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Abstract—In 2016, law enforcement dismantled the infrastruc-
ture of the Avalanche bulletproof hosting service, the largest
takedown of a cybercrime operation so far. The malware families
supported by Avalanche use Domain Generation Algorithms
(DGAs) to generate random domain names for controlling their
botnets. The takedown proactively targets these presumably mali-
cious domains; however, as coincidental collisions with legitimate
domains are possible, investigators must first classify domains to
prevent undesirable harm to website owners and botnet victims.

The constraints of this real-world takedown (proactive deci-
sions without access to malware activity, no bulk patterns and no
active connections) mean that approaches from the state of the
art cannot be applied. The problem of classifying thousands of
registered DGA domain names therefore required an extensive,
painstaking manual effort by law enforcement investigators. To
significantly reduce this effort without compromising correctness,
we develop a model that automates the classification. Through
a synergetic approach, we achieve an accuracy of 97.6% with
ground truth from the 2017 and 2018 Avalanche takedowns; for
the 2019 takedown, this translates into a reduction of 76.9%
in manual investigation effort. Furthermore, we interpret the
model to provide investigators with insights into how benign and
malicious domains differ in behavior, which features and data
sources are most important, and how the model can be applied
according to the practical requirements of a real-world takedown.

I. INTRODUCTION

On November 30, 2016, a global consortium of law
enforcement agencies and Internet stakeholders completed a
four-year investigation aimed at dismantling the Avalanche
infrastructure [31], which has been called “the world’s largest
and most sophisticated cybercriminal syndicate law enforcement
has encountered” [94]. For seven years, this ‘bulletproof hosting
service’ [13] offered services to cybercriminal operations
through a ‘crime-as-a-service’ model [94], fully managing all
technical aspects of carrying out malware attacks, phishing,
and spam campaigns. It supported a botnet of a massive scale:
Avalanche was responsible for two thirds of all phishing attacks
in the second half of 2009 [8], and ultimately affected victims
in over 180 countries with estimations of its monetary impact
reaching hundreds of millions of euros worldwide [6]. The
takedown operation in 2016 was supported by authorities from
30 countries and culminated in five arrests, 260 servers being
taken offline and the suspension of over 800,000 domains [31].

As part of this dismantling, a large domain takedown effort
sought to disable the botnet’s communication infrastructure.
This effort targets the large sets of domains that the malware
families of Avalanche generate through domain generation
algorithms (DGAs). Through this ‘domain fluxing’ [71], in-
fected hosts attempt to contact all generated domains, whereas
the botnet master only needs to register one to continue
operating the malware, decreasing the likelihood of blacklisting
and takedown. However, as security researchers have reverse-
engineered several of these DGAs [71], law enforcement is
able to identify upfront which domains the malware will try,
after which these can be blocked or seized. Over four yearly
iterations of the Avalanche takedown, more than 4.3 million
domains were thus prevented from being abused, making it the
largest domain takedown so far [7].

Previous work related to DGAs focused on detecting
malicious domains in regular traffic, relying on strong indicators
of ongoing malware activity, to discover new malware families
or find infected hosts inside a network [16], [82], [100]. In
this paper, we address the orthogonal issue that the Avalanche
takedown faces: given – presumably malicious – DGA domains
that will be generated in the future and should proactively
be taken down, we seek to detect those that accidentally
collide with benign domains. In particular, we assess how
we can effectively support law enforcement investigators with
an automated domain classification to inform the appropriate
takedown action in a real-world use case. This reduces the
extensive manual effort previously invested in this classification,
while still maintaining the high accuracy required in such a
sensitive operation. Taking down benign domains may cause
prejudiced service interruption and harm their owners. At the
same time, we have to guarantee that no malicious domain is
left untouched, as this would allow malicious actors to target
infected users once again.

We are the first to develop an approach that can be used to
effectively identify the domains registered with malicious intent,
within the constraints of a real-world takedown operation. First,
bulk patterns no longer apply, both for domains that are benign
(due to the accidental uncoordinated collisions) and malicious
(due to the low number of required domains). Second, as the
takedown is proactive, we cannot search for malicious activity
(any ongoing activity would mean that infected machines are
implicated in actual attacks and defeat the proactive purpose
of the takedown). Third, we cannot actively contact domains
so that the takedown can occur stealthily (otherwise attackers
could evade detection and undermine the takedown). Instead, we
rely on capturing more generic differences in how benign and
DGA-generated malicious domains are registered and operated.
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We design a machine learning-based model for classifying
benign and malicious domains, and we evaluate it on ground
truth from the 2017 and 2018 iterations. Using a human-in-
the-loop approach that combines automated classification and
manual investigation targeted at the most difficult domains, we
achieve an accuracy of 97.6% for the real-world Avalanche
use case, ensuring high correctness while still vastly reducing
manual effort: in the 2019 iteration, our approach reduced
this effort by 76.9%. However, we go beyond reporting this
metric with an extensive analysis of the benefits and limitations
brought by the machine learning approach as well as the real-
world setting. We provide an interpretation for the factors that
impact the decisions of the model, giving insight into how the
owners of benign and malicious domains behave differently and
how the model uses this information to make decisions. These
insights can help law enforcement in their choices regarding
the acceptable performance and reliability of the model.

Malware creators increasingly employ techniques that make
the takedown of their command and control infrastructure more
complex, and the scale of malicious operations continually
increases. Further automation of the takedown process with
our classifier of malicious and benign domains can support law
enforcement in coping with the increased complexity. However,
we need to carefully design, evaluate, and analyze such an
approach to cope with the constraints of a real-world application
as to avoid any adverse effect on the legitimacy of the operation.
This enables law enforcement to continue disrupting malware
infrastructure and protecting potential victims.

In summary, our contributions are the following:

• We assess to what extent an automated approach can assist
law enforcement investigators in correctly detecting the
collisions with benign domains among registered domains
implicated in the Avalanche takedown, without the ability
to rely on bulk malicious registrations, ongoing malware
activity or actively collected traffic.

• We develop a technique where we complement a machine
learning model with targeted manual labeling of the most
informative and difficult domains, to maintain performance
across multiple takedown iterations while still vastly
reducing the required manual investigative effort.

• We evaluate how well this approach performs and transfers
for the 2017 and 2018 takedowns: we obtain an accuracy
of 97.6%. The predictions of our model were used in the
2019 takedown, and we find a subsequent reduction in
manual investigative effort of 76.9%.

• We critically examine the factors that impact the perfor-
mance and decision-making process of our model. We find
that time-based features are the most important ones, which
at the same time are the most costly to evade. In terms
of data set availability, WHOIS data greatly improves
accuracy, which shows its importance for conducting
effective cybercrime investigations.

II. BACKGROUND

A. Domain generation algorithms

Machines in a botnet such as Avalanche communicate
with the malicious actor through command and control (C&C)
servers. Early malware hard coded the domain names or IP
addresses of their C&C servers, so it was easy to obtain this

TABLE I. EXAMPLES OF DOMAINS GENERATED BY AVALANCHE DGAS.

Domain Malware Validity

1 0a85rcbe2wb5n5fkni4i4y[.]com CoreBot Jan 21, 2018
2 researchmadness[.]com Matsnu Jan 28-31, 2018
3 arbres[.]com Nymaim Mar 9, 2018
4 sixt[.]com Nymaim always

information and either blacklist the servers or even take over
the corresponding infrastructure (by pointing for instance the
domains to ‘safe’ IP addresses and/or having hosting providers
take C&C servers down), effectively stopping the malware from
further malicious operation [18]. Malware has therefore evolved
from hard coding the C&C server information to dynamically
creating or updating it.

One technique of this dynamic approach is ‘domain fluxing’,
in which domain generation algorithms (DGAs) create up to
thousands of algorithmically generated domains (AGDs) every
day [71]. The malware will then attempt to contact these
domains and ignore the unavailable ones: the botnet owner
therefore only needs to set up one of the generated domains to
host a C&C server [18]. Avalanche combined this technique
with ‘fast fluxing’, in which compromised machines hosting a
proxy to the C&C server as well as the corresponding DNS
entries of the AGDs rapidly switch [41], thus further evading
blacklisting and takedown [31].

DGAs take as seeds parameters known to both the malware
owner and the infected host, so that they both generate the
same set of domains [18], [71]. These parameters such as the
length of domains, top-level domains (TLDs) to use, or seeds
for pseudo random number generators can be hard coded. More
complex algorithms may depend on time: one of the inputs
to the DGA is then the current time, either from the system
clock or retrieved from a common source (e.g., GET requests
to legitimate sites [99]). In this way, the DGA creates domains
having a certain validity period: the time frame during which the
seed timestamps make the DGA generate that domain, which
the infected machines then attempt to reach. For Avalanche
malware families, these validity periods range from 1 day (e.g.
Nymaim) to indefinitely (e.g. Tiny Banker).

We can further distinguish between deterministic DGAs
that know all parameters upfront and non-deterministic DGAs
that know some parameters only at the time of generating the
domains: e.g., the DGA of the Bedep family uses exchange
rates as seeds [79]. Avalanche did not use any non-deterministic
DGAs so for successfully reverse-engineered DGAs [3], [71],
we can generate all potential AGDs ahead of their validity, by
varying the timestamp that serves as input to the DGA.

Table I lists example names generated by DGAs, from
malware hosted by Avalanche. While Example 1 appears
random (a long name with many digits and no discernible
words), certain DGAs generate names that look much more like
legitimate domains. Example 2 shows a name generated based
on a word list yielding domains that may correspond to a regular
domain name. Example 3 shows a short yet randomly generated
name for which there is a high probability of generating either a
valid word or a plausible abbreviation. These last two examples
have a high probability of generating domains that collide with
existing benign domains.

2



Finally, certain malware families alter domain resolution on
the infected host, generating traffic to hard-coded and otherwise
benign domains that actually resolve to malicious IP addresses
to circumvent domain-based filters [40]. While these domains
are not algorithmically generated, they are present in malware
code and traffic and must therefore also be classified as part of
the takedown operation, to distinguish them from other hard-
coded and actually malicious domains. Example 4 is one such
instance using the domain of the Sixt car rental site. We include
these domains in our classification, but for brevity, we refer to
all domains to be classified as the ‘registered DGA domains’.

B. Taking down the Avalanche infrastructure

The perpetrators behind the Avalanche infrastructure offered
two services for rent by cyber criminals: registering domain
names as well as hosting a layered network of proxy servers
through which malware actors could control infected hosts
and exfiltrate stolen data [3]. Avalanche thereby supported the
operation of 21 malware families [5], controlling a botnet of
an estimated one million machines at the time of takedown [3].

Prosecutors completed the first iteration of the takedown
in November 2016, where the whole infrastructure was dis-
mantled through arrests, server seizures, and domain name
takedowns [31]. For the latter, the first iteration targeted
live C&C domains, but also those that would be generated
by the DGAs in the coming year, preemptively blocking
these to prevent Avalanche from respawning. This effort has
been repeated every year since, as in January 2020 infected
machines on over two million IPs still contacted the Avalanche
network [1], highlighting the potential damage if Avalanche
were to respawn.

Coupled with the large number of malware families and the
extensive amount of domains that these DGAs generate, this
results in a large number of DGA domains to be processed.
For the three yearly iterations from 2016 to 2018, this amounts
to around 850,000 domains per year [5], [7], while the 2019
iteration looks ahead five years and therefore treats almost 2
million domains: this means more than 4.3 million targeted
domains have been processed in total. For the DGA domains
in the Avalanche takedown, law enforcement took one of three
actions on the takedown date [4]:

• Block registration: for a not yet registered domain, the TLD
registry blocks registration. This is the case for the vast
majority of domains.

• Seize domain: for a domain registered by a seemingly
malicious actor, it is seized from the original owner and
‘sinkholed’, i.e. it is redirected to servers of the Shadowserver
Foundation. Optionally, domains are also transferred to
the “Registrar of Last Resort”. Through sinkholing, law
enforcement can then track how many and which infected
hosts attempt to contact the domains [1] and aid in mitigation
through notifications to network operators and infected
users [22]. Domain seizures require a legal procedure such
as a court order, while organizations could also request a
takedown through a ‘takedown notice’ [42].

• No action: for a domain registered by a seemingly benign
actor (including domains sinkholed by other security orga-
nizations), no action is taken by law enforcement and the
domain remains with its original owner.

TABLE II. NUMBER OF BENIGN AND MALICIOUS DOMAINS PER
ITERATION. *: ACCORDING TO OUR CLASSIFICATION.

2017 2018 2019–2024*

Benign 1397 1014 4945
Malicious 1145 402 1053
Classified 2542 1416 5998

Sinkholed 1177 594 2293
Total 3719 2010 8291

III. PROBLEM STATEMENT

A. Making accurate takedown decisions

The aim of the Avalanche takedown is to prevent the botnet
owners from interacting with infected machines by blocking
access to the required domains that the DGAs will generate
in the year following the takedown. However, as these DGAs
may generate labels that collide with benign sites, performing
a blanket takedown of all generated domains would harm
legitimate websites. For Avalanche, public prosecutors therefore
first had to manually classify domains into benign and malicious:
as shown in Table II, they had to determine an appropriate
action for a few thousand registered DGA domains each year.

For registered domains, an incorrect decision may have
unintended adverse effects [23], [42]. In case of the seizure of
a benign domain, its legitimate owner can no longer provide its
service to end users. Owners may experience lengthy downtime,
as challenging an illegitimate seizure and regaining the domain
can be an opaque and difficult process [42], [49]; it appears
that this also holds for Avalanche domains [21], [66].

Conversely, not preemptively seizing a malicious domain
allows the botnet to respawn and continue its malicious
operation: as the takedown does not remove the malware from
infected machines, these will continue to establish contact
with DGA domains. Once the botnet owners can obtain such
a domain, the attackers can launch new attacks or spread
malware to additional hosts. The takedown efforts, intended to
permanently stop the malware, are then effectively spoiled.

Manually classifying all DGA domains is a resource- and
time-consuming process, where due to ‘decision fatigue’ [28],
[90], the mental effort in making repetitive decisions could
lead to biases. Given the severe consequences of incorrect
classifications, our goal is to develop an automated approach
to the classification of DGA domains that performs with high
accuracy, in order to relieve human investigators from manual
effort as much as possible. At the same time, this does not
preclude a manual review of those domains that are the hardest
to classify or that could have the most significant effects. In
the analysis of our approach in Section V, we quantify how
such a union of automated and manual classification can still
lead to a significant reduction in required effort. Through such
a reduction in manual effort and time, we can ensure the
correctness of takedown decisions, thereby minimizing negative
effects on website owners as well as end users.

B. Constraints for distinguishing malicious and benign domains

While our base goal is to distinguish malicious and benign
domains, we cannot use previously proposed solutions as they
rely on certain indicators that would not work for the Avalanche
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TABLE III. OVERVIEW OF GOALS AND STRATEGIES FOR THE
DIFFERENTIATION OF BENIGN AND MALWARE/DGA DOMAINS.

Context/Detection goal Individual
patterns

Proactive
analysis

No active
connections Related work

Active malware domains
within regular traffic 7 7 3 [15], [16], [19]

Likely DGA domains
within regular traffic 7 7 3 [26], [78], [96]

Future malicious domains
at registration 7 3 3 [33], [38], [86]

Benign domains within
known malware domains 3 7 7 [47]

Benign domains within
future DGA domains 3 3 3 Our work

use case. Concretely, these indicators no longer hold for
malicious domains (e.g. bulk registration), cannot be observed
by us (e.g. detecting malware activity), or are counterproductive
(e.g. alerting the attacker). Table III summarizes how the
different contexts, goals and strategies of previous works do
not fully satisfy our requirements.

The reason is that the assumptions made in previous work
no longer hold due to a different balance between malicious
and benign domains: instead of detecting domains with clear
malicious behavior among a (large) set of regular traffic, we
assume that domains are malicious (they would be contacted
by malware) and need to detect benign domains (i.e. accidental
collisions). While in previous approaches, domains that do
not exhibit strong indicators of maliciousness (offered by the
former) are benign, the absence of such indicators in our use
case means that we may not make such an assumption, and
makes those previous approaches ineffective for Avalanche.

We translate these unique characteristics of the Avalanche
takedown into three constraints. First, we need to take the
characteristics of benign domains into account as well, by de-
veloping appropriate features that capture individual differences
in registration and configuration. Second, as we cannot leverage
ongoing malware activity itself, we need to develop features
that allow for a proactive analysis. Third, attackers may not
evade or detect data collection, so we may not make any active
connections to domains in order to remain stealthy. In this
section, we elaborate on these challenges and differences that
make previous approaches ineffective for our use case.

a) Individual registration and configuration patterns:
Previous work often assumes that specific (bulk) patterns in
the setup of domains indicates maliciousness.

For example, PREDATOR [38] relies on the observation
that in order to evade blacklisting, malicious spam domains
are registered in bulk (over 50% in groups of ten or more at
one registrar in five minute intervals), causing these temporal
clusters to be similar in infrastructure, lexical composition and
life-cycle stage. In a similar spirit, Premadoma [86] relies on
similarities in registrant data and the prevalence of malicious
domains at specific facilitators (such as registrars) to detect
sustained large-scale malicious campaigns. However, these
patterns are no longer usable for our set of domains. Attackers
only need to register one of the domains that the DGA outputs
at a given time, so they no longer need to register domains
in bulk, as is necessary for spam domains, also reducing the
likelihood that they share e.g. registrars. Figure 1 confirms this:
93.5% of malicious domains in the 2017 and 2018 iterations
of the Avalanche takedown are registered in clusters of fewer
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Fig. 1. Cumulative distribution of registration counts for a given day and
registrar, for malicious domains from the 2017 and 2018 iterations.

than 10 domains at their given registrar in one day (as opposed
to the five minute interval in PREDATOR [38]). Moreover, the
accidentally colliding benign sites do not have any relationship
and will therefore not share any properties either.

Systems such as DeepDGA [96] and FANCI [78] detect
DGA domains from linguistic patterns in their label. However,
we know that all domains are either generated by a DGA or
hard coded in malware, so it would be incorrect to use such
patterns to categorize them as malicious.

In summary, because of the characteristics of our domain
set (singular malicious and unrelated benign domains, all output
by a DGA), many of the assumptions that the above approaches
make on patterns that determine maliciousness are no longer
valid. We must therefore resort to capturing more generic,
common registration and configuration patterns for individual
domains. These patterns should not only capture ‘obvious’
maliciousness, but also properties that indicate benignness.

b) Proactive analysis: Previous work relies on observing
ongoing malicious behavior: e.g. Exposure [19] leverages
irregular DNS configurations and access patterns to detect ‘do-
main flux’ [41]; Pleiades [16] captures patterns in NXDOMAIN
responses to DNS queries by active malware. These systems
rely on ongoing malware activity that generates the analyzed
traffic. Similarly, systems that use only the label to detect
DGA candidates based on their appearance [26], [78], [96]
need ongoing malware activity, otherwise infected hosts are not
contacting malicious domains that are then visible in traffic.

Crucially, because malicious domains have to be taken
down before they can cause any harm, we have to classify
them proactively, i.e. before infected machines would actively
query the malicious domain. This distinguishes our work from
the above works, as we cannot analyze and rely on patterns
within any (ongoing) malware activity. While we can and do
use features similar to those from previous systems, we are
restricted to detecting patterns in registration, configuration,
and regular traffic. Moreover, we already know that a DGA
generated the domains that we have to classify, meaning that
we start with an assumption that the domains are malicious.

c) No active connections to domains: Internet measure-
ments can be classified into two groups: passive collection,
where already ongoing traffic is observed, and active collection,
where new traffic is injected into the network. Notos [15] and
Exposure [19] are examples of systems that analyze patterns
in passively collected DNS queries. In contrast, Mentor [47]
relies in part on website content features to measure positive
domain reputation, requiring active and targeted data collection
through crawling the domains.
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While we have a similar goal to Mentor of detecting
benign domains within presumably malicious domains, we
avoid including features that require us to actively connect
to domains. Malicious actors are namely known to detect
active scanning and respond differently to appear more benign
(‘cloaking’) [46], and could thus mislead our classification.
More broadly, such probes could alert them of efforts to
investigate and disrupt malicious infrastructures, allowing
attackers to shift their approach or hide any traces to avoid
repercussions [3]. A stealthier analysis without targeted active
data collection therefore avoids endangering the effectiveness
of ongoing investigations [19], [102].

C. Ground truth data

The advantage of our collaboration with law enforcement
is that we can use their manual classification of benign and
malicious domains from the takedown as a trustworthy source of
ground truth. Previous studies mostly rely on publicly available
blacklists and whitelists as the labeled ground truth [89], but
malware blacklists have been found to contain benign parked or
sinkholed domains and are ineffective at fully covering domains
of several malware families [54], while lists of popular domains
commonly used as whitelists can easily be manipulated by
malware providers [56].

However, the real-world context of the Avalanche takedown
affects the composition of our ground truth data. Concretely,
our data set is relatively small, as seen in Table II. Plohmann
et al. [71] have seen a similarly small proportion of registered
domains among DGA domains. We can expect this number to
be small: malicious actors only need to register few domains,
as the malware will try all DGA-generated domains; conversely,
benign actors are less likely to be interested in using the often
random-looking domains generated by the DGAs. Previous
studies are able to evaluate their approach on much larger data
sets, albeit self-constructed and arbitrarily selected. Nonetheless,
training on a small data set is a challenge that prosecutors would
also face, and our analysis is therefore valuable for informing
them on the feasibility, constraints and benefits of an automated
approach for such a practical use case.

D. Ethical considerations

We use the data set of the Avalanche takedown shared with
us by our law enforcement partner. We augment this data with
third-party data, avoiding unnecessary active probes of both
benign and malicious domains. However, given the sensitivity
of the former and commercial agreements for the latter, we
cannot share this data with external parties. We release the data
processing scripts and resulting models at https://github.com/
DistriNet/avalanche-ndss2020 to support reproducibility.

We assisted law enforcement agencies by applying our
approach to the 2019 Avalanche iteration. While the use of
machine learning for law enforcement purposes may be con-
tested [69], human investigators may similarly make involuntary
errors, e.g. due to ‘decision fatigue’ [28], [90].

IV. DATA SET ANALYSIS AND FEATURE EXTRACTION

To determine a suitable takedown action for algorithmically
generated domains (AGDs), we search for relevant features
providing a full view of their properties over time. We

then create a classifier that detects whether patterns in these
properties are more likely to correspond to a benign or malicious
domain without having to rely on ongoing malware activity.

In this section, we first analyze how different data sources
can track different stages of the domain life cycle and we discuss
the insights on how features capture contrasting properties of
benign and malicious domains. Then, we select the final set of
features and discuss the reasons for omitting certain features.

A. Life cycle of a domain

To correctly identify the intent of a domain registration,
we need to observe patterns in the domain life cycle, as they
indicate who obtained the domain, how they use it, and how
they value it. For each identified step, we determine which
relevant features capture the actions of the domain owner and
list sources that track this information. Through our analysis,
we can then ensure that our selection of features and data sets
appropriately covers each step.

L1. Choice of the domain name: The prospective owners
of a domain (the registrants) must first choose the domain name
that they want to purchase. Usually, the name is chosen to be
easily memorized, sufficiently short, and representative of the
service provided by the domain, but as malicious actors will
need to produce domains in bulk, they will generate them
automatically. The resulting names have a random or patterned
appearance that we can capture in lexical features on the label
itself in order to automatically detect DGAs [77], [78], [96].

L2. Registration of the domain: A registrant registers a
domain through a registrar, typically paying a registration fee for
at least 1 year [44] (although free and shorter offers exist [35]
that tend to attract abuse [50]). The registrant identity, the
registrar used, and the timestamps of the registration start and
end are then made publicly available in the WHOIS database.
We can then extract the registration patterns to distinguish
benign and malicious sites [60]. Due to privacy concerns
and regulations (e.g., the European General Data Protection
Regulation), the publicly available identity of the registrant
may be obfuscated: the real identity is then only available to
the registrar and the top-level domain (TLD) registry. This
data may be leveraged in collaborations with registries, e.g. for
detecting malicious domains at registration time [86], [93].

L3. DNS configuration: Once a domain has been
registered, its entry in the Domain Name System (DNS) must be
configured to allow discovery of its services using the domain
name. The nameserver is passed onto the TLD registry and will
appear in its zone files. The domain resource records configured
in the nameserver zone file then become available for querying.
Active DNS data sets (collected by e.g., OpenINTEL [91])
rely on scanning zone files or popular domains to obtain these
records, while passive DNS data sets (collected by e.g., Farsight
Security [32]) extract them from monitored DNS responses.
Both types of data sets have been used to detect malicious
domain registrations and activity [19], [52], [84].

L4. Setup of the service infrastructure: The main
purpose of a domain name is usually to provide a service
for which an infrastructure needs to be set up. The records
stored in DNS may reveal the hosting infrastructure or third-
party service providers (e.g., cloud providers) from which
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actors that enable malicious activity can be derived [72], [101].
A scan of open ports accompanied by “banner grabs” may
reveal provided services and the content available through the
service may reveal its purpose. Such an operation requires
active probing of the domain, which either can be executed
ad hoc or is already performed regularly by e.g. Censys [30]
and Project Sonar [73], whose scale enables analyses of botnet
devices [14]. Furthermore, certificates obtained by the domain
owner for their service may also be tracked in Certificate
Transparency logs [55].

L5. Service activity: Once the service is set up, end
users can start interacting with it. Traffic to the service may
be logged either at the server, the client, or in any network in-
between. These logs can then be analyzed for multiple purposes.
Malicious behavior can be detected and publicly shared in
blacklists [54], [81], [101]. Commercial providers publish lists
of the most popular websites that become base sets of seemingly
benign domains [56]. The service may be crawled to populate
search engine results or archive web content [37]: the latter
enables longitudinal analyses of malicious activity [12], [83],
[101]. These methods can be combined to calculate risk scores
for the domain [43].

L6. Service unavailability and domain expiration: The
unavailability of the services offered by the domain, either
intentionally or unintentionally due to misconfigurations, may
be detected by any of the previously discussed data sets
depending on the type of disruption. Once a domain is no
longer needed, it may expire: domains that are set to expire
are often monitored for drop-catching [39], i.e., registering
domains as rapidly after expiry as possible. Malicious actors
also reuse previously expired domains to capitalize on the
reputation of those domains [57], [97]. Alternatively, a service
may be interrupted or a domain may be made unavailable
for legal reasons, e.g., in takedown operations. As we study
domains before they would be taken down, we do not consider
this last step in our final feature set.

B. General insights

We want to design features that exhibit contrasting prop-
erties of benign and malicious domains and therefore provide
a more accurate classification, while still acting within the
constraints imposed by the Avalanche takedown use case (as
outlined in Section III-B). This requires insights into the generic
differences in behavior of legitimate and malicious actors with
respect to their domains. We choose our features to capture the
following three characteristics:

i1. Likelihood of collisions: Given that all domains
are algorithmically generated, our target is to find “regular”
(least random) looking domains as they are more likely to be
a collision with a benign domain, which is opposite to other
work that focuses on detecting DGAs solely based on how
random their domain names appear [77], [78], [85], [96].

i2. Investment in the domain: Obtaining and (validly)
maintaining a domain requires an investment from its owner,
both monetary for paying the registration fee and in effort for
setting up DNS and WHOIS records correctly and installing
services attached to the domain. While benign owners value
their domains and are willing to make such an investment,
the opposite is true for malicious actors: they want to set up

a campaign with minimal cost and effort to maximize their
revenue. Certain indicators imply high investment, such as
long-term registration (benign domains tend to be older, while
malicious domains tend to be registered shortly before the start
of the validity period [19], [20], [36], [71]) or valid DNS and
WHOIS records (invalid, obfuscated or repeated values hint at
malicious practices [93]).

i3. Website popularity: Establishing a website that
attracts sufficient traffic and is therefore perceived as popular,
requires significant effort in creating content and building
an audience. Website popularity is therefore an indication of
benignness: malicious actors will not make the effort of setting
up real websites on dormant domains, especially as it is not
required for the correct operation of botnets. Regular users
as well as web crawlers are also unlikely to end up on these
domains. Moreover, if the domain has not yet been generated
by a DGA, its traffic is low or non-existent, so we can assume
that any traffic that the domain draws is legitimate.

C. Summary of feature sets

We aim to capture the broadest view possible of the life
cycle of the domains to classify, and select the features and
the data sources that provide their values accordingly, further
inspired by our general insights. While potentially useful,
certain features are not applicable to our use case or would have
unwanted consequences for required data collection or wider
applicability of our approach. We elaborate on the reasons for
not retaining these features in Section IV-D.

Table IV gives a summary of the 36 features that we
compute. We distinguish between six feature sets: for each
feature set, we describe what it represents, which features it
includes, how it is obtained, and how complete its coverage
is. We indicate for each feature 1) whether it is binary or
continuous, 2) whether our intuition is that higher or true
values indicate a benign or malicious domain,1 3) which life
cycle step from Section IV-A it covers, and 4) which insight
from Section IV-B is illustrated.

For each domain, we know the start and end dates of their
validity period, i.e. when their respective DGA would generate
the domain. We also retrieve the date when a malware family
started being active from DGArchive [71], where available.

a) Two lexical features capture the linguistic structure
of the domain name. We compute the domain name length, as
shorter domains tend to be more popular and expensive, and
the ratio of digits in the domain name, as domains with more
digits tend to be less readable. Both features discard the TLD.

b) Seven popularity-based features capture whether a
domain hosts a website that appears to attract regular visitors.
Three features use data obtained through the Wayback Machine
API2: the number of unique pages captured on the domain, the
time between the first capture of any page and the takedown,
and the time between this first capture and the start of the AGD
validity period.

1Note that this is only an intuition—our classifier can detect edge cases that
provide contrary evidence.

2https://archive.org/help/wayback_api.php
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TABLE IV. OVERVIEW OF THE FEATURES USED IN OUR CLASSIFIER. WE INDICATE WHICH OUTCOME (BENIGN OR MALICIOUS) A HIGHER OR TRUE VALUE
DENOTES AND HOW THE FEATURE COVERS THE DOMAIN LIFE CYCLE AND INSIGHTS.

Set # Description Type Outcome Life cycle step
(Section IV-A)

Insight
(Section IV-B) Source

Lexical 1 Domain name length Continuous Malicious L1. Domain choice i1. Likelihood [16]
2 Digit ratio Continuous Malicious L1. Domain choice i1. Likelihood [19]

Popularity

3 Number of pages found in Wayback Machine Continuous Benign L5. Activity i3. Popularity New
4 Time between first entry in Wayback Machine and takedown Continuous Benign L5. Activity i3. Popularity New
5 Time between first entry in Wayback Machine and start of malware validity period Continuous Benign L5. Activity i3. Popularity New
6-9 Presence in Alexa, Majestic, Quantcast, and Umbrella top websites rankings Binary Benign L5. Activity i3. Popularity [58]

CT 10 TLS certificate found in Certificate Transparency logs Binary Benign L4. Infrastructure i2. Investment New

WHOIS

11 Time between WHOIS creation date and start of AGD validity period Continuous Benign L2. Registration i2. Investment New
12 Time between WHOIS creation date and start of malware family activity Continuous Benign L2. Registration i2. Investment New
13 Time between WHOIS creation data and takedown date Continuous Benign L2. Registration i2. Investment [36]
14 Time between WHOIS creation date and WHOIS expiration date Continuous Benign L2. Registration i2. Investment [47]
15 Renewal of domain seen in WHOIS data Binary Benign L2. Registration i2. Investment [38]
16 Domain uses privacy/proxy service Binary Malicious L2. Registration i2. Investment New
17 WHOIS registrant email is a temporary/throwaway email service Binary Malicious L2. Registration i2. Investment New
18 WHOIS registrant phone number is valid Binary Benign L2. Registration i2. Investment New

Passive DNS

19 Number of passive DNS queries Continuous Benign L5. Activity i3. Popularity [58]
20 Time between first and last seen passive DNS query Continuous Benign L5. Activity i3. Popularity [58]
21 Time between first seen passive DNS query and takedown Continuous Benign L5. Activity i3. Popularity New
22 Time between first seen passive DNS query and start of AGD validity period Continuous Benign L5. Activity i3. Popularity New
23-29 Presence of passive DNS query for resource record: A, AAAA, CNAME, MX, NS, SOA, TXT Binary Benign L5. Activity i3. Popularity New

Active DNS
30 Time between first seen DNS record and takedown Continuous Benign L3. DNS config. i2. Investment New
31 Time between first seen DNS record and start of AGD validity period Continuous Benign L3. DNS config. i2. Investment New
32-36 Number of days DNS record was seen for resource records A, AAAA, MX, NS, SOA Continuous Benign L3. DNS config. i2. Investment New

Four features capture whether the domain is present at
any point in time in the Alexa3, Majestic4, Quantcast5, and
Umbrella6 top websites rankings. These rankings serve as an
approximation of popularity from different vantage points: web
browser visits, incoming links, tracking script/ISP data, and
DNS traffic, respectively. Although they can contain malicious
domains and are susceptible to malicious manipulation [56], we
assume that presence in these lists still serves as a reasonable
indication of benign intent. We retrieve historical data from an
archive of historical top websites rankings [76].

c) One Certificate Transparency feature captures
whether Certificate Transparency logs contain a certificate that
was valid on the date of the takedown, i.e. whether the owner
had obtained a TLS certificate for the domain. The feature in
this set uses data obtained through an API from Entrust7, which
tracks Google Certificate Transparency logs [63]. Certificate
Transparency logs have the most complete coverage of issued
TLS certificates [92]. Recent browser policies that enforce
logging further increase uptake [75].

d) Eight WHOIS features capture the registration cycle
of a domain as well as registrant details. We base four features
on the time between the WHOIS creation date and the start of
the AGD validity period, the start of malware family activity,
the takedown date, and the WHOIS expiration date respectively.
For an additional feature, we compute whether the domain has
been renewed at least once by the latest registrant, i.e. we find
at least two records with different expiration dates.

We capture the validity of registrant data in three features.
We determine if the domain uses a privacy/proxy service
(replacing real registrant data with generic data) by checking
for keywords (e.g. “privacy”, “proxy”) in the WHOIS registrant
records. While legitimate users may prefer to use such a service

3https://www.alexa.com/topsites
4https://majestic.com/reports/majestic-million
5https://www.quantcast.com/top-sites/
6https://umbrella-static.s3-us-west-1.amazonaws.com/index.html
7https://www.entrust.com/ct-search/

to hide personal information [51], malicious domains also tend
to use these services [24]. We also determine whether the
WHOIS registrant email is a disposable address: as the email
account can no longer be accessed after some time, this indicates
that the owner does not consider the domain to be important. We
test non-default/non-proxy email addresses against a manually
curated list of disposable domains8. Finally, we check whether
the WHOIS registrant phone number is valid: malicious actors
would not want any trace leading to their real identity and
therefore resort to fake (e.g., automatically generated) contact
information. We test the validity of phone numbers using an
API from numverify9.

WHOIS-based features are based on historical data gener-
ously provided to us by DomainTools10. To observe long-term
and renewed registrations, we obtain historical records spanning
their full data collection period. The data reflects a state before
the introduction of the European General Data Protection
Regulation, so it contains more domains with publicly available
contact details. We elaborate on the continued availability of
such details in Section VI-B.

e) Eleven passive DNS features capture both the period
and frequency of DNS resolutions for a particular domain,
providing a viewpoint on both domain age and popularity. We
retrieve the number of passive DNS queries: when more queries
(for any resource record) have been made for the domain, the
domain appears to be more popular. We base three features
on the time between the first seen passive DNS query and the
last seen query, the takedown date, and the start of the AGD
validity period respectively. Finally, we record the presence of
at least one passive DNS query for resource records A, AAAA,
CNAME, MX, NS, SOA, and TXT: more (requested) record types
with a value indicate proper domain setup and usage.

8https://github.com/ivolo/disposable-email-domains
9https://numverify.com/
10https://whois.domaintools.com/
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The features in this set use passive DNS data generously
provided to us by Farsight Security11. We retrieve aggregated
data spanning the full data collection period (i.e., since
2010 [32]). For each resource record value seen, the aggregated
data contains the number of queries and the timestamps when
it was first and last seen.

f) Seven active DNS features capture the availability of
DNS records for a particular domain. We base two features on
the time between the first seen DNS record and the takedown
date, and the start of the AGD validity period respectively. We
also record the number of days any DNS record value was
seen for resource records A, AAAA, MX, NS, and SOA.

The features in this set use active DNS data generously
provided to us by the OpenINTEL12 project [91]. We cap the
data period at 333 days (i.e. starting from January 1 of the
relevant year). While OpenINTEL collects data actively, it
complies with our requirement that we do not contact domains
ourselves. Moreover, data collection is not targeted at specific
domains, yet sufficiently comprehensive to also capture most
of the registered Avalanche domains as it covers full zone files.

D. Omitted features

Given our use case of proactive takedowns, we cannot
consider features that try to detect ongoing malicious operations
directly, as the maliciously registered domain does not yet
necessarily exhibit such behavior at the time of the takedown:
malicious actors can leave these domains dormant right until a
DGA generates the domain and infected hosts start contacting
the domain. This means for example that we do not verify
whether a C&C server is running on the domain and do not
check malware blacklists.

Approaches for detecting AGDs, especially per single
domain, are often based on lexical features that seek to discover
patterns unlikely to occur in “human-generated” domain
names [77], [78]. However, all of our candidate domains have
been generated by a DGA, which leads us to use only a limited
set of lexical features to find the domains that are more likely
to be potential collisions (short and few digits).

Detecting patterns from DNS logs [20] that indicate fast
flux services [41], often used by command and control servers,
is not applicable as the malicious domains would only start
operating in fast flux during the validity period of the AGD.

Following our observation from Section III-B that bulk
patterns do not apply for malware domains, we do not use
approaches and features that rely on clustering domains [16]
and batches of similar registrations [38], such as timing patterns
or shared registrars.

The type of network could be an appropriate feature to
take into account while the domain is active [20], with more
trust in government or business networks hosting benign sites
and domains in residential networks potentially being hosted
by an infected machine. However, as a maliciously registered
domain does not yet have to be actively malicious before the
DGA generates the domain, its IP address can easily be set to

11https://www.farsightsecurity.com/solutions/dnsdb/
12https://www.openintel.nl/

a benign network (without the need for that network to actually
host the domain) [62], thereby misleading our classifier.

Data collected through a crawl of candidate domains such
as properties of the site content could indicate legitimately used
domains [47]. However, following our stealth constraint from
Section III-B and due to the need for historical data, we cannot
do an active crawl of domains ourselves. We also cannot rely
on existing third-party repositories of website crawls (e.g. the
Internet Archive [2], Common Crawl [25] or Censys [30]): they
do not provide historical data, do not crawl sufficiently regularly
to capture recent data, do not have a consistent set of crawled
domains and/or do not have sufficient domain coverage. Their
data would therefore not be comprehensively representative of
domain web content at the time of the takedown.

We do not include the malware family as a feature: as
Avalanche provided domain registration as a service [3], we do
not expect differences in behavior between the 21 supported
malware families. Moreover, such a feature would go against
our goal of capturing general differences in behavior between
benign and malicious domains. We design the other features
to represent distributions, for which the model can interpret
the differences, whereas the malware family feature can only
serve to refine the model for specific families. Finally, benign
domains accidentally ‘belong’ to a certain malware family, so
the feature is irrelevant in terms of registration behavior. We
already capture relevant characteristics of the DGA in derived
features such as the domain length that capture randomness in
generated domains and therefore the likelihood of collisions.

We want to evaluate our approach as if it were deployed at
the time of the takedown, so we do not use features for which we
lack available historical data, as we would only be able to obtain
the current state, which for malicious domains is post-takedown.
They include the features that require active probing or data
collection such as the website properties discussed earlier or
the existence of search engine results for the domain, which
could serve as an additional indicator of popularity. However,
if they meet the applicable requirements and constraints, we
can add such features in an actual takedown as we can then
collect accurate data.

V. ANALYSIS OF MACHINE LEARNING-BASED
CLASSIFICATION

To evaluate to what extent machine-learning based ap-
proaches can reduce the effort of law enforcement to execute
a takedown, we develop and evaluate a classifier that decides
whether future DGA domains are likely to be benign or
malicious. The goals of our analysis are threefold: we want to
evaluate the raw performance of the classifier, but also gain
insights into its decision-making process to finally thoroughly
assess the benefits and limitations of automated approaches
for domain classification. Moreover, given that not all data
sources are equally easy to collect, we assess their impact on
the correctness of our classification.

A. Experimental protocol

We first design an experimental protocol to determine the
most appropriate machine learning-based solution and evaluate
it in a way that is accurate and representative of real-world
takedowns. Given the investigative setting and our intention to
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Fig. 2. Number of domains where certain data sets are available, after
removing sinkholed domains, for the 2017 and 2018 iterations. We separately
mark the remainder of domains where only the joint data set (comprising
lexical, popularity-based, and Certificate Transparency features) is available.

thoroughly analyze the resulting model, we restrict our selection
of machine learning algorithms to those that are sufficiently
interpretable. Moreover, as we systematically develop high-
level features that capture the full domain life cycle, we do not
require automated feature engineering. Therefore, we would not
benefit from a deep learning approach and only face drawbacks
from its increased complexity, so we do not consider it further.

Before classifying benign and malicious domains, we
discard domains that were already sinkholed by security
organizations to study botnet behavior. These organizations
can sinkhole the domains either because they detect that botnet
hosts are already contacting the domain (whose validity period
therefore starts before and extends beyond the takedown date),
or because they generate the domains output by the DGA
upfront. The sinkholed domains can be considered neither a
benign collision, as they do not host real content and may even
mimic the malware C&C server, nor a registration made with
malicious intent, as they will not communicate with actual
malware. This means that they would confuse our model, and
should be removed upfront by preprocessing the data. We detect
sinkholed domains by matching DNS and WHOIS records with
those of the sinkhole providers collected in SinkDB [10], by
Alowaisheq et al. [12], and by Stampar et al. [87], [88]. Table II
summarizes the distribution of domains across classes.

We execute our protocol with four machine learning
algorithms: decision tree, gradient boosted tree, random forest,
and support vector machine. We split data sets in a training and
test set according to the considered iterations. When training
and testing on the same iteration, we split the ground truth
according to a 10-fold cross validation procedure. Otherwise,
we construct the training and test sets from the separate iteration
ground truths as applicable. We perform all model training and
analysis using scikit-learn [67]. We elaborate on the
different steps of this protocol in Appendix A.

We run our experimental protocol for all domains of the
2017, 2018 and 2019 takedown iterations. We only evaluate
performance with the manually labeled ground truth that we
obtained from law enforcement for the 2017 and 2018 iterations
(Section III-C). In 2019, our model was used in the real-world
classification effort, so a performance evaluation would be
biased since we contributed to the ground truth.

As we want to measure the performance of our approach
as if it were deployed at the time of the takedown operation,
we use historical data that reflects the state of the domains as
of each takedown, i.e. November 30 of each year. Data for the
malicious domains collected after the takedown would refer
to sinkholing and domain transfer infrastructure, making it a
signal for maliciousness that would heavily bias our classifier.

As shown in Figure 2, we cannot obtain all data sets for
all domains: this is because the third-party source could not
collect relevant data (e.g. no WHOIS record is available or the
domain was never seen at passive DNS sensors). In order to still
generate a prediction for all domains, we develop an ensemble
model. We train a model for each combination of available
feature sets, where a domain is included in the training set if
at least those data sets are available. To classify a domain, we
use the output of the model of the domain’s available data sets.

B. Results

Given that we are the first to analyze the specific issue
of preemptively deciding whether DGA domains are actually
malicious or accidentally benign for a real-world takedown
(which brings about certain constraints), we are not able to
compare our performance results with previous work. Instead,
we go beyond reporting basic metrics and critically examine
how its performance translates into a real-world reduction
in effort, whether our solution correctly captures differences
between benign and malicious domains, and how much it
depends on the availability of different data sets.

a) Model performance: Appendix B lists the relative
performance of the four machine learning algorithms that we
evaluate: we conclude that a gradient boosted tree classifier
yields the best performance while still being sufficiently
interpretable. We therefore analyze only its results.

We first train a base ensemble model, varying the training
and test sets over the 2017 and 2018 iterations. From the
performance metrics in Table V, we can see that concept
drift [95] occurs: performance drops when deploying our model
across iterations instead of within. This suggests that over time,
patterns that distinguish benign and malicious actors emerge
or change, and these are therefore not captured by a model
trained on only a single iteration.

We therefore develop an extended ensemble model, where
we combine ground truth from a previous iteration with manual,
a priori classifications of a subset of domains in the target
iteration. This enables us to improve model performance by
capturing the novel patterns in the new iteration, while still
reducing manual effort overall.

We evaluate this extended model trained on all of the 2017
and part of the 2018 ground truth and tested on the remaining
2018 domains. Based on Figure 3, we empirically set the
proportion of the 2018 ground truth that is (randomly) selected
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TABLE V. PERFORMANCE METRICS FOR THE BASE ENSEMBLE MODEL, VARYING THE TRAINING AND TEST SET OVER THE 2017 AND 2018 ITERATIONS.

Training
Test Accuracy F1 score Precision Recall

2017 2018 2017 2018 2017 2018 2017 2018

2017 93.4% 84.3% 92.6% 73.4% 92.6% 70.8% 92.7% 76.1%
2018 76.1% 96.3% 70.9% 93.5% 78.6% 92.7% 64.6% 94.3%

TABLE VI. PERFORMANCE METRICS FOR MODELS TRAINED ON THE 2017 AND (FOR THE EXTENDED MODEL) 15% OF THE 2018 ITERATION.

Ensemble model Accuracy F1 score Precision Recall FNR FPR Effort reduction

Base 84.3% 73.4% 70.8% 76.1% 23.9% 12.4% 100.0%
Extended a priori 86.4% 78.6% 70.5% 88.6% 2.3% 2.0% 85.0%

Base a posteriori 97.3% 95.3% 94.2% 96.5% 3.5% 2.4% 70.3%
Extended a priori + a posteriori 97.6% 95.8% 94.3% 97.4% 2.6% 2.3% 66.2%

0 10 20 30 40
74
76
78
80
82
84
86
88
90

%

Accuracy F1 score

0 10 20 30 40
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

%

FNR FPR

0.0 0.2 0.4 0.6 0.8 1.0
% of 2018 domains added to training set

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Performance metrics (mean and standard deviation) for the extended
a priori ensemble model, trained on the 2017 and a varying part of the 2018
ground truth.
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Fig. 4. FNR and FPR as a function of the fraction of domains with a score
below a certain value. By choosing the maximum error rate, we determine the
fraction of domains that can be automatically classified.

to be manually classified and added to the training set at 15%, as
it represents the best trade-off between improved performance
and limited additional effort. We repeat this random selection
ten times and report average results. Table VI shows that this
extended a priori ensemble model improves on the base model.

However, some misclassifications still occur in this extended
a priori model. The gradient boosted tree model outputs a score
that reflects its confidence in its prediction. We can leverage
these scores to develop a directed semi-automated approach:
uncertain domains are manually investigated in more detail a
posteriori. We examine how effective this approach is in further
improving performance while still reducing investigative effort.

We explain this approach using the extended model for
domains where all data sets are available, which allows us to
simplify and visually support our explanation, but then apply
it to the extended ensemble model. Figure 4 shows the false
negative and positive rates as a function of the fraction of
domains with a score below a certain value. By choosing a
target maximum FNR and FPR, we can determine the lower
and upper bounds on the maliciousness score; these bounds are
determined based on the training set, so they do not necessarily
reflect the exact actual error rates on the test set. Domains
with scores within these bounds have to be verified manually,
while domains with a lower and higher score are automatically
classified as benign and malicious, respectively.

For the extended model on domains with all data sets
available as represented in Figure 4, when setting a 2% error
tolerance, 55.5% of domains have a maliciousness score below
the lower bound set by 2% FPR (i.e. are benign), while (100%−
72.9%) = 27.1% of domains exceed the upper bound set by
2% FNR (i.e. are malicious). 55.5% + 27.1% = 82.6% of
domains therefore no longer need to be manually inspected.
Only 72.9%− 55.5% = 17.4% of domains still require further
manual investigation.

When we apply this a posteriori approach to the extended
ensemble model evaluated on all domains from the 2017 and
part of the 2018 iteration (by choosing appropriate bounds
for each component model), we obtain an accuracy of 97.6%;
overall, the performance metrics in Table VI indicate a very
high performance. The effective FNR and FPR are 2.6% and
2.3%, comparable to the target error rate of 2%.

Overall, this approach reduces manual effort by 66.2%,
accounting for the 15% of domains manually classified a
priori. When the error tolerance is 1% and 0.5%, the fraction
of automatically classified domains is 52.5% and 35.7%
respectively. The score thresholds become very strict when
very low error tolerances must be maintained, reducing the
fraction of domains that can be automatically classified. The
comparable effort reduction for an ensemble model trained on
the 2017 and 2018 and tested on the 2019 iteration and a 2%
error tolerance amounts to 76.9%, again achieving a significant
reduction in manual effort.

b) Feature analysis: By using gradient boosted trees, we
can measure how important individual features are to the overall
performance. As we want to make an accurate assessment for
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TABLE VII. IMPORTANCE SCORES OF THE TOP 10 FEATURES IN THE
FULL FEATURE SET FOR THE EXTENDED A PRIORI ENSEMBLE MODEL.

# Set Feature Score

14 WHOIS Time between WHOIS creation and expiration date 0.230
13 WHOIS Time between WHOIS creation and takedown date 0.219
21 Passive DNS Time between first passive DNS query and takedown 0.057
20 Passive DNS Time between first and last seen passive DNS query 0.049
11 WHOIS Time between WHOIS creation date and AGD validity 0.041
15 WHOIS Renewal of domain seen in WHOIS data (Unknown) 0.040
34 Active DNS Days DNS record was seen for resource record MX 0.040
15 WHOIS Renewal of domain seen in WHOIS data (False) 0.037
31 Active DNS Time between first seen DNS record and AGD validity 0.029

3 Popularity Number of pages found in Wayback Machine 0.028
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Fig. 5. Cumulative distribution function of the values of benign, malicious,
false positive, and false negative domains for the time between WHOIS creation
and expiration date.

the full feature set, we calculate importance scores for the
extended model on domains where all data sets are available.

We show the ten most important features in Table VII and
find that they primarily capture the age and activity period of
a domain. When malware creators want to evade our classifier,
they would primarily want to influence these features. Figure 5
shows how the distributions of values for the most impactful
feature (time between WHOIS creation and expiration date) are
clearly distinct for benign and malicious domains. Misclassified
benign domains (false positives) actually show a ‘malicious’
character, i.e. they are young; the malicious domains in our test
set (from 2018) are never old, so other (but less expressive)
features impact whether they are classified correctly.

Consistent with our second insight from Section IV-B, time-
based features are costly and difficult to evade: attackers have
to register a domain name for a longer period of time, which
translates into a higher monetary cost, and register it earlier,
which is hard to achieve retroactively. In an extreme case, the
domain name would have to be registered before the malware
family becomes active.

c) Data set comparison: We assess the impact of the
availability of each data source on our performance starting
from the extended a priori ensemble model, after which we
retrain models with one feature set omitted each time. We join
lexical, popularity-based, and Certificate Transparency features
into a joint feature set, as they are the easiest to acquire and
are always available, which leaves us with four feature sets:
joint, WHOIS, passive DNS, and active DNS.

Figure 6 illustrates the performance of the models where
one data set is discarded. We observe that missing WHOIS data
has the most severe impact, significantly harming performance.
Discarding the joint data set may actually improve performance,
as its non-time-based features may lack sufficiently distinctive

TABLE VIII. AVERAGE COVARIANCE BETWEEN FEATURES OF ONE SET,
FOR THE DOMAINS FROM THE 2017 AND 2018 ITERATIONS.

Joint Passive
DNS

WHOIS Active
DNS

Joint
Passive DNS

WHOIS
Active DNS

0.22 0.048 0.079 0.097
0.048 0.13 0.05 0.11
0.079 0.05 0.26 0.11
0.097 0.11 0.11 0.43 0.06

0.09
0.12
0.15
0.18

patterns, but it remains necessary for domains that lack any other
data set (but these are likely candidates for manual verification).

Missing passive or active DNS data has a less pronounced
effect. We find some degree of redundancy between passive
and active DNS data, as their time-based features in partic-
ular represent similar concepts and are therefore intuitively
dependent. We confirm this effect with the covariance between
feature sets shown in Table VIII: passive and active DNS data
are relatively highly correlated with each other.

This effect means that passive and active DNS (as well as
WHOIS) data all capture important and hard-to-evade time-
based patterns, but that one missing data set can be substituted
by the others without a significant loss in performance. This
becomes important when considering that data sets such as
WHOIS that lead to better performance may come with a
significant cost to acquire. In Section VI-B, we elaborate on
the implications of our findings on future takedown operations.

d) Conclusion: We find that an approach combining
primarily automated classification and targeted manual investi-
gation across multiple iterations achieves the best compromise
of high accuracy and low manual effort, with less than 3%
mistakes. This reduces investigative effort by up to 76.9%,
depending on the tolerated error rate, freeing up time to focus
on those domains that are the hardest to classify.

Our analysis of features and data sets shows that time-
based features are the most important ones, which at the same
time increases the cost and difficulty of evading our classifier.
However, our performance depends on data sources with a high
cost of acquisition, in particular WHOIS data. We continue our
discussion of these aspects in the next section.

VI. DISCUSSION

In this section, we elaborate on the factors that may
influence the applicability of our approach to future takedowns.
We first explain how a high cost and effort for attackers
complicates the evasion of our classifier and may therefore
discourage malicious actors. We then highlight how recent
developments in the availability of data sets may have a negative
impact on the performance of our approach.

A. Evasion

Previous work [38], [60] pointed out that attackers may
develop bypasses to mislead a classifier like ours and therefore
evade detection and subsequent takedown of their malicious
domains, especially as we cannot rely on detecting the malicious
activity that would be required for the correct functioning of the
botnet. We discuss potential evasion strategies and how difficult
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Fig. 6. Performance metrics (mean and standard deviation, in percent) of extended a priori ensemble models where one data set is omitted.

they are for malicious actors to deploy. This proactive analysis
allows for anticipating changes in attacker behavior, developing
additional features that are even harder to circumvent and
implementing infrastructural measures that complicate evasion.

Features that leverage the properties of the DGA itself, such
as lexical features, can be evaded by redesigning DGAs. While
it is feasible to carefully engineer DGAs to be more resilient
against detection [85], such a DGA should generate domains
that appear very similar to benign domains (e.g., only short
domains). This yields a higher risk of collisions and fewer
domains available for registration, endangering uninterrupted
control of the botnet.

Popularity-based features require setting up a website for
discovery by web crawlers, and generating traffic, or at least
the appearance thereof. Website popularity rankings can easily
be manipulated at scale [56], allowing attackers to insert their
domains and appear as benign. If malicious actors can have
a presence within the networks where passive DNS data is
collected, they could also insert DNS traffic that makes the
domain appear regularly visited. Given that the attackers control
their infected machines, the botnet itself could be leveraged
for this purpose. However, as the traffic of infected machines
can be monitored, these queries can be detected, revealing
those domains that the malicious actors have registered upfront.
Finally, the presence of certain DNS resource records can be
forged by inserting fake records, but as some records require
values of a specific format, their validity could be verified, as
maintaining valid records requires more effort.

Given recent efforts to increase the ubiquity of TLS
encryption by making free and automated TLS certificates
available [11], malicious actors can relatively easily obtain
them for malicious domains and therefore appear in Certificate
Transparency logs. However, such a process still requires
additional effort that is not strictly necessary for the correct
operation of the C&C server. While the choice to obtain a paid
certificate indicates a willingness to invest in the domain (and
therefore suggests benignness), the use of a free certificate does
not necessarily imply maliciousness.

Features that consider the age of a domain can be thwarted
by registering malicious domains (long) before they become
valid. However, it requires prolonged registrations and the
corresponding payment of registration fees, which runs counter
to minimizing the cost of the malicious campaign. Moreover,
the longer a domain with malicious intent has been registered,
whether active or dormant, the more susceptible it is to being
blacklisted/taken down or to the attackers being identified.

Acquiring and managing domains may incur a significant
(manual) effort. If the process is automated, certain registration
patterns can emerge that make it easier to identify the mali-
ciously registered domains [86], [93]. Malicious actors might
attempt to compromise existing or reuse expired domains to
exploit the (residual) trust in these domains [57] (for example
their age). However, it would require even more effort, as they
would need to find eligible domains, attempt to compromise
them or monitor their expiration status to take them over at
the right time, and finally deploy the malicious operation. As
domains are randomly generated by a DGA and often have a
short validity, the likelihood of success is low.

To circumvent features that use WHOIS registrant records,
malicious actors could insert forged yet realistically-looking
data. However, if these records are automatically generated,
detection becomes feasible and accurate [86], [93]. Manual
effort in creating fake records quickly becomes infeasible given
the need to keep registering domains as they become (in)valid.

In summary, while the publication of features allows for
an attacker to develop techniques to evade them, many of
these would go against the goal of malware operators to set
up these domains with low effort and at low cost. Moreover,
if the attacker behavior would significantly shift, other evasion
countermeasures and detection strategies remain available,
although they might require increased effort and involvement
by relevant stakeholders. Finally, we find time-based features
to be the most important ones: they are particularly costly and
hard to evade.

B. Availability of data sets

Our features come from different data sources that each
present their own issues in terms of acquisition, affecting not
only law enforcement but also adversaries seeking to evade the
model. Moreover, our evaluation of the importance of different
data sources for correctly classifying domains shows that the
data sets that contribute the most to our model’s performance
have a significant cost in terms of money and effort.

WHOIS data in particular provides the highest accuracy, but
obtaining it may be challenging. From a technical standpoint,
WHOIS data is not machine-readable nor has a standard for-
mat [27], so it requires (sometimes manual) parsing. Moreover,
access is rate limited [59].

Public availability of WHOIS data is also affected by privacy
concerns [74] as well as strict limitations on the collection and
dissemination of personal data due to privacy regulations. This
triggered ICANN to adopt the “Temporary Specification for
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gTLD Registration Data”, which allows generic TLD registries
to redact personal data in WHOIS records, while having the
intent to provide vetted partners such as law enforcement
agencies with privileged access [45]. As a result of the European
General Data Protection Regulation, European country-code
TLD registries have also started to withhold personal data [29].
Security researchers have voiced concerns that the unavailability
of such data to them could significantly hamper efforts to
identify and track malicious actors [34], [70].

Passive DNS data collection may also have privacy im-
plications [52], and requires sufficient storage and processing
resources. Active DNS data collection has similar storage and
resource needs, especially to ensure that records are updated
sufficiently frequently. The coverage of both data sets also
depends on cooperation of third parties: passive DNS requires
access to recursive resolvers ideally deployed all over the world,
and active DNS collection often relies on zone files that must
then be shared by registries. Although law enforcement may
gain more extensive access, they may be more limited in terms
of resources, and delays in procedures to obtain data may
hamper swift action. Conversely, commercial providers that
can deploy more extensive resources may not be able to access
more sensitive information. Finally, from a cost perspective,
these commercial providers may charge significant amounts,
especially for historical data.

We see that our approach becomes less effective if certain
data sets would be unavailable, and our discussion shows
that comprehensive coverage of data sets comes at great cost.
However, we can still achieve reasonable performance even
with missing data, and we see that data sets are partially
correlated. The continued availability of these data sets is
therefore important to counter future malicious operations, but
not to such an extent that their absence would be disrupting
the effectiveness of takedowns.

VII. RELATED WORK

a) Classifiers for detecting malicious domains: Numer-
ous works have addressed the problem of designing classifiers
to distinguish benign from malicious web pages and domains.
Ma et al. [60] classified malicious URLs based on lexical
and host-based features, comparing multiple feature sets and
classifiers. Felegyhazi et al. [33] designed a classifier seeded
with known malicious domains that uses DNS and WHOIS
data. Antonakakis et al. [15] proposed Notos, which outputs a
reputation score based on the determination of the reputation
of domain clusters obtained from network properties, DNS
data, and the ground truth on benign and malicious domains.
Bilge et al. [19], [20] proposed Exposure, which uses DNS-
based and domain name features to detect domains contacted by
infected machines within passive DNS traffic. Frosch et al. [36]
proposed Predentifier, which combines passive DNS, WHOIS,
and geolocation data to detect botnet command and control
servers. Hao et al. [38] proposed PREDATOR, a classifier for
malicious domains based on features available at the time of
registration and the identification of batch registrations. Spooren
et al. [86] developed Premadoma, a model to detect malicious
domains at the time of registration, leveraging features based on
infrastructural reputation and registrant similarity, and discussed
the challenges and tactics for deploying the model in an
operational setting. Machlica et al. [61] created a model that

uses two levels of classifiers to improve detecting malicious
domains using lexical and traffic-based features. Kidmose
et al. [48] and Zhauniarovich et al. [102] surveyed approaches
to detecting malicious domains from (enriched) DNS data.

b) Classifiers for detecting algorithmically generated
domains: Earlier work in detecting algorithmically generated
domains (AGDs) identified clusters of likely candidates. Yadav
et al. [99], [100] evaluated several statistical measures for
classifying groups of domains as algorithmically generated
or not based on character distributions within the domain
names and the IP addresses to which they resolve. Yadav and
Reddy [98] applied similar statistical measures on successful
and failed domain resolutions. Antonakakis et al. [16] proposed
Pleiades, which clusters non-existent domains based on charac-
ter distributions within the domain names and on the querying
hosts, using the strategy on DNS traffic from large ISPs to
discover six DGAs that were unknown at that time. Krishnan
et al. [53] detected hosts in a botnet by analyzing patterns
in DNS queries for non-existent AGDs through sequential
hypothesis testing. Mowbray et al. [64] detected hosts that
query domains with an unusual length distribution, deriving 19
DGAs of which nine were previously unknown.

Later work moved towards detecting AGDs per single
domain name. Schiavone et al. [77] proposed Phoenix, which
uses linguistic features to detect potential AGDs, afterwards
using linguistic, IP-based and DNS-based features to cluster
domains and extract properties of the DGAs that generated them.
Abbink and Doerr [9] and Pereira et al. [68] highlighted how
most classifiers focus on detecting the randomness in AGDs
and are therefore not able to correctly classify dictionary-based
DGAs, and proposed new methods for detecting such DGAs.
Multiple deep learning-based approaches have since been
proposed [82]. Spooren et al. [85] found one such deep learning
model by Woodbridge et al. [96] to outperform the human-
engineered features of the model by Schüppen et al. [78].

c) Takedowns of botnet infrastructures: Previous coor-
dinated takedowns of botnet infrastructures have been studied
to evaluate their effectiveness over time in preventing further
abuse. Nadji et al. [65] presented rza, a tool that uses a passive
DNS database to analyze and improve the effectiveness of
botnet takedowns. They evaluated the tool for three malware
families and found mixed long-term impact of takedown
operations. Asghari et al. [17] analyzed the institutional factors
that influenced the cleanup effort of the Conficker worm,
finding that cleanup was slow and that large-scale national
initiatives did not have a visible impact. Shirazi [80] surveyed
and taxonomized 19 botnet takedown initiatives from 2008 to
2014. Plohmann et al. [71] analyzed the structure of DGAs for
43 malware families and variants, and analyzed registrations of
their AGDs, finding domains missed in takedowns, families for
which few domains were sinkholed, and slowness in seizing
AGDs registered by malicious actors. Alowaisheq et al. [12]
studied the life cycle of takedown operations across sinkholes
and registrars based on passive DNS and WHOIS data, finding
several flaws that would allow malicious actors to regain
control of some sinkholed domains. Hutchings et al. [42]
provided insights into the effectiveness of takedown efforts
by interviewing key actors, finding that law enforcement faces
more challenges than commercial enterprises in effectively
carrying out takedown operations.
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VIII. CONCLUSION

Taking down the domains that compromised machines use to
communicate with command and control servers is an effective
measure to disrupt botnets such as Avalanche. However, law
enforcement must take care not to affect any legitimate
domains that happen to collide with algorithmically generated
domains. For Avalanche, prosecutors manually conducted this
classification process, requiring large amounts of time and effort
as well as allowing for human error.

We therefore develop an automated approach for classifying
benign and malicious registered DGA domains, within the
constraints of the real-world takedown context that make previ-
ous approaches inapplicable: we cannot rely on bulk patterns,
detecting ongoing malware activity or actively connecting to
domains. We propose a hybrid model that balances automation
with manual classification to achieve a higher performance
as well as vastly reduce investigator effort. We develop and
evaluate our approach to represent the Avalanche takedown
most truthfully, such that our results and findings reflect the
utility of automated domain classifiers in a real-world takedown
scenario, such as for our contribution to the 2019 iteration.

Given the increasing number and size of cybercrime opera-
tions, automated tools can assist law enforcement investigators
in avoiding any harmful impact of their operation, especially
on uninvolved legitimate parties. These tools will allow them
to stay one step ahead of malicious actors and impair their
activities with the goal of shielding end users from any harm.
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[50] M. Korczyński, S. Tajalizadehkhoob, A. Noroozian, M. Wullink,
C. Hesselman, and M. van Eeten, “Reputation metrics design to improve
intermediary incentives for security of TLDs,” in 2017 IEEE European
Symposium on Security and Privacy, ser. EuroS&P ’17, 2017, pp.
579–594.
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APPENDIX A
MACHINE LEARNING PROTOCOL

Machine learning algorithms are trained on a training set
Tr and evaluated on a test set Te. As explained in Section V,
if we need to train and test on the same iteration, we split
using a k-fold cross validation procedure: the data is split in k
folds, with every fold being used once as the test set, while we
use the k−1 others for training, and finally, we average results
over k experiments. We set k to 10. The advantage of using
cross validation is that we can reduce bias in the composition
of the selected training and test set, even with a relatively small
data set.

Most ML algorithms have different hyperparameters to
tune. Tuning on the test set would lead to highly biased results.
Therefore, we have to split the training set Tr into a set for
training Tr′ and another one for validation V . We again use a
10-fold cross validation procedure. We treat and calculate the
upper and lower bounds for the extended a posteriori model as
hyperparameters.

We evaluate the following performance metrics over the
test set:

accuracy =
tp+ tn

tp+ tn+ fp+ fn
(1)

precision =
tp

tp+ fp
(2)

recall =
tp

tp+ fn
(3)

F1 = 2 ∗ precision ∗ recall
precision+ recall

(4)

where tp, tn, fp, fn stand for the number of true positives,
true negatives, false positives and false negatives, respectively.
Malicious domains are considered positive, benign domains are
negative. Precision represents the fraction of samples identified
as malicious that are actually malicious, while recall represents
the fraction of malicious samples that were correctly identified.
The F1 score summarizes these two metrics, and is a superior

metric compared to accuracy when dealing with unbalanced
datasets, therefore we optimize for it.

Due to incompleteness of our data sets (e.g., WHOIS records
not containing a parseable phone number), certain domains
have missing feature values. We impute them (i.e., substituted
them with plausible values to avoid bias) as follows (the feature
numbers correspond to those defined in Section IV-C):

• No Wayback Machine data: feature values (3-5) are set to
zero as no data means that the Wayback Machine has not
found any page on the domain, suggesting unpopularity.

• No WHOIS timestamps: feature values (11-14) are set to the
mean, as no data implies that data could not be parsed or
retrieved, not that the data does not exist (e.g., all domains
have a registration date). By using the mean, we do not
attach any statistical meaning to the absence of data and do
not skew the distribution.

• Less than two WHOIS records: the renewal feature (15) gets
a third value that indicates that only one historical WHOIS
record was available (preventing a comparison of expiration
dates).

• No WHOIS registrant records: features that rely on an
address, an email address, or a phone number (16-18) get
a third value that indicates that we do not have a value for
the corresponding field.

• No passive or active DNS data: continuous feature values
(19-22, 30-36) are set to zero and binary feature values
(23-29) to false as no data means that DNS records for the
domain were never queried, suggesting unpopularity.

APPENDIX B
EVALUATION OF MACHINE LEARNING ALGORITHMS

Table IX presents the performance metrics of the machine
learning algorithms that we evaluate in Section V-B, for a base
ensemble model trained and tested on the initial 2017 iteration.
The results show that gradient boosted trees consistently
outperform the other ML algorithms.

TABLE IX. PERFORMANCE METRICS OF THE EVALUATED MACHINE
LEARNING ALGORITHMS.

Metric Decision Tree Gradient Boosted Tree Random Forest Support Vector Machine

Accuracy 88.6% 93.4% 92.8% 86.4%
Recall 86.6% 92.7% 92.6% 77.9%
Precision 87.8% 92.6% 91.5% 90.6%
F1 score 87.2% 92.6% 92.0% 83.8%
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