
Locally Differentially Private Frequency Estimation
with Consistency

Tianhao Wang1, Milan Lopuhaä-Zwakenberg2, Zitao Li1, Boris Skoric2, Ninghui Li1
1Purdue University, 2Eindhoven University of Technology

{tianhaowang, li2490, ninghui}@purdue.edu, {m.a.lopuhaa, b.skoric}@tue.nl

Abstract—Local Differential Privacy (LDP) protects user pri-
vacy from the data collector. LDP protocols have been increas-
ingly deployed in the industry. A basic building block is frequency
oracle (FO) protocols, which estimate frequencies of values. While
several FO protocols have been proposed, the design goal does
not lead to optimal results for answering many queries. In this
paper, we show that adding post-processing steps to FO protocols
by exploiting the knowledge that all individual frequencies should
be non-negative and they sum up to one can lead to significantly
better accuracy for a wide range of tasks, including frequencies
of individual values, frequencies of the most frequent values,
and frequencies of subsets of values. We consider 10 different
methods that exploit this knowledge differently. We establish
theoretical relationships between some of them and conducted
extensive experimental evaluations to understand which methods
should be used for different query tasks.

I. INTRODUCTION

Differential privacy (DP) [12] has been accepted as the
de facto standard for data privacy. Recently, techniques for
satisfying DP in the local setting, which we call LDP, have
been studied and deployed. In this setting, there are many
users and one aggregator. The aggregator does not see the
actual private data of each individual. Instead, each user sends
randomized information to the aggregator, who attempts to
infer the data distribution based on that. LDP techniques have
been deployed by companies like Apple [1], Google [14],
Microsoft [9], and Alibaba [32]. Examples of use cases include
collecting users’ default browser homepage and search engine,
in order to understand the unwanted or malicious hijacking of
user settings; or frequently typed emoji’s and words, to help
with keyboard typing recommendation.

The fundamental tools in LDP are mechanisms to estimate
frequencies of values. Existing research [14], [5], [31], [2],
[36] has developed frequency oracle (FO) protocols, where
the aggregator can estimate the frequency of any chosen value
in the specified domain (fraction of users reporting that value).
While these protocols were designed to provide unbiased
estimations of individual frequencies while minimizing the es-
timation variance [31], they can perform poorly for some tasks.
In [17], it is shown that when one wants to query the frequency

of all values in the domain, one can obtain significant accuracy
improvement by exploiting the belief that the distribution
likely follows power law. Also, some applications naturally
require querying the sums of frequencies for values in a subset.
For example, with the estimation of each emoji’s frequency,
one may be interested in understanding what categories of
emoji’s are more popular and need to issue subset frequency
queries. For another example, in [38], multiple attributes are
encoded together and reported using LDP, and recovering the
distribution for each attribute separately requires computing
the frequencies of sets of encoded values. For frequencies of
a subset of values, simply summing up the estimations of all
values is far from optimal, especially when the input domain
is large.

We note that the problem of answering queries using
information obtained from the frequency oracle protocols is
an estimation problem. Existing methods such as those in [31]
do not utilize any prior knowledge of the distribution to be
estimated. Due to the significant amount of noise needed to
satisfy LDP, the estimations for many values may be negative.
Also, some LDP protocols may result in the total sum of
frequencies to be different from one. In this paper, we show
that one can develop better estimation methods by exploiting
the universal fact that all frequencies are non-negative and they
sum up to 1.

Interestingly, when taking advantage of such prior knowl-
edge, one introduces biases in the estimations. For example,
when we impose the non-negativity constraint, we are in-
troducing positive biases in the estimation as a side effect.
Essentially, when we exploit prior beliefs, the estimations
will be biased towards the prior beliefs. These biases can
cause some queries to be much more inaccurate. For example,
changing all negative estimations to zero improves accu-
racy for frequency estimations of individual values. However,
the introduced positive biases accumulate for range queries.
Different methods to utilize the prior knowledge introduces
different forms of biases, and thus have different impacts for
different kinds of queries.

In this paper, we consider 10 different methods, which
utilizes prior knowledge differently. Some methods enforce
only non-negativity; some other methods enforce only that
all estimations sum to 1; and other methods enforce both.
These methods can also be combined with the “Power” method
in [17] that exploits power law assumption.

We evaluate these methods on three tasks, frequencies of

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24157
www.ndss-symposium.org

individual values, frequencies of the most frequent values,
and frequencies of subsets of values. We find that there is no
single method that out-performs other methods for all tasks. A
method that exploits only non-negativity performs the best for
individual values; a method that exploits only the summing-
to-one constraint performs the best for frequent values; and a
method that enforces both can be applied in conjunction with
Power to perform the best for subsets of values.

To summarize, the main contributions of this paper are
threefold:

• We introduced the consistency properties as a way to
improve accuracy for FO protocols under LDP, and
summarized 10 different post-processing methods that
exploit the consistency properties differently.

• We established theoretical relationships between Con-
strained Least Squares and Maximum Likelihood Esti-
mation, and analyze which (if any) estimation biases are
introduced by these methods.

• We conducted extensive experiments on both synthetic
and real-world datasets, the results improved the under-
standing on the strengths and weaknesses of different
approaches.

Roadmap. In Section II, we give the problem definition,
followed by the background information on FO in Section III.
We present the post-processing methods in Section IV. Ex-
perimental results are presented in V. Finally we discuss
related work in Section VI and provide concluding remarks
in Section VII.

II. PROBLEM SETTING

We consider the setting where there are many users and
one aggregator. Each user possesses a value v from a finite
domain D, and the aggregator wants to learn the distribution
of values among all users, in a way that protects the privacy
of individual users. More specifically, the aggregator wants to
estimate, for each value v ∈ D, the fraction of users having v
(the number of users having v divided by the population size).
Such protocols are called frequency oracle (FO) protocols
under Local Differential Privacy (LDP), and they are the key
building blocks of other LDP tasks.

Privacy Requirement. An FO protocol is specified by a pair
of algorithms: Ψ is used by each user to perturb her input
value, and Φ is used by the aggregator. Each user sends Ψ(v)
to the aggregator. The formal privacy requirement is that the
algorithm Ψ(·) satisfies the following property:

Definition 1 (ε-Local Differential Privacy). An algorithm Ψ(·)
satisfies ε-local differential privacy (ε-LDP), where ε ≥ 0, if
and only if for any input v, v′ ∈ D, we have

∀y ∈Ψ(D) : Pr [Ψ(v) = y] ≤ eε Pr [Ψ(v′) = y] ,

where Ψ(D) is discrete and denotes the set of all possible
outputs of Ψ.

Since a user never reveals v to the aggregator and reports
only Ψ(v), the user’s privacy is still protected even if the
aggregator is malicious.

Utility Goals. The aggregator uses Φ, which takes the
vector of all reports from users as the input, and produces
f̃ = 〈f̃v〉v∈D, the estimated frequencies of the v ∈ D (i.e.,
the fraction of users who have input value v). As Ψ is a
randomized function, the resulting f̃ becomes inaccurate.

In existing work, the design goal for Ψ and Φ is that the
estimated frequency for each v is unbiased, and the variance
of the estimation is minimized. As we will show in this paper,
these may not result in the most accurate answers to different
queries.

In this paper, we consider three different query scenarios 1)
query the frequency of every value in the domain, 2) query
the aggregate frequencies of subsets of values, and 3) query
the frequencies of the most frequent values. For each value or
set of values, we compute its estimate and the ground truth,
and calculate their difference, measured by Mean of Squared
Error (MSE).

Consistency. We will show that the utility of existing mecha-
nisms can be improved by enforcing the following consistency
requirement.

Definition 2 (Consistency). The estimated frequencies are
consistent if and only if the following two conditions are
satisfied:

1) The estimated frequency of each value is non-negative.
2) The sum of the estimated frequencies is 1.

III. FREQUENCY ORACLE PROTOCOLS

We review the state-of-the-art frequency oracle protocols.
We utilize the generalized view from [31] to present the
protocols, so that our post-processing procedure can be applied
to all of them.

A. Generalized Random Response (GRR)

This FO protocol generalizes the randomized response tech-
nique [35]. Here each user with private value v ∈ D sends
the true value v with probability p, and with probability 1− p
sends a randomly chosen v′ ∈ D\{v}. Suppose the domain D
contains d = |D| values, the perturbation function is formally
defined as

∀y∈D Pr
[
ΨGRR(ε,d)(v)=y

]
=

{
p= eε

eε+d−1 , if y = v

q= 1
eε+d−1 , if y 6= v

(1)

This satisfies ε-LDP since p
q = eε.

From a population of n users, the aggregator receives a
length-n vector y = 〈y1, y2, · · · , yn〉, where yi ∈ D is the
reported value of the i-th user. The aggregator counts the
number of times each value v appears in y and produces
a length-d vector c of natural numbers. Observe that the
components of c sum up to n, i.e.,

∑
v∈D cv = n. The

2

aggregator then obtains the estimated frequency vector f̃ by
scaling each component of c as follows:

f̃v =
cv
n − q
p− q

=
cv
n −

1
eε+d−1

eε−1
eε+d−1

As shown in [31], the estimation variance of GRR grows
linearly in d; hence the accuracy deteriorates fast when the
domain size d increases. This motivated the development of
other FO protocols.

B. Optimized Local Hashing (OLH)

This FO deals with a large domain size d by first using a
random hash function to map an input value into a smaller
domain of size g, and then applying randomized response to
the hash value in the smaller domain. In OLH, the reporting
protocol is

ΨOLH(ε)(v) := 〈H, ΨGRR(ε,g)(H(v))〉,

where H is randomly chosen from a family of hash functions
that hash each value in D to {1 . . . g}, and ΨGRR(ε,g) is given
in (1), while operating on the domain {1 . . . g}. The hash
family should have the property that the distribution of each
v’s hashed result is uniform over {1 . . . g} and independent
from the distributions of other input values in D. Since H
is chosen independently of the user’s input v, H by itself
carries no meaningful information. Such a report 〈H, r〉 can
be represented by the set Y = {y ∈ D | H(y) = r}. The use
of a hash function can be viewed as a compression technique,
which results in constant size encoding of a set. For a user with
value v, the probability that v is in the set Y represented by the
randomized report 〈H, r〉 is p = eε−1

eε+g−1 and the probability
that a user with value 6= v is in Y is q = 1

g .
For each value x ∈ D, the aggregator first computes the

vector c of how many times each value is in the reported set.
More precisely, let Yi denote the set defined by the user i,
then cv = |{i | H(v) ∈ Yi}|. The aggregator then scales it:

f̃v =
cv
n − 1/g

p− 1/g
(2)

In OLH, both the hashing step and the randomization step
result in information loss. The choice of the parameter g
is a tradeoff between losing information during the hashing
step and losing information during the randomization step.
It is found that the estimation variance when viewed as a
continuous function of g is minimized when g = eε + 1 (or
the closest integer to eε + 1 in practice) [31].

C. Other FO Protocols

Several other FO protocols have been proposed. While they
take different forms when originally proposed, in essence, they
all have the user report some encoding of a subset Y ⊆ D, so
that the user’s true value has a probability p to be included in
Y and any other value has a probability q < p to be included

in Y . The estimation method used in GRR and OLH (namely,
f̃v = cv/n−q

p−q) equally applies.

Optimized Unary Encoding [31] encodes a value in a size-d
domain using a length-d binary vector, and then perturbs each
bit independently. The resulting bit vector encodes a set of
values. It is found in [31] that when d is large, one should flip
the 1 bit with probability 1/2, and flip a 0 bit with probability
1/eε. This results in the same values of p, q as OLH, and has
the same estimation variance, but has higher communication
cost (linear in domain size d).

Subset Selection [36], [30] method reports a randomly
selected subset of a fixed size k. The sensitive value v is
included in the set with probability p = 1/2. For any other
value, it is included with probability q = p· k−1d−1 +(1−p)· k

d−1 .
To minimize estimation variance, k should be an integer equal
or close to d/(eε+1). Ignoring the integer constraint, we have
q = 1

2 ·
2k−1
d−1 = 1

2 ·
2 d
eε+1−1
d−1 = 1

eε+1 ·
d−(eε+1)/2

d−1 < 1
eε+1 . Its

variance is smaller than that of OLH. However, as d increases,
the term d−(eε+1)/2

d−1 gets closer and closer to 1. For a larger
domain, this offers essentially the same accuracy as OLH, with
higher communication cost (linear in domain size d).

Hadamard Response [4], [2] is similar to Subset Selection
with k = d/2, where the Hadamard transform is used to
compress the subset. The benefit of adopting this protocol is
to reduce the communication bandwidth (each user’s report is
of constant size). While it is similar to OLH with g = 2, its
aggregation part Φ faster, because evaluating a Hadamard entry
is practically faster than evaluating hash functions. However,
this FO is sub-optimal when g = 2 is sub-optimal.

D. Accuracy of Frequency Oracles

In [31], it is proved that f̃v = cv/n−q
p−q produces unbiased

estimates. That is, ∀v ∈ D, E
[
f̃v

]
= fv . Moreover, f̃v has

variance

σ2
v =

q(1− q) + fv(p− q)(1− p− q)
n(p− q)2

(3)

As cv follows Binomial distribution, by the central limit
theorem, the estimate f̃v can be viewed as the true value fv
plus a Normally distributed noise:

f̃v ≈ fv + N (0, σv). (4)

When d is large and ε is not too large, fv(p−q)(1−p−q) is
dominated by q(1−q). Thus, one can approximate Equation (3)
and (4) by ignoring the fv . Specifically,

σ2 ≈ q(1− q)
n(p− q)2

, (5)

f̃v ≈ fv + N (0, σ). (6)

As the probability each user’s report support each value is
independent, we focus on post-processing f̃ instead of Y.

3

IV. TOWARDS CONSISTENT FREQUENCY ORACLES

While existing state-of-the-art frequency oracles are de-
signed to provide unbiased estimations while minimizing the
variance, it is possible to further reduce the variance by
performing post-processing steps that use prior knowledge to
adjust the estimations. For example, exploiting the property
that all frequency counts are non-negative can reduce the
variance; however, simply turning all negative estimations to
0 introduces a systematic positive bias in all estimations.
By also ensuring the property that the sum of all estima-
tions must add up to 1, one ensures that the sum of the
biases for all estimations is 0. However, even though the
biases cancel out when summing over the whole domain,
they still exist. There are different post-processing methods
that were explicitly proposed or implicitly used. They will
result in different combinations of variance reduction and bias
distribution. Selecting a post-processing method is similar to
considering the bias-variance tradeoff in selecting a machine
learning algorithm.

We study the property of several post-processing methods,
aiming to understand how they compare under different set-
tings, and how they relate to each other. Our goal is to identify
efficient post-processing methods that can give accurate esti-
mations for a wide variety of queries. We first present the
baseline method that does not do any post-processing.
• Base: We use the standard FO as presented in Section III

to obtain estimations of each value.
Base has no bias, and its variance can be analytically

computed (e.g., using [31]).

A. Baseline Methods

When the domain is large, there will be many values in
the domain that have a zero or very low true frequency; the
estimation of them may be negative. To overcome negativity,
we describe three methods: Base-Pos, Post-Pos, and Base-Cut.
• Base-Pos: After applying the standard FO, we convert all

negative estimations to 0.
This satisfies non-negativity, but the sum of all estimations
is likely to be above 1. This reduces variance, as it turns
erroneous negative estimations to 0, closer to the true value.
As a result, for each individual value, Base-Pos results in an
estimation that is at least as accurate as the Base method. How-
ever, this introduces systematic positive bias, because some
negative noise are removed or reduced by the process, but the
positive noise are never removed. This positive bias will be
reflected when answering subset queries, for which Base-Pos
results in biased estimations. For larger-range queries, the bias
can be significant.

Lemma 1. Base-Pos will introduce positive bias to all values.

Proof. The outputs of standard FO are unbiased estimation,
which means for any v,

fv = E
[
f̃v

]
= E

[
f̃v · 1[f̃v ≥ 0]

]
+ E

[
f̃v · 1[f̃v < 0]

]

As Base-Pos changes all negative estimated frequencies to 0,
we have

E [f ′v] = E
[
f̃v · 1[f̃v ≥ 0]

]
After enforcing non-negativity constraints, the bias will be
E [f ′v]− fv > 0.

• Post-Pos: For each query result, if it is negative, we convert
it to 0.

This method does not post-process the estimated distribution.
Rather, it post-processes each query result individually. For
subset queries, as the results are typically positive, Post-Pos
is similar to Base. On the other hand, when the query is on a
single item, Post-Pos is equivalent to Base-Pos.

Post-Pos still introduces a positive bias, but the bias would
be smaller for subset queries. However, Post-Pos may give
inconsistent answers in the sense that the query result on A∪B,
where A and B are disjoint, may not equal the addition of the
query results for A and B separately.
• Base-Cut: After standard FO, convert everything below

some sensitivity threshold to 0.
The original design goal for frequency oracles is to recover
frequencies for frequent values, and oftentimes there is a sen-
sitivity threshold so that only estimations above the threshold
are considered. Specifically, for each value, we compare its
estimation with a threshold

T = F−1
(

1− α

d

)
σ, (7)

where d is the domain size, F−1 is the inverse of cummulative
distribution function of the standard normal distribution, and
σ is the standard deviation of the LDP mechanism (i.e., as in
Equation (5)). By Base-Cut, estimations below the threshold
are considered to be noise. When using such a threshold, for
any value v ∈ D whose original count is 0, the probability that
it will have an estimated frequency above T (or the probability
a zero-mean Gaussian variable with standard deviation δ is
above T) is at most α

d . Thus when we observe an estimated
frequency above T , the probability that the true frequency of
the value is 0 is (by union bound) at most d× α

d = α. In [14],
it is recommended to set α = 5%, following conventions in
the statistical community.

Empirically we observe that α = 5% performs poorly,
because such a threshold can be too high when the population
size is not very large and/or the ε is not large. A large
threshold results in all except for a few estimations to be
below the threshold and set to 0. We note that the choice
of α is trading off false positives with false negatives. Given
a large domain, there are likely between several and a few
dozen values that have quite high frequencies, with most of
the remaining values having low true counts. We want to keep
an estimation if it is a lot more likely to be from a frequent
value than from a very low frequency one. In this paper, we
choose to set α = 2, which ensures that the expected number
of false positives, i.e., values with very low true frequencies
but estimated frequencies above T , to be around 2. If there are

4

around 20 values that are truly frequent and have estimated
frequencies above T , then ratio of true positives to false
positives when using this threshold is 10:1.

This method ensures that all estimations are non-negative. It
does not ensure that the sum of estimations is 1. The resulting
estimations are either high (above the chosen threshold) or
zero. The estimation for each item with non-zero frequency
is subject to two bias effects. The negative bias effect is
caused by the situation when the estimations are cut to zero.
The positive effect is when large positive noise causes the
estimation to be above the threshold, the resulting estimation
is higher than true frequency.

B. Normalization Method

We now explore several methods that normalize the esti-
mated frequencies of the whole domain to ensure that the sum
of the estimates equals 1. When the estimations are normalized
to sum to 1, the sum of the biases over the whole domain has
to be 0.

Lemma 2. If a normalization method adjusts the unbiased
estimates so that they add up to 1, the sum of biases it
introduces over the whole domain is 0.

Proof. Denote f ′v as the estimated frequency of value v after
post-processing. By linearity of expectations, we have∑
v∈D

(E [f ′v]− fv) = E

[∑
v∈D

f ′v

]
−
∑
v∈D

fv = E [1]− 1 = 0

One standard way to do such normalization is through
additive normalization:
• Norm: After standard FO, add δ to each estimation so that

the overall sum is 1.
The method is formally proposed for the centralized set-
ting [16] of DP and is used in the local setting, e.g., [28],
[22]. Note the method does not enforce non-negativity. For
GRR, Hadamard Response, and Subset Selection, this method
actually does nothing, since each user reports a single value,
and the estimations already sum to 1. For OLH, however, each
user reports a randomly selected subset whose size is a random
variable, and Norm would change the estimations. It can be
proved that Norm is unbiased:

Lemma 3. Norm provides unbiased estimation for each value.

Proof. By the definition of Norm, we have
∑
v∈D f

′
v =∑

v∈D(f̃v + δ) = 1. As the frequency oracle outputs unbiased
estimation, i.e., E

[
f̃v

]
= fv , we have

E

[∑
v∈D

f ′v

]
= 1 = E

[∑
v∈D

(f̃v + δ)

]
=
∑
v∈D

E
[
f̃v

]
+ d · E [δ] = 1 + d · E [δ]

=⇒ E [δ] = 0

Thus E [f ′v] = E
[
f̃v + δ

]
= E

[
f̃v

]
+ 0 = fv.

Besides sum-to-one, if a method also ensures non-negativity,
we first state that it introduces positive bias to values whose
frequencies are close to 0.

Lemma 4. If a normalization method adjusts the unbiased
estimates so that they add up to 1 and are non-negative, then
it introduces positive biases to values that are sufficiently close
to 0.

Proof. As the estimates are non-negative and sum up to 1,
some of the estimates must be positive. For a value close to
0, there exists some possibility that its estimation is positive;
but the possibility its estimation is negative is 0. Thus the
expectation of its estimation is positive, leading to a positive
bias.

Lemma 4 shows the biases for any method that ensures
both constraints cannot be all zeros. Thus different methods
are essentially different ways of distributing the biases. Next
we present three such normalization methods.
• Norm-Mul: After standard FO, convert negative value to 0.

Then multiply each value by a multiplicative factor so that
the sum is 1.

More precisely, given estimation vector f̃ , we find γ such that∑
v∈D

max(γ × f̃v, 0) = 1,

and assign f ′v = max(γ×f̃v, 0) as the estimations. This results
in a consistent FO. Kairouz et al. [19] evaluated this method
and it performs well when the underlying dataset distribution
is smooth. This method results in positive biases for low-
frequency items, but negative biases for high-frequency items.
Moreover, the higher an item’s true frequency, the larger the
magnitude of the negative bias. The intuition is that here γ
is typically in the range of [0, 1]; and multiplying by a factor
may result in the estimation of high frequency values to be
significantly lower than their true values. When the distribution
is skewed, which is more interesting in the LDP case, the
method performs poorly.
• Norm-Sub: After standard FO, convert negative values to

0, while maintaining overall sum of 1 by adding δ to each
remaining value.

More precisely, given estimation vector f̃ , we want to find δ
such that ∑

v∈D
max(f̃v + δ, 0) = 1

Then the estimation for each value v is f ′v = max(f̃v + δ, 0).
This extends the method Norm and results in consistency.
Norm-Sub was used by Kairouz et al. [19] and Bassily [3]
to process results for some FO’s. Under Norm-Sub, low-
frequency values have positive biases, and high-frequency
items have negative biases. The distribution of biases, however,
is more even when compared to Norm-Mul.
• Norm-Cut: After standard FO, convert negative and small

positive values to 0 so that the total sums up to 1.

5

We note that under Norm-Sub, higher frequency items have
higher negative biases. One natural idea to address this is to
turn the low estimations to 0 to ensure consistency, without
changing the estimations of high-frequency values. This is
the idea of Norm-Cut. More precisely, given the estimation
vector f̃ , there are two cases. When

∑
v∈D max(f̃v, 0) ≤ 1,

we simply change each negative estimations to 0. When∑
v∈D max(f̃v, 0) > 1, we want to find the smallest θ such

that ∑
v∈D|f̃v≥θ

f̃v ≤ 1

Then the estimation for each value v is 0 if f̃v < θ and f̃v
if f̃v ≥ θ. This is similar to Base-cut in that both methods
change all estimated values below some thresholds to 0. The
differences lie in how the threshold is chosen. This results in
non-negative estimations, and typically results in estimations
that sum up to 1, but might result in a sum < 1.

C. Constrained Least Squares

From a more principled point of view, we note that what
we are doing here is essentially solving a Constraint Inference
(CI) problem, for which CLS (Constrained Least Squares) is
a natural solution. This approach was proposed in [16] but
without the constraint that the estimates are non-negative (and
it leads to Norm). Here we revisit this approach with the
consistency constraint (i.e., both requirements in Definition 2).

• CLS: After standard FO, use least squares with constraints
(summing-to-one and non-negativity) to recover the values.

Specifically, given the estimates f̃ by FO, the method outputs
f ′ that is a solution of the following problem:

minimize: ||f ′ − f̃ ||2
subject to: ∀vf ′v ≥ 0∑

v

f ′v = 1

We can use the KKT condition [21], [20] to solve the
problem. The process is presented in Appendix A. In the
solution, we partition the domain D into D0 and D1, where
D0 ∩D1 = ∅ and D0 ∪D1 = D. For v ∈ D0, assign f ′v = 0.
For v ∈ D1,

f ′v =f̃v −
1

|D1|

(∑
v∈D1

f̃v − 1

)

Norm-Sub is the solution to the Constraint Least
Square (CLS) formulation to the problem, and δ =

− 1
|D1|

(∑
v∈D1

f̃v − 1
)

is the δ we want to find in Norm-
Sub.

D. Maximum Likelihood Estimation

Another more principled way of looking into this problem is
to view it as recovering distributions given some LDP reports.

For this problem, one standard solution is Bayesian inference.
In particular, we want to find the f ′ such that

Pr
[
f ′ |̃f
]

=
Pr
[
f̃ |f ′
]
· Pr [f ′]

Pr
[
f̃
] (8)

is maximized. Note that we require f ′ satisfies ∀vf ′v ≥ 0
and

∑
v f
′
v = 1. In (8), Pr [f ′] is the prior, and the prior

distribution influence the result. In our setting, as we assume
there is no such prior, Pr [f ′] is uniform. That is, Pr [f ′] is
a constant. The denominator Pr

[
f̃
]

is also a constant that
does not influence the result. As a result, we are seeking
for f ′ which is the maximal likelihood estimator (MLE), i.e.,
Pr
[
f̃ |f ′
]

is maximized.
For this method, Peter et al. [19] derived the exact MLE

solution for GRR and RAPPOR [14]. We compute Pr
[
f̃ |f ′
]

using the general form of Equation (4), which states that, given
the original distribution f ′, the vector f̃ is a set of independent
random variables, where each component f̃v follows Gaussian
distribution with mean f ′v and variance σ′2v . The likelihood
of f̃ given f ′ is thus

Pr
[
f̃ |f ′
]

=
∏
v

Pr
[
f̃v|f ′v

]
≈
∏
v

1√
2πσ′2v

· e−
(f′v−f̃v)2

2σ′2v =
1√

2π
∏
v σ
′2
v

· e−
∑
v

(f′v−f̃v)2

2σ′2v .

(9)

To differentiate from [19], we call it MLE-Apx.
• MLE-Apx: First use standard FO, then compute the MLE

with constraints (summing-to-one and non-negativity) to
recover the values.

In Appendix B, we use the KKT condition [21], [20] to obtain
an efficient solution. In particular, we partition the domain D
into D0 and D1, where D0 ∩D1 = ∅ and D0 ∪D1 = D. For
v ∈ D0, f ′v = 0; for v ∈ D1,

f ′v =
q(1− q)xv + f̃v(p− q)

p− q − (p− q)(1− p− q)xv
(10)

where

xv =

∑
x∈D1

f̃v(p− q)− (p− q)
(p− q)(1− p− q)− |D1|q(1− q)

We can rewrite Equation (10) as

f ′v =f̃v · γ + δ,

where

γ =
p− q

p− q + (p− q)(1− p− q)xv

δ =
q(1− q)xv

p− q + (p− q)(1− p− q)xv
Hence MLE-Apx appears to represent some hybrid of Norm-
Sub and Norm-Mul. In evaluation, we observe that Norm-Sub
and MLE-Apx give very close results, as γ ∼ 1. Furthermore,

6

Method Description Non-neg Sum to 1 Complexity
Base-Pos Convert negative est. to 0 Yes No O(d)
Post-Pos Convert negative query result to 0 Yes No N/A
Base-Cut Convert est. below threshold T to 0 Yes No O(d)

Norm Add δ to est. No Yes O(d)
Norm-Mul Convert negative est. to 0, then multiply γ to positive est. Yes Yes O(d)
Norm-Cut Convert negative and small positive est. below θ to 0. Yes Almost O(d)
Norm-Sub Convert negative est. to 0 while adding δ to positive est. Yes Yes O(d)
MLE-Apx Convert negative est. to 0, then add δ to positive est. Yes Yes O(d)

Power Fit Power-Law dist., then minimize expected squared error Yes No O(
√
n · d)

PowerNS Apply Norm-Sub after Power Yes Yes O(
√
n · d)

TABLE I
SUMMARY OF METHODS.

when the fv component in variance is dominated by the
other component (as in Equation (5)), the CLS formulation
is equivalent to our MLE formulation.

E. Least Expected Square Error

Jia et al. [17] proposed a method in which one first
assumes that the data follows some type of distribution (but
the parameters are unknown), then uses the estimates to fit the
parameters of the distribution, and finally updates the estimates
that achieve expected least square.
• Power: Fit a distribution, and then minimize the expected

squared error.
Formally, for each value v, the estimate f̃v given by FO
is regarded as the addition of two parts: the true frequency
fv and noise following the normal distribution (as shown
in Equation (6)). The method then finds f ′v that minimizes
E
[

(fv − f ′v)2|f̃v
]
. To solve this problem, the authors esti-

mate the true distribution fv from the estimates f̃ (where f̃ is
the vector of the f̃v’s).

In particular, it is assume in [17] that the distribution follows
Power-Law or Gaussian. The distributions can be determined
by one or two parameters, which can be fitted from the
estimation f̃ . Given Pr [x] as the probability fv = x from
the fitted distribution, and Pr [x ∼ N (0, σ)] as the pdf of x
drawn from the Normal distribution with 0 mean and standard
deviation σ (as in Equation (6)), one can then minimize the
objective. Specifically, for each value v ∈ D, output

f ′v =

∫ 1

0

Pr
[
(f̃v − x) ∼ N (0, σ)

]
· Pr [x] · x∫ 1

0
Pr
[
(f̃v − y) ∼ N (0, σ)

]
· Pr [y] dy

dx. (11)

We fit Pr [x] with the Power-Law distribution and call the
method Power. Using this method requires knowledge and/or
assumption of the distribution to be estimated. If there are
too much noise, or the underlying distribution is different,
forcing the observations to fit a distribution could lead to
poor accuracy. Moreover, this method does not ensure the
frequencies sum up to 1, as Equation (11) only considers the
frequency of each value v independently. To make the result
consistent, we use Norm-Sub to post-process results of Power,
since Power is close to CLS, and Norm-Sub is the solution to
CLS. We call it PowerNS.
• PowerNS: First use standard FO, then use Power to recover

the values, finally use Norm-Sub to further process the
results.

F. Summary of Methods

In summary, Norm-Sub is the solution to the Constraint
Least Square (CLS) formulation to the problem. Furthermore,
when the fv component in variance is dominated by the
other component (as in Equation (5)), the CLS formulation
is equivalent to our MLE formulation. In that case, Norm-Sub
is equivalent to MLE-Apx.

Table I gives a summary of the methods. First of all, all
of the methods preserve the frequency order of the value,
i.e., f ′v1 ≤ f ′v2 iff f̃v1 ≤ f̃v2 . The methods can be classifies
into three classes: First, enforcing non-negativity only. Base-
Pos, Post-Pos, Base-Cut, and Power fall in this category.
Second, enforcing summing-to-one only. Only Norm is in this
class. Third, enforcing the two requirement simultaneously.
Norm-Mul, Norm-Cut, Norm-Sub, and PowerNS satisfy both
requirements.

V. EVALUATION

As we are optimizing multiple utility metrics together, it
is hard to theoretically compare different methods. In this
section, we run experiments to empirically evaluate these
methods.

At the high level, our evaluations show that different meth-
ods perform differently in different settings, and to achieve
the best utility, it may or may not be necessary to exploit all
the consistency constraints. As a result, we conclude that for
full-domain query, Base-Cut performs the best; for set-value
query, PowerNS performs the best; and for high-frequency-
value query, Norm performs the best.

A. Experimental Setup

Datasets. We run experiments on two datasets (one synthetic
and one real).
• Synthetic Zipf’s distribution with 1024 values and 1

million reports. We use s = 1.5 in this distribution.
• Emoji: The daily emoji usage data. We use the average

emoji usage of an emoji keyboard 1, which gives the total
count of n = 884427 with d = 1573 different emojis.

Setup. The FO protocols and post-processing algorithms
are implemented in Python 3.6.6 using Numpy 1.15; and
all the experiments are conducted on a PC with Intel Core
i7-4790 3.60GHz and 16GB memory. Although the post-
processing methods can be applied to any FO protocol, we

1http://www.emojistats.org/, accessed 12/15/2019 10pm ET

7

http://www.emojistats.org/

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(a) Base (Post-Pos)

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(b) Base-Pos

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(c) Base-Cut

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(d) Norm

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(e) Norm-Mul

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(f) Norm-Cut

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(g) Norm-Sub

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(h) Power

0 200 400 600 800 1000

10
1

10
2

10
3

10
4

10
5

(i) PowerNS

Fig. 1. Log-scale distribution of the Zipf’s dataset fixing ε = 1, the x-axes indicates the sorted value index and the y-axes is its count. The blue line is the
ground truth; the green dots are estimations by different methods.

focus on simulating OLH as it provides near-optimal utility
with reasonable communication bandwidth.

Metrics. We evaluate three scenarios 1) estimate the fre-
quency of every value in the domain (full-domain), 2) estimate
the aggregate frequencies of a subset of values (set-value),
and 3) estimate the frequencies of the most frequent values
(frequent-value).

We use the metrics of Mean of Squared Error (MSE). MSE
measures the mean of squared difference between the estimate
and the ground truth for each (set of) value. For full-domain,
we compute

MSE =
1

d

∑
v∈D

(fv − f ′v)2.

For frequent-value, we consider the top k values with highest
fv instead of the whole domain D; and for set-value, instead
of measuring errors for singletons, we measure errors for sets,
that is, we first sum the frequencies for a set of values, and
then measure the difference.

Plotting Convention. Unless otherwise specified, for each
dataset and each method, we repeat the experiment 30 times,
with result mean and standard deviation reported. The standard
deviation is typically very small, and barely noticeable in the
figures.

Because there are 11 algorithms (10 post-processing meth-
ods plus Base), and for any single metric there are often
multiple methods that perform very similarly, resulting their
lines overlapping. To make Figures 4–8 readable, we plot

results on two separate figures on the same row. On the left,
we plot 6 methods, Base, Base-Pos, Post-Pos, Norm, Norm-
Mul, and Norm-Sub. On the right, we plot Norm-Sub with the
remaining 5 methods, MLE-Apx, Base-Cut, Norm-Cut, Power
and PowerNS. We mainly want to compare the methods in the
right column.

B. Bias-variance Evaluation

Figure 1 shows the true distribution of the synthetic Zipf’s
dataset and the mean of the estimations. As we plot the count
estimations (instead of frequency estimations), the variance is
larger (a n2 = 1012 multiplicative factor than the frequency
estimations). We thus estimate 5000 times in order to make the
mean stabilize. In Figure 2, we subtract the estimation mean by
the ground truth and plot the difference, which representing
the empirical bias. It can be seen that Base and Norm are
unbiased. Base-Pos introduces systematic positive bias. Base-
Cut gives unbiased estimations for the first few most frequent
values, as their true frequencies are much greater than the
threshold T used to cut off estimation below it to 0. As the
noise is close to normal distribution, the possibility that a high-
frequency value is estimated to be below T is exponentially
small. The similar analysis also holds for the low-frequency
values, whose estimates are unlikely to be above T . On the
other hand, for values in between, the two biases compete with
each other. At some point, the two effects cancel out with
each other, leading to unbiased estimations. But this point is
dependent on the whole distribution, and thus is hard to be
found analytically. For Norm-Cut, the similar reasoning also

8

0 200 400 600 800 1000
400

200

0

200

400

(a) Base (Post-Pos), bias sum: −1405

0 200 400 600 800 1000

0

500

1000

(b) Base-Pos, bias sum: 711932

0 200 400 600 800 1000
3000

2000

1000

0

(c) Base-Cut, bias sum: −137449

0 200 400 600 800 1000
400

200

0

200

400

(d) Norm, bias sum: 0

0 200 400 600 800 1000

150000

100000

50000

0

(e) Norm-Mul, bias sum: 0

0 200 400 600 800 1000

1500

1000

500

0

500

(f) Norm-Cut, bias sum: 0

0 200 400 600 800 1000

2000

1000

0

(g) Norm-Sub, bias sum: 0

0 200 400 600 800 1000

3000

2000

1000

0

(h) Power, bias sum: −96332

0 200 400 600 800 1000

3000

2000

1000

0

(i) PowerNS, bias sum: 0

Fig. 2. Bias of count estimation for the Zipf’s dataset fixing ε = 1.

applies, with the difference that the threshold in Norm-Cut
is typically smaller. For Norm-Sub, each value is influenced
by two factors: subtraction by a same amount; and converting
to 0 if negative. For the high-frequency values, we mostly
see the first factor; for the low-frequency values, they are
mostly affected by the second factor; and for the values in
between, the two factors compete against each other. We see
an increasing line for Norm-Sub. Finally, Power changes little
to the top estimations; but more to the low ones, thus leading
to a similar shape as Norm-Cut. The shape of PowerNS is
close to Power because PowerNS applies Norm-Sub, which
subtract some amount to the estimations, after Power.

Figure 3 shows the variance of the estimations among the
5000 runs. First of all, the variance is similar for all the values
in Base and Norm, with Norm being slightly better (smaller)
than Base. For all other methods, the variance drops with the
rank, because for low-frequency values, their estimates are
mostly zeros.

C. Full-domain Evaluation

Figure 4 shows MSE when querying the frequency of every
value in the domain. Note that The MSE is composed of the
(square of) bias shown in Figure 2 and variance in Figure 3.
We vary ε from 0.2 to 4. Let us fist focus on the figures on the
left. Base performs very close to Norm, since the adjustment of
Norm can be either positive or negative as the expected value
of the estimation sum is 1. As Base-Pos (which is equivalent to
Post-Pos in this setting) converts negative results to 0, its MSE
is around half that of Base (note the y-axis is in log-scale).
Norm-Sub is able to reduce the MSE of Base by about a factor

of 10 and 100 in the Zipfs and Emoji dataset respectively.
Norm-Mul behaves differently from other methods. In par-
ticular, the MSE decreases much slower than other methods.
This is because Norm-Mul multiplies the original estimations
by the same factor. The higher the estimate, the greater the
adjustment. Since the estimations are individually unbiased,
this is not the correct adjustment.

For the right part of Figure 4, we observe that, Norm-Sub
and MLE-Apx perform almost exactly the same, validating
the prediction from theoretical analysis. Norm-Sub, MLE-
Apx, Power, PowerNS, and Base-Cut perform very similarly.
In these two datasets, PowerNS performs the best. Note that
PowerNS works well when the distribution is close to Power-
Law. For an unknown distribution, we still recommend Base-
Cut. This is because if one considers average accuracy of all
estimations, the dominating source of errors comes from the
fact many values have true frequencies close or equal to 0
are randomly perturbed. And Base-Cut maintains the high-
frequency values unchanged, and converts results below a
threshold T to 0. Norm-Cut also converts low estimations to
0, but the threshold θ is likely to be lower than T , because θ
is chosen to achieve a sum of 1.

Benefit of Post-Processing. We demonstrate the benefit of
post-processing by measuring the relationship between n and
n′, so that n records with post-processing can achieve the same
accuracy for n′ records without it. In particular, we vary n and
measure the errors for different methods. We then calculate
n′ using Equation 3. In particular, the analytical MSE for n′

9

0 200 400 600 800 1000

3.4

3.6

3.8

4.0

(a) Base (Post-Pos)

0 200 400 600 800 1000
1

2

3

4

(b) Base-Pos

0 200 400 600 800 1000
0

5

10

(c) Base-Cut

0 200 400 600 800 1000
3.4

3.6

3.8

4.0

4.2

(d) Norm

0 200 400 600 800 1000
0

5

10

15

20

25

(e) Norm-Mul

0 200 400 600 800 1000
0

2

4

6

8

(f) Norm-Cut

0 200 400 600 800 1000
0

1

2

3

4

(g) Norm-Sub

0 200 400 600 800 1000
0

2

4

6

8

10

(h) Power

0 200 400 600 800 1000
0

2

4

6

8

10

(i) PowerNS

Fig. 3. Variance of count estimation of the Zipf’s dataset fixing ε = 1. The y-axes are scaled down by n = 106 (a value a in the figure represents a · 106).

records is
1

d

∑
v

σ2
v =

q(1− q)
n′(p− q)2

+
1

d

∑
v

fv(1− p− q)
n′(p− q)

=
q(1− q)
n′(p− q)2

+
1

d

1− p− q
n′(p− q)

.

Given the empirical MSE, we can obtain n′ that achieves the
same error analytically. Note that the MSE does not depend on
the distribution. Thus we only evaluate on the Zipf’s dataset.
The result is shown in Figure 5. We vary the size of the dataset
n and plot the value of n′ (note that the x-axes are in the scale
of 106 and y-axes are 107). The higher the line, the better the
method performs. Base and Norm are two straight lines with
the slope of 1, verifying the analytical variance. The y value
for Norm-Mul grows even slower than Base, indicating the
harm of using Norm-Mul as a post-processing method. The
performance of the other methods follow the similar trend of
the full-domain MSE (as shown in the upper row of Figure 4),
with PowerNS gives the best performance, which saves around
90% of users.

D. Set-value Evaluation

Estimating set-values plays an important role in the inter-
active data analysis setting (e.g., estimating which category
of emoji’s is more popular). Keeping ε = 1, we evaluate the
performance of different methods by changing the size of the
set. For the set-value queries, we uniformly sample ρ%× |D|
elements from the domain and evaluate the MSE between
the sum of their true frequencies and estimated frequencies.

Formally, define Dsρ as the random subset of D that has
ρ%×|D| elements; and define fDsρ =

∑
v∈Dsρ fv . We sample

Dsρ multiple times and measure MSE between fDsρ and f ′Dsρ .
Overall, the error MSE of set-value queries is greater than that
for the full-domain evaluation, because the error for individual
estimation accumulates.

Vary ρ from 10 to 90. Following the layout convention,
we show results for set-value estimations in Figure 6, where
we first vary ρ from 10 to 90. Overall, the approaches
that exploits the summing-to-1 requirement, including Norm,
Norm-Mul, Norm-Sub, MLE-Apx, Norm-Cut, and PowerNS,
perform well, especially when ρ is large. Moreover, their MSE
is symmetric with ρ = 50. This is because as the results are
normalized, estimating set-values for ρ > 50 equals estimating
the rest. When ρ = 90, the best norm-based method, PowerNS,
outperforms any of the non-norm based methods by at least 2
orders of magnitude.

For each specific method, it is observed the MSE for
Base-Pos is higher than other methods, because it only turns
negative estimates to 0, introducing systematic bias. Post-Pos
is slightly better than Base, as it turns negative query results
to 0. In the settings we evaluated, Base-Cut also outperforms
Base; this happens because converting estimates below the
threshold T to 0 is more likely to make the summation f ′D
close to one. Finally, Power only converts negative estimations
to be positive, introducing systematic bias; PowerNS further
makes them sum to 1, thus achieving better utility than all

10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

10
7

10
6

10
5

10
4

Base
Base-Pos

Post-Pos
Norm

Norm-Mul
Norm-Sub

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

10
7

10
6

10
5

Norm-Sub
MLE-Apx

Base-Cut
Norm-Cut

Power
PowerNS

Zipf’s

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

10
7

10
6

10
5

10
4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

10
7

10
6

10
5

Emoji

Fig. 4. MSE results on full-domain estimation, varying ε from 0.2 to 4.

0.5 1.0 1.5 2.0
n 1e6

0.00

0.25

0.50

0.75

1.00

1.25

n′

1e7

Base
Base-Pos

Post-Pos
Norm

Norm-Mul
Norm-Sub

0.5 1.0 1.5 2.0
n 1e6

0.5

1.0

1.5

2.0

n′

1e7

Norm-Sub
MLE-Apx

Base-Cut
Norm-Cut

Power
PowerNS

Fig. 5. MSE results on full-domain estimation on Zipfs dataset, comparing n with n′, fixing ε = 1 while varying n from 0.2 × 106 to 2.0 × 106. Three
pairs of methods have similar performance: Base and Norm, Base-Pos and Post-Pos, Norm-Sub and MLE-Apx.

other methods.

Vary ρ from 1 to 10. Having examined the performance
of set-queries for larger ρ, we then vary ρ from 1 to 10 and
demonstrate the results in Figure 7. Within this ρ range, the
errors of all methods increase with ρ, which is as expected.
When ρ becomes small, the performance of different methods
approaches to that of full-domain estimation.

Norm-Cut varies the threshold so that after cutting, the
remaining estimates sum up to one. Thus the performance of
Norm-Cut is better than Base-Cut especially when ρ ≥ 2.
Intuitively, the norm-based methods should perform better an-
swering set-queries. But Norm-Mul does not. This is because
the multiplication operation reduces the large estimates a lot,

making them biased. This also demonstrates that enforcing
sum-to-one is not enough. Different approaches perform sig-
nificantly different.

Fixed set queries. Besides random set queries, we include
a case study of fixed subset queries for the Emoji dataset.
The queries ask the frequency of each category2. There are
68 categories with the mean of 10.4 items per set. The MSE
varying ε is reported in Figure 8. It is interesting to see that the
Post-Pos works best in the left sub-figure, and Norm-Cut from
the right performs even better, especially when ε < 3. This
indicates the set-queries contain values that are infrequent.

2https://data.world/kgarrett/emojis

11

https://data.world/kgarrett/emojis

10 20 30 40 50 60 70 80 90

10
4

10
3

10
2

10
1

Base
Base-Pos

Post-Pos
Norm

Norm-Mul
Norm-Sub

10 20 30 40 50 60 70 80 90

10
4

10
3

10
2

Norm-Sub
MLE-Apx

Base-Cut
Norm-Cut

Power
PowerNS

Zipf’s

10 20 30 40 50 60 70 80 90
10

4

10
3

10
2

10
1

10
0

10 20 30 40 50 60 70 80 90
10

4

10
3

10
2

10
1

Emoji

Fig. 6. MSE results on set-value estimation, varying set size percentage ρ from 10 to 90, fixing ε = 1.

Choosing the method on synthetic dataset. As the optimal
method in fixed set-values (as shown in Figure 8) is different
from random set-values (shown in Figure 6 and 7), we investi-
gate whether we can select the optimal post-processing method
given the query and the LDP reports. In particular, we first fit
a synthetic dataset from the estimation, then we simulate the
data collection and estimation process multiple times, with
different post-processing methods, and we calculate the errors
taking the synthesized dataset as the ground truth. Figure 9
shows the result. Note that as we generate the synthetic dataset
from the estimated distribution, the distribution itself should
be consistent (non-negative and sum up to 1). We select Norm-
Sub and PowerNS to process the estimated distribution first.
These two methods perform well on full-domain and random
set-value queries.

From the figure we can see that if the results are processed
by Norm-Sub, the optimal method can be find quite accurately;
if PowerNS is used, PowerNS will be selected. The reason is
that PowerNS makes the distribution more close to the prior
of Power-Law distribution, while Norm-Sub does not.

E. Frequent-value Evaluation

Finally, we evaluate different methods varying the top values
to be considered. Define Dtk as {v ∈ D | fv ranks top k}. We
measure MSE between (f ′v)v∈Dtk and (fv)v∈Dtk for different
values of k (from 2 to 32), fixing ε = 1. Note that neither the

frequency oracle nor the subsequent post-processing operation
is aware of Dtk.

From the left column of Figure 10, we observe that Base,
Base-Pos, Post-Pos, and Norm perform consistently well for
different k, as the first three methods do nothing to the top
values, and Norm touches them in an unbiased way. Norm-Mul
performs at least 10× worse than any other methods because
it reduces the higher estimations a lot. Norm-Sub performs
worse than Base, but better than Norm-Mul, because the same
amount is subtracted from every estimate, regardless of k.

To give a better comparison, we plot both Base and Norm-
Sub to the right (i.e., we ignore MLE-Apx for now, as it
performs the same as Norm-Sub). These two methods have
consistent MSE for different k. The rest four methods, Base-
Cut, Norm-Cut, Power, and PowerNS, all have MSE that grows
with k. In particular, for Base-Cut, a fixed threshold T (in
Equation (7)) is used and estimates below it is converted
to 0. This also suggests that at ε = 1, around 10 values
can be reliably estimated. This also happens to Norm-Cut
for the similar reason. As Norm-Cut is better than Base-Cut,
it suggests the threshold used in Norm-Cut is smaller than
that in Base-Cut. If T is reduced, MSE of Base-Cut can be
lowered until it matches that of Norm-Cut. Thus T is actually
a tradeoff between frequent values and set-values. In practice,
if the desired k is known in advance, one can set T to be the k-
th highest estimated value. Finally, the performances of Power
and PowerNS are similar, and they are worse than Base-Cut,
especially when k > 10.

12

1 2 3 4 5 6 7 8 9 10

10
5

10
4

10
3

Base
Base-Pos

Post-Pos
Norm

Norm-Mul
Norm-Sub

1 2 3 4 5 6 7 8 9 10

10
5

10
4

Norm-Sub
MLE-Apx

Base-Cut
Norm-Cut

Power
PowerNS

Zipf’s

1 2 3 4 5 6 7 8 9 10
10

5

10
4

10
3

10
2

1 2 3 4 5 6 7 8 9 10
10

5

10
4

10
3

Emoji

Fig. 7. MSE results on set-value estimation, varying set size percentage ρ from 1 to 10, fixing ε = 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10

6

10
5

10
4

10
3

Base
Base-Pos

Post-Pos
Norm

Norm-Mul
Norm-Sub

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10

6

10
5

10
4

Norm-Sub
MLE-Apx

Base-Cut
Norm-Cut

Power
PowerNS

Fig. 8. MSE results on set-case estimation for the Emoji dataset, varying ε from 0.2 to 4.

F. Discussion

In summary, we evaluate the 10 post-processing methods
on different datasets, for different tasks, and varying different
parameters. We now summarize the findings and present
guidelines for using the post-processing methods.

With the experiments, we verify the connections among
the methods: Norm-Sub and MLE-Apx perform similarly, and
Base and Norm performs similarly.

The best choice for post-processing method depends on
the queries one wants to answer. If set-value estimation is
needed, one should use PowerNS. When the set is fixed, one
can also choose the optimal method using a synthetic dataset
processed with Norm-Sub. The intuition is that PowerNS
improves over the approximate MLE (i.e., Norm-Sub, which

is a theoretically testified method) by making the estimates
closer to the underlying distribution. If one just want to
estimate results for the most frequent values, one can use
Norm. While Base can also be used, Norm reduces variance
by utilizing the property that the estimates sum up to 1. These
two methods do not change any value dramatically. Finally,
if one cares about single value queries only, Base-Cut should
be used. This is because when many values in the dataset
are of low frequency, converting low estimates to 0 benefit
the utility. Overall, one can follow the guideline for choosing
post-processing methods.

• When single value queries are desired, use Base-Cut.
• When frequent values are desired, use Norm.
• When set-value queries are desired, use PowerNS or

13

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
10

6

10
5

10
4

Norm-Sub
Base-Cut

Norm-Cut
PowerNS

Syn(Norm-Sub)
Syn(PowerNS)

Fig. 9. Synthetic estimation for set-case query on the Emoji dataset.

select one using synthetic datasets.

VI. RELATED WORK

LDP frequency oracle (estimating frequencies of values)
is a fundamental primitive in LDP. There have been several
mechanisms [14], [5], [31], [4], [2], [36] proposed for this
task. Among them, [31] introduces OLH, which achieves
low estimation errors and low communication costs on large
domains. Hadamard Response [4], [2] is similar to OLH in
essence, but uses the Hadamard transform instead of hash
functions. The aggregation part is faster because evaluating
a Hadamard entry is practically faster; but it only outputs a
binary value, which gives higher error than OLH for larger
ε setting. Subset selection [36], [30] achieves better accuracy
than OLH, but with a much higher communication cost.

LDP frequency oracle is also a building block for other
analytical tasks, e.g., finding heavy hitters [4], [7], [34],
frequent itemset mining [26], [33], releasing marginals under
LDP [27], [8], [38], key-value pair estimation [37], [15],
evolving data monitoring [18], [13], and (multi-dimensional)
range analytics [32], [22]. Mean estimation is also a building
block in LDP; most of existing work transforms the numerical
value to a discrete value using stochastic round, and then apply
frequency oracles [11], [29], [24].

There exist efforts to post-process results in the setting of
centralized DP. Most of them focus on utilizing the structural
information in problems other than the simple histogram, e.g.,
estimating marginals [10], [25] and hierarchy structure [16].
The methods do not consider the non-negativity constraint.
Other than that, they are similar to Norm-Sub and minimize
L2 distance. On the other hand, the authors of [23] started
from MLE and propose a method to minimize L1 instead of
L2 distance, as the DP noise follows Laplace distribution.

In the LDP setting, Kairouz et al. [19] study exact MLE
for GRR and RAPPOR [14]; and empirically show exact
MLE performs worse than Norm-Sub. In [3], Bassily proves
the error bound of Norm-Sub for the Hadamard Response
mechanism. Jia et al. [17] propose to use external information
about the dataset’s distribution (e.g., assume the underlying
dataset follows Gaussian or Zipf’s distribution). We note
that such information may not always be available. On the
other hand, we exploit the basic information in each LDP

setting. That is, first, the total number of users is known;
second, negative values are not possible. We found that in the
LDP setting, on the contrary to [19], minimizing L2 distance
achieves MLE under the approximation that the noise is close
to the Gaussian distribution. There are also post-processing
techniques proposed for other settings: Blasiok et al. [6]
study the post-processing for linear queries, which generalizes
histogram estimation; but their method only applied to a non-
optimal LDP mechanism. [28] and [22] consider the hierarchy
structure and apply the technique of [16]. [37] considers mean
estimation and propose to project the result into [0, 1].

VII. CONCLUSION

In this paper, we study how to post-process results from
existing frequency oracles to make them consistent while
achieving high accuracy for a wide range of tasks, including
frequencies of individual values, frequencies of the most
frequent values, and frequencies of subsets of values. We
considered 10 different methods, in addition to the baseline.
We identified Norm performs similar to Base, and MLE-
Apx performs similar to Norm-Sub. We then recommend that
for full-domain estimation, Base-Cut should be used; when
estimating frequency of the most frequent values, Norm should
be used; when answering set-value queries, PowerNS or the
optimal one from synthetic dataset should be used.

ACKNOWLEDGEMENT

This project is supported by NSF grant 1640374, NWO
grant 628.001.026, and NSF grant 1931443. We thank our
shepherd Neil Gong and the anonymous reviewers for their
helpful suggestions.

REFERENCES

[1] Apple differential privacy team, learning with privacy at scale, 2017.
[2] J. Acharya, Z. Sun, and H. Zhang. Hadamard response: Estimating

distributions privately, efficiently, and with little communication. In
AISTATS, 2019.

[3] R. Bassily. Linear queries estimation with local differential privacy. In
AISTATS, 2019.

[4] R. Bassily, K. Nissim, U. Stemmer, and A. G. Thakurta. Practical locally
private heavy hitters. In NIPS, 2017.

[5] R. Bassily and A. D. Smith. Local, private, efficient protocols for
succinct histograms. In STOC, 2015.

[6] J. Blasiok, M. Bun, A. Nikolov, and T. Steinke. Towards instance-
optimal private query release. In SODA, 2019.

[7] M. Bun, J. Nelson, and U. Stemmer. Heavy hitters and the structure of
local privacy. In PODS, 2018.

[8] G. Cormode, T. Kulkarni, and D. Srivastava. Marginal release under
local differential privacy. In SIGMOD, 2018.

[9] B. Ding, J. Kulkarni, and S. Yekhanin. Collecting telemetry data
privately. In NIPS, 2017.

[10] B. Ding, M. Winslett, J. Han, and Z. Li. Differentially private data
cubes: optimizing noise sources and consistency. In SIGMOD, 2011.

[11] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and
statistical minimax rates. In FOCS, 2013.

[12] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to
sensitivity in private data analysis. In TCC, 2006.

[13] Ú. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Talwar,
and A. Thakurta. Amplification by shuffling: From local to central
differential privacy via anonymity. In SODA, 2018.

[14] Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: randomized
aggregatable privacy-preserving ordinal response. In CCS, 2014.

14

5 10 15 20 25 30
k

10
5

10
4

10
3

10
2

Base
Base-Pos

Post-Pos
Norm

Norm-Mul
Norm-Sub

5 10 15 20 25 30
k

10
5

4 × 10
6

6 × 10
6

Norm-Sub
Base

Base-Cut
Norm-Cut

Power
PowerNS

Zipf’s

5 10 15 20 25 30
k

10
5

10
4

10
3

5 10 15 20 25 30
k

10
5

4 × 10
6

6 × 10
6

Emoji

Fig. 10. MSE results on top-k value estimation varying k from 2 to 32, fixing ε = 1.

[15] X. Gu, M. Li, Y. Cheng, L. Xiong, and Y. Cao. Pckv: Locally
differentially private correlated key-value data collection with optimized
utility. In USENIX Security, 2020.

[16] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the accuracy of
differentially private histograms through consistency. PVLDB, 2010.

[17] J. Jia and N. Z. Gong. Calibrate: Frequency estimation and heavy
hitter identification with local differential privacy via incorporating prior
knowledge. In INFOCOM, 2019.

[18] M. Joseph, A. Roth, J. Ullman, and B. Waggoner. Local differential
privacy for evolving data. In NIPS, 2018.

[19] P. Kairouz, K. Bonawitz, and D. Ramage. Discrete distribution estima-
tion under local privacy. In ICML, 2016.

[20] W. Karush. Minima of functions of several variables with inequalities
as side constraints. M. Sc. Dissertation. Dept. of Mathematics, Univ. of
Chicago, 1939.

[21] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Traces and
emergence of nonlinear programming. Springer, 2014.

[22] T. Kulkarni, G. Cormode, and D. Srivastava. Answering range queries
under local differential privacy. PVLDB, 2019.

[23] J. Lee, Y. Wang, and D. Kifer. Maximum likelihood postprocessing for
differential privacy under consistency constraints. In KDD, 2015.

[24] Z. Li, T. Wang, M. Lopuhaä-Zwakenberg, B. Skoric, and N. Li.
Estimating numerical distributions under local differential privacy. arXiv
preprint arXiv:1912.01051, 2019.

[25] W. Qardaji, W. Yang, and N. Li. Priview: practical differentially private
release of marginal contingency tables. In SIGMOD, 2014.

[26] Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren. Heavy hitter
estimation over set-valued data with local differential privacy. In CCS,
2016.

[27] X. Ren, C.-M. Yu, W. Yu, S. Yang, X. Yang, J. A. McCann, and S. Y.
Philip. Lopub: High-dimensional crowdsourced data publication with
local differential privacy. Trans. on Info. Forensics and Security, 2018.

[28] N. Wang, X. Xiao, Y. Yang, T. D. Hoang, H. Shin, J. Shin, and
G. Yu. Privtrie: Effective frequent term discovery under local differential
privacy. In ICDE, 2018.

[29] N. Wang, X. Xiao, Y. Yang, J. Zhao, S. C. Hui, H. Shin, J. Shin,

and G. Yu. Collecting and analyzing multidimensional data with local
differential privacy. In ICDE, 2019.

[30] S. Wang, L. Huang, P. Wang, Y. Nie, H. Xu, W. Yang, X. Li, and
C. Qiao. Mutual information optimally local private discrete distribution
estimation. CoRR, abs/1607.08025, 2016.

[31] T. Wang, J. Blocki, N. Li, and S. Jha. Locally differentially private
protocols for frequency estimation. In USENIX Security, 2017.

[32] T. Wang, B. Ding, J. Zhou, C. Hong, Z. Huang, N. Li, and S. Jha.
Answering multi-dimensional analytical queries under local differential
privacy. In SIGMOD. ACM, 2019.

[33] T. Wang, N. Li, and S. Jha. Locally differentially private frequent itemset
mining. In SP, 2018.

[34] T. Wang, N. Li, and S. Jha. Locally differentially private heavy hitter
identification. Trans. Dependable Sec. Comput., 2019.

[35] S. L. Warner. Randomized response: A survey technique for eliminating
evasive answer bias. Journal of the American Statistical Association,
1965.

[36] M. Ye and A. Barg. Optimal schemes for discrete distribution estimation
under locally differential privacy. Transactions on Information Theory,
2018.

[37] Q. Ye, H. Hu, X. Meng, and H. Zheng. Privkv: Key-value data collection
with local differential privacy. In SP, 2019.

[38] Z. Zhang, T. Wang, N. Li, S. He, and J. Chen. Calm: Consistent adaptive
local marginal for marginal release under local differential privacy. In
CCS, 2018.

15

APPENDIX A
SOLUTION FOR CLS

Using the KKT condition [21], [20], we augment the
optimization target with the following equations:

minimize
∑
v

(f ′v − f̃v)2 + a+ b

where
∑
v

f ′v = 1, ∀v : 0 ≤ f ′v ≤ 1,

a = µ ·
∑
v

f ′v, b =
∑
v

λv · f ′v,∀v : λv · f ′v = 0.

Since b = 0, and a = µ is a constant, the condition that
minimizing the target is unchanged. Given that the target
is convex, we can find the minimum by taking the partial
derivative with respect to each variable:

∂
[∑

v(f
′
v − f̃v)2 + a+ b

]
∂f ′v

= 0

=⇒ 2(f ′v − f̃v) + µ+ λv = 0

=⇒ f ′v = f̃v −
1

2
(µ+ λv)

Now suppose there is a subset of domain D0 ⊆ D s.t.,
∀v ∈ D0, f

′
v = 0 and ∀v ∈ D1 = D \D0, f

′
v > 0 ∧ λv = 0.

By summing up f ′v for all v ∈ D1, we have

1 =
∑
v∈D1

f̃v −
|D1|µ

2

Thus for all v ∈ D1, we can use the formula

f ′v =f̃v −
1

|D1|

(∑
v∈D1

f̃v − 1

)
to derive the estimate f ′v for value v ∈ D1, and f ′v = 0 for
v ∈ D0. One can also find D0 using a similar approach when
dealing with MLE. And it can also be verified

∑
v f
′
v = 1.

APPENDIX B
SOLUTION FOR MLE-APX

From Equation (9), we first simplify the exponent plugging
in the value of σ′v as in Equation (3):∑

v

(f ′v − f̃v)2

2σ′2v
=
n

2

∑
v

(f ′v − f̃v)2(p− q)2

q(1− q) + f ′v(p− q)(1− p− q)

The factor n
2 in the exponent ensures that for large n the

exponent will vary the most with f ′, which dominates the
coefficient 1√

2π
∏
v σ
′2
v

. Thus approximately we find f ′ that

achieves the following optimization goal:

minimize:
∑
v

(f ′v − f̃v)2(p− q)2

q(1− q) + f ′v(p− q)(1− p− q)

subject to:
∑
v

f ′v = 1,

∀v, 0 ≤ f ′v ≤ 1.

Using the KKT condition [21], [20], we augment the
optimization target with the following equations:

minimize
∑
v

(f ′v − f̃v)2(p− q)2

q(1− q) + f ′v(p− q)(1− p− q)
+ a+ b

where
∑
v

f ′v = 1, ∀v : 0 ≤ f ′v ≤ 1,

a = µ ·
∑
v

f ′v, b =
∑
v

λv · f ′v,∀v : λv · f ′v = 0.

Since b = 0, and a = µ is a constant, the condition for
minimizing the target is unchanged. Given that the target
is convex, we can find the minimum by taking the partial
derivative with respect to each variable:

∂
[∑

v
(f ′v−f̃v)

2(p−q)2
q(1−q)+f ′v(p−q)(1−p−q)

+ a+ b
]

∂f ′v

=
−(f ′v − f̃v)2(p− q)2 · (p− q)(1− p− q)

(q(1− q) + f ′v(p− q)(1− p− q))2

+
2(f ′v − f̃v)(p− q)2

q(1− q) + f ′v(p− q)(1− p− q)
+ µ+ λv = 0

Define a temporary notation

xv =
(f ′v − f̃v)(p− q)

q(1− q) + f ′v(p− q)(1− p− q)

so that f ′v =
q(1− q)xv + f̃v(p− q)

p− q − (p− q)(1− p− q)xv
(12)

With xv , we can simplify the previous equation:

(p− q)(1− p− q)x2v − 2(p− q)xv − µ− λv = 0 (13)

Now suppose there is a subset of domain D0 ⊆ D s.t.,
∀v ∈ D0, f

′
v = 0 and ∀v ∈ D1 = D \D0, f

′
v > 0 and λv = 0.

Thus for those v ∈ D1, solution of xv in Equation (13) does
not depend on v. We solve xv by summing up f ′v for all
v ∈ D1:∑

v∈D1

f ′v =1 =
∑
v∈D1

q(1− q)xv + f̃v(p− q)
p− q − (p− q)(1− p− q)xv

=
|D1|q(1− q)xv +

∑
v∈D1

f̃v(p− q)
p− q + (p− q)(1− p− q)xv

=⇒ xv =

∑
x∈D1

f̃v(p− q)− (p− q)
(p− q)(1− p− q)− |D1|q(1− q)

Given xv , we can compute f ′v from Equation (12) for each
value v ∈ D1 efficiently; and f ′v = 0 for v ∈ D0. It can be
verified

∑
v f
′
v = 1.

Finally, to find D0, one initiates D0 = ∅ and D1 = D, and
iteratively tests whether all values in D1 are positive. In each
iteration, for any negative ax, x is moved from D1 to D0.
The process terminates when no negative ax is found for all
x ∈ D1.

16

	Introduction
	Problem Setting
	Frequency Oracle Protocols
	Generalized Random Response (GRR)
	Optimized Local Hashing (OLH)
	Other FO Protocols
	Accuracy of Frequency Oracles

	Towards Consistent Frequency Oracles
	Baseline Methods
	Normalization Method
	Constrained Least Squares
	Maximum Likelihood Estimation
	Least Expected Square Error
	Summary of Methods

	Evaluation
	Experimental Setup
	Bias-variance Evaluation
	Full-domain Evaluation
	Set-value Evaluation
	Frequent-value Evaluation
	Discussion

	Related Work
	Conclusion
	References
	Appendix A: Solution for CLS
	Appendix B: Solution for MLE-Apx

