
You Are What You Do: Hunting Stealthy Malware
via Data Provenance Analysis

Qi Wang1, Wajih Ul Hassan1, Ding Li2, Kangkook Jee3, Xiao Yu2

Kexuan Zou1, Junghwan Rhee2, Zhengzhang Chen2, Wei Cheng2, Carl A. Gunter1, Haifeng Chen2
1University of Illinois Urbana-Champaign 2NEC Laboratories America, Inc. 3University of Texas at Dallas

{qiwang11, whassan3, kzou3, cgunter}@illinois.edu kangkook.jee@utdallas.edu
{dingli, xiao, rhee, zchen, weicheng, haifeng}@nec-labs.com

Abstract—To subvert recent advances in perimeter and host
security, the attacker community has developed and employed
various attack vectors to make a malware much stealthier than
before to penetrate the target system and prolong its presence.
Such advanced malware or “stealthy malware” makes use of
various techniques to impersonate or abuse benign applications
and legitimate system tools to minimize its footprints in the target
system. It is thus difficult for traditional detection tools, such as
malware scanners, to detect it, as the malware normally does
not expose its malicious payload in a file and hides its malicious
behaviors among the benign behaviors of the processes.

In this paper, we present PROVDETECTOR, a provenance-
based approach for detecting stealthy malware. Our insight
behind the PROVDETECTOR approach is that although a stealthy
malware attempts to blend into benign processes, its malicious be-
haviors inevitably interact with the underlying operating system
(OS), which will be exposed to and captured by provenance mon-
itoring. Based on this intuition, PROVDETECTOR first employs a
novel selection algorithm to identify possibly malicious parts in
the OS-level provenance data of a process. It then applies a neural
embedding and machine learning pipeline to automatically detect
any behavior that deviates significantly from normal behaviors.
We evaluate our approach on a large provenance dataset from
an enterprise network and demonstrate that it achieves very high
detection performance of stealthy malware (an average F1 score
of 0.974). Further, we conduct thorough interpretability studies to
understand the internals of the learned machine learning models.

I. INTRODUCTION

The long-lasting arms race on security warfare has entered
a new stage. Malware detection has greatly advanced beyond
traditional defenses [95], [92] due to innovations such as
machine learning based detection [108], [65], [54], [53] and
threat intelligence computing [101]. However, the attacker
community has also sought for sophisticated attack vectors to
keep up with the advances. Adversaries are now increasingly
focusing on new techniques to evade detection and prolong
their presence on the target system.

A new kind of technique, i.e., stealthy malware, hides the
malware’s (or an attacker’s) identity by impersonating well-
trusted benign processes. Besides simple methods such as

renaming processes and program file names, more advanced
stealthy techniques are being actively developed and employed.
Unlike the traditional malware family that persists on the disk
for its payload, stealthy malware hides its malicious logic in
the memory space of well-trusted processes, or stores it into
less attended locations such as Windows registry or service
configurations. Recent reports [90] have estimated that stealthy
malware constituting 35% of all attacks, grew by 364% in the
first half of 2019, and these attacks are ten times more likely
to succeed compared to traditional attacks [6], [4].

Despite the importance and urgency, we are yet to see any
definitive solution that detects stealthy malware which employs
advanced impersonation techniques. One reason is that stealthy
malware minimizes the usage of regular file systems and,
instead, only uses locations of network buffer, registry, and
service configurations to evade traditional file-based malware
scanners. To make things worse, the attacker has multiple
options to craft new attacks as needed using different im-
personation techniques. First, the attack can take advantage
of the well-trusted and powerful system utilities. The latest
OSes are shipped with well-trusted administrative tools to ease
the system operations; but these tools are commonly abused
targets. For instance, PowerShell and Windows Management
Instrumental Command-line (WMIC) have long histories of
being abused by attackers [52]. Second, an attack can inject
malicious logic into benign processes via legitimate OS APIs
(e.g., CreateRemoteThread() of Win32 API) or use shared
system resources. Finally, the attack can exploit vulnerabilities
of a benign program to gain its control. Since attackers have so
many options, the detection approaches that are based on static
or behavioral signatures cannot keep up with the evolution of
stealthy malware.

Based on the characteristics of stealthy malware, we sug-
gest that an effective defense needs to meet the following three
principles. First, the defense technique should not be based on
static file-level indicators since they are not distinguishable
for stealthy malware. Second, the technique should be able to
detect abnormal behavior of well-trusted programs as they are
susceptible to attackers with stealthy attack vectors. Third, the
technique should be light-weight so as to capture each target
program’s behavior at a detailed level from each host without
deteriorating usability.

Kernel-level (i.e., OS-level) provenance analysis [63], [30],
[56], [73], [55] is a practical solution that is widely adopted
in real-world enterprises to pervasively monitor and protect
their systems. Even when a malware could hijack a benign

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24167
www.ndss-symposium.org

process with its malicious logic, it still leaves traces in the
provenance data. For example, when a compromised benign
process accesses a sensitive file, the kernel-level provenance
will record the file access activity. OS kernel supports data
collection for provenance analysis incurring only a reasonable
amount of overhead when it is compared to heavy-weight
dynamic analyses such as virtual machine (VM) assisted-
instrumentation or sandbox execution [66], [62].

In this paper, we propose PROVDETECTOR, a security
system that aims to detect stealthy impersonation malware.
PROVDETECTOR relies on kernel-level provenance monitoring
to capture the dynamic behaviors of each target process.
PROVDETECTOR then embeds provenance data to build mod-
els for anomaly detection, which detect a program’s runtime
behaviors that deviate from previously observed benign execu-
tion history. Thus it can detect previously unseen attacks. To
hunt for stealthy malware, PROVDETECTOR employs a neural
embedding model [69] to project the different components
in the provenance graph of a process into a n-dimensional
numerical vectors space, where similar components are geo-
graphically closer. Then a density-based novelty detection [11]
method is deployed to detect the abnormal causal paths in
the provenance graph. Both the embedding model and the
novelty detection model are trained with only benign data.
However, while the design insight of PROVDETECTOR to
capture and build each program’s behavioral model using
provenance data seems plausible, the following two challenges
must be addressed to realize PROVDETECTOR.

C1: Detection of marginal deviation. Impersonation-based
stealthy malware tends to incur only marginal deviation for its
malicious behavior, so it can blend into a benign program’s
normal behavior. For instance, some stealthy malware only
creates another thread to plant its malicious logic into the
victim process. While the victim process still carries out its
original tasks, the injected malicious logic also runs alongside
it. Therefore, PROVDETECTOR needs to accurately identify
and isolate the marginal outlier events that deviate significantly
from the program’s benign behaviors. Conventional model
learning is likely to disregard such a small portion of behavior
as negligible background noise, resulting in misclassification
of malicious behaviors.

To address the first challenge, PROVDETECTOR breaks
provenance graphs into causal paths and uses the causal paths
as the basic components for detection (§V-C).The insight of
this decision is that the actions of stealthy malware have
logical connections and causal dependencies [60], [56]. By
using causal paths as detection components, PROVDETECTOR
can isolate the benign part of the provenance graph from the
malicious part.

C2: Scalable model building. The size of the provenance
graph grows rapidly over time connecting an enormous number
of system objects. For a provenance-based approach which
takes provenance data as its input and builds a model for each
process, it is common to see that even in a small organization
that has over hundreds of hosts, the system events reported
from each end-host incur significant data processing pressure.
While simplistic modeling [39] that is based on a single-hop re-
lation scale to digest large-scale provenance graphs, the single-
hop relation cannot capture and embed contextual causality
into the model. However, a modeling that is based on a multi-

hop relation (e.g., n-gram [33] or sub-graph matching [40])
would incur huge computation and storage pressure, making
it infeasible for any realistic deployment.

To address this second challenge, PROVDETECTOR only
processes the suspicious part of a provenance graph. This is
achieved by a novel path selection algorithm (§V-C1) that only
selects the top K most uncommon causal paths in a provenance
graph. Our insight is that the part of a provenance graph that
is shared by most instances of a program is not likely to be
malicious. Thus, we only need to focus on the part that is
uncommon in other instances. Leveraging this path selection
algorithm, PROVDETECTOR can reduce most of the training
and detection workload.

To confirm the effectiveness of our approach, we conducted
a systematic evaluation of PROVDETECTOR in an enterprise
environment with 306 hosts for three months. We collected
benign provenance data of 23 target programs and used
PROVDETECTOR to build their detection models. We then
evaluated them with 1150 stealthy impersonation attacks and
1150 benign program instances (50 for each target program).
PROVDETECTOR achieved a very high detection performance
with an average F1 score of 0.974. We also conducted
systematic measurements to identify features contributing to
PROVDETECTOR’s detection capability on stealthy malware.
Our evaluation demonstrated that PROVDETECTOR is efficient
enough to be used in a realistic enterprise environment.

To summarize, in this paper, we make the following
contributions:

• We designed and implemented PROVDETECTOR, a
provenance-based system to detect stealthy malware that
employs impersonation techniques.
• To guarantee a high detection accuracy and efficiency, we

proposed a novel path selection algorithm to identify the
potentially malicious part in the provenance graph of a
process.
• We designed a novel neural embedding and machine

learning pipeline that automatically builds a behavioral
profile for each program and identifies anomalous pro-
cesses.
• We performed a systematic evaluation with real malware

to demonstrate the effectiveness of PROVDETECTOR.
We further explained its effectiveness through several
interpretability studies.

II. BACKGROUND AND MOTIVATION

In this section, we introduce the stealthy malware we focus
on in this study and present our insights of using provenance
analysis to detect such malware.

A. Living Off the Land and Stealthy Attacks

“Living off the land” has been a popular trend in cyberat-
tacks over the last few years. It is characterized by the usage of
trusted off-the-shelf applications and preinstalled system tools
to conduct stealthy attacks. Since many of these tools are used
by system administrators for legitimate purposes, it is harder
for the defenders to completely block access to these tools for
attack prevention.

2

Phishing Email

download & open

Word File

invoke

cmd.exe
invoke

execute 0.ps1

download
0.ps1

download
Empire

execute Empire

powershell.exe powershell.exe

Attacker Server
y.y.y.y:443

Empire Backdoor

C&C

Dropbox Server
x.x.x.x

Fig. 1: The kill chain of the DDE script-based attack [5].

Stealthy impersonation malware, which has been increas-
ingly employed in recent cyberattacks [21], [90], heavily uses
the “living off the land” strategy to try to evade detection.
Instead of storing its payload directly onto a disk and executing
it, the malicious code is typically injected into some running
processes (often trusted applications or system tools) and
executed only within the process memory (i.e., RAM). There
are multiple ways to achieve such impersonation purpose.

Memory Code Injection. Memory code injection allows a
malware to inject malicious code into a legitimate process’
memory. These attacks often targets long-running, trusted
system processes (e.g., svchost.exe) or applications with
valuable user information (e.g., Web Browser). Some well-
known code injection techniques include remote thread in-
jection, reflective DLL injection [47], portable executable
injection, and recently discovered process hollowing [13] and
shim-based DLL injection [2].

Script-based Attacks. Attackers can embed scripts in benign
documents like Microsoft Office documents to run their mali-
cious payload. Worse, the Windows system opens access to its
core functionalities via various language interfaces (e.g., Pow-
erShell and .Net) that an attacker could take advantage of. Such
dynamic languages facilitate execution of a malicious logic on-
the-fly, leaving little or no footprints on the filesystem.

Vulnerability Exploits. The third way is to take advantages
of the vulnerabilities of a benign software. For example, CVE-
2019-0541 [23] allows adversaries to execute arbitrary code in
Internet Explorer (IE) through a specially crafted web page.

In Figure 1, we show the kill chain of a real-world DDE1

(Dynamic Data Exchange) script-based attack, which launches
several stages of PowerShell scripts in memory, reported by the
Juniper Threat Labs [5]. The attack starts from an email phish-
ing campaign which includes a seemly benign Microsoft Word
(MS Word) document as an attachment. When a user opens
the document, a message box is shown to enable DDE. Once
the DDE is enabled, the embedded DDEAUTO command invokes
cmd.exe, which executes powershell.exe to download and
execute a PowerShell script (0.ps1) using Dropbox service.
The 0.ps1 script then introduces the next PowerShell module

1The Dynamic Data Exchange (DDE) is a protocol of Microsoft Windows
for sharing data between applications.

called “Empire” [12] to open encrypted backdoor. Note that
both of the downloaded PowerShell scripts are obfuscated and
resided only in memory.

B. Existing Detection Methods for Stealthy Malware

Existing detection methods, such as anti-virus (AV) soft-
ware, use a combination of the following practices [105]
to detect malware. As we will discuss, these methods are
ineffective at detecting stealthy malware.

Memory Scanning. AV software offers memory scanning
as one of their multi-layered solutions. Such techniques scan
memory just-in-time at the loading point or in a scheduled
way. However, this approach essentially is looking for known
payloads in memory. Adversaries can customize or obfuscate
the attack payload to avoid detection.

Lockdown Approaches. Lockdown approaches, such as ap-
plication control or whitelisting, do not help much as stealthy
malware often leverages administrative tools or other appli-
cations that are typically in a company’s whitelist of trusted
applications. The defenders could not completely block access
to these programs to block the attacks.

Email Security and Network Security. As shown in Figure 1,
script-based malware is often spread through phishing emails.
Many security vendors provide solutions for email and net-
work security by inspecting and blocking suspicious attacks
by evaluating URLs, attachment files, and scripts. However,
similar to the limitation of memory scanning, attack payload
is easy to be modified to avoid detection.

In particular, the existing in-host defenses are effective
against known file-based malware families. However, the char-
acteristics of stealthy malware, such as low attack footprint,
absence of files, usage of dual-use tool, make the detection
difficult for existing methods.

C. Detecting Stealthy Malware Using Provenance Analysis

As discussed in §II-B, existing methods are ineffective at
detecting stealthy malware. Since it has multiple characteristics
to evade detection, we propose to detect stealthy malware by
inspecting its behavior. More specifically, our approach tracks
and analyzes the system provenance data related to a program
to hunt down stealthy attacks based on behavior differences.

Figure 2 illustrates an example of a stealthy attack and
the provenance graphs of two process instances of MS Word
(winword.exe) with and without an attack. In Figure 2a, we
show the provenance graph of a benign instance of MS Word.
A benign MS Word process typically reads multiple types of
files (e.g., dat, doc, css) created by other programs or itself
and writes new files (e.g., doc, txt, png). The created files
will also be read by other programs like the Outlook email
client (e.g., sent as an attachment). It can also start other
programs such as Internet Explorer (iexplore.exe) when
a user clicks the URLs in a doc file. In contrast, Figure 2b
shows the provenance graph of a malicious instance of MS
Word, which is used in the DDE script-based attack as shown
in Figure 1. Note that we highlight the key attack paths with
red arrows. Similar with the benign instance, this malicious
MS Word instance also reads and writes different types of

3

winword.exe

*.doc

*.txt

*.png

168.x.x.xoutlook.exe

outlook.exe

*.dat

*.css

iexplore.exe

...

...

...

(a) The provenance graph of a benign instance of MS Word.

winword.exe

*.doc

.tmp.dat

*.css

cmd.exe power-
shell.exe

power-
shell.exe

power-
shell.exe

x.x.x.x

y.y.y.y:443

(b) The provenance graph of a malicious instance of MS Word.

Fig. 2: An illustration of the behavior differences of a benign
process instance and a malicious process instance of MS Word
(winword.exe) using provenance graphs.

files. However, it starts a cmd.exe process, which further
spawns several powershell.exe processes. This behavior is
very different from that of the benign one.

Once these process behaviors are represented as prove-
nance graphs, these attack paths become very distinguishable
from benign ones. Therefore, provenance tracking and analysis
is a key technique to detect stealthy attacks. On the other
hand, as shown in Figure 2b, since stealthy attacks take
advantages of processes already running in the system, their
malicious behaviors could be hidden in benign behaviors of
the processes. Moreover, to make the attacks stealthy, malware
could mimic and blend in existing benign behaviors. Thus,
it is a main challenge to accurately capture the robust and
stable features from provenance graphs that can effectively
differentiate malicious behaviors from benign ones.

III. THREAT MODEL AND ASSUMPTIONS

In this paper, we focus on stealthy malware (or stealthy
attack) that impersonates or abuses legitimate tools or services
already present on the victim’s host or exploits trusted off-
the-shell applications (e.g., applications in the whitelist of an
enterprise’s intrusion detection system) to perform malicious
activities. As discussed in §II-A, such attacks could conduct
extremely damaging activities such as exfiltrating sensitive
data, crippling computers, or allowing remote access. Exploit-
ing legitimate tools or applications enable those attacks to
do their malicious activities while blending in with normal
system behavior and leaving fewer footprints, which makes
their detection very difficult. Such stealthy attacks can be
achieved through:

• Impersonation techniques such as memory code injec-
tion, script-based attacks and vulnerability exploits as
described in §II-A.

TABLE I: The system entities and their relations we consider.

Src
Entity

Dst
Entity Attributes Relations

Process
Process Executable path, Pid, Host name Start, End

File File path, Host name Read, Write, Execute
Socket Src IP, Src port, Dst IP, Dst port Read, Write

• A malicious version of a trusted application accidentally
installed by the user with attack payloads embedded.

Traditional malware that needs to drop a custom built malware
binary to the victim’s machine to execute its payload is out
of our scope. We make the following assumptions about our
system. Similar with existing provenance-based systems [56],
[73], [30], [74], [89], [55], we assume the underlying OS
and the provenance tracker are in our trusted computing base
(TCB). We assume the attacker cannot manipulate or delete the
provenance record, i.e., log integrity is maintained at all time.
Log integrity violation detection is an orthogonal problem and
has existing solutions [82]. We also do not consider the attacks
performed using implicit flows (side channels) that bypass
the system call interface and thus cannot be captured by the
underlying provenance tracker. Finally, since our system tries
to differentiate benign process instances from malicious ones,
we assume that our system has benign provenance data for
each monitored program to profile its normal behaviors.

IV. PROBLEM DEFINITION AND BASIC ASSUMPTIONS

In this section, we formally define several concepts that
will be used in the rest of this paper and then we formulate
the problem statement for PROVDETECTOR.

A. Definitions

System Entity and System Event. Similar with [56], [39],
[43], we consider the following three types of system entities:
processes, files and network connections (i.e., sockets). A
system event e = (src, dst, rel, time) models the interaction
between two system entities, where src is the source entity,
dst is the destination entity, rel is the relation between them
(e.g., a process writes a file), and time is the timestamp when
the event happened. Note that, only the process entity can
be the source entity in a system event. Each system entity is
associated with a set of attributes. For example, a process entity
has attributes like its pid and the executable path. In Table I,
we show the entity attributes and relations we consider.

System Provenance Graph. Given a process p (identified by
its process id and host) in the system, the system provenance
graph (or dependency graph) of p is the graph that contains all
the system entities that have control dependencies (i.e., start or
end) or data dependencies (i.e., read or write) to p. Formally,
the provenance graph of p is defined as G(p) =< V,E >,
where V and E are the sets of vertexes and edges respectively.
Vertexes V are system entities and edges E are system events.

Process Instance. We refer a program (or an application) we
are interested in monitoring as a program. For example, some
trusted applications like MS Word. A process is an execution
of a program. A process instance of a program is the process
created in one execution of the program.

4

B. Problem Statement

Suppose we have a set of n provenance graphs s =
{G1, G2, . . . , Gn} for n benign process instances of a program
A. Given a new process instance p of A, we aim to detect if
its provenance graph G(p) is benign or malicious. Here and
hereafter, we refer to a malicious process instance of A as
the process hijacked or abused by a stealthy malware. The
provenance graph of the malicious process is thus referred to
as a malicious provenance graph.

V. PROVDETECTOR

In this section, we detail the design and implementation of
PROVDETECTOR.

A. Overview

To detect stealthy malware, we make the following design
decisions about PROVDETECTOR:

• PROVDETECTOR is an anomaly detection based tech-
nique that only learns from benign data.

• PROVDETECTOR uses causal paths, i.e., ordered se-
quences of system events with causal dependency, in
provenance graphs as features for detection.

• PROVDETECTOR only learns a subset of causal paths of
a provenance graph.

We design PROVDETECTOR as an anomaly detection based
technique [81] for two reasons: first, it is able to detect
unknown attacks (as well as zero-day attacks) as it models the
normal operation of a system; second, as the normal profiles
are tailored for every application or system, it is very difficult
for an attacker to know what activities he can carry out to evade
detection. PROVDETECTOR uses causal paths as features to
distinguish the malicious part of the provenance data from the
benign part. As shown in §VI, this decision helps PROVDE-
TECTOR improve the detection performance. PROVDETECTOR
selects a subset of causal paths from a provenance graph to
address the dependency explosion problem [70], [74] and to
accelerate the speed of both training and detection.

In Figure 3, we show the workflow of PROVDETECTOR
which comprises four stages: graph building, representation ex-
traction, embedding, and anomaly detection. PROVDETECTOR
is configured to monitor a list of M programs (e.g., Microsoft
Word or Internet Explorer) and detect if they are hijacked
by stealthy malware. To do this, PROVDETECTOR deploys
a monitoring agent on each monitored host, collects system
provenance data as we defined in §IV-A, and stores the data
in a centralized database. PROVDETECTOR’s data collection
follows the same principles as previous work [56], [73]. Then,
PROVDETECTOR periodically scans the database and checks if
any of the newly added processes has been hijacked. For each
given process, PROVDETECTOR first builds its provenance
graph (Stage: Graph Building). Then it selects a subset of paths
from the provenance graph (Stage: Representation Extraction)
and converts the paths into numerical vectors (Stage: Em-
bedding). After that, PROVDETECTOR uses a novelty/outlier
detector to get predictions for the embedding vectors and
reports its final decision (i.e., if the process has been hijacked)
(Stage: Anomaly Detection).

PROVDETECTOR has two modes: the training mode and
the detection mode. The workflow of the detection mode
is described above. The workflow of the training mode is
similar. The only difference is that instead of querying the
novelty/outlier detector, PROVDETECTOR uses the embedding
vectors to train the detector (i.e., building the normal profiles
for the applications). Next, we present each stage in detail.

B. Provenance Graph Building

Given a process instance p (identified by its process id and
host), PROVDETECTOR builds its provenance graph G(p) =<
V,E > as a labeled temporal graph using the data stored in the
database. As defined in §IV-A, the nodes V are system entities
whose labels are their attributes, and E are edges whose labels
are relations and timestamps. Each node in V belongs to
one of the following three types: processes, files or sockets.
We define each edge e in E as e = {src, dst, rel, time}.
The construction of a provenance graph G(p) starts from
v == p. Then we add any edge e and its source node src and
destination node dst to the graph if e.src ∈ V or e.dst ∈ V .

C. Representation Extraction

After the provenance graph is built, the next step is repre-
sentation extraction, the goal of which is to find representations
(or features) from the graph to differentiate benign ones and
malicious ones. One naive approach is to use the provenance
graph itself as the representation. However, as the discussions
in §II-C and §VI-C2, the whole provenance graph is not a good
representation for detecting stealthy malware as the majority
parts of the graph are still benign (the attacks try to blend their
attack activities with the normal activities to evade detection).

To isolate the malicious parts from the whole provenance
graph, we propose to select certain causal paths as the features
for the graph. In Figure 4, we show some causal paths from the
provenance graphs in Figure 2. Formally, we define a causal
path λ in a dependency graph G(p) as an ordered sequence
of system events (or edges) {e1, e2, . . . , en} in G(p), where
∀ei, ei+1 ∈ λ, ei.dst == ei+1.src and ei.time < ei+1.time.
Note that the time constraint is important since an event can
only be depended on events in the future. Due to the time
constraints, PROVDETECTOR will not generate infinite number
of paths in loops. For each selected path, PROVDETECTOR
removes the host-specific or entity-specific features, such as
host name and process identification (PID), from each node
and edge. This process ensures that the extracted representation
is general for the subsequent learning tasks.

1) Rareness-based Path Selection: Directly extracting all
paths from a provenance graph may cause the “dependency
explosion problem” [73]. The number of paths is exponential
to the number of nodes. Since a provenance graph may contain
thousands of nodes [73], it is impossible to traverse all its
paths. To address this problem, we propose a rareness-based
path selection method that only selects the K most uncommon
paths from a provenance graph.

Our intuition is as follows. A process instance of a program
may contain two types of workloads: the universal workload
and the instance-specific workload. The universal workloads
are common across all instances of the same program and are
thus less likely to be malicious. For example, the MS Word

5

Process

Provenance Tracking

Provenance
Database

Frequency
Database

Graph Building Representation
Extraction

Embedding Anomaly
Detection

prediction

prediction

prediction

prediction

ProvDetector

Final
Decision

Configuration

(pid, host)

Fig. 3: The overview of PROVDETECTOR

winword.exe t1.txt 168.x.x.xoutlook.exe

winword.exe cmd.exe powershell.exe

write read_by write

x.x.x.x
writestartstart

winword.exe f1.doc
write

winword.exe f2.doc
write

B1

B2

M1

M2

Fig. 4: Example causal paths from the provenance graphs in
Figure 2. We concretize the * with file names.

program loads a fixed set of DLL files required during its initial
stage. This workload is universal to all its instances. On the
other hand, the instance-specific workloads, which are different
from instance to instance based on the inputs. We argue that
malicious workloads are more likely to be instance-specific.

Therefore, we propose to select causal paths that are
generated by the instance-specific workloads instead of those
paths generated by universal workloads. We determine whether
a path is generated from universal workloads or instance-
specific workloads by its rareness: more rare a path is, more
likely it is from the instance-specific workload.

To discover the top K rarest paths, we use the regularity
score proposed in previous work [56]. The regularity score of
a path λ = {e1, e2, . . . , en} is defined as R(λ) =

∏n
i=1R(ei),

where R(ei) is the regularity score of event ei. In PROVDE-
TECTOR, the regularity score of an event e = {src→ dst} is
defined as:

R(e) = OUT (src)
|H(e)|
|H|

IN(dst) (1)

In Equation 1, H(e) is the set of hosts that event e happens
on while H is the set of all the hosts in the enterprise [73],
[56]. To calculate IN and OUT for a node v, PROVDE-
TECTOR partitions the training data into n time windows
T = {t1, t2, . . . , tn}. We say ti is in-stable if no new in
edges are added to v during ti. Similarly, ti is out-stable if
no new out edges are added to v during ti. Then the IN(v)

and OUT (v) are calculated using Equation 2 and Equation 3
respectively where |T ′

from| is the count of stable windows in
which no edge connects from v, |T ′

to| is the count of stable
windows in which no edge connects to v, and |T | is the total
number of windows.

IN(v) =
|T ′

to|
|T |

(2) OUT (v) =
|T ′

from|
|T |

(3)

By defining the regularity score, we formalize our path
selection problem as finding the top K paths with the lowest
regularity scores from a provenance graph. To efficiently solve
this problem, PROVDETECTOR further converts it to a K
longest path problem [25]. To do this, for a provenance graph
G, we add a pseudo source node vsource to all the nodes whose
in-degree are zero and a pseudo sink node vsink to all the
nodes whose out-degree are zero. This process converts G to
a single source and single sink flow graph G′. We then assign a
distance to each edge e as W (e) = − log2R(e) (the outgoing
edges of vsource and incoming edges of vsink are all uniformly
initialized to 1). Thus, the length of λ could be converted as
L(λ) =

∑n
i=1W (ei) = − log2

∏n
i=1R(ei). Hence, the K

longest paths in G′ are the K paths with lowest regularity
scores in G.

Although solving the K longest path problem on a general
graph is an NP-hard problem, it could be efficiently solved
by reducing it to the K longest paths problem on a Directed
Acyclic Graph (DAG), which can be efficiently solved by the
Epstein’s algorithm [44] with a time complexity linear to the
number of nodes. To reduce our problem to the K longest
paths problem on a DAG, we convert G′ to a DAG. For each
node N in G′, PROVDETECTOR orders all its in-edges and
out-edges in the temporal order. Then N is split into a set of
nodes {n1, n2, n3, . . . , ni}. Any ni has the same attributes as
N but guarantees that all its in-edges are temporally earlier
than any of its out-edges. As PROVDETECTOR requires all
events on a causal graph are temporally ordered, splitting a
node based on the temporal orders of its in-edges and out-
edges removes all loops in the graph. After the conversion,
PROVDETECTOR relies on existing algorithm [44] to find the
K longest paths on the DAG.

6

D. Embedding

After we select the top K rarest paths as features, the next
question is how to feed the paths to anomaly detection models.
There are several challenges: (1) the lengths of causal paths are
different, and (2) the labels of nodes and edges are unstructured
data such as file names or executable paths.

Intuition With the background on word and document em-
beddings presented in §A, an important intuition we have is
to view a causal path as a sentence/document: the nodes and
edges in the path are words that compose the “sentence” which
describes a program behavior. In other words, different nodes
and edges compose paths in a similar way that different words
compose sentences. Based on this intuition, we could treat each
node as a “noun”, treat each edge as a “verb”, and use their
labels to form a sentence that represents the path. For example,
for the path B1 in Figure 4, it can be directly mapped to
the following sentence: Process:winword.exe write File:t1.txt
read by Process:outlook.exe write Socket:168.x.x.x.

Embeddings Learning To learn an embedding vector for
a causal path, we can leverage the document embeddings
model with the path as a sentence. Formally, a causal
path λ can be translated to a sequence of words
{l(ei.src), l(ei), l(ei.dst), . . . , l(en.src), l(en), l(en.dst)},
where l is a function to get the text representation of a node
or an edge. Currently, we represent a process node by its
executable path, a file node by its file path, and a socket node
by its source or destination IP and port; we represent an edge
by its relation.

With the translated sentences, PROVDETECTOR uses the
PV-DM model (explained in Appendix A) of doc2vec [69]
to learn the embedding of paths. This method has several
advantages. First, it is a self-supervised method, which means
we can learn the encoder with purely benign data. Second, it
projects the paths to the numerical vector space so that similar
paths are closer (e.g., B2 and M2 in Figure 4) while different
paths are far away (e.g., B1 and M1 in Figure 4). This allows
us to apply other distance based novelty detection methods
in the next step. Third, it also considers the order of words,
which is also important. For example, a cmd.exe starting a
winword.exe is likely benign while a winword.exe starting
a cmd.exe is often malicious.

E. Anomaly Detection

The final step of PROVDETECTOR is to use a novelty
detection method to detect if the embedding of a path is
abnormal. Our design of the anomaly detector is based on
the nature of the provenance data. In our observation, prove-
nance data has two important features. First, they cannot be
modeled by a single probability distribution model. Modern
computer systems and programs are complex and dynamic,
it is very hard to model the behaviors of programs with
a mathematical distribution model. Second, provenance data
have multiple clusters. Workloads of a program can be very
different. Although provenance data from similar workloads
may look similar, they will be very different if they are from
two distinct workloads. Thus, it is very hard to use a single
curve to separate normal and abnormal provenance data in the
embedding space.

Based on the features of provenance data, PROVDETECTOR
uses Local Outlier Factor (LOF) [11] as the novelty detection
model. LOF is a density based method. A point is considered
as an outlier if it has lower local density than its neighbors.
LOF does not make any assumption on the probability distri-
bution of data nor separates the data with a single curve. Thus,
it is an appropriate method for our novelty detection problem.

Final Decision Making In the detection phase, we use the
built novelty detection model to make predictions of path
embedding vectors of a provenance graph. We then use a
threshold-based method, i.e., if more than t embedding vectors
are predicted as malicious we treat the provenance graph
as malicious, to make the final decision about whether the
provenance graph is benign or malicious. This method could
enable an early stop in the path selection process to reduce
detection overhead when the top t instead of K selected paths
are already predicted as malicious.

F. Implementation

While PROVDETECTOR takes inputs from both Linux and
Windows hosts, our evaluation focuses on Windows event, as
our benign deployment mainly comprise of Windows host and
most stealthy malware runs for Windows target. We implement
the provenance data collector of PROVDETECTOR which stores
data in a PostgreSQL database using the Windows ETW frame-
work [8] and Linux Audit framework [16]. The provenance
graph builder and the representation extractor are implemented
using about 15K lines of Java code, with the same method
proposed by King et al. [63] and our causal path selection
algorithm in §V-C. The rest parts of PROVDETECTOR, such as
embedding and anomaly detection, are implemented in Python.

We use the K = 20 selected paths as the representation
for a provenance graph. We then train a PV-DM model
as discussed in §V-D using the Gensim library [10], which
embeds each path into a 100 dimensional embedding vector,
which is the default option of Gensim. Finally, we use the
embedding vectors to train a novelty detection model using
the Local Outlier Factor (LOF) algorithm in Scikit-learn [14].

Provenance Data Preprocessing Provenance data collected
from different hosts may contain host-specific or entity-specific
information such as file paths. To remove such information,
we follow the abstraction rules that are similar to previous
works [56], [73], [55]:

• Path Abstraction. Process entity and file entity have
path related attributes such as process executable
path and file path. We abstract these paths by re-
moving user specific details. For example the path
C:/USERS/USER_NAME/DESKTOP/PAPER.DOC will be
changed to *:/USERS/*/DESKTOP/PAPER.DOC, where
the user name and the root location are abstracted.

• Socket Connection Abstraction. A socket connection has
two parts: the source part (IP and port) and the destination
part (IP and port). As the IP of a host is a specific
field only to the host, we abstract a socket connection by
removing the internal address while keeping the external
address. More specifically, we remove the source part of
an outgoing connection and the destination part of an
incoming connection.

7

VI. EVALUATION

To evaluate the efficacy of PROVDETECTOR, we seek for
answers to the following research questions:

RQ1: How effective is PROVDETECTOR in detecting stealthy
malware? What is the detection accuracy? (§VI-B)

RQ2: What makes PROVDETECTOR capable of detecting
stealthy malware? (§VI-C)

RQ3: What is the computational overhead of PROVDETECTOR
to build its models and to perform detection? (§VI-D)

A. Experiment Protocol

We answer the above three research questions with real
stealthy malware instances gained by running malware sam-
ples and benign process instances gained from a real-world
enterprise deployment. To collect benign provenance data, we
installed the provenance data collector to 306 Windows hosts
in an enterprise. The benign provenance data was collected
over three months and stored in a PostgreSQL database.

To collect provenance data for stealthy malware, we down-
loaded about 15,000 malware samples from VirusShare [18]
and VirusSign [19] and executed them in the Cuckoo sand-
box [7]. Regarding the sandbox configuration, we prepared
the same operating system (OS) and application environment
as it is configured for the enterprise. Among the malicious
execution instances, whose behaviors were triggered and cap-
tured by our sandbox, we identified 23 victim programs. These
victims are benign programs used in the enterprise, whose
behaviors are captured in the benign provenance dataset. The
23 hijacked victims include popular Windows applications
such as IE Browser and Microsoft Word, and preinstalled
system tools such as the Windows Certificate Services Tool.
Table II shows the complete list.

In preparation of the dataset for model building, we chose
250 benign process instances and 50 malicious process in-
stances for each of the 23 programs observed from both the
benign and malicious environment. For each program, we ran-
domly chose benign instances from the enterprise environment,
whereas we generated corresponding malicious instances by
running one distinct stealthy malware. In other words, we
executed 50 distinct malware for each of the 23 programs
to generate malicious data. Since our approach is an anomaly
detection technique, which only needs benign data for training,
we randomly selected 200 benign instances as the training
dataset and used the rest 50 benign instances and all the
malicious instances as the testing input. In total, we evaluated
PROVDETECTOR with 1,150 distinct malware samples that
hijacks benign processes. These malware samples are classified
into 189 malware families with AVClass [94]. Among the
malware samples2, 298 of them are identified to be anti-VM
(i.e., detecting if it is in a virtual machine) and 238 of them
are identified to be anti-debug (i.e., detecting if it is under
debugger) by VirusTotal [22] or Tencent HABO [17].

We trained PROVDETECTOR on a machine with an Intel
Core i7-6700 Quad-Core Processor (3.4 GHz) and 32 GB
RAM running Ubuntu 16.04 OS; detection was also performed
on the same machine.

2We list the MD5 value of a malware, whether it is anti-VM, whether it is
anti-debug and its AVClass label at https://github.com/share-we/malware.

Removal of Biases Due to Sandbox Although we use real
stealthy malware, the Cuckoo sandbox may introduce bias in
our experiment. The workflow of how Cuckoo runs a stealthy
malware is as follows: (1) the Cuckoo agent introduces a mali-
cious payload (malware executable or malicious document) to
the sandbox, (2) the initial payload injects malicious logic into
a target benign program via various channels, (3) the injected
malicious logic in the victim process executes. The first part of
the workflow leaves a unique pattern in the provenance graphs
due to the Cuckoo agent: every attack path in the provenance
graph either starts with the agent process or the malicious
payload. This pattern could introduce a bias to our experiment
as the model can simply just remember the agent process or
the malicious payload to predict whether a path is from a
hijacked process. To eliminate such a bias, for all the malicious
provenance graphs, we only use the sub-graph generated after
the malicious payload has been loaded. In other words, we
remove the event of loading the malicious payload and all other
dependency events that happen before it. This pre-processing
eliminates all the features related to the Cuckoo framework.
To ensure that the generated provenance graphs do not have
any bias, we examined the distribution of the embeddings of
the paths generated from the benign workloads in the Cuckoo
and confirmed that they follow the same distribution as our
training data.

B. Detection Accuracy

To answer research question RQ1, we measure the detec-
tion accuracy for the 23 programs. To further evaluate the
effectiveness of our proposed techniques, we also compare our
embedding and anomaly detection methods to other baseline
approaches.

In our experiments, we select the top 20 causal paths
from each provenance graph using our path selection algorithm
(§V-C1). Then, we measure both path-level detection accuracy
and graph-level detection accuracy. To measure the path-level
detection accuracy, we treat each path as an individual data
sample; for the graph-level detection accuracy, we use the
threshold-based method (§V-E) to make a final prediction
from the predictions of paths. The detection accuracy of
PROVDETECTOR is measured using precision, recall, and F1-
score metrics.

We show the path-level detection results in Table II. The
detection accuracy of PROVDETECTOR is consistently high
across different programs. Precision ranges from 0.952 to
0.965, recall ranges from 0.965 to 1, and F1-score ranges from
0.961 to 0.982. We show the average graph-level detection
accuracy for the 23 programs using different threshold values
in Figure 5. Here the threshold value is the number of rarest
paths selected as in §V-C. As we can see, using a threshold
value of 3 or 4 already achieve very high precision and recall
(precision of 0.957 and 0.995 for the threshold 3 and 4,
respectively; recall of 1 for both of the threshold values 3
and 4). All these results show that PROVDETECTOR is very
effective in detecting stealthy malware.

1) Comparison with Strawman Detection Approaches:
To show the effectiveness of our machine learning-based
approach, we compare PROVDETECTOR with three strawman
techniques: the blacklist, the whitelist, and the anomaly score
based approach [56].

8

https://github.com/share-we/malware

TABLE II: The path-level detection accuracy of PROVDETEC-
TOR.

Program Description Precision Recall F1-Score

attrib Windows File
System Tool 0.958 1 0.978

certutil Windows Certificate
Services Tool 0.964 1 0.981

cmd Windows Command
Line 0.956 0.999 0.977

cscript Windows System
Script Interpreter 0.959 0.999 0.978

cvtres Component of
C++ Toolchain 0.965 1 0.982

excel Microsoft Excel 0.961 1 0.980
firefox Firefox Browser 0.958 0.965 0.961
iexplore IE Browser 0.960 0.968 0.963
javaw Java VM 0.957 0.992 0.974
jusched Java Update Scheduler 0.957 0.990 0.974
maintservice Firefox Updater 0.959 1 0.979
msiexec Windows Installer 0.960 0.983 0.971
mspaint Microsoft Paint 0.96 0.990 0.975
notepad Windows Text Editor 0.963 0.984 0.973

rar WinRAR Compression
Tool 0.953 1 0.976

sc Windows Service
Controller 0.952 1 0.975

spoolsv Windows Spooler
Subsystem App 0.955 1 0.977

tasklist Windows Task
Management Tool 0.962 0.970 0.966

taskmgr Windows Task Manager 0.960 1 0.979
wget Downloader 0.952 1 0.975
winword Microsoft Word 0.960 0.976 0.967

wmic Windows Management
Instrumentation Command 0.952 0.998 0.974

wmplayer Windows Media Player 0.959 0.996 0.977

Average - 0.959 0.991 0.974

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20

P
re

c
is

io
n

 o
r

R
e

c
a

ll

Threshold

Precision

Recall

Fig. 5: The graph-level detection accuracy of PROVDETECTOR
with different threshold values

The goal of having the blacklist approach is to answer the
question: is it possible to use hand-coded rules developed by
human experts to detect stealthy attacks. Ideally, relying on
human experts seems to be an effective approach which can
easily bring in with several working heuristics. One exemplary
rule can be “UI-heavy programs (e.g., MS Word and Excel)
should not launch external scripts, such as through CMD or
PowerShell”. However, in practice, since the adversary has
a lot of ways to run the malicious code, it is very difficult
to come up with a comprehensive blacklist. For instance,
the UI-heavy processes could run the malicious code through
Java or hijack other processes (e.g., notepad.exe) instead
of using scripts. Using a blacklist approach could overlook a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

P
re

c
is

io
n

 o
r

R
e

c
a

ll

Percentage

Precision
Recall

Fig. 6: The detection accuracy of the whitelist approach with
different values.

large number of other attacks, especially unknown attacks. In
our experiment, we measure the effectiveness of applying the
“UI-heavy programs should not run external scripts” heuristic.
To do so, we use all the 8 UI-heavy programs (i.e., excel,
firefox, iexplore, mspaint, notepad, rar, winword and
wmplayer) in our evaluated 23 programs and check if they
calls cmd.exe, powershell.exe or other script interpreters.
We found that the recall of this heuristic is close to zero
(≤0.07), which means a large number of attacks were over-
looked by this approach.

The second strawman approach, the whitelist, is to evaluate
whether people can detect stealthy attacks by simply detecting
infrequent events. To construct the whitelist, we use a statistics-
based approach. For each event, if it exists in more than p
percent of the benign program instances, we add it to the
whitelist. In Figure 6, we show the detection accuracy of this
approach averaged by the 23 programs using different p values.
In our experiment, this approach achieves the best F1 score of
0.78 when p is 3%, which is still substantially lower than the
F1 score of PROVDETECTOR.

The third strawman approach is the anomaly score-based
approach. In §V-C, we define regularity score for a path
to select the top K rarest paths from a provenance graph.
One may consider that these regularity scores (or anomaly
scores) could be used to effectively detect stealthy malware
for simplicity. To address this concern, we evaluated a score-
based detection approach. For each program, the anomaly
score based approach first selects the top K rarest paths
from all the benign provenance graphs, then it chooses the
n-percentile of all the anomaly scores of the paths as the
threshold. During the detection stage, it identifies any path that
has an anomaly score higher than the threshold as a malicious
path. In other words, if a path has an anomaly score higher than
n percent of the paths selected from benign provenance graphs,
this strawman approach identifies the path as malicious. The
results of detection accuracy with different percentile values
are shown in Table III. The F1 score is even substantially
lower than the whitelist approach. One major reason for
such poor performance is that the rare paths selected from
benign provenance graphs could also have very high anomaly
scores. Therefore, the anomaly scores alone are not informative
enough to differentiate benign ones and malicious ones. The
results in Table III justify our choice of using a learning-

9

TABLE III: The detection accuracy of the anomaly score based
approach with different percentile values.

n-percentile Precision Recall F1-Score
85 0.84 0.36 0.50
86 0.845 0.349 0.49
87 0.885 0.31 0.46
88 0.893 0.243 0.38
89 0.905 0.233 0.37
90 0.909 0.208 0.34
91 0.914 0.199 0.33
92 0.925 0.182 0.30
93 0.918 0.183 0.31
94 0.921 0.195 0.32
95 0.939 0.163 0.28

TABLE IV: Detection accuracy comparisons with path-level
and graph-level approaches.

Path or Graph Approach Precision Recall F1-score

Path-level PROVDETECTOR (path-level) 0.959 0.991 0.974
Path Nodes Averaging 0.961 0.890 0.924

Graph-level PROVDETECTOR (graph-level) 0.957 1 0.978
graph2vec 0.899 0.452 0.601

based approach that learns both from rareness and causal
dependencies to automatically identifies the proper boundary
between benign and anomalous paths for each program.

2) Comparison with Different Embedding Approaches:
We compare our embedding approach (§V-D) with a graph
embedding approach (graph2vec [79]), and the simple node-
level path embedding (Path Nodes Averaging). graph2vec is
an approach to learn distributed representations of graphs. With
graph2vec, we directly embed each provenance graph into
a feature vector. In the Path Nodes Averaging approach, we
still compute embeddings for the paths selected by PROVDE-
TECTOR. In contrast, we use word2vec to get the embedding
of each node, then obtain the embedding for a path by
averaging the embeddings of all the nodes in the path. In the
evaluation of different embedding approaches, we follow the
same experiment protocol in §VI-A.

To compare our approach with graph2vec, we compute
graph-level detection accuracy of PROVDETECTOR using a
threshold of 3. The comparison results are shown in Table IV,
in which PROVDETECTOR has a substantially higher recall
than graph2vec. The graph2vec approach has reasonable
precision but has very poor recall (even worse than random
guess). This result confirms our insight: the benign workloads
of a hijacked process may hide the malicious workload in the
graph level. It is thus necessary to use the path-level features.
We will further discuss this result in §VI-C.

We compare our embedding approach with Path Nodes Av-
eraging in path-level detection accuracy as shown in Table IV.
The Path Nodes Averaging approach achieves comparable
precision and recall with our approach as it also uses the paths
selected by PROVDETECTOR in the embedding. However, it
does not perform as good as our approach on recall as it does
not consider the order of nodes in a path.

C. Interpretation of Detection Results

In this section, we interpret the detection results presented
in §VI-B to justify our design decisions. In particular, we seek
answers for the following questions:

excel.exe certutil.exe c029ec8b.exe

excel.exe c029ec8b.exe rundll32.exe x.x.x.x

start write

start start write

execute_by

Fig. 7: The path selected by PROVDETECTOR from a realistic
attack example.

• Why do simple models (e.g., blacklist or whitelist) fail?
• Why the whole provenance graph is not a good feature

for stealthy malware detection?
• Why our path selection method can accelerate the training

and detection?
• How robust is PROVDETECTOR against mimicry attacks?

For space reasons, we present other interpretations of the
detection results in Appendix C.

1) Simple Models: To understand why simple models,
such as the black- and white-lists, that only consider one-
hop features are not effective, we use one realistic example
in our experiment as a case study. The example is the “Dow-
nAuto Certutil Macro Dropper” malware, which is a part of
APT28 attack [20], [15]. The causality chain of this attack
is shown in Figure 7. This malware embeds its malicious
payload as a base64 string and exploits the certificate services
(certutil.exe) to convert the base64 string to an executable
(c029ec8b.exe). After that, the malware runs the payload,
which uses rundll32.exe to connect back to the adversary.

The analysis based on the one-hop relationships cannot
disclose the adversarial context, as every step in this attack
looks normal. It is possible for excel.exe to handle certifi-
cates with certutil.exe . It is also normal behavior for
certutil.exe to create any arbitrary files. Note that in our
experiment environment, although the malicious executable
has a random name, in practice, this name could also be the
name of any benign software and may not contain the exten-
sion .exe. Finally, it is also impractical to prevent excel.exe
from executing external programs and rundll32.exe whose
execution logic depends on its command line given at runtime.
The abnormality of the operation arises only when all dots
are connected and considered as a whole. PROVDETECTOR
models the whole causality path altogether as a vector and
detects anomalous paths instead of anomalous steps. This is
why PROVDETECTOR outperforms simple approaches.

2) Whole Graph Modeling: To understand why the whole
graph is not a good feature for detecting stealthy malware as
well as why graph2vec does not perform well in §VI-B,
we perform a set of empirical measurements. We randomly
selected paths from the provenance graphs of processes that
were hijacked by stealthy attacks. We then feed these paths
into our anomaly detector to get their prediction. We found
that, on average, about 70% of randomly selected paths from
hijacked processes cannot be detected as malicious. In other
words, about 70% of the paths are not distinguishable from
benign paths. For a graph-level embedding method, which
summarizes the features of all paths to get an embedding, will
not be sensitive to a small number of abnormal paths.

To better understand the distribution of paths from hijacked
programs, we take the winword (MS Word) program as an

10

Fig. 8: The t-SNE plot with the paths randomly selected from
benign and malicious provenance graphs of the winword pro-
gram. The blue points and red points represent paths selected
from benign provenance graphs and malicious provenance
graphs respectively.

benign
malicious

Fig. 9: The t-SNE plot with the paths selected by our path
selection algorithm from benign and malicious provenance
graphs of the winword program. The blue points and red
points represent paths selected from benign provenance graphs
and malicious provenance graphs respectively.

example and visualize the distribution in Figure 8. To generate
Figure 8, we randomly select 20 paths from each provenance
graph of winword (both benign and malicious), embed them
with PROVDETECTOR, and plot the embedding vectors with
t-SNE [75]. We mark the paths selected from benign graphs in
blue and those from malicious graphs in red. In Figure 8, the
majority of paths selected from malicious graphs are mixed
with paths selected from benign graphs. This is because these
“malicious” paths are generated from the benign part of the
hijacked process. There is only a small group of paths that are
easily separable, which we marked in a black circle. Therefore,
graph-level embedding methods, such as graph2vec, which
learn features from all the paths, is less capable of detecting
stealthy malware as the features from “real” malicious paths
are overlapped with the “normal” paths.

3) Path Selection: To demonstrate why our path selection
technique can maintain the accuracy while reducing training
and detection workload, we again take the winword program
as an example. In Figure 9, we plot the embedding vectors
of paths selected by PROVDETECTOR with t-SNE. The blue

points are paths selected from benign provenance graphs and
the red points are paths selected from malicious provenance
graphs by PROVDETECTOR. The result in Figure 9 delivers
two findings. First, the selected benign paths form multi-
ple clusters representing the diversity of custom workloads
of benign programs. Second, the selected (rare) paths from
malicious graphs are very different from other benign paths,
therefore they are easy to be separated in the embedding space.
This result confirms our assumption that rare paths could
capture abnormal behavior of stealthy malware.

4) Robustness Against Mimicry Attacks: The adversary
may evade the detection of PROVDETECTOR by mimicking
“normal” behaviors of programs. It is important to know how
much effort does the adversary need to take to evade the
detection.

To answer this question, we introduce the editing distance
between malicious paths and benign paths. We define the edit-
ing distance between two causal paths as the minimum number
of actions needed to convert one path to another. The actions
include add, modify, and delete any node in a causal path3.
In our experiment, we measured the average editing distance
between malicious paths and benign paths4. The average value
is about five. In other words, to make a malicious path looks
benign, an adversary needs to mimic about five system objects.
This result suggests that PROVDETECTOR is more robust than
the single step detection approaches (e.g., blacklist approach)
since the adversary only needs to mimic the behavior of one
system object.

D. Runtime Performance

We measure the runtime overhead of PROVDETECTOR for
its training and detection stages.

Training Overhead The runtime overhead in the training
stage for each monitored program mainly consists of (1) the
overhead for building provenance graphs and path selection,
(2) the overhead to build the doc2vec model, and (3) the
overhead to build the anomaly detection model. On average,
it takes seven seconds to build a provenance graph from the
database and select the top 20 paths. With the data of 30,000
paths, it takes about 94 seconds to train the doc2vec model
with the embedding vector size of 100 and epochs of 100. It
takes around 39 seconds to train the LOF novelty detection
model. Note that the training overhead for one program is
a one-time effort. We do not need to retrain either of the
doc2vec model or the LOF model unless we want to improve
the models with more training samples.

Detection Overhead The runtime overhead in the detection
stage for a process instance mainly consists of (1) the overhead
for building provenance graphs and path selection, (2) the over-
head for embedding the selected paths, and (3) the prediction
overhead of the anomaly detection model. On average, it takes
five seconds to build the provenance graph and two seconds
to select the top 20 paths from the graph. It only takes one
millisecond (ms) to embed a path into a vector and 0.06 ms

3This concept is borrowed from computational linguistics.
4To eliminate the bias introduced by arbitrary file names, we consider all

files with the same type as one file; for network connection, we abstract all
IPs to ”*.*.*.*”.

11

for the novelty detection model to make a prediction with the
vector. In total, the detection overhead for a process instance
is about seven seconds.

To estimate the practicality of PROVDETECTOR in an
enterprise, we count the number of process instances created
for the 23 evaluated programs from the data over three months
with 306 hosts. On average, each host creates about 22.7
instances of these programs, i.e., about one process for each
program. Suppose an enterprise which has 100 hosts and there
are 30 programs to monitor, it will take 5.7 hours per day
to check all the created instances in the enterprise. However,
note that our experiments were conducted on a single general
desktop with a single thread. The detection time can be reduced
by parallelizing PROVDETECTOR on multiple server machines.

VII. DISCUSSION AND LIMITATIONS

Offline Detection vs. Online Detection In our current im-
plementation, PROVDETECTOR works as an offline detector,
where it scans the provenance database to detect stealthy
attacks. However, PROVDETECTOR can be implemented as a
real-time approach by using an in-memory provenance graph
database on each monitored host [59]. Then PROVDETECTOR
can model the path selection problem as an incremental K
longest paths problem on a dynamic graph, which is an
orthogonal problem and has existing solutions [61], [31]. We
leave the implementation details to our future work.

Applicability to Other Operating Systems In this work, our
evaluation focuses on programs (e.g., MS Word) on Windows
systems as most of the stealthy malware we collected target
Windows. However, our approach is not limited to a certain
operating system like Windows since similar OS level prove-
nance data can be also collected from other operating systems
such as Linux [30]. Moreover, our approach does not rely on
any Windows specific feature.

More Complex Embedding or Learning Approaches In this
work, PROVDETECTOR uses the doc2vec paragraph embed-
ding technique and a simple anomaly detection model LOF
for its detection purpose. As shown in §VI, the combination
of these two models have already achieved very good detection
performance. More complex machine learning techniques, such
as LSTM [58], Tree-structured LSTM [98], Graph Convolu-
tional Networks [64], and One-class Neural Networks [36],
[88] could possibly further improve the detection accuracy,
yet they may also introduce a higher cost.

Mimicry Attacks An adversary may mimic behaviors of
benign programs to evade the detection of PROVDETECTOR.
In §VI-C4, we measured that, on average, an adversary needs
to add, modify, or delete about five different nodes in a causal
path to mimic the behavior of benign programs. Since a causal
path embeds the contextual causality among different system
entities (e.g., processes), we believe that it is much harder to
evade PROVDETECTOR than the approaches that focus only on
the behavior of one process. We will conduct more evaluation
and research on defending mimicry attacks in our future work.

Anti-analysis Malware A lot of today’s malware has anti-
analysis (e.g., anti-VM or anti-debug) capabilities. When the
malware detects that it is being run in a virtual machine

or under a debugger, it changes its behavior (usually either
less malicious behavior or termination). PROVDETECTOR,
unlike virtualization based solutions [66], [62], is designed
to run on bare metal machines and does not require isolated
environments. Similar to previous work [27], [26], [62], to
perform a large-scale analysis, we use sandbox environments to
automate the execution of malware samples in our evaluation.
It is possible that some anti-analysis malware changed their
behavior during our evaluation. However, 289 (26%) of the
malware samples in our evaluation are identified as anti-VM
by VirusTotal. For these samples, PROVDETECTOR should
still be able to detect them when they are running on bare
metal machines as their behaviors on bare metal should be
same or more malicious, which will be easily selected by
PROVDETECTOR’s path selection algorithm.

The Benign Dataset We collected our benign data from an
anonymous enterprise which was well guarded by security
professionals and continuously monitoring using up-to-date
security solutions. Although it does not guarantee that our
“benign” data is perfectly benign, we believe that the chance
of data pollution is low and will not invalidate our evaluation.

VIII. RELATED WORK

Stealthy Malware Malware is becoming increasingly
stealthy to evade detection. A popular trend in recent cyber-
attacks is to impersonate or abuse benign applications on the
victim host to achieve the attack goals. There are many imper-
sonation techniques. For example, DLL injection [47], portable
executable injection, and remote thread injection [1]. Recently
developed new techniques such as process hollowing [13],
AtomBombing [3] and shim-based DLL injection [2] have
also been applied in real-world malware. Fileless malware,
which follows the “living off the land” attack strategy, has
been actively studied by both industry [6] and academia [42].
While characterized by its avoidance of using files during an
attack, we believe that PROVDETECTOR will also be helpful
in detecting certain types of fileless malware whose behavior
can be tracked by our kernel-level provenance tracing.

Malware Detection Malware detection has been an active
area of research in multiple platforms like Android, Windows,
and Linux. In traditional approaches, static analysis [95], [92],
[46] and dynamic analysis [24], [41], [34] have been used
to analyze and detect malware. Recently, machine learning
and deep learning approaches are leveraged as a new trend
in malware analysis and detection which greatly improve the
detection accuracy over traditional methods [108], [65], [54],
[53]. Shu et al. [96] profile a program’s historical behavior
to detect stealthy control flow violations (e.g., aberrant path
attack) based on function call logs gained by software in-
strumentation. Differently, PROVDETECTOR aims to detect a
malware-controlled program using more coarse-grained kernel-
provided audit logs. There are multiple proposals to detect
stealthy malware that uses impersonation techniques like code
injection. Bee master [27] prepares honeypot processes in an
analysis environment and detects injections into the processes.
Membrane [87] and Quincy [26] extract features from memory
information such as memory paging information and memory
dumps, and use supervised machine learning to detect code
injection. Tartarus [66] and API Chaser [62] use taint tracking

12

to identify code injection. However, these proposals either
target only certain types of attacks [27] (e.g., [27] cannot
detect process hollowing), relay on some OS features [87], or
need virtualization environments and have severe impact on
the system performance [62], [66]. Moreover, all of them have
a limitation for script-based attacks. In contrast, our approach
uses lightweight kernel-level provenance tracking and targets
the broad scope of impersonation techniques including script-
based attacks.

Anomaly Detection with Host Level System Events Several
approaches have been proposed to detect intrusion or abnormal
behaviors using system event data on the end hosts [35], [83],
[43], [39], [56]. Caselli el al. [35] proposed an approach which
first builds the profile of k-grams from benign system call
traces and then it throws an alert if a new system call trace is
significantly different from the normal profile. Padmanabhan
et al. [83] modeled the information flow in a system using
directed graphs and extracts abnormal substructures from it.
Dong et al. [43] proposed a system to find abnormal event
sequences from a large number of heterogeneous event traces.
Chen et al. [39] proposed a principled and unified probabilistic
model to learn the likelihood of system events. Siddiqui et
al. [97] developed a system to detect malicious system entities
using a multi-view based technique.

Unstructured Data Embeddings Multiple embedding tech-
niques (i.e., learning distributed representations or numerical
vectors of data) have been proposed for unstructured data
such as texts and graphs. In the natural language processing
domain, different embedding techniques have been proposed
for words [77], [32], sentences [84] and documents [69].
Learning techniques have also been proposed for graphs [79]
as well. These embedding techniques are utilized in mul-
tiple security applications for data modeling. For example,
Narayanan et al. [79] demonstrated the ability of graph2vec
in classifying malicious and benign Android apps using API
dependency graphs. Mimura et al. [78] used paragraph vectors
to detect unseen malicious traffic from proxy log. Tavabi et
al. [99] proposed a neural language modeling approach that
learns embeddings of darkweb/deepweb discussions to predict
whether vulnerabilities are exploited. In this work, we utilize
paragraph embedding techniques over system provenance data
to detect stealthy malware. PROVDETECTOR would benefit
from the future improvement of embedding techniques.

Mimicry Attacks on Host-based Solutions System call traces
have long been used as the information source for host-based
instruction detection systems (IDS). The seminal research on
mimicry attacks [102], [48] demonstrated that the IDS can
be evaded by carefully crafting an exploit that produces a
legitimate sequence of system calls while performing mali-
cious actions. To limit the vulnerability of the IDS to mimicry
attacks, a number of improvements [45], [50], [49], [76],
[106] have been proposed by considering more features in
the analysis. For example, [45] incorporates into the analysis
information about the call stack configuration at the time of
a system call to counteract mimicry attacks. To automate the
construction of mimicry attacks, several techniques [67], [51],
[85] have been proposed. However, these systems focus on
monitoring system call traces, which do not reflect the context
of each syscall event. In contrast, our approach uses data prove-
nance that encodes historical context into causality graphs.

Conducting mimicry attacks on provenance-based solutions is
more challenging than on system call traces as provenance
graphs contain complex structural information that is difficult
to imitate without impeding the attack.

Provenance-based Solutions A large body of work has
been proposed to leverage provenance for multiple areas such
as forensic analysis [30], [70], [71], [74], [89], [55], [29],
[57], network debugging and troubleshooting [38], [37], alert
triage [56], intrusion detection and access control [28], [86],
[80], [73], [100], and attack reconstruction [107], [103], [104].

Linux Provenance Modules (LPM) [30] and Hi-Fi [89]
proposed an efficient and trusted provenance collecting frame-
work by adding provenance hooks in the Linux kernel similar
to Linux Security Modules. BEEP [70] and ProTracer [74]
are provenance trackers that solve the problem of dependency
explosion in the provenance graph by execution partitioning
the event-handling loops. Liu et al. [73] proposed an anomaly
based priority search to address the dependency explosion
problem. LogGC [71] further reduces the log size using
the idea of execution partitioning. Winnower [55] provides
a storage efficient provenance auditing framework for large
clusters. MCI [68] proposes a reliable and efficient approach
to restore fine-grained information flow among system events
using dual execution (LDX). While these techniques address
different problems, we believe that they can be integrated into
PROVDETECTOR to improve its accuracy. Besides forensic
investigation, provenance is also used in network debugging.
Chen et al. [38] proposed differential provenance which rea-
sons the differences compared to good and bad references.
The same authors [37] also proposed secure packet provenance
(SPP) that provides provenance on the Internet’s data plane
which has a high data rate. NoDoze [56] is an automated
threat alert triage system based on data provenance. It ranks the
alerts from third party threat detection systems (TDS) by the
rareness of causal paths in their provenance graph. However,
it cannot effectively extract the K rarest paths as it enumerates
all the paths of a provenance graph. Moreover, it only provides
anomaly scores to paths to help with investigation and does
not provide a systematic way to separate benign and malicious
paths. PROVDETECTOR addresses the limitations and provides
an end-to-end solution to automatically learns the boundaries
from training data using machine learning techniques. Besides,
a TDS is not required by PROVDETECTOR.

IX. CONCLUSION

In this paper, we present PROVDETECTOR, an anomaly
detection based approach to detect stealthy impersonation
malware using OS level provenance graphs. PROVDETECTOR
uses a novel rareness-based path selection algorithm to identify
causal paths in the provenance graph which represent the
potentially malicious behavior of a process. These causal paths
are then used by a pipeline of a document embedding model
and a novelty detection model to determine if the process is
malicious. We evaluated PROVDETECTOR with 23 target pro-
grams using a system provenance dataset from an enterprise.
The results show that PROVDETECTOR has consistently high
precision and recall for the evaluated programs, demonstrating
its effectiveness and practicality in the detection of stealthy
malware.

13

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for
their helpful feedback. This work was supported in part by
NSF CNS 13-30491. Ding Li and Kangkook Jee are the
corresponding authors. The views expressed in this material
are those of the authors only.

REFERENCES

[1] “Remote Thread Injection on Windows,” http://blog.aaronballman.
com/2011/06/remote-thread-injection-on-windows/, 2011.

[2] “Defending Against Malicious Application Compatibility Shims,”
https://www.blackhat.com/docs/eu-15/materials/eu-15-Pierce-
Defending-Against-Malicious-Application-Compatibility-Shims-
wp.pdf, 2015.

[3] “AtomBombing: Brand New Code Injection for Windows,”
https://blog.ensilo.com/atombombing-brand-new-code-injection-
for-windows, 2016.

[4] “Fileless Attack Survival Guide,” https://dsimg.ubm-us.net/envelope/
395823/551993/Fileless%20Attack%20Survival%20Guide.pdf, 2018.

[5] “Macro-less Document and Fileless Malware: the perfect cloaking
mechanism for new threats,” https://forums.juniper.net/t5/Threat-
Research/Macro-less-Document-and-Fileless-Malware-the-perfect-
cloaking/ba-p/317425, 2018.

[6] “The 2017 State of Endpoint Security Risk Report,” https://www.
barkly.com/ponemon-2018-endpoint-security-statistics-trends, 2018.

[7] “Cuckoo Sandbox - Automated Malware Analysis,”
https://cuckoosandbox.org/, 2019.

[8] “Event Tracing,” https://docs.microsoft.com/en-us/windows/desktop/
ETW/event-tracing-portal, 2019.

[9] “Fitting an elliptic envelope,” https://scikit-learn.org/stable/modules/
outlier detection.html#fitting-an-elliptic-envelope, 2019.

[10] “gensim: Topic modelling for humans,” https://radimrehurek.com/
gensim/index.html, 2019.

[11] “Novelty detection with Local Outlier Factor,” https://scikit-
learn.org/stable/modules/outlier detection.html#novelty-detection-
with-local-outlier-factor, 2019.

[12] “PowerShell Empire,” https://github.com/EmpireProject/Empire, 2019.
[13] “Process Hollowing,” https://attack.mitre.org/techniques/T1093/, 2019.
[14] “scikit-learn: machine learning in Python,” https://scikit-learn.org/,

2019.
[15] “Sofacy Attacks Multiple Government Entities,” https:

//unit42.paloaltonetworks.com/unit42-sofacy-attacks-multiple-
government-entities/, 2019.

[16] “System administration utilities,” 2019, man7.org/linux/man-pages/
man8/auditd.8.html/.

[17] “Tencent HABO,” https://habo.qq.com/, 2019.
[18] “VirusShare,” https://virusshare.com, 2019.
[19] “VirusSign,” https://www.virussign.com/, 2019.
[20] “VirusTotal Report,” https://www.virustotal.com/gui/file/

56f98e3ed00e48ff9cb89dea5f6e11c1/, 2019.
[21] “The 2017 State of Endpoint Security Risk,” https://cdn2.hubspot.

net/hubfs/468115/Campaigns/2017-Ponemon-Report/2017-ponemon-
report-key-findings.pdf, 2017.

[22] “VirusTotal,” https://www.virustotal.com/, 2018.
[23] “Microsoft Internet Explorer CVE-2019-0541 Remote Code

Execution Vulnerability,” https://www.symantec.com/security-
center/vulnerabilities/writeup/106402, 2019.

[24] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-
based malware detection using dynamic analysis,” Journal in computer
Virology, vol. 7, no. 4, pp. 247–258, 2011.

[25] A. Bako, “All paths in an activity network,” Statistics: A Journal of
Theoretical and Applied Statistics, vol. 7, no. 6, pp. 851–858, 1976.

[26] T. Barabosch, N. Bergmann, A. Dombeck, and E. Padilla, “Quincy:
Detecting host-based code injection attacks in memory dumps,” in
International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 2017, pp. 209–229.

[27] T. Barabosch, S. Eschweiler, and E. Gerhards-Padilla, “Bee master:
Detecting host-based code injection attacks,” in International con-
ference on detection of intrusions and malware, and vulnerability
assessment. Springer, 2014, pp. 235–254.

[28] A. Bates, K. R. B. Butler, and T. Moyer, “Take Only What You Need:
Leveraging Mandatory Access Control Policy to Reduce Provenance
Storage Costs,” in TaPP, 2015.

[29] A. Bates, W. U. Hassan, K. Butler, A. Dobra, B. Reaves, P. Cable,
T. Moyer, and N. Schear, “Transparent web service auditing via
network provenance functions,” in WWW, 2017.

[30] A. Bates, D. Tian, K. R. B. Butler, and T. Moyer, “Trustworthy whole-
system provenance for the linux kernel,” in Proceedings of the 24th
USENIX Conference on Security Symposium, 2015, pp. 319–334.

[31] T. Y. Berger-Wolf and J. Saia, “A framework for analysis of dynamic
social networks,” in Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining. ACM,
2006, pp. 523–528.

[32] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Transactions of the Association
for Computational Linguistics, vol. 5, pp. 135–146, 2017.

[33] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C.
Lai, “Class-based n-gram models of natural language,” Computational
linguistics, vol. 18, no. 4, pp. 467–479, 1992.

[34] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid:
behavior-based malware detection system for android,” in Proceedings
of the 1st ACM workshop on Security and privacy in smartphones and
mobile devices. ACM, 2011, pp. 15–26.

[35] M. Caselli, E. Zambon, and F. Kargl, “Sequence-aware intrusion
detection in industrial control systems,” in Proceedings of the 1st ACM
Workshop on Cyber-Physical System Security. ACM, 2015, pp. 13–
24.

[36] R. Chalapathy, A. K. Menon, and S. Chawla, “Anomaly detection using
one-class neural networks,” arXiv preprint arXiv:1802.06360, 2018.

[37] A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, “One primitive to
diagnose them all: Architectural support for internet diagnostics,” in
EuroSys, 2017.

[38] A. Chen, Y. Wu, A. Haeberlen, W. Zhou, and B. T. Loo, “The
Good, the Bad, and the Differences: Better Network Diagnostics with
Differential Provenance,” in ACM SIGCOMM, 2016.

[39] T. Chen, L.-A. Tang, Y. Sun, Z. Chen, and K. Zhang, “Entity
embedding-based anomaly detection for heterogeneous categorical
events,” in Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence, ser. IJCAI’16. AAAI Press, 2016,
pp. 1396–1403.

[40] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (sub) graph
isomorphism algorithm for matching large graphs,” IEEE transactions
on pattern analysis and machine intelligence, vol. 26, no. 10, pp.
1367–1372, 2004.

[41] A. Damodaran, F. Di Troia, C. A. Visaggio, T. H. Austin, and
M. Stamp, “A comparison of static, dynamic, and hybrid analysis
for malware detection,” Journal of Computer Virology and Hacking
Techniques, vol. 13, no. 1, pp. 1–12, 2017.

[42] F. Dang, Z. Li, Y. Liu, E. Zhai, Q. A. Chen, T. Xu, Y. Chen, and
J. Yang, “Understanding fileless attacks on linux-based iot devices
with honeycloud,” in Proceedings of the 17th Annual International
Conference on Mobile Systems, Applications, and Services. ACM,
2019, pp. 482–493.

[43] B. Dong, Z. Chen, H. W. Wang, L.-A. Tang, K. Zhang, Y. Lin, Z. Li,
and H. Chen, “Efficient discovery of abnormal event sequences in
enterprise security systems,” in Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management. ACM,
2017, pp. 707–715.

[44] D. Eppstein, “Finding the k shortest paths,” SIAM Journal on comput-
ing, vol. 28, no. 2, pp. 652–673, 1998.

[45] H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong,
“Anomaly detection using call stack information,” in 2003 Symposium
on Security and Privacy. IEEE, 2003.

[46] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy: Semantics-
based detection of android malware through static analysis,” in Pro-

14

http://blog.aaronballman.com/2011/06/remote-thread-injection-on-windows/
http://blog.aaronballman.com/2011/06/remote-thread-injection-on-windows/
https://www.blackhat.com/docs/eu-15/materials/eu-15-Pierce-Defending-Against-Malicious-Application-Compatibility-Shims-wp.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Pierce-Defending-Against-Malicious-Application-Compatibility-Shims-wp.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Pierce-Defending-Against-Malicious-Application-Compatibility-Shims-wp.pdf
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://dsimg.ubm-us.net/envelope/395823/551993/Fileless%20Attack%20Survival%20Guide.pdf
https://dsimg.ubm-us.net/envelope/395823/551993/Fileless%20Attack%20Survival%20Guide.pdf
https://forums.juniper.net/t5/Threat-Research/Macro-less-Document-and-Fileless-Malware-the-perfect-cloaking/ba-p/317425
https://forums.juniper.net/t5/Threat-Research/Macro-less-Document-and-Fileless-Malware-the-perfect-cloaking/ba-p/317425
https://forums.juniper.net/t5/Threat-Research/Macro-less-Document-and-Fileless-Malware-the-perfect-cloaking/ba-p/317425
https://www.barkly.com/ponemon-2018-endpoint-security-statistics-trends
https://www.barkly.com/ponemon-2018-endpoint-security-statistics-trends
https://cuckoosandbox.org/
https://docs.microsoft.com/en-us/windows/desktop/ETW/event-tracing-portal
https://docs.microsoft.com/en-us/windows/desktop/ETW/event-tracing-portal
https://scikit-learn.org/stable/modules/outlier_detection.html#fitting-an-elliptic-envelope
https://scikit-learn.org/stable/modules/outlier_detection.html#fitting-an-elliptic-envelope
https://radimrehurek.com/gensim/index.html
https://radimrehurek.com/gensim/index.html
https://scikit-learn.org/stable/modules/outlier_detection.html#novelty-detection-with-local-outlier-factor
https://scikit-learn.org/stable/modules/outlier_detection.html#novelty-detection-with-local-outlier-factor
https://scikit-learn.org/stable/modules/outlier_detection.html#novelty-detection-with-local-outlier-factor
https://github.com/EmpireProject/Empire
https://attack.mitre.org/techniques/T1093/
https://scikit-learn.org/
https://unit42.paloaltonetworks.com/unit42-sofacy-attacks-multiple-government-entities/
https://unit42.paloaltonetworks.com/unit42-sofacy-attacks-multiple-government-entities/
https://unit42.paloaltonetworks.com/unit42-sofacy-attacks-multiple-government-entities/
man7.org/linux/man-pages/man8/auditd.8.html/
man7.org/linux/man-pages/man8/auditd.8.html/
https://habo.qq.com/
https://virusshare.com
https://www.virussign.com/
https://www.virustotal.com/gui/file/56f98e3ed00e48ff9cb89dea5f6e11c1/
https://www.virustotal.com/gui/file/56f98e3ed00e48ff9cb89dea5f6e11c1/
https://cdn2.hubspot.net/hubfs/468115/Campaigns/2017-Ponemon-Report/2017-ponemon-report-key-findings.pdf
https://cdn2.hubspot.net/hubfs/468115/Campaigns/2017-Ponemon-Report/2017-ponemon-report-key-findings.pdf
https://cdn2.hubspot.net/hubfs/468115/Campaigns/2017-Ponemon-Report/2017-ponemon-report-key-findings.pdf
https://www.virustotal.com/
https://www.symantec.com/security-center/vulnerabilities/writeup/106402
https://www.symantec.com/security-center/vulnerabilities/writeup/106402

ceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 576–587.

[47] S. Fewer, “Reflective dll injection,” Harmony Security, Version, vol. 1,
2008.

[48] D. Gao, M. K. Reiter, and D. Song, “On gray-box program tracking
for anomaly detection,” Department of Electrical and Computing
Engineering, p. 24, 2004.

[49] J. T. Giffin, D. Dagon, S. Jha, W. Lee, and B. P. Miller, “Environment-
sensitive intrusion detection,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2005, pp. 185–206.

[50] J. T. Giffin, S. Jha, and B. P. Miller, “Efficient context-sensitive
intrusion detection.” in NDSS, 2004.

[51] ——, “Automated discovery of mimicry attacks,” in International
Workshop on Recent Advances in Intrusion Detection. Springer, 2006,
pp. 41–60.

[52] M. Graeber, “Abusing windows management instrumentation (wmi) to
build a persistent, asyncronous, and fileless backdoor.”

[53] H. HaddadPajouh, A. Dehghantanha, R. Khayami, and K.-K. R. Choo,
“A deep recurrent neural network based approach for internet of
things malware threat hunting,” Future Generation Computer Systems,
vol. 85, pp. 88–96, 2018.

[54] W. Hardy, L. Chen, S. Hou, Y. Ye, and X. Li, “Dl4md: A deep learning
framework for intelligent malware detection,” in Proceedings of the
International Conference on Data Mining (DMIN). The Steering
Committee of The World Congress in Computer Science, Computer ,
2016, p. 61.

[55] W. U. Hassan, L. Aguse, N. Aguse, A. Bates, and T. Moyer, “To-
wards scalable cluster auditing through grammatical inference over
provenance graphs,” in Network and Distributed Systems Security
Symposium, 2018.

[56] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“NoDoze: Combatting threat alert fatigue with automated provenance
triage.” in NDSS, 2019.

[57] W. U. Hassan, M. A. Noureddine, P. Datta, and A. Bates, “Omega-
Log: High-fidelity attack investigation via transparent multi-layer log
analysis,” in NDSS, 2020.

[58] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[59] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. D. Stoller, and V. N. Venkatakrishnan, “SLEUTH: real-
time attack scenario reconstruction from COTS audit data,” in 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017., 2017, pp. 487–504.

[60] Y. Ji, S. Lee, M. Fazzini, J. Allen, E. Downing, T. Kim, A. Orso, and
W. Lee, “Enabling refinable cross-host attack investigation with effi-
cient data flow tagging and tracking,” in USENIX Security Symposium,
2018.

[61] I. Katriel, L. Michel, and P. Hentenryck, “Maintaining longest paths
incrementally,” Constraints, vol. 10, no. 2, pp. 159–183, Apr. 2005.

[62] Y. Kawakoya, E. Shioji, M. Iwamura, and J. Miyoshi, “Api chaser:
Taint-assisted sandbox for evasive malware analysis,” Journal of
Information Processing, vol. 27, pp. 297–314, 2019.

[63] S. T. King and P. M. Chen, “Backtracking intrusions,” in SOSP ’03.
ACM, 2003.

[64] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[65] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for
classification of malware system call sequences,” in Australasian Joint
Conference on Artificial Intelligence. Springer, 2016, pp. 137–149.

[66] D. Korczynski and H. Yin, “Capturing malware propagations with
code injections and code-reuse attacks,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017, pp. 1691–1708.

[67] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Automat-
ing mimicry attacks using static binary analysis,” in USENIX Security
Symposium, vol. 14, 2005.

[68] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. F. Ciocarlie et al., “Mci: Modeling-based causality
inference in audit logging for attack investigation.” in NDSS, 2018.

[69] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning, 2014,
pp. 1188–1196.

[70] K. H. Lee, X. Zhang, and D. Xu, “High Accuracy Attack Provenance
via Binary-based Execution Partition,” in NDSS, 2013.

[71] ——, “LogGC: Garbage collecting audit log,” in CCS. New York,
NY, USA: ACM, 2013, pp. 1005–1016.

[72] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008
Eighth IEEE International Conference on Data Mining. IEEE, 2008,
pp. 413–422.

[73] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security,” in NDSS,
2018.

[74] S. Ma, X. Zhang, and D. Xu, “ProTracer: Towards Practical Prove-
nance Tracing by Alternating Between Logging and Tainting,” in
NDSS, 2016.

[75] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[76] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through
system call sequence and argument analysis,” IEEE Transactions on
Dependable and Secure Computing, vol. 7, no. 4, pp. 381–395, 2008.

[77] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[78] M. Mimura and H. Tanaka, “A linguistic approach towards intrusion
detection in actual proxy logs,” in International Conference on Infor-
mation and Communications Security. Springer, 2018, pp. 708–718.

[79] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu,
and S. Jaiswal, “graph2vec: Learning distributed representations of
graphs,” arXiv preprint arXiv:1707.05005, 2017.

[80] D. Nguyen, J. Park, and R. Sandhu, “Adopting provenance-based
access control in openstack cloud iaas,” in International Conference
on Network and System Security. Springer, 2014, pp. 15–27.

[81] S. Omar, A. Ngadi, and H. H. Jebur, “Machine learning techniques for
anomaly detection: an overview,” International Journal of Computer
Applications, vol. 79, no. 2, 2013.

[82] R. Paccagnella, P. Datta, W. U. Hassan, C. W. Fletcher, A. Bates,
A. Miller, and D. Tian, “Custos: Practical tamper-evident auditing of
operating systems using trusted execution,” in Proc. of the Symposium
on Network and Distributed System Security (NDSS), 2020.

[83] K. Padmanabhan, Z. Chen, S. Lakshminarasimhan, S. S. Ramaswamy,
and B. T. Richardson, “Graph-based anomaly detection,” Practical
Graph Mining with R (2013), vol. 311, 2013.

[84] M. Pagliardini, P. Gupta, and M. Jaggi, “Unsupervised learning of
sentence embeddings using compositional n-gram features,” arXiv
preprint arXiv:1703.02507, 2017.

[85] C. Parampalli, R. Sekar, and R. Johnson, “A practical mimicry
attack against powerful system-call monitors,” in Proceedings of the
2008 ACM symposium on Information, computer and communications
security. ACM, 2008.

[86] J. Park, D. Nguyen, and R. Sandhu, “A provenance-based access
control model,” in Privacy, Security and Trust (PST), 2012 Tenth
Annual International Conference on. IEEE, 2012, pp. 137–144.

[87] G. Pék, Z. Lázár, Z. Várnagy, M. Félegyházi, and L. Buttyán, “Mem-
brane: a posteriori detection of malicious code loading by memory
paging analysis,” in European Symposium on Research in Computer
Security. Springer, 2016, pp. 199–216.

[88] P. Perera and V. M. Patel, “Learning deep features for one-class
classification,” IEEE Transactions on Image Processing, 2019.

[89] D. Pohly, S. McLaughlin, P. McDaniel, and K. Butler, “Hi-Fi: Col-
lecting High-Fidelity Whole-System Provenance,” in ACSAC, Orlando,
FL, USA, 2012.

[90] T. M. Research, “2019 Midyear Security Roundup: Evasive Threats,
Pervasive Effects,” Tech. Rep., Sep. 2019.

[91] M. T. Ribeiro, S. Singh, and C. Guestrin, “”why should I trust
you?”: Explaining the predictions of any classifier,” in Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge

15

Discovery and Data Mining, San Francisco, CA, USA, August 13-17,
2016, 2016, pp. 1135–1144.

[92] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. A.
Yuksel, S. A. Camtepe, and S. Albayrak, “Static analysis of executa-
bles for collaborative malware detection on android,” in 2009 IEEE
International Conference on Communications. IEEE, 2009, pp. 1–5.

[93] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and
J. C. Platt, “Support vector method for novelty detection,” in Advances
in neural information processing systems, 2000, pp. 582–588.

[94] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A
tool for massive malware labeling,” in International Symposium on
Research in Attacks, Intrusions, and Defenses. Springer, 2016, pp.
230–253.

[95] M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, “Eureka:
A framework for enabling static malware analysis,” in European
Symposium on Research in Computer Security. Springer, 2008, pp.
481–500.

[96] X. Shu, D. Yao, and N. Ramakrishnan, “Unearthing stealthy program
attacks buried in extremely long execution paths,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 401–413.

[97] M. A. Siddiqui, A. Fern, R. Wright, A. Theriault, D. Archer, and
W. Maxwell, “Detecting cyberattack entities from audit data via multi-
view anomaly detection with feedback,” in Workshops at the Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[98] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic rep-
resentations from tree-structured long short-term memory networks,”
arXiv preprint arXiv:1503.00075, 2015.

[99] N. Tavabi, P. Goyal, M. Almukaynizi, P. Shakarian, and K. Lerman,
“Darkembed: Exploit prediction with neural language models,” in
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[100] B. E. Ujcich, S. Jero, A. Edmundson, Q. Wang, R. Skowyra, J. Landry,
A. Bates, W. H. Sanders, C. Nita-Rotaru, and H. Okhravi, “Cross-app
poisoning in software-defined networking,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
2018, pp. 648–663.

[101] C. Wagner, A. Dulaunoy, G. Wagener, and A. Iklody, “Misp: The
design and implementation of a collaborative threat intelligence shar-
ing platform,” in Proceedings of the 2016 ACM on Workshop on
Information Sharing and Collaborative Security. ACM, 2016, pp.
49–56.

[102] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion
detection systems,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security. ACM, 2002.

[103] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Provenance
tracing in the internet of things,” in Proceedings of the 9th USENIX
Conference on Theory and Practice of Provenance, 2017, pp. 9–9.

[104] ——, “Fear and logging in the internet of things,” in Network and
Distributed Systems Symposium, 2018.

[105] C. Wueest, “Internet security threat report - living off the land and
fileless attack techniques,” 2017.

[106] K. Xu, K. Tian, D. Yao, and B. G. Ryder, “A sharper sense of self:
Probabilistic reasoning of program behaviors for anomaly detection
with context sensitivity,” in DSN. IEEE, 2016.

[107] X. Yuan, O. Setayeshfar, H. Yan, P. Panage, X. Wei, and K. H. Lee,
“DroidForensics: Accurate reconstruction of android attacks via multi-
layer forensic logging,” in Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, 2017.

[108] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: deep learning in
android malware detection,” in ACM SIGCOMM Computer Commu-
nication Review, vol. 44, no. 4. ACM, 2014, pp. 371–372.

APPENDIX

A. Neural Document Embedding Models

Word2vec [77] is one of the most well-known word embed-
ding methods. It uses a simple and efficient feed forward neural
network architecture called “skip-gram” to learn distributed

representations of words. Recently, Le and Mikolov proposed
Paragraph Vector (i.e., doc2vec) [69], a straightforward ex-
tension of word2vec that is capable of learning distributed
representations of arbitrary length word sequences such as
sentences, paragraphs and even whole large documents.

P W W W

onClassifier

Average/Concatenate

Paragraph Matrix

the cat satParagraph
id

Fig. 10: The PV-DM model for learning a paragraph vector.

PV-DM (Distributed Memory Model of Paragraph Vectors)
is one version of doc2vec. The core idea of PV-DM is
that a paragraph p can be represented as another vector
(i.e., paragraph vector) contributing to the prediction of the
next word in a sentence. In the PV-DM model as illustrated in
Figure 10, every paragraph is mapped to a paragraph vector,
represented by a column in a paragraph matrix and every word
is mapped to a word vector, represented by a column in a
word matrix. Then the paragraph vector and word vectors are
averaged or concatenated to predict the next word in a context.
The contexts are fixed-length and sampled from a sliding
window over the paragraph. The paragraph vector is shared
across all contexts generated from the same paragraph but not
across paragraphs. The PV-DM model uses stochastic gradient
descent to train the paragraph vectors and word vectors. After
being trained, the paragraph vectors can be used as features for
the paragraph. At prediction time, the model also use gradient
descent to compute the paragraph vector for a new paragraph.

B. Comparison of Different Anomaly Detection Algorithms

In our current implementation, we use Local Outlier Factor
(LOF) [11] as the default anomaly detector. We compare
LOF with three other novelty detection or outlier detection
algorithms in path-level accuracy. The three baseline methods
are as follows:

• Isolation Forest [72]: This algorithm divides the data
points to different partitions. Outliers need less cuts to
be separated from other points while inliers need more
cuts.

• One-Class SVM [93]: The algorithm trains a hyper-plane
which separates all the training data from the origin while
maximizing the distance from the origin to the hyper-
plane.

• Robust Covariance (Elliptic Envelope) [9]: The algorithm
assumes that the data is Gaussian distribution and learns
an ellipse.

In the evaluation of the above baseline methods, we follow
the same experiment protocol as we did for PROVDETECTOR
. For one-class SVM, we use the rbf kernel with nu set to 0.1

16

TABLE V: Comparison of different anomaly detection algo-
rithms in path-level detection accuracy.

Algorithm Precision Recall F1-Score
Local Outlier Factor 0.959 0.991 0.974
One-Class SVM 0.886 0.635 0.739
Isolation Forest 0.955 0.467 0.627
Robust Covariance 0.940 0.397 0.558

and gamma set to 0.5. For the other three models, we set the
contamination to 0.04. The results are summarized in Table V.

As shown in the table, LOF significantly outperforms other
methods in terms of recall. This justifies our design choice of
using LOF. We will further explain the results in §VI-C.

C. Additional Experiments to Interpret the Result of PROVDE-
TECTOR

In this section, we discuss several additional questions
about the results of PROVDETECTOR. These questions are:

• Why LOF outperforms the other three anomaly detection
methods?

• What is learned by PROVDETECTOR?

1) Why does LOF Perform Better: As shown in Table V,
LOF performs the best among the four evaluated algorithms.
This is because LOF does not rely on an assumption about the
distribution of the data. As shown in Figure 9, the embeddings
of paths have multiple clusters and do not follow any single
distribution.

Robust Covariance performs worst as it assumes the data
obeys approximately a Gaussian distribution and tries to learn
an ellipse to cover the normal data points. Consequently, it
may degrade when the data is not unimodal. Isolation Forest
and One-Class SVM outperform Robust Covariance because
they do not rely on any assumption on the distribution of data.
However, these two methods assume that the normal paths are
all from one cluster; thus they cannot achieve high detection
accuracy as high as LOF.

On the other hand, LOF detects anomalous data points by
measuring the local deviation of a given data point with respect
to its neighbors, making it typically suitable for the case where
different models in the data have different densities. As with
our data, different workloads may generate paths that have
different densities in distribution, thus LOF could achieve a
high detection accuracy.

2) What PROVDETECTOR Learns: There are two possible
kinds of features that PROVDETECTOR has learned: the path-
level feature or the single node level feature. If PROVDETEC-
TOR only learns single node level features, it could indicate
that PROVDETECTOR only memorizes a small set of nodes
to detect malicious paths. Still take the winword program as
an example, a “bad” detection model which only learns node
level features might predict a path as malicious if a previously
unseen process (e.g., PowerShell) node is in the path. Such
detection model can easily be evaded by attackers.

To answer this question, a naive method is to develop
baseline detection methods that only rely on single node
level features. However, this method may have a bias from

what baseline detection methods we select. Instead, we use
LIME [91], a model-agnostic prediction explanation tool, to
calculate and rank the “impact” of each single node in a path
to the final detection. LIME also produces a numeric value to
evaluate how much the final result would change, in case we
remove any node from the path.

We use LIME to calculate the “KEY” nodes for each benign
path and malicious path. A set of nodes are considered as KEY
nodes if they are the most impactful nodes identified by LIME
and PROVDETECTOR would give a different detection result if
we remove these nodes from the path. We try to find if there
is a set of KEY nodes that are common across all the paths. If
so, it indicates that PROVDETECTOR has only learned single
node level features.

In our experiment, we find that there is not a set of
KEY nodes that can be shared by most of the paths. For
benign paths, 35% of the paths have their own unique KEY
node. On average, the number of paths that share the same
KEY node is 3.18. In other words, each KEY node is used
to impact 3 benign paths on average in PROVDETECTOR.
For malicious paths, about 50% of paths have their unique
KEY node. The average number of paths that share the same
KEY node is 3.1. In summary, combined with the results in
§VI-B2, PROVDETECTOR relies on path-level features instead
of single node level features to detect stealthy malware, which
is consistent with our design motivation.

17

	Introduction
	Background and Motivation
	Living Off the Land and Stealthy Attacks
	Existing Detection Methods for Stealthy Malware
	Detecting Stealthy Malware Using Provenance Analysis

	Threat Model and Assumptions
	Problem Definition and Basic Assumptions
	Definitions
	Problem Statement

	ProvDetector
	Overview
	Provenance Graph Building
	Representation Extraction
	Rareness-based Path Selection

	Embedding
	Anomaly Detection
	Implementation

	Evaluation
	Experiment Protocol
	Detection Accuracy
	Comparison with Strawman Detection Approaches
	Comparison with Different Embedding Approaches

	Interpretation of Detection Results
	Simple Models
	Whole Graph Modeling
	Path Selection
	Robustness Against Mimicry Attacks

	Runtime Performance

	Discussion and Limitations
	Related work
	Conclusion
	References
	Appendix
	Neural Document Embedding Models
	Comparison of Different Anomaly Detection Algorithms
	Additional Experiments to Interpret the Result of ProvDetector
	Why does LOF Perform Better
	What ProvDetector Learns

