidth (LAN).
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Fig. 5. Runtime for ∼12ms RTT, ∼430MBits/s (Ohio and N. Virginia).
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Fig. 6. Runtime for ∼25ms RTT, ∼160MBits/s (Ohio and Canada).
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Fig. 7. Runtime for ∼100ms RTT, ∼100MBits/s (Ohio and Frankfurt).

are presented in Fig. 4–7. In each figure we plotted different
data set sizes |DA| = |DB | = |D|/2 ∈ {103, 104, 105, 106}
to show that our protocol scales with increasingly larger data
sets. The runtime is the median of 20 runs and the 25th-
as well as 75th-percentile are indicated with brackets. The
runtime plots for GC and GC + SS have the same scale (and
are grouped side-by-side) to allow for an easier comparison
between the two. The advantage of GC + SS over GC is most
obvious in the LAN setting, where the runtime for GC + SS,
see Fig. 4b, is always below that of GC, see Fig. 4a. The
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Index j−1 j j+1

DB · · · dj−1 dj dj+1 · · ·

DB \ {x} · · · dj dj+1 dj+2 · · ·

DB ∪ {x} · · · [dj−3, dj−2] [dj−2, dj−1] dj−1 · · ·

Fig. 8. Neighbors of DB in relation to comparison index j used by PRUNE
(values highlighted in gray). Neighbors are DB with a value x ∈ DB removed
or x ∈ U added, illustrated for x < dj . All data sets are sorted.

same is true for modest network delay as can be seen by
comparing Fig. 5b with Fig. 5a. For network delay of up to
100 ms with 100 MBits/s bandwidth GC + SS is still faster than
GC but less so for 32 remaining elements (ε = 2), as shown in
Fig. 6 and 7. The reason for GC + SS being not much faster is
the increased number of interactive pruning steps required to
reach this number of remaining elements. Also, the number of
additional garbled circuits to go from GC + SS to GC is smaller
for few remaining elements (see Fig. 10a), so that the pruning
has more impact. Even for millions of records GC + SS has
a runtime of less than 2.6 seconds with 25 ms network delay
(Fig. 6b) and less than 7 seconds for 100 ms delay (Fig. 7b).

B. PRUNE-neighboring

Recall, PRUNE compares the sorted, padded data DA, DB

at some fixed index j in each pruning step, and a neighbor is
DB with an element x removed or added. As Fig. 8 illustrates,
comparing a neighbor at index j is similar to using the original
D at an adjacent index. Thus, neighbors are likely PRUNE-
neighbors when the data contains multiple duplicates or is
dense (no large gaps between values) and less so for sparse,
unique data. In more detail, we first consider x < dj where dj
denotes the value of DB at index j. Let the data be padded to
some fixed size. Then, removing x from DB “shifts” values
larger than x to the left whereas adding x can shift smaller
values to the right in the sorted data. Removing x ∈ DB

leads to a single shift left, i.e., PRUNE uses dj+1 instead of
dj . For addition at most two right shifts can occur as we
now have to consider x ∈ U instead of x ∈ DB . Adding
x ∈ [dj−2, dj−1] places it at index j in the sorted neighbor.
Thus, in the worst-case for addition, PRUNE uses dj−2 instead
of dj . Note that adding/removing x ≥ dj affects only positions
larger than j, and all such neighbors are PRUNE-neighbors for
this index. Also, if the original comparison (of DA, DB at j)
is true, then removing x < dj produces the same result in
PRUNE (neighbor has an even larger value at j). Likewise if
it is false and we add x. To empirically verify that PRUNE-
neighboring (Definition 3) is not too restrictive we evaluated
multiple columns from real-world data sets [11, 33, 51, 54],
and found that all neighbors are also PRUNE-neighbors. To
illustrate our evaluation methodology one can imagine the
neighboring definition in differential privacy (DP) as a graph.
Each database is a vertex and if two data sets are neighbors
they are connected by an edge. The common neighboring
definition in DP (adding/removing one element) results in a
graph. PRUNE-neighboring is a restriction on that graph in the
sense that it removes certain edges, similar constraints on the
input databases are considered in [4, 28]. Any neighboring
database considered in our IND-CDP-2PC security definition
must be in a connected component of the neighboring graph

TABLE II. MINIMUM CHANGES (WORST-CASE) IN DB TO SAMPLE A
NEIGHBOR THAT IS NOT A PRUNE-NEIGHBOR W.R.T. DA . EVALUATED FOR
52 000 NEIGHBORS (ALL COMBINATIONS OF UP TO 50 REMOVALS AND 50

ADDITIONS WITH 20 SAMPLES PER COMBINATION). EACH ROW SHOWS
THE MINIMUM CHANGES FOR ε = 1 | ε = 2 AND

>
100 INDICATES NONE

WERE FOUND FOR UP TO 100 CHANGES.

DA

DB Wages
[51]

Trans-
actions
[54]

Times
[54]

Pay-
ments
[11]

Weights
[33]

Quan-
tities
[33]

Wages [51]
>
100 | 18

>
100 | 14 12 | 12 22 | 22

>
100 | 12 46 | 21

Transactions [54] 65 | 65 8 | 8
>
100 | 20 37 | 30 36 | 36 23 | 23

Times [54]
>
100 | 22 33 | 18 6 | 6

>
100 | 13

>
100 | 21 25 | 25

Payments [11] 28 | 28
>
100 | 11

>
100 | >100 6 | 6

>
100 | 41

>
100 | 13

Weights [33]
>
100 | 43 34 | 33 4 | 4 33 | 33

>
100 | 21 48 | 19

Quantities [33] 30 | 30
>
100 | 25

>
100 | 12

>
100 | 9 14 | 14 14 | 14

where all nodes have the same output of the PRUNE-function.
The result of the PRUNE steps in our protocol determines the
connected component the other party’s database is DP in. In
that sense DP with PRUNE-neighboring cannot be violated by
any adversary. Any choice of inputs by party A will lead to
one (but different) connected component for the DP of B’s
database, i.e., B’s database will always remain differentially
private. We empirically showed that PRUNE-neighboring is
not too restrictive, i.e., it does not remove too many edges
and make the resulting connected component too small. We
sampled edges from the neighboring graph resulting from the
common definition on real-world data sets [11, 33, 51, 54]
using the following method: Given a real-world database for
B, an element to be added or removed chosen by A (note
that A must choose before knowing the result), and a step in
the protocol does there exist any neighbor for B’s database
that is excluded by the PRUNE-neighboring definition. For
up to 16 consecutive pruning steps (the maximum according
to Theorem 3 for our highest evaluated parameters ε = 2,
and accuracy of 0.9999), we found none. Given that the
connectivity in the neighboring graph is high, this implies that
the connected component is expected to remain large.

Group privacy extends the neighboring definition from in-
cluding (or excluding) a single value to multiple values. There-
fore, to quantify group privacy we consider multiple changes
and provide a worst-case analysis for PRUNE-neighboring:
Table II shows the minimum changes required to produce a
neighbor that is not also a PRUNE-neighbor9. We evaluated
52 000 neighbors (all combinations of up to 50 removals and
50 additions with 20 samples per combination) for each of
the 36 ways to distribute the data between two parties (6
data sets from [11, 33, 51, 54] distributed between 2 parties).
PRUNE-neighboring provides only limited group privacy for
the largest number of pruning steps (ε = 2). However, for our
strongest privacy guarantee ε = 0.25 we found changes leading
to violations in only 2 from 36 data set combinations, requiring
at least 12 changes. Note that this is a worst-case analysis, and
an average-case is provided in Appendix H. Also, sequential
composition is still supported as the result of our protocol
is the median selected by the exponential mechanism which
can be used as input for another (DP) mechanism. (Parallel
composition, running our protocol on multiple subsets of the
data at once, outputs multiple median values of these subsets.)

9Some values are the same for ε ∈ {1, 2} as we only report the minimum
number of changes over all pruning steps.
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Fig. 9. Absolute error averaged over 100 runs with and without pruning.

C. Precision & Absolute Error

Our implementation uses fixed-point numbers (see Sec-
tion III). As probabilities are floating point numbers we
evaluated the loss of decimal precision of our secure imple-
mentation compared to a floating point operation with access to
unprotected data [11]. For the maximum evaluated number of
remaining elements, i.e., 256 (corresponding to ε = 0.25), the
difference for all elements combined was less than 6.5 ·10−15.

Pruning preserves the elements closest to the median and
the absolute error compared to the original data is small.
We evaluated the absolute error, i.e., actual median versus
DP median, for the exponential mechanism on original data
and pruned data: Fig. 9 shows the average over 100 runs,
where brackets indicate the 95% confidence interval. Before
pruning the data was randomly split between both parties.
Our evaluation shows the absolute error decreases by 3% on
average over all evaluated ε ∈ {0.1, 0.25, 0.5}. However, this
is within the margin of error, since the confidence intervals for
pruned data overlap with original data’s confidence intervals.

D. Circuit size & Communication

We only report circuit size and communication for 106

records as smaller data sizes (i.e., fewer pruning steps) do not
noticeably reduce the numbers (recall, a pruning step consists
of a single comparison). The number of garbled gates for GC
and GC + SS depends on the number of remaining elements
and is visualized in Fig. 10a. GC requires an order of magni-
tude more gates as GC + SS since GC requires larger circuits
for arithmetic operations whereas GC + SS avoids the need
for this additional circuit complexity. The communication cost,
measured in megabytes per number of remaining elements, can
be found in Fig. 10b. We do not distinguish between (precom-
puted) setup and online phase and present the total number of
megabytes sent. Whereas GC sends about 15 megabytes for 64
remaining elements (ε = 1), GC + SS requires less than that
even for 256 remaining elements (ε = 0.25) as fewer gates
have to be garbled and evaluated.

E. Comparison to Related Work

Pettai and Laud [44] compute differentially private ana-
lytics on distributed data via secret sharing for three parties,
whereas we optimize our protocol for rank-based statistics
of two parties and also use garbled circuits.10 Both parties

10Note that 3-party computation on secret shares are usually faster than
cryptographic 2-party computations [2].
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Fig. 10. Circuit size and communication for GC vs. GC+ SS.
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Fig. 11. Runtime of GC+ SS (∼25 ms RTT and ∼160 MBits/s, 256
remaining elements, ε = 0.25) vs. Pettai and Laud [44] (LAN).

learn the PRUNE-neighborhood (for large data sets requiring
pruning), but the median output can be shared (or output to
only a single party) and processed further. Pettai and Laud
evaluated their median computation with 48GB RAM and
a 12-core 3GHz CPU in a LAN. We, on the other hand,
used a comparatively modest setup (t2.medium instances with
2GB RAM, 4vCPUs) and evaluated in multiple WANs. A
comparison of our protocol (with∼25 ms delay,∼160 MBits/s)
and [44] (in a LAN) is visualized in Fig. 11. Their median
computation requires 34.5 seconds for 106 elements in a LAN.
Our protocol runs in less than 2.6 seconds with twice as many
elements even with network delay and restricted bandwidth.

VII. RELATED WORK

We describe related work combining secure computation
with differential privacy, outline alternatives to reduce the size
of the data universe, and discuss other work that computes the
differentially private (DP) median.

Secure Computation and DP: Dwork et al. [19] first
mentioned that differential privacy combines well with secure
computation. E.g., secure computation of DP sums is easily
achieved via additive noise (see [25] for an overview). It
was shown in [26] that some distributed DP protocols (e.g.,
XOR computation) can only achieve optimal accuracy when
combined with secure computation. We utilize the iterative
pruning from Aggarwal et al. [1] as it is a basis for more
efficient secure computation protocols as shown in [49]. (Not
all protocols can utilize this approach, e.g., it is not applicable
when only one party learns the output [10]). Naor et al. [42]
use secure two-party computation to find differentially private
heavy hitters (e.g., to blacklist frequently used passwords) in
the local model. They also consider malicious adversaries that
try to skew the frequency. We, on the other hand, simulate the
more accurate central model in the local model to find the DP
median in the semi-honest model. For functions that are not
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robust to potentially large noise, e.g., the median, a specific
value from a data universe, the exponential mechanism, devel-
oped by McSherry and Talwar [39], is the better choice [35].
The exponential mechanism defines a probability distribution
over all possible output values. Eigner et al. [21] implement the
exponential mechanism in secure multiparty computation for
semi-honest and malicious parties. However, they are linear in
the size of the data universe: 3 semi-honest parties require 42.3
seconds to sample a universe of size 5 in a LAN on a machine
with 32GB RAM and 3.2GHz. Our protocol is sublinear in the
size of the data universe, requiring less than 500 milliseconds
for millions of elements in a LAN with less powerful hardware
(see Fig. 4b). Efficiently sampling the distribution defined by
the exponential mechanism is non-trivial [18], thus, a reduction
of the sampling space is considered by [6, 27, 35, 44].

Pruning and Reduction: Gupta et al. [27] suggest pruning
the set of outputs for combinatorial problems from exponen-
tial to polynomial size and sample it with the exponential
mechanism. We follow a different approach based on [1].
Another technique divides U into equal-sized ranges, selects a
range with the exponential mechanism and samples a range
element at uniform random [35]. However, any element in
the selected range is equally likely to be output independent
of its utility. Our protocol samples the median only among
elements with the same utility which is exponentially more
likely to select elements closer to the actual median. Pettai and
Laud [44] define algorithms for privacy-preserving analytics.
They securely compute the DP median with three parties but
chose not to optimize their computation for the exponential
mechanism and instead use the sample-and-aggregate mecha-
nism [43]. The sample-and-aggregate mechanism divides the
output in multiple equal-sized ranges, selects from each range
the element closest to the median and returns a noisy average
of these elements. However, the exponential mechanism, which
we securely implement for the median utility function, selects
an actual universe element and not a noisy approximation. The
authors of [44] also apply input pruning and replace half of
the excluded values with a small (resp. large) constant. They
mention that this does not always preserve the median. Blocki
et al. [6] use a relaxed exponential mechanism to sample a
DP password frequency list in the central model. They allow
a negligible error δ, i.e., they only sample the exponential
mechanism correctly with probability 1 − δ, which improves
sampling from (potentially) exponential time to O(|D|1.5/ε).
However, they require full access to the data D in clear.

Differentially Private Median: As mentioned above, Pettai
and Laud [44] also securely compute the DP median. Their
work is more general, supporting multiple DP statistics over
secret-shared data, whereas we optimized our protocol for
rank-based DP statistics (e.g., pth-percentile, median) in a
two-party setting without powerful hardware. Their protocol
requires 34.5 seconds for a data size of 106 in a LAN [44,
Fig. 1] whereas our protocol runs in less than 500 ms with
twice as many elements in a LAN (Fig. 4b) and is still
13 times faster in a WAN as [44] in a LAN (Fig. 11).
Median computation has also been considered in the DP
query framework PINQ, developed by McSherry [40], which
requires a trusted third party. Smooth sensitivity, presented in
[43], analyzes the data to provide instance-specific additive
noise. Yet, when smooth sensitivity is high, it still provides
less accuracy than the exponential mechanism (see Section

II). Also, computing the exact sensitivity itself is not trivial
and requires access to the entire, sensitive data set. Another
approach from Dwork and Lei [17] considers the statistical
setting, where data are actually i.i.d. samples from a distribu-
tion. Their approach requires additive noise proportional to the
scale of the data (approximated via interquartile range), i.e.,
potentially large noise, whereas our result is independent of
the scale. Smith et al. [50] compute the DP median in the
local model and achieve optimal error bounds without relying
on secure computation and even avoid interaction; however,
the local model’s accuracy is limited compared to the central
model (Ω(

√
n) vs. O(1) for n parties [30]). They approximate

for each party the count of elements in all subintervals of a
range, structured as nodes in a tree. A server combines these
noisy counts to learn the DP median. Hsu et al. [30] consider
approximate counts for heavy hitters and say an algorithm is α-
accurate if the returned universe element occurs with frequency
that differs at most by an additive α from the true heavy hitter.
They show that the lower bound for accuracy in the local
model (the setting of [50]) is Ω(

√
n) for n parties, whereas the

central model, which we simulate via secure computation of
the exponential mechanism, can achieve O(1) accuracy. The
authors of [50] note that general techniques combining secure
computation and differential privacy suffer from bandwidth
and liveness constraints, rendering them impractical for large
data sets. Our protocol shows that specially crafted protocols,
combining different techniques and optimizations, achieve
performance numbers suitable for practical applications.

VIII. CONCLUSION

We presented a protocol for secure differentially private
median computation on private data sets from two parties
with a runtime sublinear in the size of the data universe.
Our protocol implements the exponential mechanism as in the
local model using a distributed, secure computation protocol
to achieve accuracy as in the central model without trusting
a third party. For the median the exponential mechanism pro-
vides the best utility vs. privacy trade-off for low ε compared
to additive noise (see Section II). The output is selected with
an exponential bias towards elements close to the median while
providing differential privacy for the individuals contained in
the sensitive data. We note that our protocol can be easily
extended to compute differentially private rank-based statistics
such as pth-percentile and interquartile range. Our experiments
evaluate real-world delay and bandwidth, unlike related work
[44], which we still outperform by at least a factor of 13
(with 25 ms delay and less powerful hardware) by utilizing
secret sharing as well as garbled circuits for their respective
advantages. We optimize our protocol by computing as little
as possible using cryptographic protocols and by applying dy-
namic programming with a static, i.e., data-independent, access
pattern, yielding lower complexity of the secure computation
circuit. Our comprehensive evaluation with a large real-world
payment data set [11] achieves the same high accuracy as in
the central model and a practical runtime of less than 7 seconds
for millions of records in real-world WANs.
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APPENDIX

A. Garbled Circuit

Bellare et al. [3] formalize a garbling scheme as the tuple of
algorithms G = (Gb,En,De,Ev, ev), where Gb is probabilistic
and all others are deterministic. A string is defined as a
sequence of bits of finite length.

• (F, e, d) ← Gb(1λ, f): Takes as input a security
parameter λ ∈ N and the string f describing the
original function to evaluate, ev(f, ·), and outputs
string F describing the garbled function, Ev(F, ·),
string e describing an encoding function, En(e, ·), and
string d describing a decoding function, De(d, ·), as
defined in the following.

• X ← En(e, x) is an encoding function, described by
string e, that maps an initial input x ∈ {0, 1}n to a
garbled input X .

• y ← De(d, Y ) is a decoding function, described by
string d, that maps a garbled output Y to a final output
y.

• Y ← Ev(F,X) is an evaluation function, described
by string F , that maps a garbled input X to a garbled
output Y .

• y ← ev(f, x) is an evaluation function, described by
string f , that maps the input x to the output y, where
ev(f, ·) : {0, 1}n → {0, 1}m is the original function
we want to garble, and n = f.n,m = f.m depend on
f and must be computable from it in linear-time.

The following requirements are imposed on a garbling
scheme:

• Length condition: If f.n = f ′.n, f.m = f ′.m, |f | =
|f ′|, (F, e, d) ∈ [(Gb(1λ, f)], and (F ′, e′, d′) ∈
[(Gb(1λ, f ′)], then |F | = |F ′|, |e| = |e′|, and
|d| = |d′|.

• Non-degeneracy condition: Let r are be the random
coins of Gb. If f.n = f ′.n, f.m = f ′.m, |f | =
|f ′|, (F, e, d) ∈ [(Gb(1λ, f ; r)], and (F ′, e′, d′) ∈
[(Gb(1λ, f ′; r)], then e = e′ and d = d′.
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gap(i) d1−d0 1 d2−d1 d3−d2

Fig. 12. utility and gap computed on sorted D with static access pattern.

• Correctness condition: If f ∈ {0, 1}∗, λ ∈
N, x ∈ {0, 1}f.n, and (F, e, d) ∈ [Gb(λ, f)], then
De(d,Ev(F,En(e, x))) = ev(f, x).

B. Static access pattern for utility and gap

Each party can compute utility (Definition 6) without
any access to D, and gap (Definition 7) has a static access
pattern, independent of the elements in (sorted) D, which
makes the gap function data-oblivious, i.e., an attacker who
sees the access pattern cannot learn anything about D. Fig. 12
visualizes how we compute utility and gap with static access
pattern over sorted data D.

C. Non-decreasing Utility after Pruning

Theorem 5. The input pruning from [1] does not decrease
utility.

Proof: Let DA = {a1, . . . , am}, DB = {b1, . . . , bm}
with a1 < a2 < · · · < am and b1 < b2 < · · · < bm
(otherwise we use padding and uniqueness encoding from [1]).
Let asi = Ds

A[i], i.e., the element at index i in the data
of A after pruning step s. If some indices i, j, k exist such
that as−1

i < bs−1
j ≤ bs−1

k < as−1
i+1 where bs−1

j , . . . , bs−1
k are

not in Ds
B but as−1

i is in Ds
A then pruning step s removed

bs−1
j , . . . , bs−1

k but neither as−1
i nor as−1

i+1 , one of which is
further away from the median than bs−1

j , . . . , bs−1
k . However,

the utility of such a removed element either remains the same
(it is a duplicate of a remaining element), or increases, i.e., they
have the utility of their predecessor (resp., successor) in Ds.
Since one of the elements as−1

i , as−1
i+1 is closer to the median

after pruning step s than before, its utility increases and so
does the utility for all elements between as−1

i and as−1
i+1 .

If no such indices i, j, k exist, then we only remove the
elements furthest away from the median and the utility for
remaining elements is unchanged. The utility for removed
element x either remains the same (x is equal to a remaining
element) or increases. The latter is due to the fact that
removed elements have the same rank-based distance to the
median, either rankDs(x) = 0 or rankDs(x) = |Ds|. Since
|Ds| < |Ds−1| we have umed(Ds, x) > umed(Ds−1, x).

An example of non-decreasing utility after pruning is
shown in Table III for unique elements. For example, element
a1 has utility −3 before pruning, after pruning its utility
increases to −2, whereas the utility for b2, a3 remain as before.

TABLE III. UTILITY DOES NOT DECREASE FOR SORTED
D = DA ∪DB BEFORE AND AFTER ONE PRUNING STEP WITH

DA = {a1, . . . , a4}, DB = {b1, . . . , b4}.

D a1 b1 a2 b2 a3 b3 a4 b4
umed(D, ·) −3 −2 −1 0 0 −1 −2 −3

D1 – b1 – b2 a3 – a4 –
umed(D

1, ·) −2 −1 −1 0 0 −1 −1 −2

Algorithm 5 Algorithm PAD pads the input of party P ∈
{A,B} such that the element with rank k is at the median
position (part of FIND-RANKED-ELEMENT from [1]).
Input: Data DP , rank k, padding p̂
Output: Input padded to place kth-ranked element at median

position of the union of DA, DB

1: Sort DP and retain only the k smallest values
2: Pad DP with +∞ until |DP | = k
3: Pad DP with p̂ until |DP | = 2dlog2(k)e

4: return DP

D. Padding

In a preprocessing step to the actual pruning the data
is padded as described in Algorithm 5 where A calls
PAD(DA, k,+∞) and B calls PAD(DA, k,−∞) with k =
d(|DA|+ |DB |)/2e. Note that the data size of each party, i.e.,
|DA|, |DB |, can be hidden via additional padding.

E. Merge Implementation

For the merging implementation, as seen in Algorithm 6,
we use the bitonic mergers as described in [31, Section 5.1]
which require a bitonic list as input, i.e., a list that is mono-
tonically increasing then decreasing (or vice versa). Bitonic
merging recursively splits the list in halves and compares and
swaps elements such that every element of one half is greater
than every element of the other half.

F. Random Draw

We implemented RANDOMDRAW, see Algorithm 7, with
rejection sampling using efficient operations, namely XOR,
OR, AND, comparison. Rejection sampling is unbiased, how-
ever, for a fixed input size of k nonces it might abort with
probability at most 2−k11. Rejection sampling (without abort)
is used in Apple’s macOS [37]. For our evaluation in Sec-
tion VI we used k = 20.

An alternative to rejection sampling is a slightly biased
sampling algorithm without abort requiring only one nonce
instead of k per party: If the masked XOR of nonces (r) is
larger than M one uses r − M as the sampled output. We
compared biased sampling with rejection sampling (k = 20)
using the median of 20 runs for our largest circuit (ε =
0.25, |D| = 2 · 106) with approximately 100 ms delay and

11We now consider the worst-case rejection rate, i.e., comparison r < M
in line 11 of Algorithm 7. Recall that r is the XOR of uniform random values,
thus, each bit in r is uniform random as well. Masking ensures that at most
the mask first bits of r are set, in effect reducing the size of r to mask.
The number of set bits (i.e., bits with value 1) in M influences the rejection
probability. The rejection rate is maximized if only one bit in M is set. Then, r
is rejected with probability 1/2 as all r with 0 at position mask are accepted
(r < M ), while the other half is rejected. Increasing the number of set bits
in M decreases the rejection rate (as more r can be smaller than M ). Thus,
the rejection probability per sample r is at most 1/2.
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Algorithm 6 Algorithm MERGE returns sorted Ds =Ds
A∪Ds

B .
Input: Left index l, right index r, bitonic list Ds.
Output: Sorted Ds.

1: return if r < l
2: m← l + r−l

2
3: for i← l to m do
4: e← i+

⌊
r−l
2 + 1

⌋
5: Swap dsi with dse if dsi > dse
6: end for
7: MERGE(l,m− 1, Ds)
8: MERGE(m+ 1, r,Ds)

Algorithm 7 Algorithm RANDOMDRAW with parties A, B
based on [37].
Input: Max. value M , lists of k nonces NA, NB from A, B.
Output: Uniform random integer in [0,M)

//Find most significant 1-bit in M, set following

bits to 1 in mask

1: c← 0
2: mask ← 0
3: for i← bitlength b to 1 do
4: c← cOR ith bit of M
5: ith bit of mask ← c
6: end for
//Rejection sampling with abort

7: s← ⊥
8: for i← 1 to k do
9: r ← NA[i] XORNB [i]

10: r ← rANDmask
11: if r < M then
12: s← r
13: end if
14: end for
15: if s = ⊥ then
16: abort
17: end if
18: return r

100 MBits/s bandwidth. Biased sampling required around 28k
fewer gates and sent 400 KB less than rejection sampling with
k = 20, which corresponds to a reduction in circuit size and
communication of less than 1% for GC and around 3–4% for
GC + SS. The runtime with biased sampling decreased by 2.2
seconds for GC (18.5% faster) but only by 0.18 seconds for
GC + SS (2.6%). (For k = 30 an additional 44k gates and
600 KB are required compared to biased sampling, leading
to similar runtimes as for k = 20.) Thus, we use rejection
sampling as it is unbiased with only small impact on the
runtime of GC + SS.

G. Simulation Proof for Pruning

Aggarwal et al. [1] prove the security of their exact kth-
ranked element computation in the semi-honest model by
showing that A (similarly B) can simulate the secure protocol
given its own input DA, and the value m of the kth-ranked
element. We reproduce their simulation in the following as we
use the same argument with small modifications.

The simulation executed by A (similarly B) in [1] is

Algorithm 8 Algorithm SIMULATEPRUNING simulates the
secure kth-ranked element computation from [1].
Input: Parameter element rank k, real execution result m and

iteration count j. Note that DA is known to A and all
items in DA ∪DB are distinct.

Output: Simulation of running the protocol for finding the
kth-ranked element m in DA ∪DB .

1: A initializes D1
A ← PAD(DA, k,+∞) //Appendix D

2: for i← 0 to j − 1 do
3: A computes mA ← median of Di

A
4: Secure comparison result c is set to 1 if mA < m (i.e.,
mA < mB) otherwise it is 0

5: A sets Di+1
A ← upper half of Di

A if c = 1 otherwise it
is the lower half

6: end for
7: The final secure comparison result c is set to 1 if mA < m

and else it is 0

detailed in Algorithm 8. If the data DA contains duplicates,
dlog2 |DA|e+ 1 bits are added to the binary representation of
each element to make it unique as required for the simulation.
E.g., A adds for each element the bit 0 followed by the rank of
the element in the least significant bit positions. B follows the
same procedure using 1 instead of 0. These bits are removed
from the final output.

Aggarwal et al. [1] execute the simulation as SIMU-
LATEPRUNING(k,m, dlog2(k)e), i.e., full pruning until only
one element remains. Lemma 2 from [1] states that the
transcript of the real execution and the simulated execution
are equivalent. Additionally, the state information, i.e., pruned
data Di

A, that A has at each iteration i is the same as well.

In our protocol we do not perform the full execution,
i.e., only s iterations. We do not know the exact value m,
however, A knows its state Ds

A at the final step and we use
median of Ds

A instead of m. Altogether, we call the simulation
with SIMULATEPRUNING(k,median of Ds

A, s).

We now show by contradiction that our simulation outputs
the correct comparison results. Assume c = 1, i.e., mA < mB ,
at iteration i in our real execution but our simulation outputs
0, i.e., mA ≥ median of Ds

A. Then Di+1
A is the lower half

of Di
A and only elements smaller than or equal to mA =

median of Di
A remain in Di+1

A and thus in Ds
A. In other words,

for x ∈ Di+1
A we have x ≤ mA and due to Ds

A ⊆ Di+1
A

we have median of Ds
A < mA. However, this contradicts

mA ≥ median of Ds
A, i.e., output 0. Analogously, we find

a contradiction if c = 0 in our real execution but 1 in the
simulation.

H. Further PRUNE-neighboring evaluation

Table IV shows the average number of changes in a data
set DB to create a neighbor that is not a PRUNE-neighbor
w.r.t. DA. The number of changes corresponds to the average
group privacy we can expect. Each additional pruning step
increases the possibility to find a non-PRUNE-neighbor. Thus,
we use ε = 2 as it leads to the most number of pruning steps
in our evaluation.

Table V shows that lower values of ε provide higher group
privacy. We list the detailed minimum and average number of
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TABLE IV. AVERAGE CHANGES IN DB TO SAMPLE A NEIGHBOR THAT IS NOT A PRUNE-NEIGHBOR W.R.T. DA . EVALUATED FOR 52 000 NEIGHBORS
(ALL COMBINATIONS OF UP TO 50 REMOVALS AND 50 ADDITIONS WITH 20 SAMPLES PER COMBINATION) EACH ROW SHOWS THE AVERAGE CHANGES FOR

ε = 2 WITH 95% CONFIDENCE INTERVAL AND >100 INDICATES NONE WERE FOUND FOR UP TO 100 CHANGES.

DA

DB Wages
[51]

Transactions
[54]

Times
[54]

Payments
[11]

Weights
[33]

Quantities
[33]

Wages [51] 58.6± 0.26 50.7± 0.25 49.7± 0.13 50.0± 0.17 53.9± 0.26 50.9± 0.24
Transactions [54] 76.6± 9.59 50± 0.18 50.5± 0.26 48.5± 0.18 72.3± 0.52 55.6± 0.16

Times [54] 63.7± 0.22 64.9± 0.20 50.3± 0.18 50± 0.25 61.2± 0.20 62.5± 0.10
Payments [11] 68.9± 0.35 59.8± 0.19 >100 50± 0.15 71.4± 1.26 57.9± 0.13

Weights [33] 55.0± 1.77 49.6± 0.15 50.9± 0.18 50.7± 0.14 61.2± 0.20 50.5± 0.24
Quantities [33] 68.3± 0.63 64.7± 0.31 51± 0.25 51± 0.25 54.5± 0.18 59.6± 0.13

TABLE V. AVERAGE & MINIMUM CHANGES IN DB TO SAMPLE A
NEIGHBOR THAT IS NOT A PRUNE-NEIGHBOR W.R.T. DA , WHERE DA

CONSITS OF 284K CREDIT CARD TRANSACTIONS [54]. EVALUATED FOR
52 000 NEIGHBORS (ALL COMBINATIONS OF UP TO 50 REMOVALS AND 50

ADDITIONS WITH 20 SAMPLES PER COMBINATION) EVALUATED FOR
ε ∈ {0.25, 0.5, 1, 2} (WITH 95% CONFIDENCE INTERVAL FOR AVERAGE),

AND >100 INDICATES NO VIOLATION WAS FOUND FOR UP TO 100
CHANGES.

DB ε Avg. Min.

Open Payments [11]
(6M payments)

0.25 >100 >100
0.5 >100 >100

1 50.1± 0.26 37
2 48.5± 0.18 30

California public salaries [51]
(71k wages)

0.25 >100 >100
0.5 >100 >100

1 76.6± 25.38 65
2 76.6± 9.59 65

Walmart supply chain [33]
(175k shipment weights)

0.25 >100 >100
0.5 >100 >100

1 72.3± 0.73 36
2 72.3± 0.52 36

Walmart supply chain [33]
(175k shipment quantities)

0.25 >100 >100
0.5 >100 >100

1 55.6± 0.23 23
2 55.6± 0.16 23

Credit card [54]
(284k transaction times)

0.25 >100 >100
0.5 >100 >100

1 >100 >100
2 50.5± 0.26 20

changes for ε ∈ {0.25, 0.5, 1, 2} where DA consists of credit
card transactions from [54]. Note that we list the minimum
over all pruning steps (i.e., the value for minimum changes can
be the same for different pruning steps and their corresponding
epsilon value).
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