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Abstract—Tor is an anonymity network that allows clients
to browse web pages privately, but loading web pages with
Tor is slow. To analyze how the browser loads web pages, we
examine their resource trees using our new browser logging and
simulation tool, BLAST. We find that the time it takes to load a
web page with Tor is almost entirely determined by the number
of round trips incurred, not its bandwidth, and Tor Browser
incurs unnecessary round trips. Resources sit in the browser
queue excessively waiting for the TCP and TLS handshakes, each
of which takes a separate round trip. We show that increasing
resource loading capacity with larger pipelines and even HTTP/2
do not decrease load time because they do not save round trips.

We set out to minimize round trips with a number of protocol
and browser improvements, including TCP Fast Open, optimistic
data and 0-RTT TLS. We also recommend the use of databases
to assist the client with redirection, identifying HTTP/2 servers,
and prefetching. All of these features are designed to cut down
on the number of round trips incurred in loading web pages. To
evaluate these proposed improvements, we create a simulation
tool and validate that it is highly accurate in predicting mean
page load times. We use the simulator to analyze these features
and it predicts that they will decrease the mean page load time
by 61% over HTTP/2. Our large improvement to user experience
comes at trivial cost to the Tor network.

I. INTRODUCTION

The Snowden revelations showed us the massive scale and
breadth of state-level surveillance against internet activity. To
avoid privacy compromise, web-browsing clients may choose
to use anonymity networks. Anonymity networks relay user
traffic through multiple nodes across the globe, ensuring that
a single eavesdropper cannot know both the true origin and
destination of any traffic.

Tor [7] is a highly successful anonymity network with
millions of daily users. Its success can be partly attributed to
the easy-to-use Tor Browser, which is based on Firefox. One
of its chief downsides — and a barrier to further adoption —
is that web browsing using Tor Browser is notably slow. From
our data, we find that it takes a mean of 16 to 19 seconds to
load web pages over Tor Browser depending on version.

In this work, we seek to reduce load times on Tor through
improving its browser design to improve user experience.
Fabian et al. [9] studied browser load times; their results sug-
gest that a mean of 16 to 19 seconds would have corresponded
to high loading cancellation rates and low user satisfaction if
they were experienced on a normal browser. Faster load times
reduce user frustration and downtime. A better user experience
would furthermore draw in more users who were previously
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unwilling to trade off utility for its better privacy. Having
more users improves the anonymity of Tor Browser by creating
larger anonymity sets, reducing the chance that eavesdroppers
could deanonymize a Tor user using side information.

Anonymity network optimization is a well-studied privacy
problem with a decade of research, generally focused on
Tor [4], [5], [12], [14], [18]. Researchers have proposed various
solutions to optimize Tor’s performance on the network level
so as to improve user experience. On the other hand, the
problem of browser design for anonymity networks remains
academically untouched, with many open problems that are
just as significant for user experience as network design
problems. Tor Browser should be designed with Tor’s high
latency in mind, but instead it is largely identical to Firefox
with regards to how it loads web pages.

There are two chief barriers to research in browser design.
First, any changes to browser design require a lengthy imple-
mentation, validation, and data collection process to measure
results. Second, random network conditions can significantly
alter results, so that one browser design may only be perform-
ing better than another because of better network conditions.
An example of the inconsistency of browser design evaluation
can be found in the history of HTTP Pipelining. Pipelining
was implemented and standardized in Firefox and Chrome to
reduce page load times, but quickly abandoned and disabled
in both browsers as further analysis showed no significant
improvement in performance (despite earlier claims).

We overcome both barriers by creating BLAST (Browser
Logging, Analysis and Simulation for Tor), a tool capable
of logging, analyzing and simulating page loading on Tor in
minute detail. BLAST consists of a logger and a simulator.
The logger is an extensive instrumentation of Tor Browser
to analyze its page loading process; the simulator simulates
page loads based on basic information about its structure. With
BLAST, we make the following contributions:

1) Analyzing BLAST logs, we show that Tor Browser’s
high page load times are almost entirely due to incurring
round trips with Tor’s high latency, not because of limited
bandwidth or resource loading capacity. In addition, we
find that on Tor Browser, HTTP/2 does not load pages
more quickly than HTTP/1.1 with pipelining despite its
superior connection multiplexing.

2) We create a page loading simulator tool that is highly
accurate at predicting mean page load times and can do
so for a variety of browser set-ups, including HTTP/1.1,
HTTP/1.1 with pipelining, and HTTP/2.

3) We propose a number of browser and protocol improve-
ments to eliminate unnecessary round trips and, using
the BLAST simulator, we verify their positive effect on
reducing page load times. Our simulator predicts that our
proposed features combined reduce mean page load time
from 18.0s to 7.1s, a 61% decrease.



We proceed as follows. In Section II, we go through the
basics of web browsing and the implementation of BLAST.
We analyze HTTP/1.1 with pipelining and examine its short-
comings for use in anonymity network browsing in Section III,
focusing on the causes of long load times. We then analyze
HTTP/2 and compare against HTTP/1.1 with pipelining in
Section IV. Conclusions drawn from the comparison guide
our design of a better browser for anonymity networks in
Section V, where we also evaluate each of our design decisions
separately with the help of our simulator. We discuss various
browser design issues in Section VI, compare our work with
related work on anonymity network design in Section VII, and
conclude with Section VIII.

II. TOOLS AND TERMINOLOGY
A. Basics of Page Loading

To load a web page, the client’s web browser dispatches
resource requests onto TCP connections. If no connection
is available, the request is instead appended onto a resource
queue where it waits until a connection is available. We expand
on these terms in the following.

Resources. A web page fully comprises of a set of web
resources. Each resource is associated with a distinct GET
or PUT request. For example, a resource could be an HTML
document, a CSS sheet, JS code, PHP code, or an image. A
resource load can be triggered by user activity (such as typing
in a URL or clicking on a link), by another resource (such
as an image that is referred to by an HTML document), or
the browser application itself (such as an update for an add-
on). We can represent the structure of each web page as a
resource tree with each resource as a node. The root resource
is the original resource requested by the user’s activity, and a
node’s parent is whichever resource triggered its loading.

Connections. To obtain a resource, the browser establishes
TCP connections and then dispatches resources onto available
connections. The connection thus becomes active until the
resource is fully loaded. After the resource is fully loaded, the
connection becomes idle until the browser chooses to dispatch
another resource onto the connection (often immediately).
A resource cannot be dispatched onto multiple connections,
while a single connection is likely to dispatch many resources.
The browser can establish multiple connections to the same
server, up to a limit, to dispatch more resources concurrently.
Currently, Tor Browser will establish up to six simultaneous
connections to the same server.!

Resource queue. When the browser determines that a re-
source is necessary, due to user action or a reference by a
previously loaded resource, the browser adds its request to the
resource queue, and attempts to find connections to dispatch
all resources in the queue. A connection becoming established,
idle, or closed also causes the browser to attempt to dispatch
resources in the queue. If there are not enough connections
to dispatch resources in the queue, the browser may establish
a new connection, respecting limits on the total number of
connections. Thus the queue acts as a callback system to ensure
that resources can be sent as soon as conditions permit.

! The maximum number of simultaneous connections to different servers
in total is 900, which will not be reached in normal browsing.

Server
1. TCP Handshake

Client

Estabh'sh Connectjop

Connection est
2. TLS Negotiation

Client Hello

Get Res. 1
s. 1
Browser Re
Queue:
Res. 2,3, 4

Fig. 1: Client-server diagram of how the browser loads a
web page with four resources (Res. 1-4) from a server with
HTTPS. The browser only establishes one connection in this
case. Loading Res. 2—4 this way requires either pipelining or
HTTP/2.

We illustrate these concepts with a client-server diagram in
Figure 1 for a web page with four resources, all on the same
server. The client types in an HTTPS URL corresponding to
the first resource (Res. 1), whose children are Res. 2, 3, and
4. It takes three round trips to load the first resource. If the
client parses references in Res. 1 to its children before Res. 1
is fully loaded, the client would establish another connection
in an attempt to load the children (since the one shown is still
actively loading Res. 1).

It is not possible to load Res. 2, 3 and 4 as in the diagram
with original HTTP/1.1 because each connection can only load
one resource at once; more connections would be constructed
to load them, requiring more round trips. For one connection
to dispatch more than one resource simultaneously, the client
needs either HTTP/1.1 pipelining or HTTP/2. We highlight the
differences between HTTP/1.1 without pipelining, HTTP/1.1
with pipelining, and HTTP/2 in Table I for easier comparison;
we describe their mechanisms in detail in their respective
sections (Section III and Section IV).

B. What causes long page load times on Tor?

Tor’s high latency imposes a challenging condition on
browser design. Here, we characterize the types of pages that
would be especially difficult to load when the client suffers
from high latency. Later, we will investigate whether or not
Tor Browser deals with these situations effectively.

Large number of web servers. Loading a resource from
a HTTPS server necessitates up to three round trips: TCP
connection establishment, TLS negotiation, and HTTP re-
source request. A resource reusing a previously established



TABLE I: Summary of page loading restrictions under different protocols.

HTTI?/ 1.1. Wlthout HTTP/ 1..1‘ with HTTP/2
pipelining pipelining
Max. number of connections per server 6 6 1
Max. number of &multaneogs resources 6-14 100
loaded per connection
Response must be in order of request Yes Yes No

connection to the same server can avoid the first two round
trips. Therefore, a web page that distributes its resources across
more servers often requires more round trips to load, counter-
intuitively causing longer load times.

Tall resource trees. The browser can only request a resource
once its parent’s data has been received and parsed to obtain
its reference. Since it takes at least one round trip to request
and receive a resource, the height of a resource tree is the
minimum number of round trips required to load the page. In
the worst case, if each resource between the parent and the
deepest leaf of the tree is on a separate HTTPS server, we
would need three round trips per height of the tree to load the
web page (as above).

Excessive number of resources. The total number of re-
sources that can be loaded concurrently is limited by the
number of connections and the number of resources that
can be sent on each connection; we refer to this as the
resource loading capacity. On HTTP/1.1 without pipelining,
the resource loading capacity is 6. Pipelining multiplies the
resource loading capacity with the depth of pipelines (6 to 14).
On HTTP/2, the resource loading capacity is 100; few servers
have more than 100 resources. If resource loading capacity is
too low, resources would have to wait excessively in the queue
for connections to free up.

C. Categorizing load time

We use two metrics to capture user experience. First, we
use page load time, which is how long it takes 95% of all
resources to load. We do not require all resources to load
when calculating page load time because many web pages
have random advertisements or user tracking resources that
are loaded long after all other resources have been completed.
For example, a script may track user behavior and send it to the
server via a resource request every ten seconds. If we counted
those resource requests, the page load time would not be as
meaningful.

Second, we use resource load time, the time difference
between the browser requesting a resource and receiving that
resource. This metric helps us determine why pages are taking
a long time to load and how it can be resolved, as we break
down each resource loading into five events:

(1) Resource request created.

(2) Resource dispatched onto an available connection.
(3) First byte sent from the client (request).

(4) First byte received from the server (response).

(5) Final byte received from the server (response).

For a resource r, the time gap between events (1) and (5)
would be the resource load time. We refer to the gap between

events (1) and (2) as the queue wait time, (2) and (3) as the
TLS wait time?, (3) and (4) as the server wait time, and (4)
and (5) as the transfer time. ldeally, we would want server
wait time to be one round-trip time, and other types of load
times to approach zero.

We also categorize page load time using the resource tree.
We sum up the categorized resource load time of all resources
between the final resource (counting 95% of resources) and
the root resource, following the path of parenthood in the
resource tree. If the final byte of a resource was received after
its child resource was created, then its contribution to page
transfer time is accordingly cut. Any time gap between the final
byte received and the child’s resource request being created
is classified as non-categorized time. Non-categorized time is
usually a minuscule time gap due to the browser parsing the
previous resource, although it can also be due to timed scripts.

III. HTTP/1.1 PIPELINING

In this section, we analyze HTTP/1.1 with pipelining.
We investigate the usefulness of pipelining for Tor Browser
and whether or not observed or suspected issues hamper its
usefulness. We start with a description of how pipelining
works in Section III-A, follow up with some potential issues
in Section III-B, describe our data collection methodology in
Section III-C, and analyze pipelining performance to determine
the impact of these potential issues in Section III-D.

A. Pipelining in Tor Browser

Normally, resources can only be dispatched on newly
established or idle connections that have finished receiving
resources. HTTP Pipelining (or simply pipelining) allows re-
sources to be dispatched on active connections without waiting
for a response for previous resources. The server should
respond to each resource request in order. Each pipeline has
a maximum depth, the maximum number of resource requests
that can be sent simultaneously on a connection. The browser’s
resource loading capacity for a server is therefore equal to
the number of concurrent connections allowed (six) times the
depth of each pipeline.

Pipelining has a difficult history with HTTP. Pipelining was
briefly implemented and deployed in both Firefox and Chrome
for HTTP/1.1, though it was quickly disabled in both due to a
lack of noticeable load time improvement. This was not before
pipelining became standard in HTTP/1.1, and as a result all
HTTP servers should support pipelining (no extra negotiation
is required to initiate pipelining). However, many servers still
respond incorrectly to pipelining.

2 This gap is the TLS wait time because resources do not wait for TLS
completion before being dispatched onto a connection, but they cannot be
written as network bytes before TLS negotiation is complete.



Partly as a response to website fingerprinting attacks, Tor
developers enabled randomized pipelining on Tor Browser
after it had been disabled on major browsers. This implementa-
tion also contains several other features, including randomized
pipeline depth and randomized resource loading order. How-
ever, after a few years, Tor developers also disabled pipelining,
as it had “become a maintenance burden” due to its large
amount of difficult-to-understand code. Pipelining code was
entirely removed from newer versions of both Firefox and Tor
Browser in favor of using HTTP/2.

Despite its problems, pipelining does reduce load times on
Tor Browser. Across our data set, the largest server for each
web page has a mean of 34.4 resources. Without pipelining,
only 6 resources can be loaded in one round trip, round
trips being the prohibitive bottleneck of browsing times on
an anonymity network. Pipelining is important for expanding
the limited resource loading capacity of HTTP/1.1.

B. Issues with Pipelining

We discuss some issues with pipelining as a protocol in
the following.

Head-of-line blocking. Head-of-line blocking refers to the
restriction that the web server can only respond to each
requested resource following the order in which the client
requested them. Later resources can suffer delays waiting for
the pipelined connection to load earlier resources, with larger
resources causing greater delays.

Pipelining errors. Despite the standardization of pipelining
support in HTTP/1.1, many servers still respond to pipelining
incorrectly, leading to connection errors in the browser. These
connections are discarded and the resource requests must
be re-sent in another connection, causing delays. This is
especially detrimental if a large number of resource requests
were pending on that connection. The browser will then cease
to use pipelining on that server for the given page load, losing
the benefits of pipelining.

Choosing pipeline depth. While a larger pipeline depth
increases the total resource loading capacity of the browser, it
also exacerbates both head-of-line blocking and the potential
delay caused by loading errors. On the other hand, a larger
pipeline depth is helpful for loading servers with many small
resources in parallel. Another way to increase resource loading
capacity is to use more connections in parallel, but this causes
issues with some routers and increases memory consumption
for servers.

C. Data collection and methodology

To answer our questions about pipelining performance, we
collect data on two versions of Tor Browser: Tor Browser 8.5
(TB-8.5), the latest version of Tor Browser at data collection,
uses HTTP/2; Tor Browser 6.5 (TB-6.5), an earlier version,
instead uses pipelining. To eliminate extraneous factors in
our comparison between these protocols, we reintroduced
pipelining code to TB-8.5, where it had been removed. The
results in this section (to follow) are chiefly based on TB-8.5
with pipelining. Later, in Section IV, we compare TB-8.5 with
TB-6.5.

We collected all data using a single computer connected
to Tor. Tor consists of multiple nodes around the world and
we disabled guard selection so that new entry nodes would be
selected for every Tor circuit, allowing for greater coverage of
the global Tor network. Tor connections serve as the bandwidth
bottleneck so we did not attempt to limit our own bandwidth,
and it is responsible for almost all of the round trip times. In
experiments where we compared the performance of different
browser designs, we visited the same page with each browser
on the same circuit, and then we dropped the Tor circuit before
moving on to the next browser design. Using the same circuit
for the same instance allows us to compare page loads directly
(as different circuits may access different versions of the page
due to localization of the exit node), and using different circuits
between different pages lets us capture a wider range of the
Tor network.

We visited three sets of pages for each experiment: (1) Top
10 pages, 50 times each; (2) Top 200 pages, 5 times each; and
(3) Top 1000 pages, 1 time each. We visit the home pages
of Alexa’s top 1000 pages as they were the most popular,
to best represent likely user experience of the network. In
total, we have 2500 page instances, although some instances
did not load properly and were discarded (e.g. pages from
Chinese servers were often inaccessible to Tor). These pages
were visited from June 2019 to August 2019. We define a
properly loaded page as a page where at least 2 resources
were fully loaded. In comparative experiments, if an instance
of the page was not loaded properly for any of the browser
versions we were comparing, we also excluded that instance
from the experiment for the other browser versions.

D. Data Analysis

We analyze the features and implementation of pipelining
on Tor Browser. We begin with an analysis of the overall per-
formance in loading times, and proceed by analyzing whether
or not each of the above issues hampers the usefulness of
pipelining.

1) Overall performance: Over our pipelining data set,
pages had a mean of 104 resources and the mean page size
was 2.1 MB, so the mean resource size was 20kB, but the
median resource size was only 3 kB: the majority of resources
were very small. The resource tree had a mean height of 15.4.
The top 10 sites were much smaller other sites, with a mean of
only 55 resources compared to 116 for the top 200 and 118 for
the next top 1000, and a mean page size of 1.3 MB compared
to 2.3 MB and 2.2 MB respectively. The mean page load time
over our whole pipelining data set was 16.4s. This was 13.7s
for the top 10 sites, and 19.6s for both the top 200 sites and
the top 1000 sites.

2) Categorization of load time: For every page in our data
set, we break down its load time into the four categories
described in Section II-C, and show them in Figure 2. Roughly
5.85 (36%) of page load time was due to resources waiting in
queue for connections; the same amount was incurred again
waiting for servers to respond to resource requests (as Tor has
a high latency). Only around 0.91s (5.6%) of page load time
was due to transfer time.

The same figure shows that resources took 2.85s to load
on average, but only 0.079s (2.7%) of resource load time was
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Fig. 2: Categorization of mean page load time and resource
load time on the pipeline data set. Note the different scales
of the y-axes.

due to transfer time. A much greater portion of resource load
time, 1.56s (55%), was spent waiting in queue. This is not
sufficiently explained by resources waiting for connections to
be established as it far exceeds one round-trip time. We show
the distribution of queue wait times in Figure 3. Around a third
of resources did not have to wait in queue as an established
connection was already available, but more than half of them
had to wait for more than half a second. and 30% had to wait
for more than a second. These long queue wait times could
indicate a lack of resource loading capacity or pipelining errors
causing connection closure.

3) Analysis of potential issues: We analyze the possible
issues raised in Section III-B.

Head-of-line blocking. Head-of-line blocking can delay
pipelined resource loading because a resource cannot begin
transferring until the previously pipelined resource has fin-
ished. We measure the block time of a resource by summing
up the transfer times of all resources pipelined before it, only
counting resources that were dispatched onto the same pipeline
within 0.01s of each other. We set this restriction to ensure
that we are considering resources that were indeed blocked by
previously pipelined resources. Among these resources (33%
of all resources), the mean block time was 0.25s. Only 1%
of resources suffered a head-of-line blocking time over 0.55s,
and if we removed those, the mean block time drops to 0.05s,
insignificant compared to the mean resource load time.

Therefore, a tiny portion (around 0.2%) of resources suf-
fered the majority of all head-of-line blocking. These large
block times suggest that head-of-line blocking was rarely
severe and had little impact on load times in the vast majority
of pages. Note that block times are not necessarily caused by
pipelining: they may be due to connection stalling issues, Tor
circuit issues, server unresponsiveness, etc.

Pipelining errors. Pipelining support is required in HTTP/1.1
web servers. Surprisingly, we found that a significant portion of
HTTP/1.1 pipelines encountered errors and were closed prema-
turely. Out of the 118,746 resources we found that attempted
to use pipelining, 25,679 (22%) of them were dispatched on
connections that were closed before loading them completely,
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Fig. 3: Cumulative distribution function for queue wait times
per resource, with a cutoff of 20 seconds.

forcing them to dispatch on a new connection. On the other
hand, only 68 out of the 73,710 non-pipelined resources were
sent on prematurely closed connections.

We found that most servers seemed to support pipelining
correctly: 58% of the servers in our database that pipelined at
least 2 resources did not prematurely close connections. It is
not clear exactly why the other servers do not support pipelin-
ing: we observed that they simply aborted the connection
without explanation some time after pipelined requests were
sent. The large error rate of pipelining hampers its usefulness.

Choosing pipeline depth. As poor resource loading capacity
increases queue wait time, and queue wait time is a significant
portion of load time, it would seem that increasing resource
loading capacity should help ameliorate long load times. In
TB-8.5 with pipelining, we used 6 simultaneous connections
per server and a pipeline depth of 6 (referred to as 6-6), and
we change both these parameters to produce three more set-
ups with higher resource loading capacity: 6 connections and
20 pipeline depth (6-20), 20 connections and 6 pipeline depth
(20-6), and 20 connections and 20 pipeline depth (20-20). In
comparative experiments, we found that, disappointingly, none
of these parameter changes produced any notable difference in
load time. The mean load time was 16.4s for 6-6 and 20-6,
16.3 s for 6-20, and 16.5s for 20-20.3

These results show that further increasing resource loading
capacity on pipelining does not reduce page load time even for
pages with many resources. In other words, pipelining already
gives enough resource loading capacity.

Summary. Head-of-line blocking had little effect on page load
times. We also found that adding to the resource loading ca-
pacity of pipelining by increasing the number of simultaneous
connections and pipeline depth do not affect page load times;
this suggests that pipelining had sufficient resource loading
capacity. However, pipelines often close prematurely for a
large portion of servers.

3 As a sanity check, we confirmed that our parameters do affect the page
load time by testing an intentionally poor setup of 1 connection and 100
pipeline depth, which had a mean load time of 21.2s.



IV. HTTP/2

In this section, we analyze HTTP/2 and its impact on Tor
Browser. This section is structured similarly to Section III: We
describe how HTTP/2 works in Section IV-A, list potential
issues in Section IV-B, and analyze real data in Section IV-C.

A. HTTP/2 in Tor Browser

Built on Google’s experimental SPDY protocol, HTTP/2
changes how web pages are loaded: it uses multiplexed con-
nections instead of multiple connections. The client establishes
a single multiplexed connection with each server, able to carry
100 resource requests.* The responses can arrive in any order,
and requests can be sent at any time without waiting for
responses. To manage concurrent resource loading, the web-
browsing client enforces flow control on incoming responses.

HTTP/2 replaces HTTP/1.1 pipelining on newer versions of
Tor Browser. To our knowledge, its performance on anonymity
networks is largely unevaluated. Web servers have increasingly
adopted HTTP/2. On all major browsers, only pages using TLS
can be loaded with HTTP/2.

B. Issues with HTTP/2

We discuss some potential issues with HTTP/2 here. Later,
we analyze whether or not they affect web browsing.

Head-of-line blocking. With HTTP/2, all resources on the
same server are loaded over a single TCP connection. Since
TCP packets must arrive in order, a stalled connection will
delay every packet and thus every resource currently being
loaded on that connection. In other words, HTTP/2 still suffers
from head-of-line blocking on the transport layer (TCP),
though it does not cause head-of-line blocking by itself.

Transfer rate. Since a random delay is more likely to affect
many resource loads on HTTP/2, the use of a single TCP
connection renders the client more vulnerable to congestion.
These issues may be exacerbated by poor network conditions
on anonymity networks like Tor, and would be reflected in a
poor transfer rate.

Premature connection close. We saw that pipelined con-
nections were often closed prematurely after receiving an
erroneous response. If HTTP/2 connections were to be closed
prematurely, even more resources in flight would be dropped
and have to be requested again, delaying the page load.

Extra round trip for ALPN negotiation. ALPN (Application-
Layer Protocol Negotiation) lets the client determine if the
server supports HTTP/2, and the protocol requires one round
trip. In Tor Browser, we observed that ALPN negotiation hap-
pens after TLS negotiation is complete, even though ALPN’s
specifications claim that it should be negotiated alongside TLS.
This implies that HTTP/2 can only begin one round trip after
TLS is negotiated. For the duration between TLS completion
and ALPN completion, TB-8.5 defaults to using HTTP/1.1
without pipelining to load resources.

4 This parameter can be changed in the browser.
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Fig. 4: Categorization of mean resource load time and page
load time on our data set, comparing HTTP/2 on TB-8.5
(http2), pipelining on TB-8.5 (pipeline), and HTTP/1.1
on TB-6.5 (o1d-pipeline). Note the different scales of the
y-axes.

The extra round trip time slows down the build-up of
resource loading capacity in HTTP/2: it can only load six
resources in the first round trip, while pipelining can load six
times the pipeline depth. This undermines the advantage of
using HTTP/2.

C. Data Analysis

We analyze HTTP/2 by comparing it with HTTP/1.1 with
pipelining. To do so, we compare three Tor Browser setups:
TB-8.5 with HTTP/2 (http2), TB-8.5 with pipelining and
no HTTP/2 (pipeline), and TB-6.5 with pipelining and no
HTTP/2 (01d-pipeline). Note that we use HTTP/2 to refer
to the protocol and http2 to refer to the data set where
we attempt to load pages on Tor Browser using HTTP/2; in
particular, some servers in http2 do not support HTTP/2.

1) Overall performance: We show the mean page load time
over our full data set in Figure 4. Our results show that HTTP/2
performs a little worse than HTTP/1.1 pipelining on TB-8.5,
and slightly better than pipelining on TB-6.5.

Focusing on the latter result first, the poor performance of
TB-6.5 may be because of several flaws later fixed in TB-8.5.
First, TB-6.5 can only establish connections to a server one
at a time, starting the next connection establishment after the
previous has been established. This slows down the ramp up
for resource loading capacity. Second, there are several issues
in its pipelining implementation described in Appendix A, and
we fixed them when re-implementing pipelining in TB-8.5.
TB-6.5 has one significant improvement for page loading time
that is not found in TB-8.5, optimistic data (described later in
Section V-C).

On the other hand, the poor performance of HTTP/2 is
surprising. We explore preliminary explanations for this result
in the following.

Did servers support HTTP/2?

We found that in http2, 95% of web pages had at least
one resource sent using HTTP/2.> Overall, 49% of resources

5 This statistic should not be interpreted as an accurate measurement of
HTTP/2 adoption as we only analyze Alexa’s top 1000 pages.



were sent on HTTP/2. (Note that servers with few resources
would never get to use HTTP/2 even if they did support it,
because of ALPN negotiation.) HTTP/2 support and usage is
therefore widespread and well-captured in our data set.

Did a small portion of pages behave poorly?

To determine if a small amount of faulty data biased the
mean result, we examine the page load time difference be-
tween http2 and pipeline by directly comparing between
instances on the same circuit (using the methodology in Sec-
tion III-C). The page load time difference was —0.74 s+6.54 s:
the standard deviation was far higher than the mean, suggesting
http2 was not consistently inferior. If we discarded the top
and bottom 20% of page load time differences, the result would
be —0.11 s +1.30 s. The median group of results performed
relatively similarly.

Did certain types of pages behave poorly?

We extracted a number of features from each page and
used Pearson’s r to determine if they were correlated to the
loading time difference between http2 and pipeline. The
maximum 7 is 1 and smaller values indicate less correlation.
We tested the following features: number of resources, size
of page, height of resource tree, and percentage of HTTP/2
resources. Our results show that none of these features were
notably correlated with the loading time difference, the highest
r being 0.22 between the number of resources and the loading
time difference while other r values were under 0.15. This
means that poor (or good) performance of HTTP/2 compared
to pipelining was not localized to specific types of pages.

Therefore, these preliminary questions do not explain the
lack of performance improvement of HTTP/2. We explore the
issue further in the following.

2) Categorization of load time: We compare page load
times and resource load times on http2, pipeline and
old-pipeline in Figure 4, again using the methodology in
Section II-C. We see that http2 had a shorter resource load
time, with an especially notable gain on queue wait time: this is
because resources do not have to wait for HTTP/2 connections
to finish loading previous resources. However, for overall page
load time, the queue wait time advantage on http2 vanishes.
While on average resources have to wait about 40% less in
http2, the resources that contribute to page load time do
not experience such a beneficial decrease in queue wait time.
Note that a resource loaded on a new, separate server waits
for an equal amount of time in HTTP/2 and in HTTP/1.1
with pipelining. If these resources are the ones determining
page load time, this could explain the lack of performance
improvement of HTTP/2.

3) Analysis of potential issues: We turn to the afore-
mentioned issues in HTTP/2 to determine if they impeded
performance.

Head-of-line blocking. We first determine if the use of a
single connection causes head-of-line blocking. To do so, we
measured resource load time specifically for resources sent on
HTTP/2 connections that were already loading other resources.
Those 5,651 resources never had to wait in queue or connection

establishment, but we did find that they waited 1.38s on aver-
age for server response and took 0.40s to transfer, compared
to 0.99s and 0.15s respectively overall on http2. This does
suggest that HTTP/2 head-of-line blocking is sometimes a
problem on Tor Browser: a server that has already established
an HTTP/2 connection responds and transfers a little more
slowly.

Transfer rate. To find out if the use of a single connection
in HTTP/2 affected transfer rates, we summed up the resource
sizes and transfer times of all resources over 500 kB in size.
Dividing the two, we found the data transfer rate on http2
to be 164kB/s and pipeline to be 347kB/s. This does
not necessarily mean that HTTP/2 is slower, however: the
data transfer rate is calculated on a per resource basis, and
HTTP/2 allows multiplexing while pipelining does not. On
the top 10 sites, transfer rate on http2 and pipeline were
respectively 343kB/s and 420kB/s, a small difference.

Premature connection close. Out of the 99,947 resources we
dispatched on HTTP/2 connections, only 7 of them could not
be loaded before the connection closed prematurely: HTTP/2
connections rarely failed unlike pipelining connections.

Extra round trip for ALPN negotiation. Since we cannot
eliminate this round trip in practice, we cannot analyze its
effect on page loading yet. To do so, we need the second
component of BLAST, the simulator, described in the next
section; the simulator will reveal that the ALPN negotiation
round trip has a minor effect on page load time.

Summary. Despite the fact that there appear to be no sig-
nificant issues with HTTP/2 that affected page loading on
Tor, pages are loaded slightly more slowly in http2 than
pipeline. The main advantages of HTTP/2, superior con-
nection multiplexing and higher resource loading capacity, do
not matter for page loading on Tor Browser. In addition, TB-
8.5 uses a poor fall back for servers that do not support HTTP/2
— HTTP/1.1 without pipelining.

V. DESIGNING A BETTER BROWSER
A. What causes long load times?

Our analysis of HTTP/1.1 with pipelining showed that
increasing the number and depth of pipelines did not improve
page load time. Comparing HTTP/1.1 with pipelining and
HTTP/2, we found that HTTP/2 connection multiplexing did
not improve page load time either. Furthermore, whenever their
performance differed, such a difference was not due to page
structure or size. The lack of improvement in HTTP/2 was not
due to any issues with using a single TCP connection, either.

All of these observations suggest that increasing resource
loading capacity (whether with more/deeper pipelines, or with
HTTP/2 multiplexing) does not solve the issue that loading
pages on Tor Browser is slow. Furthermore, our categorization
of page loading time also suggests that increasing bandwidth
would not significantly speed up page loading either. This
would imply that loading time on Tor Browser is chiefly
determined by the minimum number of round trips required to
load a page, which we refer to as minRT'T. In our data, we
calculated the r correlation coefficient between minRTT and



page load time to be 0.57; detailed results are presented in the
Appendix. In addition, increasing resource loading capacity
and increasing bandwidth would not change minRTT": this
would explain why they do not speed up page loading.

Therefore, the best way to speed up page loading on
Tor Browser should be to reduce the number of round trips
required to load a page. We cannot do so by simply changing
browser parameters; extensive work with new browser code
and network-wide infrastructure is required to achieve this.
Since the implementation cost of these proposed features is
high, we use simulation to determine their usefulness first so
as to motivate implementation.

B. Simulation

The BLAST page loading simulation reads basic informa-
tion about the structure of the page and generates network
events corresponding to its loading. The simulator takes exactly
the following information as input:

e The resource tree: The list of resources, their sizes, and
their parents;

e The list of servers, which resources each server hosts, and
whether it supports TLS, pipelining, and HTTP/2;

e The mean bandwidth and round-trip time.

Note that the simulator does not use any resource timing
information; it only needs to know static information about
the web page to be simulated. It simulates TCP connection
establishment, TLS, and ALPN, and the dispatching and load-
ing of every resource. It outputs when and how each resource
was loaded, allowing us to categorize load times as before.
It simplistically uses a constant bandwidth rate and round-trip
time. While we could randomize those, as we are using the
simulator to guide browser design, removing an unnecessary
element of randomness ensures that faster load times are a
consequence of better design.

Our simulator does not simulate random errors and delays,
congestion control on Tor, HTTP/2, or TCP, or random col-
lapse of connections during loading. Despite these limitations,
we demonstrate that our simulator can accurately predict load
times. We set the round-trip time to 0.8 s and the bandwidth to
164 kB/s for ht tp2 and 347 kB/s for pipeline; these were
the same numbers we measured from real data in Section IV-C.
The simulator finds a mean page loading time of 18.0s for
http2 and 17.1s for pipeline, compared to 18.4s and
17.6's in our real data sets respectively. The simulated numbers
are not only respectively accurate, the page loading time
difference between http2 and pipeline is nearly identical
between simulation and reality. This shows the value of our
simulator as one of our main findings, “HTTP/2 is slightly
slower than HTTP/1.1 with pipelining on Tor Browser”, could
have been obtained through the BLAST simulator.

We show a scatter plot of real versus simulated page
load times in Figure 5 for http2. The correlation is strong
at » = 0.63, and the simulator produces an accurate mean
page loading time; however, the simulator is not necessarily
accurate at the page instance level, in particular because it is
not possible to simulate random round-trip times, delays, and
congestion.
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Fig. 5: Simulated versus real page load times on our data set
for http2, showing Pearson’s correlation r = 0.63.

C. Proposed features

We propose six improvements to Tor Browser to speed up
page loading here, with varying barriers to implementation:

1) Requires changing browser code/protocol implementa-
tion: TCP Fast Open, optimistic data, O-RTT TLS.

2) Requires new infrastructure: Redirection database,
HTTP/2 server database, prefetching database.

We decided that we would base our changes on HTTP/2
rather than pipelining. Due to the significant error rate under
pipelining and the fact that Firefox and Tor are no longer
willing to support pipelining code, improving HTTP/2 perfor-
mance is a more realistic priority.

Our proposed new infrastructure (additional databases for
client use) would not require cooperation from web servers
or any third-party entity. We propose that they should be
distributed by Tor directory servers, which already distribute
Tor relay information, to Tor clients on startup. We describe
each of these proposals in the following.

TCP Fast Open. TCP Fast Open is a feature of TCP that
eliminates a round trip in the establishment of TCP connections
if the client has previously established another TCP connection
to the server. By sending a cryptographic cookie in the initial
SYN packet, the client validates her identity to the server. The
client would send application data — specifically, a GET/PUT
request — alongside the initial SYN packet and the server can
immediately respond to that request. TCP Fast Open has been
experimentally implemented in the latest version of Firefox,
though it is not currently enabled in Tor Browser.

Optimistic data. In 2010, Goldberg proposed the use of
optimistic data to reduce round-trip times on Tor [10]. We
saw in Figure 1 that it takes two or three round trips to
load a resource from a server without a prior connection.
With optimistic data on an unencrypted connection, the client
would send the resource request along with the connection
establishment request; the Tor exit node holds the resource
request until the connection is established, and then sends
the resource request. This reduces the two round-trip times
between client and server to one round-trip time between client
and server, plus one (much smaller) round-trip time between
the Tor exit node and the server. On an encrypted connection,
the client would instead send the first TLS negotiation packet



(Client Hello) along with the connection establishment request,
which saves about one round trip as well.

Optimistic data was implemented in 2013 with changes to
Tor and by hacking a shortcut into the browser SOCKS state
machine, but this hack was removed recently because it was
not compatible with newer browser code. We could not re-
implement optimistic data using the previous hack, but we can
test whether a full implementation is useful with simulation.

0-RTT TLS. Normally, TLS negotiation takes one extra
round trip after connection establishment, during which the
connection cannot be used to send resource requests. TLS
1.3 introduces O-RTT session resumption: it allows clients
to remember negotiated keys with servers and send them
back with session resumption tickets. While there are security
concerns with O-RTT regarding forward secrecy and replay
attacks, researchers have proposed fixes to resolve these issues
and some browsers and servers have enabled it [17]. We do
not implement O-RTT TLS, but we want to evaluate its effect
on resource load times and page load times to understand how
much it might help Tor Browser. HTTP/3 (HTTP over QUIC)
also promises a reduction in round-trip times by allowing a
single QUIC handshake to establish connection and negotiate
encryption.

Combining the above, we can reduce the number of round
trips incurred to load a resource to a single round trip over Tor,
plus a (much smaller) round trip between the Tor exit node
and the server. Theoretically, we thus approach the minimum
number of round trips without changing the resource tree of
the web page.

Redirection database. Many pages in our data set redi-
rect the client upon initial page navigation. For example,
youtube.com redirects to https://youtube.com, which then redi-
rects to https://www.youtube.com. Each redirection incurs mul-
tiple unnecessary round trips. Due to our high latency, redirects
are quite detrimental to page load times.

HTTPS Everywhere, included in Tor Browser, does partly
reduce the number of redirects: it relies on a user-maintained
database to replace clicked or user-typed URLs with their
encrypted versions, browser-side. In the above, HTTPS Every-
where would eliminate the first redirect, but not the second one.
Further, HTTPS Everywhere does not deal with localization.

We propose that Tor Browser should reduce redirects with
an extensive redirection database that also takes care of local-
ization redirects.® We generate this database automatically by
parsing redirection responses from web servers. The browser
UI should inform the client when it skips redirects using the
database, so that the client can revert or disable rules that are
inconvenient.

HTTP/2 database. We investigate the use of a list of HTTP/2
servers for Tor clients to eliminate the extra round trip to
negotiate ALPN (discussed in Section IV-B). Even if there
are erroneous entries in the database, which should be rare as
servers that start supporting HTTP/2 would not abandon it, the

6As localization is based on the Tor exit relay’s location, not the user’s
preference, it usually redirects Tor users to a wrong page.

browser would simply default to using HTTP/1.1 after failing
to establish a HTTP/2 connection.

Prefetching database. If the client knew which resources
were associated with a page before parsing resource responses,
she could request these resources as soon as page loading
begins. This flattens the resource tree structure and eliminates
the otherwise necessary round trips between resources and
their children resources. Some resources cannot be effectively
prefetched because they are based on randomized or dynamic
activity (e.g. advertisements). We automatically generate a
resource prefetching database from BLAST logs and attempt
to prefetch any resource that occurs in almost all instances of
a web page.”

D. Evaluation of proposed changes

We evaluate all the browser improvements we proposed
above using our simulator here. We evaluate each change
both cumulatively and separately. In the cumulative evaluation,
a latter improvement in the following list contains all the
improvements before it:

1) Original Tor Browser with HTTP/2
2) TCP Fast Open

3) Optimistic data

4) O-RTT TLS

5) Redirection database

6) HTTP/2 database

7) Prefetching database

In Figure 6, we show the mean page load time and
resource load time according to the BLAST simulator. With the
exception of the HTTP/2 database, each added feature clearly
reduces both load times. Resource prefetching using a database
produces the largest improvement, alone able to reduce mean
page load time by 35%; all features combined produce a 61%
decrease in mean page load time, from 18s to 7.1s. We give
details on each of the improvements in the following.

TCP Fast Open. TCP Fast Open provides an advantage only
if the client has already established a connection to the server
and needs to establish another. We found that 18% of our
established connections benefited from TCP Fast Open, cutting
down one round trip with each connection.

Optimistic data. Optimistic data effectively shortens the round
trip for HTTP request right after connection establishment to
the much shorter round trip between the exit node and the web
server. To simulate this, we reduce the round-trip time in that
case to 0.1s. Optimistic data speeds up page loading greatly
while requiring no extra infrastructure.

0-RTT TLS. O-RTT TLS has been prototyped for session
resumption and there is currently a proposal to implement it
in HTTP/3 without session resumption. If we discard HTTP/3
(true) O-RTT TLS because its implementation is not expected
to come soon, mean page load time with all other improve-
ments increases from 7.1s to 9.2s.

7 For clarity, our technique is unrelated to HTMLS5 link prefetching, a
technique for websites to use an HTML prompt to instruct clients to load
resources.
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Fig. 6: Mean page load time (a, b) and mean resource load time (c, d) for our suggested improvements as predicted by the
BLAST simulator on resource trees parsed from http2. (a) and (c) show cumulative improvement (each improvement is applied
on top of previous ones), while (b) and (d) show individual improvement.

Redirection database. We automatically built a redirection
data set using BLAST logs for our pages and modelled the
use of such a data set. The top 200 pages had a mean of
1.17 redirects, allowing us to save two or three round trips for
each redirect. This approach is however too optimistic since
we know all the pages we want to load. We could have created
a data set with more pages — top 10,000 pages, for example
— but users will still visit pages outside of this set. On the
other hand, it is usually only the top sites that use one or more
initial redirects, as less popular websites are less likely to have
multiple servers, localization, or URL canonicalization.

To simulate a failure rate, we only used redirection for
the top 200 pages, simulating a 60% hit rate where only hits
produce a benefit and misses do not affect page loading.

HTTP/2 database. The use of an HTTP/2 database — to
allow clients to benefit from HTTP/2 without waiting for
an extra round trip during which she has limited resource
loading capacity — produced almost no discernible benefit
for page load times. This confirms that further increasing
resource loading capacity is not a concern for page loading
on anonymity networks.

Prefetching database. We only attempted to prefetch a re-
source if it occurred in 90% or more of the page’s instances.
For the top 10th to 200th pages, since we have no more than 5
instances each, this means that all instances of the page must
contain that resource. Since we loaded instances of every page
over two months, the resources we chose to prefetch certainly
have a long lifespan. Similar to the redirection database, we
only apply prefetching to the top 200 pages so that the hit rate
is 60%.

Despite our conservative strategy, we prefetched a mean
of 55.7 resources per page among our top 200 pages, and
58% of resources were prefetched. Only 1% of the resources
prefetched using our database were false positives, i.e. not
needed for that page, so the additional bandwidth cost is quite
low. As a database to contain top 10,000 pages would still
be less than a megabyte in size, there is almost no storage
or communication cost to regularly update such a database,
which we propose Tor directory servers should distribute. A
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more aggressive database could cause more false positives to
further reduce load times; on the other hand, the benefit could
be reduced if resource loads were forced by scripts and cache
policies regardless, which we could not simulate.

E. Extensibility of improvement

We checked to see if load time decreases were spread
evenly across most pages or restricted to select pages. Over
our data set, we observed at least a 25% decrease in load time
in 89% of page instances, and at least a 50% decrease in load
time in 68% of page instances. This suggests that most web
pages benefited significantly to varying degrees. This is despite
the fact that we intentionally constructed our data set so that
a third of page instances were not in the databases and thus
did not benefit from those methods.

We also wanted to evaluate whether or not load times
decreased disproportionately in certain types of pages, such
as smaller pages, or pages with fewer resources. To do so,
we measured the performance improvement (as a percentage)
against three features: total page size, height of resource tree,
and number of resources. The respective r correlation values
were 0.20, 0.03, and 0.08; these low correlation values are a
positive result suggesting that our improvements were equally
felt by all types of pages. Further examining total page size,
we divided the data set into two equal halves (above or below
total page size of 1.36 MB), and observed a 62% =+ 24%
improvement on the lower half and a 51% =+ 31% improvement
on the upper half. The small difference between these two sets
suggests that even the largest pages benefit significantly from
our features.

It makes sense that our improvements would be generally
felt across all pages: they reduce round trip times and flatten
resource tree structures, which affect all pages. We can there-
fore anticipate that these improvements would extend beyond
Alexa’s top 1000 pages.

F. Evaluation of implementation

We implemented a prototype of two features as Firefox
add-ons for the top 200 pages: (1) redirection database, where
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Fig. 7: CDFs of differences in page load times for implementa-
tions of Redirection database and Server database compared to
original Tor Browser, tested on ten instances each of the top
200 pages collected with Tor Browser. These features were
implemented as Firefox add-ons for Tor Browser. Negative
time values indicate an improvement.

we used BLAST to automatically obtain redirects and sub-
stitute the user’s action to visit the top 200 pages without
requiring server round-trips; (2) server database, where we
used BLAST to automatically obtain the servers each web page
connects to and immediately create a connection to them when
the user accesses the top 200 pages.

The server database is a weaker version of the prefetch
database; instead of prefetching known resources on the page,
we pre-establish connections to known servers used by the
page so resources can use these connections without waiting.
There are significant technical challenges in implementing the
prefetch database for Tor Browser through an add-on.® Both
implementations are evaluated on 10 instances each of the top
200 pages through Tor Browser. Though compatible, the two
implementations were evaluated independently. We present the
results separately in the following, based on real data (not
simulation).

Redirection database. The redirection database allows the
user to skip a few unnecessary round-trips when loading a
page. On the top 200 pages, we obtained a 14.7% decrease
in page load times from 18.4s to 15.7s. Per-instance, the
decrease was 2.7s =+ b5.7s, a large variation due to the
randomness of network conditions and Tor circuits. 80% of
page instances saw a decrease in load times; 62% saw a
decrease of more than 1 second, while 12% saw an increase
of more than one second. The simulator predicted a decrease
from 17.3s to 15.5s, a similar but smaller 10.4% decrease.

Server database. The server database allows the user to pre-
establish connections with required servers at the moment page
load begins, rather than at the moment resources are required.
On the top 200 pages, we obtained a 9.4% decrease in page
load times from 18.5 s to 16.8 s. Per-instance, the decrease was
1.7s &+ 6.0s, a somewhat larger variation than the redirection
database. 66% of page instances saw a decrease in load times;
66% saw a decrease of more than 1 second, while 16% saw
an increase of more than one second.

We show a CDF of reduction in load times per instance
for both features in Figure 7. The success of these prototype

8 We observed that Tor Browser refused to use cached resources during the
same page load even though memory caching was on, although it used cached
resources in a subsequent page load.
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implementations suggest that the large load time decreases
predicted by the simulator are indeed achievable, and in fact
we see a slightly larger improvement due to the redirection
database than predicted.

VI. DISCUSSION

A. Implementation and maintenance

Our proposed features require changes to Tor Browser to
support. We anticipate that those changes would largely be
focused on the browser’s HTTP connection manager, which
governs how connections are created and how resources are
dispatched onto them:

o TCP Fast Open is already available on Firefox, although
currently disabled; TLS session resumption is also avail-
able but used by limited servers due to potential risks.
True 0-RTT TLS (without resumption) is anticipated in
HTTP-over-QUIC.

e Since the optimistic data hack no longer works (as earlier
described), implementing it would likely require a re-
writing of the connection manager’s state machine so that
it would recognize that resource requests should be sent
earlier.

e We can implement the redirection and prefetching
databases as Firefox add-ons, though to force the browser
to use prefetched resources, we would need to change
the connection manager. We would also need to make
changes to Tor itself to load those databases for the client.

e We do not propose to implement the HTTP/2 database due
to its small performance gain shown and the possibility
that future changes (such as a better ALPN implementa-
tion) would eliminate the need.

Patches to the connection manager would not be alien
to Tor Browser as it has had multiple patches to implement
its own features such as randomized pipelining. However we
saw from the failure of optimistic data in newer browser
versions that Firefox version changes can demand additional
maintenance for such features, but Tor developers may not
necessarily prioritize such maintenance. Our proposed features
require expert maintenance to ensure they remain functional
with every browser version update, especially since Firefox
is unlikely to support our features (as they are not designed
for normal browsing). The proposed databases also need to be
constantly updated, though this is easily automated.

The volatility of browser enhancements is why we believe
simulation has great value for experimental validation. Simu-
lation allows our results to be obtained on a reproducible and
verifiable medium. The predictive power of the BLAST sim-
ulator allows us to prove the usefulness of our enhancements
in order to adopt motivation and constant maintenance.

B. Network design and browser design

Previous work on improving anonymity network user ex-
perience focused on improving network design rather than
browser design (detailed in Section VII). Better network design
works hand-in-hand with better browser design in improving
user experience, but we have not seen an evaluation of how
network design would affect page load times. We perform such
an evaluation here using the BLAST simulator.
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We change the simulator parameters of mean round-trip
time (originally 0.8s) and per-resource bandwidth (originally
164kB/s), and evaluate their effects on HTTP/2 using the
simulator. We show how page load time changes based on
round-trip time and bandwidth in Figure 8.

We see that the round-trip time has an almost entirely linear
effect on overall page load times. Our choice of 0.8 s probably
does not represent Tor’s minimal round-trip time and includes
some degree of congestion. If we could reduce Tor’s mean
round-trip time by half, page load time would also be reduced
by half. In contrast, increasing bandwidth has a much reduced
effect on page load times. If we doubled the bandwidth,
page load time would decrease from 18.0s to 17.0s (5.6%
decrease). Tor’s bandwidth is sufficiently high that increasing
it further has only a minor effect on page load time.

C. Privacy implications

In this section, we analyze if and how our proposed browser
features would impact Tor’s anonymity guarantees. In doing
so, we also make recommendations on their implementation
to avoid potential compromises.

First, we note that an eavesdropping attacker could distin-
guish between someone who is using our proposed enhance-
ments and someone who is not; we do not consider this a
threat to anonymity because such features, if proven beneficial,
should be adopted universally and not by a small portion of
users. In that case, the client’s identity would not be linked to
whether or not they use these enhancements. Instead, we focus
on whether or not an eavesdropping attacker can distinguish
between someone who has visited a webpage and someone
who has not in the following.

We analyze how our proposed enhancements impact Tor’s
anonymity by first dividing them into three categories:

1) Requires fokens. TCP Fast Open and O-RTT TLS uses
tokens stored in the browser to save round trips when a
client re-connects to a previously visited website.?

2) Requires databases. These include the Redirection,
HTTP/2, and Prefetching databases; we propose that the

9 Note that if 0-RTT TLS is implemented using a single QUIC handshake
as proposed in HTTP/3, it would not require tokens.
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client loads these databases from the Tor directory servers
to aid in their web browsing alongside server descriptors,
which does not increase the client’s vulnerability since
server descriptors are already loaded.

Optimistic data does not require tokens or databases, so
it belongs in its own category.

3)

We determine if these tokens and databases cause privacy
issues by considering three types of relevant attacks in this
work.

Storage-seizing attackers. These attackers gain control over
the client’s hard disk and seek to determine what they did on
Tor Browser. To defend against these attackers, fokens should
be stored in memory only and should not leave a hard disk
trace. Databases should not be modified even if the client
would obtain a performance improvement; for example, if the
client knows that a website allows HTTP/2 and it was not
recorded in the database, she should not add that record as it
would serve as evidence that she visited the site.

Browser Fingerprinting attackers. These attackers control a
web server and seek to determine the client’s identity with
prompts to which different clients answer differently [&].
To defend against browser fingerprinting, tokens should be
implemented in such a way that a web server cannot check
whether or not they exist unilaterally. For example, a web
server should not be able to ask if the client has a 0O-RTT TLS
session resumption ticket for another domain. Databases are
not open to browser fingerprinting attacks; even if a leak would
allow the server to query the client’s databases, its contents are
determined by the Tor directory servers and do not reflect the
client’s activity.

Website Fingerprinting attackers. These attackers are local,
passive eavesdroppers who observe traffic patterns in order
to determine what the client is doing (which websites she
is visiting). We observe that our faster re-connection fokens
alter traffic patterns, allowing such an attacker to determine
whether or not the client has visited a web page previously
within the same session. However, this is already true for Tor
Browser, which uses memory-based caching, allowing web
resources to be stored in memory for use in a future web
visit. Our proposals therefore do not compromise the client
more than memory-based caching already does, as long as the
necessary tokens are deleted along with memory caches after
the termination of a browsing session.

There remains the harder question of whether or not
enhancing the browser would in and of itself make the website
fingerprinting classification task easier. We cannot definitively
answer this question without a full implementation of all
proposed enhancements and subsequent testing with state-of-
the-art website fingerprinting attacks; even then, better attacks
in the future or alternative implementations may change the
answer. There is some evidence to suggest that our enhance-
ments, which generally reduce the number of round trips
required to load a page, would make website fingerprinting
harder. Researchers have noted that website fingerprinting re-
lies on identifying bursts of packets in the same direction [11],
[19], [21], [22], [26], and that web pages with more bursts
are harder to obscure [27]. This would suggest that reducing
the number of round trips is more likely to impede website
fingerprinting than to aid it.



VII.

We are not aware of any related academic work on solving
the problem of browser design for anonymity networks. On
the other hand, much work has been done on network design
for anonymity networks (focusing on Tor), with the same mo-
tivation as our work: to improve users’ experience, especially
latency-sensitive users who need to be convinced to sacrifice
utility for privacy. We survey these works here as we share its
objectives and some of its methodology.

RELATED WORK

One way to improve anonymity network design is to tackle
the relay selection problem. To deliver user traffic, Tor chooses
volunteer relays at random to form a circuit lasting for about 10
minutes. Snader and Borisov [23] show a way to improve relay
bandwidth reporting and for users to choose relays based on a
trade-off between bandwidth and anonymity. Wang et al. [25]
recommends congestion-aware path selection: the user can
measure relay congestion based on timing packet round trips,
and elect to drop congested circuits to improve performance.
Akhmoondi et al. [1] suggests that Tor clients should choose
relays based on their autonomous systems to reduce latency.

Other works have attempted to enhance Tor’s performance
by changing its behavior at the network-stack level. These pro-
posals include DefenestraTor [4] to improve Tor’s congestion
control behavior; DiffTor to classify Tor traffic in real time
to offer distinct classes of service [3]; and traffic splitting
with circuit multiplexing [2], by AlSabah et al. DefenestraTor
showed a 10-20% decrease in time to download 5 MB files. A
proposal by Jansen et al. to improve Tor’s socket interactions
with real-time dynamic computation of socket congestion,
KIST, is currently used by Tor. [12] It showed a reduction
of latency from 0.838s to 0.686s, a 18% decrease; we saw
in this work that latency reduction is highly significant for
speeding up page loading.

To address the challenge of determining how much these
proposals would improve Tor, Bauer et al. created Experimen-
Tor [5] to emulate Tor nodes so as to test various proposals on
a toy network. Jansen et al. created Shadow [13] to simulate
Tor nodes for the same goal. Using an improved version of
ExperimenTor, Wacek et al. [24] evaluated relay selection
proposals.

Improving anonymity network performance serves two
important privacy goals, besides the overarching goal of im-
proving user experience. First, the more concurrent users there
are, the larger their anonymity set. Therefore, the greater the
number of people using Tor, the less likely an eavesdropper
is to identify a Tor user, which is easier if they have prior
information (such as timing or locale). Convincing otherwise
reluctant users to use Tor therefore benefits all current Tor
users. For this reason, there has been much work on enhancing
the scalability of Tor [14], [18].

Second, Tor may be vulnerable to website fingerprinting,
which have recently started to show success in open-world ex-
periments against large Tor data sets [1 1], [15], [19], [21], [22],
[26]. Currently, the best proposed defenses against website
fingerprinting all have large overhead values [0], [16], [27] and
will inevitably slow down the network, hurting user experience.
Combining a defense with our browser improvements could
still result in reduced page load times while offering better
resilience against website fingerprinting.
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VIII. CONCLUSION

We investigated how Tor Browser loads web pages using
BLAST, our new logging, analysis and simulation tool. Ana-
lyzing BLAST logs, we found inordinately large queue wait
times and unnecessary round trips. We leveraged resource trees
to effectively represent web pages; with resource trees, the
BLAST simulator is able to predict how long it will take page
to load and how they will be loaded. This lets us easily observe
how much different browser improvements would speed up
page loading.

The analytical and predictive power of BLAST allows
us to make several important observations. We found that
browser performance on Tor, a high-latency environment, is
almost entirely dependent on round trips instead of bandwidth.
We observed that increasing resource loading capacity does
not improve page load time on anonymity networks, and
therefore HTTP/2 did not help. To speed up browsing, we
need to reduce the number of round trips. We also found that
several theoretical issues behind pipelining and HTTP/2 had
no significant effect on Tor, including head-of-line blocking,
transfer rate, and potential errors in HTTP/2 connections.

We proposed a series of improvements to speed up brows-
ing focusing on reducing round-trips in two directions: re-
ducing the number of round trips required to load each
resource (TFO, optimistic data, O-RTT TLS) and reduce the
number of round trips required to load the web page as a
whole (databases for redirection, HTTP/2, and prefetching).
Our simulator predicts that page load times on Tor Browser
would be reduced by 61%, prefetching contributing to roughly
half of the improvement. There are only two trivial sources
of extra bandwidth for Tor in our proposed features: the
cost to distribute and update page databases for clients (less
than a megabyte with 10,000 pages), and the minor chance
of a prefetching false positive causing unnecessary loading.
All of our proposed changes are client-side, and adoption is
instantaneous and invisible once deployed.

Reproducibility. We publish our code and data at:

github.com/blastpipeline/blastpipeline

The repository includes the following:

e The BLAST logger: a patch to Tor Browser to instrument
it, and Python code to parse those logs into resource trees
and other useful formats.

e The BLAST simulator: Python code to simulate HTTP/1.1
with and without pipelining, HTTP/2, and all six proposed
features.

e Data sets to validate the logger and simulator for
HTTP/1.1 with pipelining on TB-8.5, HTTP/2 on TB-8.5,
and HTTP/1.1 with pipelining on TB-6.5.

e Prototype implementation of redirection and server
databases.
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APPENDIX

A. Pipelining implementation issues

We note a number of issues in the implementation of

pipelining in TB-6.5 that delayed page loading:

e Minimum depth. TB-6.5 enforces a minimal length of

three on all pipelines. If there are fewer than three requests
in the pending queue, and at least one active pipeline, the
browser will never send out any resource requests, even
if there are idle connections waiting to send out requests.
This causes unnecessary queue wait times.
Randomization of resources. TB-6.5 randomly shuf-
fles resources before dispatching. As more important
resources are often parsed first, this is disadvantageous to
page loading. This may have been meant to defeat website
fingerprinting attacks [20], but previous work suggests
that this has no effect against any website fingerprinting
attack [20].

Randomization of pipelines. TB-6.5 randomly chooses
pipelines to dispatch from the set of all valid pipelines.
This causes TB-6.5 to lose possible optimization options
for pipeline selection. For example, pipelines that have
completed TLS negotiation should be prioritized. Among
those, pipelines with fewer dispatched resource requests
should be prioritized to avoid head-of-line blocking.
Blocking resources. The HTTP server can mark any re-
source as a blocking resource. Before a blocking resource
is fully loaded, no new resource can be dispatched, even
onto pipelines, and no new connection can be created.
This was intended to ensure that certain resources would
be loaded as soon as possible. However, it is not worth
delaying all other resources by round trips to accommo-
date a single resource.

B. Detailed results on correlation of page load time

We calculated the r correlation coefficient with four fea-

tures as described in Section V-A on http2. These four fea-
tures were minRT'T, size of page, HTTP/2 usage percentage,
and number of resources. minRT7T is calculated by taking
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Fig. 9: Scatter plots for page load times on http2 versus (a) minRTT, (b) Size of page, (c) HTTP/2 usage percentage, and (d)
Number of resources. In each graph, r is the Pearson correlation coefficient between the plotted serieses.

each resource on the path between the last resource and the
root of the resource tree, and adding:

e 3 if the resource is on a new HTTPS connection;
e 2 if the resource is on a new HTTP connection;
e 1 otherwise.

We present the results in Figure 9. min RT'T indeed has the
best correlation with page load time, with r = 0.57 compared
to 7 = 0.45 for number of resources and r = 0.38 for page
size. In addition, from the minRTT plot, we can see that the
page load time was always greater than and often close to
minRTT times 0.38s, reinforcing the notion that page load
time was often directly caused by round trips.

C. BLAST implementation

1) How BLAST simulates web page loading: BLAST sim-
ulates web page loading by mimicking while simplifying the
logic of Firefox’s connection manager. It maintains two types
of objects, connections and resources. The simulation is event-
driven; the simulation begins with a single event corresponding
to loading the first resource, which generates more events,
and the simulation ends when all events have been treated.
Each event has a time, a type, and an attached connection or
resource. We describe the simulator’s logic by explaining how
it deals with each event.

Several events trigger an attempt to “dispatch all re-
sources”, which checks all connections to see if any is available
to dispatch any resources in the waiting queue, and creates
new connections if allowed to (due to the rules of HTTP/2,
pipelining, or connection limits). We mimic the rules in the
browser regarding which connections to choose to dispatch
on.

Resource events

e Resource created: Add the resource to the waiting queue
for the relevant server, and dispatch all resources.

e Resource dispatched: This happens when a resource is
successfully requested over a connection. Calculate how
long it would take to load such a resource based on round
trips required and bandwidth, declare the connection
occupied, and create a resource completed event after that
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time. (Pipelining would alter this calculation.) Create new
resource created events if this resource has any children
in the resource tree after an appropriate time.

Resource completed: Declare the relevant connection to
be available for further dispatch, and mark the resource
as complete with relevant time statistics. Dispatch all
resources.

Connection events

e Connection created: Simulate TLS and ALPN handshakes
if necessary, then declare TLS finished and ALPN finished
after appropriate times.

e TLS finished: Dispatch all resources.

e ALPN finished: Mark the connection as allowing HTTP/2
from now on (instead of just HTTP/1.1).

2) How BLAST determines resource parenthood: 1t is nec-
essary to know the parent of each resource to construct the
resource tree, a crucial data structure used to analyze and
simulate the page loading process. However, the web browser
does not record or output the parent of each resource.

To determine the parent of a resource, BLAST uses browser
logs to examine the context under which it was created as
follows. We start by determining the parent candidates of
every resource: the last resource that was written to before the
examined resource was created, as well as any other resource
written within 0.05s of that, is a parent candidate. We chose
0.05s heuristically because we observed that parsing time
usually did not exceed this amount. Then, we set parents in
three loops of all resources:

1) We mark all resources with only one parent candidate as
having such a parent.

2) For the remaining resources, if only one of their parent
candidates was chosen as a parent for some other resource
in step 1, we mark that candidate as the parent.

3) For the remaining resources, we mark the last resource
written to as the parent.

The final step ensures that all resources (except the first
resource for each page, representing user action to load the
page) will have a parent.
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