
Broken Metre:
Attacking Resource Metering in EVM

Daniel Perez
Imperial College London

Benjamin Livshits
Imperial College London,

UCL Centre for Blockchain Technologies, and Brave Software

Abstract—Blockchain systems, such as Ethereum, use an
approach called “metering” to assign a cost to smart contract
execution, an approach which is designed to incentivise miners
to operate the network and protect it against DoS attacks. In
the past, the imperfections of Ethereum metering allowed several
DoS attacks which were countered through modification of the
metering mechanism.

This paper presents a new DoS attack on Ethereum which
systematically exploits its metering mechanism. We first replay
and analyse several months of transactions, during which we
discover a number of discrepancies in the metering model, such
as significant inconsistencies in the pricing of the instructions. We
further demonstrate that there is very little correlation between
the execution cost and the utilised resources, such as CPU and
memory. Based on these observations, we present a new type of
DoS attack we call Resource Exhaustion Attack, which uses these
imperfections to generate low-throughput contracts. To do this,
we design a genetic algorithm that generates contracts with a
throughput on average 100 times slower than typical contracts.
We then show that all major Ethereum client implementations
are vulnerable and, if running on commodity hardware, would be
unable to stay in sync with the network when under attack. We
argue that such an attack could be financially attractive not only
for Ethereum competitors and speculators, but also for Ethereum
miners. Finally, we discuss short-term and potential long-term
fixes against such attacks. Our attack has been responsibly
disclosed to the Ethereum Foundation and awarded a bug bounty
reward of 5,000 USD.

I. INTRODUCTION

Some blockchain systems support code execution, allowing
arbitrary programs to take advantage of decentralised trust.
Ethereum and its virtual machine, the Ethereum Virtual Ma-
chine (EVM), is probably the most widely used blockchain
adopting this approach. However, allowing arbitrary programs
from non-trusted users introduces many new challenges. One
of these challenges is to prevent users from running code
which could negatively impact the performance of the system.
To tackle this challenge, Ethereum introduced the notion of
“gas”, which is a unit used to measure the execution cost
of a program, referred to as a “smart contract” in this con-
text. Gas-based metering is used to price the execution of
smart contracts, and must ensure that the throughput of the
blockchain, in terms of gas per second, remains stable. Meter-
ing is therefore critical to keep the Ethereum blockchain safe

against Denial of Service (DoS) attacks involving slow running
contracts. However, assigning costs to different instructions
is a highly non-trivial task, and the costs originally assigned
in the Ethereum yellow paper [57], which were designed to
maintain a throughput of 1 gas/µs, had many inconsistencies.
As a consequence, several DoS attacks have been conducted on
Ethereum [13], [12], and the gas cost has also been reviewed
several times [11], [40] to increase the cost of the under-priced
instructions.

To the best of our knowledge, there has still not been any
attempt to try to find and exploit such inconsistencies in a
systematic way. In this paper, we design a new DoS attack
which exploits inconsistencies of the gas metering mechanism
by taking a systematic approach to finding these. We first
replay and analyse several months of transactions to discover
discrepancies in the gas cost. We then use the data and insight
from our analysis to design a genetic algorithm capable of
generating low-throughput contracts. We evaluate the contracts
generated by our algorithm on all major Ethereum clients and
find that they are all vulnerable to our attack.

Contributions. This paper makes the following contributions:

1) Exploration of metering in EVM: We explore
the history of executing 2.5 months worth of smart
contracts on the Ethereum blockchain and identify
several important edge cases that highlight inherent
flaws in EVM metering; specifically, we identify i)
EVM instructions for which the gas fee is too low
compared to their resources consumption; and ii)
cases of programs where the cache influences exe-
cution time by an order of magnitude.

2) Resource Exhaustion Attacks (REA) contract gen-
eration strategy: We present a code generation strat-
egy able to produce REA attacks of arbitrary length.
Some of the complexity comes from the need to
produce well formed EVM programs which min-
imise the throughput. We propose an approach which
combines empirical data and a genetic algorithm in
order to generate contracts with low throughput. We
explore the efficacy of our strategy as a function of
the throughput in terms of gas per second of the
generated programs.

3) Experimental evaluation: We show that our REA
can abuse imperfections in EVM’s metering ap-
proach. Our genetic algorithm is able to generate
programs with a throughput of 1.25M gas per second
after a single generation. A minimum in our experi-
ments is attained at generation 243 with a block using
around 9.9M gas and taking about 93 seconds. We

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24267
www.ndss-symposium.org

show that our method generates contracts on average
more than 100 times slower than typical contracts.
Finally, we evaluate our low-throughput contracts on
the major Ethereum clients and show that they are all
vulnerable. Using commodity hardware, nodes would
be unable to stay in sync when under attack.

4) Disclosure and fixes: We responsibly disclosed our
attack to the Ethereum foundation, and were awarded
a bug bounty reward of 5,000 USD. We discussed
with the developers about the ongoing efforts as well
as some potential fixes, and present some of the short-
term and long-term fixes in this paper.

Paper Organisation. The rest of the paper is organised as fol-
lows. In Section II, we provide background information about
Ethereum and its metering scheme, as well as a few instances
of how it has been exploited in the past. In Section III, we
present case studies based on measurements that we obtained
by re-executing the Ethereum main chain. In Section IV, we
present our Resource Exhaustion Attacks (REA) and the results
we obtained. In Section V we present short and long-term
solutions to gas mispricing issues. Finally, we present related
work in Section VI and conclude in Section VII.

II. BACKGROUND

In this section, we briefly describe the Ethereum network
and the EVM. Then, we provide an in-depth explanation of
how the gas mechanism works and provide additional insights
into smart contract execution costs on the Ethereum main
network. Finally, we highlight some of the attacks which have
been performed by abusing the gas mechanism.

A. Ethereum and the Ethereum Virtual Machine (EVM)

The Ethereum [14] platform allows its users to run “smart
contracts” on its distributed infrastructure. Ethereum smart
contracts are programs which define a set of rules for the
governing of associated funds, typically written in a Turing-
complete programming language called Solidity [20]. The
Solidity code is compiled into EVM bytecode, a low level
bytecode designed to be executed by the EVM.

Once the EVM bytecode is generated, it is deployed on
the Ethereum blockchain by sending a transaction which only
purpose is to create a smart contract with the given code. To
execute a smart contract, a user can then send a transaction
to this contract. The sender will pay a transaction fee which
is derived from the contract’s computational cost, measured
in units of gas [57]. The fee itself is paid in Ether (ETH1),
the underlying currency of the Ethereum blockchain. When a
miner successfully mines a blocks, he receives the transaction
fee of all the transactions included in the block. We will
describe exactly how this transaction fee is computed in the
following part of this section.

B. Metering in EVM

As briefly outlined in Section I, gas is a fundamental
component of Ethereum, and generally applicable to permis-
sioned and permissionless blockchain platforms that utilise a

1When converting ETH to USD, we use the exchange rate on 2020-01-07:
1 ETH = 145 USD. For consistency, any monetary amounts denominated in
USD are based on this rate.

PUSH1 0x02 ; very low tier (3 gas)
PUSH1 0x03 ; very low tier (3 gas)
MUL ; low tier (5 gas)
PUSH1 0x05 ; very low tier (3 gas)
SSTORE ; special tier (20k gas)

Fig. 1: Example gas cost of an EVM program

distributed virtual machine for contract code execution [54],
[7]. Gas is the main protection against Denial of Service
(DoS) attacks based on non-terminating or resource-intensive
programs. It is also used to incentivise miners to process
transactions by rewarding them with a fee computed based
on the resource usage of the transaction.

Gas cost. In the EVM, each transaction has a cost which is
computed in and expressed as gas. The cost is split into two
parts, a fixed base cost of 21, 000 gas, and a variable execution
cost of the smart contract. Each instruction has a fixed gas cost
which has been set by the designers of the EVM [57], who
classify the instructions in multiple tiers of gas cost: zero Tier
(0 gas), base tier (2 gas), very low tier (3 gas), low tier (5 gas),
high tier (10 gas) and special tier where the cost needs more
complex rules. The gas cost for a transaction in the EVM
is the sum over the cost of each instruction in the contract.
For example, given the program in Figure 1, the gas cost will
be computed as follow. PUSH1 is in the Very Low Tier and
therefore costs 3 gas. It is called 3 times in total and will
therefore consume 9 gas. The arguments of PUSH1 do not
consume any extra gas. The MUL instruction is in the Low Tier
and hence costs 5 gas. Finally, the SSTORE will store the result
of 2×3 at location 5 in the storage. SSTORE is in the Special
Tier and has slightly more complex pricing rules. Assuming
the location in the storage was previously 0, the instruction
allocates storage and will cost 20,000 gas. Therefore, this
program will cost a total of 20,014 gas to execute. Given the
current pricing for storage, the cost of the program is clearly
dominated by the storage operation.

It is important to note that, as the transaction has a base cost
of 21,000 gas, it will cost a total of 21,000+20,014 = 41,014
gas to execute the above transaction.

Ethereum Improvement Proposal (EIP) 150. Although the
cost of each instruction was decided when first designing
the EVM, the authors found that some costs were poorly
aligned with actual resource consumption. Particularly, IO-
heavy instructions tended to be too cheap, allowing for DOS
attacks on the Ethereum [12] blockchain. As a fix, EIP 150 [11]
was proposed and implemented, significantly increasing the
gas consumption of instructions which require to perform IO
operations, such as SLOAD or EXTCODESIZE. This change
revised the cost of under-priced instructions and prevented fur-
ther DoS attacks such as the one seen in September 2016 [13].
This briefly highlights the potential risks rooted in mismatches
between instructions and gas costs. While the above cases have
been fixed, it is unclear whether all potential issues have been
eradicated or not.

Gas price. Up to here, we have explained how the gas cost for
executing a contract are computed. However, the gas cost is not

2

Gas price
Low High

Transaction type (1Gwei) (80Gwei)

Basic (21k gas) $0.00304 $0.2436
Gas intensive (500k gas) $0.0725 $5.8

Fig. 2: Fees for different type of transactions. “Low” price is one of the lowest
possible price to have a transaction included while “High” is a price someone
very eager to have his transaction included would pay.

Number of blocks: 613,475
Median gas price: 9.1 Gwei
Median gas used (by contracts): 53,787
Median transaction fee: 0.0008 ETH (0.116 USD)

Fig. 3: Median gas price, gas used and transaction fee from block 8,652,096
(Sep-09-2019) to block 9,286,594 (Jan-15-2020).

the only element needed to compute the total execution cost of
a contract. When a transaction is sent, the sender can choose
a gas price, namely the amount of wei (1wei = 10−18 ETH)
that the sender is ready to pay per unit of gas. For conciseness,
these amounts are often expressed in Gwei, where 1Gwei =
109wei. Miners will usually prioritise transactions with high
gas prices, as this will increase the final fee they receive for
processing a transaction.

Transaction fee. The transaction fee is the total amount of wei
that the sender of the transaction has to pay for the transaction.
It is obtained by multiplying the gas price by the gas cost. The
transaction fee is non-refundable: even if the transaction fails,
it will be paid.

C. Gas Statistics

Now that we presented the key points about metering in the
EVM, we provide concrete numbers about different aspects of
the gas price and transaction fees. In particular, we show the
amount of transaction fees that a user would have to pay to
have his transaction processed by the main Ethereum network.

To give a sense of the transaction fees, we show a variety
of typical fees in Figure 2. The fees are divided depending
on their gas price and gas consumption. The Low gas price is
close to the lowest price that can be paid to get the transaction
accepted on the Ethereum blockchain. The High gas price
refers to the price that people would pay when they are
extremely eager to get their transaction included, for example
when competing with other users to have a transaction included
first [44]. The basic transaction type refers to transactions
consuming only the base amount of gas, without executing any
instruction. This is typically the cost to send Ether to a contract
or another party. The gas intensive transaction type represents
computationally expensive transactions, for example, verifying
a zero-knowledge proof [49]. At the time of writing, the
maximum amount of gas which can be used in a single block
is 10,000,000, which means only 20 such transactions could
be included in a single block.

In Figure 3, we show the values of the gas price, gas used
and transaction fee. In order to obtain results reflecting the

current situation, we limit the analysis to recent blocks. We
use all the transactions sent to contracts between September
30, 2019 and January 15, 2020. We find that the median gas
price paid by a transaction’s sender is around 9.1 Gwei, which
is around 9 times more than the minimum possible fee. It
is worth noting that when paying the minimum possible fee,
the probability for the transaction to get included in the next
block is relatively low and the transaction can therefore be
delayed for several blocks: at the time of writing, about 40%
of the last 200 blocks accepted a gas price of 1Gwei [19].
This explains that users usually pay a higher fee to get their
transaction included faster. The median for the gas consumed
by contracts is around 50,000 gas, indicating that most transac-
tions perform relatively simple computations. Indeed, the basic
fee being 21,000, a simple read followed by an allocation of
storage would already result in 46,000 gas. Overall, the median
fee paid per transactions is 0.0008 ETH which is around 0.116
USD.

D. Previously Known Attacks

The Ethereum network has been victim of several Denial
of Service (DoS) attacks due to instructions being under-
priced. We present two considerable DoS attacks which were
performed on the Ethereum network.

EXTCODESIZE attack. In September 2016, a DoS attack
was performed on the Ethereum network by flooding it with
transactions containing a very large number of EXTCODESIZE
instructions [13]. EXTCODESIZE is an instruction to retrieve
the size in bytes of a given contract’s code.

This attack happened because the EXTCODESIZE instruc-
tion was vastly under-priced. At the time of the attack, a
single execution of this instruction cost 20 gas, meaning
that one could perform around 1,500 instructions with less
than $0.01. Although by itself, this issue might seem benign,
EXTCODESIZE forces the client to search the contract on
disk, resulting in IO heavy transactions. While replaying the
Ethereum history on our hardware, the malicious transactions
took around 20 to 80 seconds to execute, compared to a few
milliseconds for the average transactions. We show the corre-
lation between the clock time and the gas used by transactions
during the period of the attack in Figure 4. Although this attack
did not create any issue at the consensus layer, it reduced the
rate of block creation by a factor of more than 2 times, with
block creation time peaking to more than 30s [25].

The Ethereum protocol was updated in EIP 150, with all
the software running Ethereum, to increase the price of the
EXTCODESIZE from 20 to 700 gas, making the aforemen-
tioned attack considerably more expensive to perform. Some
performance improvements were also made at the implementa-
tion level, allowing clients to process IO-intensive instructions
faster.

SUICIDE Attack. Shortly after the EXTCODESIZE attack,
another DoS attack involving the SUICIDE instruction was
performed [12]. The SUICIDE instruction kills a contract
and sends all its remaining Ether to a given address. If this
particular address does not exist, a new address would be newly
created to receive the funds. Furthermore, at the time of the
attack, calling SUICIDE did not cost any Ether. Given these

3

0 1 2 3 4
Gas used 1e6

0

20

40

60

80

Cl
oc

k
tim

e
(s

)

Fig. 4: Correlation between gas and clock time with DoS.

two properties, an attacker could create and destroy a contract
in the same transaction, creating a new contract each time at an
extremely low fee. This quickly overused the memory of the
nodes, and particularly affected the Go implementation [30]
which was less memory efficient [15].

A twofold fix was issued for this attack in EIP 150.
First, and most importantly, SUICIDE would be charged the
regular amount of gas for contract creation when it tried to
send Ether to a non-existing address. Subsequently, the price
of the SUICIDE instruction was increased from 0 to 5,000
gas. Again, these measures would make such an attack very
expensive.

III. CASE STUDIES IN METERING

In this section, we instrument the C++ client of the
Ethereum blockchain, called aleth [22], and report some in-
teresting observations about gas dynamics in practice.

A. Experimental setup

Hardware. We run all of the experiments on a Google Cloud
Platform (GCP) [31] instance with 4 cores (8 threads) Intel
Xeon at 2.20GHz, 8 GB of RAM and an SSD with a 400MB/s
throughput. The machine runs Ubuntu 18.04 with the Linux
kernel version 4.15.0. We selected this hardware because it is
representative to what has been reported as sufficient to run a
full Ethereum node [48], [47], [45].

Software. To measure the speed of different instructions, we
fork the Ethereum C++ client, aleth. Our fork integrates the
changes to the upstream repository until Jun-26 2019. We
choose the C++ client for two reasons: first, it is one of the two
clients officially maintained by the Ethereum Foundation [1]
with geth [30]; second, it is the only of the two without runtime
or garbage collection, which makes measuring metrics such as
memory usage more reliable.

We add compile options to the original C++ client to allow
enabling particular measurements such as CPU or memory.

AD
D

M
UL DI
V

EX
P

Instruction

0

100

200

300

400

500

600

700

M
ea

n
tim

e
(n

s)

(a) Mean time for arithmetic instructions.

Instruction Gas Count Mean Throughput
cost time (ns) (gas / µs)

ADD 3 453,069 82.20 36.50
MUL 5 62,818 96.96 51.57
DIV 5 107,972 476.23 10.50
EXP ~51 186,004 287.93 177.1

(b) Execution time and gas usage for arithmetic instructions.

Fig. 5: Comparing execution time and gas usage of arithmetic instructions.

Our measurement framework is open-sourced2 and available
under the same license as the rest of aleth.

Measurements. For all our measurements, we only take into
account the execution of the smart contracts and ignore the
time taken in networking or other parts of the software. We
use a nanosecond precision clock to measure time and measure
both the time taken to execute a single smart contract and the
time to execute a single instruction. To measure the memory
usage of a single transaction, we override globally the new and
delete operators and record all allocations and deallocations
performed by the EVM execution within each transaction. We
ensure that this is the only way used by the EVM to perform
memory allocation.

Given the relatively large amount of time it takes to re-
execute the blockchain, we only execute each measurement
once when re-executing. We ensure that we always have
enough data points, where enough in the order of millions
or more, so that some occasional imprecision in the measure-
ments, which are inevitable in such experiments, do not skew
the data.

In this section, the measurements are run between
block 5,171,468 (Feb-28-2018) and block 5,587,480 (May-10-
2018), except in III-C where we want to compare after and
before EIP-150.

2https://github.com/danhper/aleth/tree/measure-gas

4

https://github.com/danhper/aleth/tree/measure-gas

Phase Resource Pearson
score

Pre EIP-150

Memory 0.545
CPU 0.528
Storage 0.775
Storage/Memory 0.845
Storage/Memory/CPU 0.759

Post EIP-150

Memory 0.755
CPU 0.507
Storage 0.907
Storage/Memory 0.938
Storage/Memory/CPU 0.893

Fig. 6: Correlation scores between gas and system resources.

B. Arithmetic Instructions

In this experiment, we evaluate the correlation between
gas cost and the execution time for simple instructions which
include absolutely no IO access. We use simple arithmetic
instructions for measurements, in particular the ADD, MUL,
DIV and EXP instructions.

In Figure 5a, we show the mean time of execution for
these instructions, including the standard deviation for each
measurement. We contrast these results with the gas cost of
the different instructions in Figure 5b. EXP is the only of these
instructions with a variable cost depending on its arguments —
the value of the exponent. We use the average gas cost in our
measurements to compute the throughput. We see that although
in practice ADD and MUL have similar execution time, the gas
cost of MUL is 65% higher than the gas cost for ADD. On the
other hand, DIV, which costs the same amount of gas as MUL,
is around 5 times slower on average. EXP costs on average
10 times the price of DIV but executes 40% faster. Another
point to note here is that DIV has a standard deviation much
higher than the other three instructions. Although we were
expecting that for such simple instructions the execution time
would reflect the gas cost, this does not appear to be the case in
practice. We will show in the coming sections that IO related
operations tend to make things worse in this regard.

C. Gas and System Resources Consumption

In this section, we analyse the gas consumption of
Ethereum smart contracts and try to correlate it with different
system resources, such as memory, CPU and storage. As
described in Section II, EIP-150 influenced the price of many
storage related operations, which affected the gas cost of
transactions. Therefore, we use a different set of transactions
than for other case studies. We arbitrarily use block 1,400,000
to block 1,500,000 for measurements before EIP-150 and
block 2,500,000 to 2,600,000 for measurements after EIP-
150. We assume that the sample of 100,000 blocks, which
roughly corresponds to two weeks, is large enough to obtain
reliable data.

We use our modified Ethereum client to perform the
different measurements. To measure memory, we compute
the difference between the total amount of memory allocated
and the total amount of memory deallocated. For CPU, we

use clock time measurements as a proxy for the CPU usage.
Finally, for storage usage, we count the number of EVM
words (256 bits) of storage newly allocated per transactions.

We compute the Pearson correlation coefficient3 [8] be-
tween the different resources and the gas usage. We also
compute multi-variate correlation between gas consumption
and multiple resources. To compute the multi-variate corre-
lation between multiple resources and the gas usage, we first
normalise the measurement vector of each targeted resource
to have a mean of 0 and a standard deviation of 1. Then,
we stack the vectors to obtain a matrix of m resources
and n measurements, and transform it in a single vector of
n measurements using a principal component analysis [2].
The vector we obtain represents the aggregated usage of the
different resources and can be correlated with the gas usage.

We present our results in Figure 6. A first observation is
that EIP-150 clearly emphasises the domination of storage in
the price of contracts. We can clearly see that storage alone
has an extremely high correlation score, with score of 0.907
after EIP-150. Memory usage is not as correlated as storage,
but when combining both, they have the highest correlation
score of 0.938. Finally, an important point is that CPU time
seems completely uncorrelated with gas usage. Although it
seems natural that CPU time by itself has a low correlation,
as gas cost is dominated by storage cost, adding the CPU time
in the multi-variate correlation reduces the correlation. It is
not enough to make any conclusion yet but gives a hint that
as long as the storage is not explicitly touched, it could be
possible for contracts to be both cheap and long to execute.

D. High-Variance Instructions in the EVM

Here, we look at instructions which have a high variance
in their execution time. We summarise the instructions which
had the highest variance in Figure 7. There are two main
reasons why the execution time may vastly vary for the
execution of the same instruction. First, many instructions take
parameters, depending on which, the time it takes to run the
particular instructions can vary wildly. This is the case for
an instruction such as EXTCODECOPY. The second reason is
much more problematic and comes from the fact that some
instructions may require to perform some IO access, which
can be influenced by many different factors such as caching,
either at the OS or at the application level. The instruction with
the highest variance was BLOCKHASH. BLOCKHASH allows
to retrieve the hash of a block and allows to look up to 256
block before the current one. When it does so, depending on
the implementation and the state of the cache, the EVM may
need to perform an IO access when executing this instruction,
which can result in vastly different execution times. The cost
of BLOCKHASH being currently fixed and relatively cheap, 20
gas, it results in an instruction which is vastly under-priced.
It is worth noting that in the particular case of BLOCKHASH,
the issue has already been raised more than two years ago in
EIP-210 [16]. It discussed changing the price of BLOCKHASH
to 800 gas but at the time of writing the proposal is still in draft
status and was not included in the Constantinople fork4 [35]
as it was originally planned to be.

3Pearson score of 1 means perfect positive correlation, 0 means no corre-
lation

4Hard fork which took place on Feb 28 2019 on the Ethereum main network

5

Instruction Mean Standard Measurements
time (µs) deviation count

BLOCKHASH 768 578 240,000
BALANCE 762 449 8,625,000
SLOAD 514 402 148,687,000
EXTCODECOPY 403 361 23,000
EXTCODESIZE 221 245 16,834,000

Fig. 7: Instructions with the highest execution time variance.

24 26 28 30 32
Speedup with cache (times)

0

5

10

15

20

25

30

Nu
m

be
r o

f c
on

tra
ct

s

Fig. 8: Comparing throughput with and without page cache: x axis is the
relative speed improvement and y axis is the number of contracts.

E. Memory Caches and EVM Costs

Given the high variance in execution time for some in-
structions, we evaluate the effects caching may have on EVM
execution speed. In particular, we evaluate both the speedup
provided by the operating system page cache and the speedup
across blocks provided by LevelDB LRU cache [29]. In these

1 2 3 4 5 6 7 8 9
Execution number

20

40

60

80

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

of blocks
14
15
16

Fig. 9: Measuring block execution speed with and without the effect of cache.

experiments, we fix the block number at height 5,587,480.

Page cache. First, we evaluate how the operating system page
cache influences the execution time by reducing the IO latency.
We perform the experiment as follows:

1) Generate a contract
2) Run the code of the contract n times
3) Run the code of the contract n times but drop the

page cache between each run

We perform this for 100 different contracts and measure
the execution time for the versions with and without cache.
We generate relatively large contracts, which consume on
average 800,000 gas each. Although the method is somewhat
crude, it provides a good approximation of the extent to which
the state of the page cache influences the execution time of a
contract. In Figure 8, we show a distribution of the contracts
throughput in terms of gas per second, with and without cache.
We see that contracts execute between 24 and 33 times faster
when using the page cache, with more than half of the contracts
executing between 27 and 29 times faster. This vast difference
in the execution speed is due to IO operations, which use
LevelDB [28], a key-value store database, under the hood.
LevelDB keeps only a small part of its data in memory and
therefore needs to perform a disk access when the data was not
found in memory. If the required part of the data was already in
the page cache, no disk access will be required. When keeping
the page cache, all the items seen by the contract recently will
already be available in cache, eliminating the need for any disk
access. On the other hand, if the caches are dropped, many IO
related operations will result in a disk access, which explains
the speedup. We notice that in the contracts with the highest
speedup, BLOCKHASH, BALANCE and SLOAD are in the most
frequent instructions. It is worth noting that if the generated
contracts are small enough, most of the data will be in memory
and dropping the page cache will have much less effect on
the runtime. Indeed, when running the same experiment with
contracts consuming on average 100,000 gas, only a 2 times
average speedup has been observed.

Caching across blocks. In the next experiment, instead of
measuring the cache impact by running a single contract mul-
tiple times, we evaluate how the cache impacts the execution
time across blocks. In particular, we measure how many blocks
need to be executed before the data cached during the previous
execution of a contract gets evicted from the different caches.
To do so, we perform the following experiment.

1) Generate n blocks, with different contracts in each
2) Execute sequentially all the blocks and measure the

execution time
3) Repeat the previous step m times in the same process,

and record how the execution speed evolves

We set m to 10 and we try different values for n to see how
many blocks are needed for the cache not to provide anymore
speedup. We use the first execution to warm-up the node and
use the 9 other executions for our measurements. We find that
in our setup, assuming the blocks are full (i.e. close to the gas
limit in term of gas), 16 blocks are enough for the cache not
to provide anymore speedup. We plot the results for n = 14,
n = 15 and n = 16 in Figure 9. When n = 14, we see that

6

the second execution is much faster than the first one, and
that after the third execution, the execution time stabilises at
around 6s to execute the 14 blocks. For n = 15, the execution
time takes longer to decrease, but eventually also stabilises
around the same value. It is slightly higher than when n = 14
because it has one more block to execute. However, once we
reach n = 16, we see that the execution time hardly decreases
and stays stable at around 85s. We conclude that at this point,
almost nothing that was cached during the previous execution
of the block is still cached when re-executing the block.

This means that if a deployed contract function were re-
executed more than 16 blocks after its initial execution, it
would execute as slowly as the first time. This shows that not
only the cache has a very high impact on execution time but
also that the cached information is evicted relatively quickly.

F. Summary

In this section, we empirically analysed the gas cost and
resource consumption of different instructions. To summarise:

• We see that even for simple instructions, the gas
cost is not always consistent with resource usage.
Indeed, even for instruction with very predictable
speed, such as arithmetic operations, we observe that
some instructions have a throughput 5 times slower
than others.

• We notice that while most instructions have a rela-
tively consistent execution speed, other instructions
have large variations in the time it takes to execute.
We find that these instructions involve some sort of
IO operation.

• Finally, we demonstrate the effect that the page cache
has on the execution speed of smart contracts and then
show the typical number of blocks for which the page
cache still provides speed up.

• Overall, we see that beyond some pricing issue, the
metering scheme used by EVM does not allow to
express the complexity inherent to IO operations.

IV. ATTACKING THE METERING MODEL OF EVM

In light of the results we obtained in the previous sections,
we hypothesise that it is possible to construct contracts which
use a low amount of gas compared to the resources they use.

A. Constructing Resource Exhaustion Attacks

In particular, as we showed in Section III, the gas consump-
tion is dominated by the storage allocated but is not as much
affected by other resources such as the clock time. Therefore,
we decide to use the clock time as a target resource and look
for contracts which minimise the throughput in terms of gas
per second. We can formulate this as a search problem.

Problem formulation. We want to find a program which
has the minimum possible throughput, where we define the
throughput to be the amount of gas processed per second. Let
I be the set of EVM instructions and P be the set of EVM
programs. A program p ∈ P is a sequence of instructions
I1, · · · , In where all Ii ∈ I. Let t : P → R be a function

which takes a program as an input and outputs its execution
time and g : P → N be a function which takes a program
as input and outputs its gas cost. We define our function to
minimise f : P → R, f(p) = g(p)/t(p). Our goal is to find
the program pslowest such that

pslowest = argmin
p∈P

(f(p)) (1)

The search space for a program of size n is |I|n. Given
|I| ≈ 100, the search space is clearly too large to be explored
entirely for any non-trivial program. Therefore, we cannot
simply go over the space of possible programs and instead
need to approximate the solution.

Although our problem resembles other program synthesis
tasks [33], there is a notable difference. Program synthesis usu-
ally focuses on generating “meaningful” programs, either from
specifications or examples. These tasks often do not have well-
defined metrics allowing optimisation techniques (the genetic
algorithm in our work). The task we solve is different because
we need to define “valid” but not “meaningful” programs and
optimise for a well-defined metric: gas throughput.

Search strategy. With the problem formulated as a search
problem, we now present our search strategy. We decide to
design the search as a genetic algorithm [56]. The reasons for
this choice are as follow:

• we have a well-defined fitness function f

• we have promising initialisation values, which we will
discuss below

• programs being a sequence of instructions, cross-over
and mutations can be designed efficiently

• generated programs need to be syntactically correct
but do not need to be semantically meaningful, making
the cross-over and mutations more straightforward to
design

We will now discuss in detail how we design the initialisation,
cross-over and mutations of our genetic algorithm.

Program construction. Although our programs do not need
to be semantically meaningful, they need to be executed suc-
cessfully on the EVM, which means that they must fulfil some
conditions. First, an instruction should never try to consume
more values than the current number of elements on the stack.
Second, instructions should not try to access random parts of
the EVM memory, otherwise the program could run out of
gas straight away. Indeed, when an instruction reads or writes
to a place in memory, the memory is “allocated” up to this
position and a fee is taken for each allocated memory word.
This means that if MLOAD would be called with 2100 as an
argument, it would result in the cost of allocating 2100 words
in memory, which would result in an out of gas exception.

Another potential issue would be to run into an infinite
loop. However, we decide to explicitly exclude loops out of our
program generation algorithm for the following reason: adding
loops is unlikely to make the generated programs slower.
Indeed, if a piece of code is slow enough, our genetic algorithm

7

will tend to repeat it. The loop version could be faster if a value
is already cached but have no reason to be slower.

We design the program construction so that all created
programs will never fail because of either of the previous
reasons. We first want to ensure that there are always enough
elements on the stack to be able to execute an instruction.
The instructions requiring the least number of elements on the
stack are instructions such as PUSH or BALANCE which do
not require any element, and the element requiring the most
number of elements on the stack is SWAP16 which requires 17
elements to be on the stack. We define the functions function
a : I → N which returns the number of arguments consumed
from the stack and r : I → N which returns the number
of elements returned on the stack for an instruction I . We
generate 18 sets of instructions using Equation 2.

∀n ∈ [0, 17], In = {I | I ∈ I ∧ a(I) ≤ n} (2)

For example, the set I3 is composed of all the instructions
which require 3 or less items on the stack. We will use
these sets in Algorithm 1 to construct the initial programs
but before, we need to define the functions we use to control
memory access. For this purpose, we define two functions to
handle these. First, uses_memory : I → {0, 1} returns 1
only if the given instruction accesses memory in some way.
Then, prepare_stack : P × I → P takes a program and an
instruction and ensures that all the arguments of the instruction
which influence which part of memory is accessed are below
a relatively low value, that we arbitrarily set to 255. To ensure
this, prepare_stack adds POP instruction for all arguments
of I and add the exact same number of PUSH1 instructions
with a random value below the desired value. For example, in
the case of MLOAD, a POP followed by a PUSH1 would be
generated.

Using the sets In, the uses_memory and prepare_stack
functions, we use Algorithm 1 to generate the program. We
assume that the biased_sample function returns a random
element from the given set and will discuss how we instantiate
it in the next section.

Algorithm 1 Initial program construction
function GENERATEPROGRAM(size)

P ← () . Initial empty program
s← 0 . Stack size
for 1 to size do

I ← biased_sample(Is)
if uses_memory(I) then

P ← prepare_stack(P, I)
end if
P ← P · (I) . Append I to P
s← s+ (r(I)− a(I))

end for
return P

end function

Initialisation. As the search space is very large, it is important
to start with good initial values so that the genetic algorithm
can search for promising solutions. For this purpose, we use the
result of the results we presented in Section III, in particular,

we use the throughput measured for each instruction. We define
a function throughput : I → R which returns the measured
throughput of a single instruction. When randomly choosing
the instructions with biased_sample, we want to have a higher
probability of picking an instruction with a low throughput but
want to keep a high enough probability of picking a higher
throughput instruction to make sure that these are not all
discarded before the search begins. We define the weight of
each instruction and then its probability with equations 3 and 4.

W (I ∈ I) = log

(
1 +

1

throughput(I)

)
(3)

P (I ∈ In) =
W (I)∑

I′∈In W (I ′)
(4)

Given that the throughput can have order-of-magnitude dif-
ferences among instructions, the log in Equation 3 is used to
avoid assigning a probability to close to 0 to an instruction.

Cross-over. We now want to define a cross-over function over
our search-space, a function which takes as input two programs
and returns two programs, i.e. cross_over : P × P → P ×
P, where the output programs are combined from the input
programs. To avoid enlarging the search space with invalid
programs, we want to perform cross-over such that the two
output programs are valid by construction. As during program
creation, we must ensure that each instruction of the output
program will always have enough elements on the stack and
that it will not try to read or write at random memory locations.

For the memory issue, we simply avoid modifying the
program before an instruction manipulating memory or one of
the POP or PUSH1 added in the program construction phase.
For the second issue, we make sure to always split the two
programs at positions where they have the same number of
elements on the stack.

We show how we perform the cross-over in Algorithm 2. In
the CREATESTACKSIZEINDEX function, we create a mapping
from a stack size to a set of program counters where the stack
has this size. In the CROSSOVER function, we first create this
mapping for both programs and randomly choose a stack size
to split the program. We then randomly choose a location from
each program with the selected stack size. Note that here,
sample assigns the same probability to all elements in the set.
Finally, we split each program in two at the chosen position,
and cross the programs together.

Mutation. We use a straightforward mutation operator. We
randomly choose an instruction I in the program, where I is
not one of the POP or PUSH1 instructions added to handle
memory issues previously discussed. We generate a set MI of
replacement candidate instructions defined as follow.

MI = {I ′ | I ′ ∈ Ia(I) ∧ r(I ′) = r(I)} (5)

In other words, the replacement must require at most the
same number of elements on the stack and put back the
same number as the replaced instruction. Then, we replace
the instruction I by I ′, which we randomly sample from MI .
If I had POP or PUSH1 associated with it to control memory,
we remove them from the program. Finally, if I ′ uses memory,
we add the necessary instructions before it.

8

Algorithm 2 Cross-over function
function CREATESTACKSIZEMAPPING(P)

S ← empty mapping
pc← 0
s← 0
for I in P do

if s /∈ S then
S[s]← {}

end if
S[s]← S[s] ∪ {pc}
s← s+ (r(I)− a(I))
pc← pc+ 1

end for
return S

end function
function CROSSOVER(P1, P2)

S1 ← CREATESTACKSIZEMAPPING(P1)
S2 ← CREATESTACKSIZEMAPPING(P2)
S ← S1 ∩ S2 . Intersection on keys
s← sample(S)
i1 ← sample(S1[s])
i2 ← sample(S2[s])
P11, P12 ← split_at(P1, i1)
P21, P22 ← split_at(P2, i2)
P ′1 ← P11 · P22 . Concatenate
P ′2 ← P21 · P12

return P ′1, P
′
2

end function

B. Effectiveness of Attacks with Synthetic Contracts

We want to measure the effectiveness of our approach to
produce Resource Exhaustion Attacks. To do so, we want to
generate contracts and benchmark them while mimicking the
behaviour of a regular full validating node as much as possible.
To do so, we execute all the programs produced within every
generation of our genetic algorithm, as if they were part of a
single block. We use the following steps to run our genetic

0 50 100 150 200 250
Generation number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro

ug
hp

ut
 (M

ga
s/

s)

Fig. 10: Evolution of the average contract throughput as a function of the
number of generations.

0 2 4 6 8 10
Gas used (Mgas)

0

20

40

60

80

Ex
ec

ut
io

n
tim

e
(s

)

Fig. 11: Execution time as a function of amount of gas used by contracts
within a block.

algorithm.

1) Clear the page cache;
2) Warm up caches by generating and executing

randomly-generated contracts
3) Generate the initial set of program;
4) Run the genetic algorithm for n generation.

An important point here is that when running the genetic
algorithm, we only want to execute each program once,
otherwise every IO access will already be cached and it will
invalidate the results, as this is not what would happen when
a regular validating node executes contracts. However, we of
course do want to execute the measurements multiple times to
be able to measure the execution time standard deviation. To
work around these two requirements, we save all the programs
generated while we run the experiment. Once the experiment
has finished, we re-run all the programs in the exact same
order. We combine these results to compute the mean and
standard deviation of the execution time.

We note that generating a new generation takes on average
less than 1 second but the time-consuming part of our algo-
rithm is to compute the throughput of the generated programs.
Indeed, we need to wait for the EVM to run the program,
which can, as we show see in this section, take more than 90
seconds for a single generation. Furthermore, parallelising this
task could bias our measurements, which forces the algorithm
to perform the evaluation serially.

Generated bytecode. Before discussing the results further, we
show a small snippet of bytecode generated by our genetic
algorithm in Figure 12. We highlight the instructions which
involve IO operations in bold and show the instructions whose
sole purpose is to keep the stack consistent in a smaller
font. We can see that there is a large number of IO related
instructions, in particular BLOCKHASH and BALANCE show up
multiple times. Although the fee of BALANCE has been revised
from 20 to 400 in EIP-150, this suggests that the instruction
is still under-priced. In the snippet, we also see that the
stack is cleared and replaced with small values before calling
CALLDATACOPY. This corresponds to the prepare_stack

9

PUSH9 0x57c2b11309b96b4c59

BLOCKHASH
SLOAD
CALLDATALOAD
PUSH7 0x25dfb360fa775a

BALANCE
MSTORE8
PUSH10 0x49f8c33edeea6ac2fe8a

PUSH14 0x1d18e6ece8b0cdbea6eb485ab61a

BALANCE
POP ; prepare call to CALLDATACOPY
POP
POP
PUSH1 0xf7
PUSH1 0xf7
PUSH1 0xf7
CALLDATACOPY
PUSH7 0x421437ba67fe0e

ADDRESS

BLOCKHASH

Fig. 12: Bytecode snippet generated by our genetic algorithm. Instructions in
bold involve some sort of IO operations.

function described in the program construction section: to
avoid CALLDATACOPY to read very far away in memory,
which would make the program run out of gas, the arguments
are replaced with small values. We note that our algorithm can
generate programs of arbitrary length but in our experiments
we set it to create programs of around 4,000 instructions which
consume between 100,000 and 150,000 gas.

Generating low-throughput contracts. We show how the
throughput of the lowest performing contract evolved with the
number of generations in Figure 10. The line represents the
mean of the measurements and the band represents the standard
deviation of the measurements. The measurements are run 3
times. Except from one point in the first measurements, overall
the standard deviation remains relatively low.

We can see that during the first generations, the throughput
is around 1.25M gas per second, which is already fairly low
given that the average throughput for a transaction on the
same machine is around 20M gas per second. This shows
that our initialisation is effective. The throughput decreases
very quickly in the first few generations, and then steadily
decreases down to around 110K gas per second, which is more
than 180 slower than the average transaction. After about 200
generations, the throughput more or less plateaus.

Exploring the minimum. The minimum in our experiments
is attained at generation 243. At this point, the block uses in
total approximately 9.9M gas and takes around 93 seconds
to execute, or a throughput of about 107,000 gas per second.
We show in Figure 11 how the execution time increases with
the amount of gas consumed within the block. It is important
to note that the execution time increases perfectly linearly
with the gas used, which means that all transactions in the
block have almost the same throughput. This implies that an
attacker could easily tune the time he wants to delay the
nodes depending on his budget. If a block full of malicious

Client Throughput Time IO load
Gas/s second MB/s

Aleth 107, 349± 606.6 93.6± 0.53 9.12± 4.70
Parity 210, 746± 7, 672 47.1± 1.61 10.0± 1.36
Parity (metal) 542, 702± 9, 487 18.2± 0.23 17.2± 1.97
Geth 131, 053± 4, 207 75.6± 2.42 6.57± 4.13
Geth (fixed) 3, 021, 038± 4.67e5 3.33± 0.56 0.72± 0.11

Fig. 13: Evaluation of different clients when executing 10M gas worth of
malicious transactions. What is presented is the mean across three measure-
ments ± standard deviation. All the measurements are performed on our GCP
except the “metal” which is done on our bare-metal server.

transactions were to be processed, given that an Ethereum
block is produced roughly every 13 seconds, 7 new blocks
would have been created by the time the node finishes to
validate the malicious one.

C. Evaluation on Other Ethereum Clients

We used aleth [22] to run our genetic algorithm and find
low-throughput contracts. In this section, we show that the
contracts crafted using our algorithm are also effective on
the two most popular Ethereum clients: geth (v1.9.6) [30]
and Parity Ethereum (v2.5.9) [46]. We also show that the fix
released in geth following discussions with the development
team successfully resolves the issue. Furthermore, although
our attack is mainly efficient on less powerful hardware, we
include the measurements of Parity on a more powerful bare-
metal machine with 4 cores (8 threads) at 2.7GHZ, 32GB of
RAM and an SSD with 540MB/s throughput. To benchmark
the clients, we use the following procedure, and repeat the
measurements three times for each client.

1) Synchronise the client to test;
2) Start the client in a private network, so that it does

not execute anything else but our contracts;
3) Execute transactions on the client using the

eth_call RPC endpoint;
a) Send transactions to warm-up the client
b) Send enough malicious transactions to con-

sume 10M gas
4) Measure the gas, time, IO, CPU and memory used

during the execution of the malicious transactions.

We report our results in Figure 13. Although we measured
CPU, memory, and IO usage, most of the used time was related
to IO operations and there was no significant increase in either
CPU or memory usage during the attack. Therefore, we only
report the IO measurements collected during the attack. We
express the IO load in terms of MB/s, which we collect using
Linux’s iotop utility.

Before geth’s fix, geth takes more than 75 seconds to exe-
cute 10M gas worth of malicious transactions. Parity Ethereum
is the least vulnerable to our attack, but still takes on average
about 47 seconds. Parity has on average a higher, but more
constant IO load than geth. Large increase in the IO load tend
to increase the IO wait time, which could explain why geth
is vastly slower than Parity. Aleth is the slowest of the three
clients. There could be two reasons for this: first, our algorithm

10

is optimised on aleth, which makes it more likely to slow it
down, second, aleth is less actively developed than the other
two clients and might lack some optimisations.

The results of running Parity on a more powerful bare-
metal server show that even such machines are relatively
vulnerable to our attack. Indeed, Parity, which was the fastest
of the tree clients, still took more than 18 seconds to execute
the transactions. An important point to notice is that the IO
throughput is considerably higher on our bare-metal server,
which is most likely one of the main reason for the speedup.

Finally, we ran our attack on an improved version of
geth, which the Ethereum developers pointed us to as a result
of our interactions with them. This version includes several
optimisations to improve the storage access speed. We can see
that these improvements drastically reduced the IO load of the
client. With these improvements, geth executes the transactions
more than 20 times faster, making the execution speed fast
enough to counter such an attack. Our interaction with geth
developers shows the effectiveness of responsible vulnerability
disclosure, as discussed in Section IV-E.

D. REA as a Form of DoS

Malicious contracts crafted using our algorithm could eas-
ily be used to perform a DoS attacks on Ethereum. In this
section, we will describe the threat model of such an attack,
including the implications and feasibility of the attack.

Attack implications. As described in Section II, there
have already been several instances of DoS attacks against
Ethereum [13], [12]. There are several consequences to such
attacks. The most direct one is a high increase in the block
production time [26], which in the worst cases more than
doubled, significantly decreasing the total throughput of the
network. This decrease comes not only from miners who might
take more time to validate blocks but also from full nodes who
are supposed to relay validated blocks and might take vastly
longer to do so. A further indirect consequence of such attacks
is the loss of trust in the system, which can lead to a decrease
in the price of Ethereum, at least for a short period of time [18].

Probable attacker. Although instances of irrational behaviours
with likely no profit to the attacker have been seen on
Ethereum [9], we assume that the attacker is rational and wants
to profit from such an attack. In this context, there are several
ways in which such an attack could be performed.

First, this attack could be beneficial to miners. A miner
could use these malicious transactions to perform a sort of
selfish-mining [27]. Indeed, if the miner chooses to include
a small amount of malicious transactions in the blocks he
mines, the propagation time per block is likely to increase and
give the miner a head-start on mining the next block. Given
that the block arrival time in Ethereum is around 13 seconds,
gaining a couple of seconds can be financially interesting for
a miner. Furthermore, the only cost for a miner would be
the opportunity cost of not including other transactions in the
block, as he could include malicious transactions with a gas
price of 0.

Another potential motivation for an attack could be to try to
reduce the price of the ETH token and the trust in the Ethereum

ecosystem. An attacker wanting to make a one-shot profit could
spend some amount of money into performing such a DoS
attack while taking a short position on ETH, waiting for the
price to go down. Other blockchains competing with Ethereum
could also potentially use such tactics to try to discredit the
reliability of Ethereum.

Attack feasibility. To reason about the feasibility of this
attack, we assume that given the same gas price, a malicious
transaction has the same chance of being included in a block
as any other transaction. We use the time we obtained in our
experiments with geth, as it is the Ethereum client with the
largest usage share [24].

To find a reasonable gas price, we analyse the gas price
of all transactions and blocks from October 1, 2019 (block
8,653,171) to December 31, 2019 (block 9,193,265). We
find that the median value of the minimum gas price in a
block is around 1.1Gwei and that the average gas price is
around 10Gwei with a standard deviation of 11Gwei. These
values are in agreement with some other source of gas com-
putation [19]. Finally, we find that at least 2 million gas worth
of transactions are included for less than 3Gwei in about 90%
of the blocks, and choose this value as the gas price to compute
the cost of an attack.

Given that our malicious transactions have a throughput of
about 131,000 gas per second, using a price of 3 Gwei, it would
cost roughly 131, 000× 3× 109 = 3.93× 1014Wei = 3.93×
10−4 ETH ≈ 0.057 USD to execute code for one second.
Consequently, it would cost slightly more than 0.741 USD per
block to prevent nodes running on commodity hardware to
keep up with the network. This is a very cheap price to pay
and could indeed motivate the probable attackers discussed
earlier to execute such an attack.

It is worth noting that if an attacker wanted to fill a larger
portion of the block with malicious transactions, he would need
to increase the gas price. Indeed, to fill half of the block with
malicious transactions, it would require to pay around 15Gwei,
or 5 times more per gas, than to fill only 20% of the block.
This would result in a cost of 10, 000, 000×50%×1.5×1010 =
0.075 ETH ≈ 10.875 USD. Nevertheless, this remains a very
low price to pay for an attacker with financial incentives such
as the ones described earlier.

Attack limitations. The current requirements to run a full node
on the Ethereum main net are low enough for most commodity
hardware to be able to keep up without any issue. The only
point mentioned by the Ethereum developers is that running
a full node requires an SSD [50]. Although there is currently
no official documentation on other requirements, other sources
estimate the minimum required memory to be about 8GB [48],
[47], [45]. However, there is very little information about
the typical hardware setup of full nodes. Therefore, it is
very difficult to accurately evaluate how many nodes would
be affected by such an attack. Nevertheless, the attack was
judged severe enough by the Ethereum developers to react
very promptly (within less than 24 hours for the first reply and
within four days for them to test the fix) after our disclosure.

E. Responsible Disclosure

Given that the attack is very easy and cheap to execute, and
worked on all major clients, we went through a responsible

11

disclosure process. The Ethereum Foundation has an official
bug bounty program [23] to report vulnerabilities. With the
help of colleagues5, we wrote a report summarising our main
findings, including a minimal script to execute our attack, and
sent it to the bug bounty program on October 3, 2019. We
received a reply the next day from the Ethereum Security Lead,
acknowledging the issue and pointing us to some ongoing
efforts to improve some of the inefficiencies exploited by
our attack. The Ethereum foundation team also let us know
that they would coordinate with Parity developers. After dis-
cussions about the ongoing efforts and some other potential
solutions, we have been confirmed that our report had been
awarded a reward of 5,000 USD on November 17, 2019.
Finally, the official announcement was published on the bounty
program website on January 7, 2020.

V. TOWARDS A BETTER APPROACH

Gas metering and pricing is a difficult but fundamental
problem in Ethereum and other blockchains which use a
similar approach to price contract execution. Mispricing of
gas instructions has been a concern for a long time and
improvements have been included in several hard forks [11],
[53]. However, there remain issues in the current Ethereum
pricing model, allowing attacks such as the one we presented
in the previous sections. In this section, we will discuss short-
term fix which can be used to prevent DoS such as the one
presented in this paper, and then briefly present longer-term
potential solutions which are still being actively researched.

The main attack vector presented in this paper comes
from the low speed of searching for an account which is not
currently cached. One of the main issues is that the state of
Ethereum gets larger with time. This means that operations
accessing the state get more expensive with time in terms of
resource usage.

Short-term fixes. Short-term fixes for slow IO related issues
can be categorised in the two following classes: increase in
the gas cost of IO instructions, as seen in EIP-150 [11] and
EIP-2200 [53], and improvements in the speed of Ethereum
clients.

Increasing the cost of IO instructions improves the fairness
of the gas costs yet is often not sufficient to protect against
DoS attacks, albeit it does increase their cost. The attack we
present in this paper uses mainly instructions whose prices
have increased in EIP-150 or EIP-2200, but remains relatively
cheap to execute.

Improvements involve adding more layers of caches to
reduce the number of IO accesses, which are typically the bot-
tleneck. However, this requires to keep more data in memory
and therefore creates a trade-off between memory consumption
and execution speed. Regarding account lookup, two cases
must be considered: when the looked up account exists and
when it does not. Naively caching all the accounts could allow
an attacker to easily evict existing accounts from the cache
and is therefore dangerous. To check whether a particular
account exists, a Bloom filter can be utilised as a first test.
This eliminates the need for most of the IO accesses in case
the queried address does not exist, while keeping a relatively

5Matthias Egli and Hubert Ritzdorf from PwC Switzerland

low memory footprint [43]. The next case which needs to be
handled is the fast lookup of existing accounts. The current
attempt to do this keeps an on-disk dynamic snapshot of
the accounts state [52], which allows to perform an on-disk
look up of an account in O(1), at the cost of increasing the
storage usage of the node. This indeed solves the bottleneck
of accessing account data but is very specific to this particular
issue.

Long-term fixes. Long-term fixes are likely to only arrive
in Ethereum 2.0, as most of them will require major and
breaking changes. There have been several solutions discussed
by the community and other researchers, which can mostly be
categorised as either a) changing the gas pricing mechanism
or b) changing the way clients store data.

Current proposals to change the gas mechanism involve
making the pricing more dynamic that it is currently. Chen et
al. [18] propose a mechanism where contracts using a single
instruction in excess would be penalised. The threshold is
set using historical data in order to penalise only contracts
which diverge too much from what would be a regular usage.
Although the approach has some advantages over the current
pricing mechanism, it is unclear how well it would be able to
prevent attacks taking this mechanism into account.

A promising and actively researched approach is the use
of stateless clients and stateless validation. The key idea
is that instead of forcing clients to store the whole state,
entity emitting transactions must send the transaction, the data
needed by the transactions, and a proof that this data is correct.
The proof can be fairly trivially constructed as a Merkle proof,
as the block headers hold a hash of the root of the state and
the state can be represented as a Merkle tree. This allows such
clients to verify all transactions without accessing IO resources
at all, making execution and storage much cheaper, at the cost
of an increased complexity when creating transactions and a
higher bandwidth usage.

Another active area of research which should help making
things better in this direction is sharding [3]. Although shard-
ing does not address the fundamental issue of gas pricing in
the presence of IO operations, it does help to keep the state of
the nodes smaller, as different shards will be responsible for
storing the state of different parts of the network.

VI. RELATED WORK

There has been a great deal of attention focused on the
correctness of smart contracts on blockchains, especially, the
Ethereum blockchain. Some of the vulnerability types have
to do with gas consumption, but not all. There has been
relatively little attention given to the organisation of metering
for blockchain systems. We will first present research focusing
on smart contract issues, and then highlight the work that
focuses on metering at the smart contract level. We will then
present research focusing on metering at the virtual machine
level — EVM in the case of Ethereum.

A. Smart Contracts

Major contracts vulnerabilities have been observed in re-
cent years [6] with sometimes multiple millions of dollars
worth of Ether at stake [51], [41]. One of the most famous

12

exploit on the Ethereum blockchain was The DAO exploit [42],
where an attacker used a re-entrancy vulnerability [38], [37]
to drain funds out of The DAO smart contract. The attacker
managed to drain more than 3.5 million of Ether, which would
now be worth more than 507.5 million USD. Given the severity
of the attack, the Ethereum community decided to hard-fork
the blockchain, preventing the attacker to benefit from the
Ether he had drained.

In order to prevent such exploits, many different tools have
been developed over the years to detect vulnerabilities in smart
contracts [34]. One of the first tools which have been developed
is Oyente [38]. It uses symbolic execution to explore smart
contracts execution pass and then uses an SMT solver [21] to
check for several classes of vulnerabilities. Many other tools
covering the same or other classes of vulnerabilities have also
been developed [37], [10], [55], [36] and are usually based
either on symbolic execution or static analysis methods such
as data flow or control flow analysis. Some smart contract anal-
ysis tools have also focused more on analysing vulnerabilities
related to gas [32], [17], [5]. We present some of these tools
in the next subsection.

B. Gas Usage and Metering

Recent work by Yang et al. [58] have recently empirically
analysed the resource usage and gas usage of the EVM in-
structions. They provide an in-depth analysis of the time taken
for each instructions both on commodity and professional
hardware. Although our work was performed independently,
the results we present in Section III seem to concur mostly
with their findings.

Other related themes have also been covered in the liter-
ature. One of the large theme is optimisation of gas usage
for smart contracts. Another one is estimating, preferably
statically, the gas consumption of smart contracts.

Gas Usage Optimisation: Gasper [17] is one of the first
paper which has focused on finding gas related anti-patterns for
smart contracts. It identifies 7 gas-costly patterns, such as dead
code or expensive operations in loops, which could potentially
be costly to the contract developer in terms of gas. Gasper
builds a control flow graph from the EVM bytecode and uses
symbolic execution backed by an SMT solver to explore the
different paths that might be taken.

MadMax [32] is a static analysis tool to find gas-focused
vulnerabilities. Its main difference with Gasper from a func-
tionality point of view is that MadMax tries to find patterns
which could cause out-of-gas exceptions and potentially lock
the contract funds, rather than gas-intensive patterns. For
example, it is able to detect loops iterating on an unbounded
number of elements, such as the numbers of users, and which
would therefore always run out of gas after a certain number
of users. MadMax decompiles EVM contracts and encodes
properties about them into Datalog to check for different
patterns. It is performant enough to analyse all the contracts
of the Ethereum blockchain in only 10 hours.

Gas Estimation: Marescotti et al. [39] propose two al-
gorithms to compute upper-bound gas consumption of smart
contracts. It introduces a “gas consumption path” to encode
the gas consumption of a program in its program path. It uses

an SMT solver to find an environment resulting in a given
path and computes its gas consumption. However, this work is
not implemented with actual EVM code and is therefore not
evaluated on real-world contracts.

Gastap [5] is a static analysis tool which allows to compute
sound upper bounds for smart contracts. This ensures that if
the gas limit given to the contract is higher than the computed
upper-bound, the contract is assured to terminate without out-
of-gas exception. It transforms the EVM bytecode and models
it in terms of equations representing the gas consumption
of each instructions. It then solves these equations using the
equation solver PUBS [4]. Gastap is able to compute gas upper
bound on almost all real world contracts it is evaluated on.

C. Virtual Machines and Metering

Zheng et al. [59] propose a performance analysis of several
blockchain systems which leverage smart contracts. Although
the analysis goes beyond smart contracts metering, with
metrics such as network related performance, it includes an
analysis about smart contracts metering at the virtual machine
level. Notably, it shows that some instructions, such as DIV
and SDIV, consume the same amount of gas while their
consumption of CPU resource is vastly different.

Chen et al. [18] propose an alternative gas cost mecha-
nism for Ethereum. The gas cost mechanism is not meant
to replace completely the current one, but rather to extend
it in order to prevent DoS attacks caused by under-priced
EVM instructions. The authors analyse the average number of
execution of a single instruction in a contract, and model a gas
cost mechanism to punish contracts which excessively execute
a particular instruction. This gas mechanism allows normal
contracts to almost not be affected by the price changes while
mitigating spam attacks which have been seen on the Ethereum
blockchain [13].

VII. CONCLUSION

In this work, we presented a new DoS attack on Ethereum
by exploiting the metering mechanism. We first re-executed the
Ethereum blockchain for 2.5 months and showed some signifi-
cant inconsistencies in the pricing of the EVM instructions. We
further explored various other design weaknesses, such as gas
costs for arithmetic EVM instructions and cache dependencies
on the execution time. Additionally, we demonstrated that there
is very little correlation between gas and resources such as
CPU and memory. We found that the main reason for this is
that the gas price is dominated by the amount of storage used.

Based on our observations, we presented a new attack
called Resource Exhaustion Attack which systematically ex-
ploits these imperfections to generate low-throughput con-
tracts. Our genetic algorithm is able to generate programs
which exhibit a throughput of around 1.25M gas per second
after a single generation. A minimum in our experiments is at-
tained at generation 243 with the block using around 9.9M gas
and taking around 93 seconds. We showed that we are able to
generate contracts with a throughput as low as 107,000 gas per
second, or on average more than 100 times slower than typical
contracts, and that all major Ethereum clients are vulnerable.
We argued that several attackers such as speculators, Ethereum
competitors or even miners could have financial incentives to

13

perform such an attack. Finally, we discussed about short-term
and potential long-term fixes for gas mispricing. Our attack
went through the a responsible disclosure process and has been
awarded a bug bounty reward of 5,000 USD by the Ethereum
foundation.

ACKNOWLEDGMENT

The authors would like to thank Matthias Egli and Hubert
Ritzdorf from PwC Switzerland for their insightful feedback
and their help with responsible disclosure and experiments.

The authors would also like to thank the Tezos Foundation
for their financial support.

REFERENCES

[1] Ethereum - github. https://github.com/ethereum, 2019. [Online; ac-
cessed 08-September-2019].

[2] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley
interdisciplinary reviews: computational statistics, 2(4):433–459, 2010.

[3] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn,
and George Danezis. Chainspace: A sharded smart contracts platform.
arXiv preprint arXiv:1708.03778, 2017.

[4] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Au-
tomatic Inference of Upper Bounds for Recurrence Relations in Cost
Analysis. In María Alpuente and Germán Vidal, editors, Static Analysis,
pages 221–237, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[5] Elvira Albert, Pablo Gordillo, Albert Rubio, and Ilya Sergey. GASTAP:
A Gas Analyzer for Smart Contracts. CoRR, abs/1811.1, nov 2018.

[6] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of
attacks on Ethereum smart contracts (SoK). In POST, 2017.

[7] Block.one. About EOSIO. https://eos.io/about-us/, 2019. [Online;
accessed 04-June-2019].

[8] Sarah Boslaugh. Statistics in a nutshell: A desktop quick reference. "
O’Reilly Media, Inc.", 2012.

[9] Lorenz Breidenbach, Phil Daian, Ari Juels, and Emin Gün Sirer. An
In-Depth Look at the Parity Multisig Bug.

[10] Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, François Gauthier,
Vincent Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A scalable
security analysis framework for smart contracts. CoRR, abs/1809.03981,
2018.

[11] Vitalik Buterin. EIP 150: Gas cost changes for IO-heavy operations
. https://eips.ethereum.org/EIPS/eip-150. [Online; accessed 05-June-
2019].

[12] Vitalik Buterin. Geth nodes under attack again. https:
//www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_
attack_again_we_are_actively/?st=itxh568s&sh=ee3628ea. [Online;
accessed 4-April-2019].

[13] Vitalik Buterin. Transaction spam attack: Next Steps. https://blog.
ethereum.org/2016/09/22/transaction-spam-attack-next-steps/. [Online;
accessed 4-April-2019].

[14] Vitalik Buterin. A next-generation smart contract and decentralized
application platform. Ethereum, (January):1–36, 2014.

[15] Vitalik Buterin. Geth nodes under attack again (geth issue).
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_
under_attack_again_we_are_actively/d8ebsad/, 2016. [Online; accessed
05-September-2019].

[16] Vitalik Buterin. EIP 210. https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-210.md, 2019. [Online; accessed 20-July-2019].

[17] Ting Chen, Xiaoqi Li, Xiapu Luo, and Xiaosong Zhang. Under-
optimized smart contracts devour your money. SANER 2017 - 24th
IEEE International Conference on Software Analysis, Evolution, and
Reengineering, pages 442–446, 2017.

[18] Ting Chen, Xiaoqi Li, Ying Wang, Jiachi Chen, Zihao Li, Xiapu Luo,
Man Ho Au, and Xiaosong Zhang. An adaptive gas cost mechanism
for ethereum to defend against under-priced dos attacks. In Joseph K.
Liu and Pierangela Samarati, editors, Information Security Practice and
Experience, pages 3–24, Cham, 2017. Springer International Publishing.

[19] Concourse Open Community. Eth gas station. https://ethgasstation.info/
calculatorTxV.php, 2019. [Online; accessed 09-September-2019].

[20] Chris Dannen. Introducing Ethereum and Solidity: Foundations of
Cryptocurrency and Blockchain Programming for Beginners. Apress,
Berkely, CA, USA, 1st edition, 2017.

[21] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
International conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 337–340. Springer, 2008.

[22] Ethereum community. cpp-ethereum. http://www.ethdocs.org/en/latest/
ethereum-clients/cpp-ethereum/. [Online; accessed 1-May-2019].

[23] Ethereum Foundation. Ethereum bounty program. https://bounty.
ethereum.org/, 2020. [Online; accessed 05-January-2020].

[24] ethernodes.org. Ethereum mainnet statistics. https://www.ethernodes.
org/, 2020. [Online; accessed 10-January-2020].

[25] Etherscan. Ethereum average block timechart. https://etherscan.io/chart/
blocktime, 2019. [Online; accessed 09-September-2019].

[26] Etherscan. Ethereum average block time chart. https://etherscan.io/
chart/blocktime, 2020. [Online; accessed 10-January-2020].

[27] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining
is vulnerable. In International conference on financial cryptography
and data security, pages 436–454. Springer, 2014.

[28] Sanjay Ghemawat and Jeff Dean. Leveldb. https://github.com/google/
leveldb, 2011. [Online; accessed 05-August-2019].

[29] Sanjay Ghemawat and Jeff Dean. Leveldb documentation.
https://github.com/google/leveldb/blob/master/doc/index.md#cache,
2011. [Online; accessed 05-August-2019].

[30] The go-ethereum Authors. Official go implementation of the ethereum
protocol. https://github.com/ethereum/go-ethereum/, 2019. [Online;
accessed 25-August-2019].

[31] Google. Google compute engine documentation. https://cloud.google.
com/compute/docs/, 2019. [Online; accessed 08-September-2019].

[32] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard
Scholz, and Yannis Smaragdakis. MadMax: Surviving Out-of-Gas
Conditions in Ethereum Smart Contracts. SPLASH 2018 Oopsla,
2(October), 2018.

[33] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program
synthesis. Foundations and Trends R© in Programming Languages, 4(1-
2):1–119, 2017.

[34] Dominik Harz and William Knottenbelt. Towards Safer Smart Con-
tracts: A Survey of Languages and Verification Methods. arXiv preprint
arXiv:1809.09805, 2018.

[35] Hudson Jameson. Ethereum Constantinople Upgrade Announce-
ment. https://blog.ethereum.org/2019/01/11/ethereum-constantinople-
upgrade-announcement/, 2019. [Online; accessed 05-July-2019].

[36] Bo Jiang, Ye Liu, and W. K. Chan. Contractfuzzer: Fuzzing smart con-
tracts for vulnerability detection. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ASE
2018, pages 259–269, New York, NY, USA, 2018. ACM.

[37] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. ZEUS:
analyzing safety of smart contracts. In 25th Annual Network and
Distributed System Security Symposium, NDSS 2018, San Diego, Cali-
fornia, USA, February 18-21, 2018, 2018.

[38] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making Smart Contracts Smarter. In CCS, 2016.

[39] Matteo Marescotti, Martin Blicha, Antti E J Hyvärinen, Sepideh Asadi,
and Natasha Sharygina. Computing Exact Worst-Case Gas Consump-
tion for Smart Contracts. In Tiziana Margaria and Bernhard Steffen,
editors, Leveraging Applications of Formal Methods, Verification and
Validation. Industrial Practice, pages 450–465, Cham, 2018. Springer
International Publishing.

[40] Martin Holst Swende. EIP 1184. https://eips.ethereum.org/EIPS/eip-
1884, 2019. [Online; accessed 15-Jan-2020].

[41] Max Galka. Multisig wallets affected by the Parity wallet bug. https:
//github.com/elementus-io/parity-wallet-freeze. [Online; accessed 21-
January-2019].

[42] Muhammad Izhar Mehar, Charles Louis Shier, Alana Giambattista,
Elgar Gong, Gabrielle Fletcher, Ryan Sanayhie, Henry M Kim, and
Marek Laskowski. Understanding a revolutionary and flawed grand

14

https://github.com/ethereum
https://eos.io/about-us/
https://eips.ethereum.org/EIPS/eip-150
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/?st=itxh568s&sh=ee3628ea
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/?st=itxh568s&sh=ee3628ea
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/?st=itxh568s&sh=ee3628ea
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://blog.ethereum.org/2016/09/22/transaction-spam-attack-next-steps/
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/d8ebsad/
https://www.reddit.com/r/ethereum/comments/55s085/geth_nodes_under_attack_again_we_are_actively/d8ebsad/
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-210.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-210.md
https://ethgasstation.info/calculatorTxV.php
https://ethgasstation.info/calculatorTxV.php
http://www.ethdocs.org/en/latest/ethereum-clients/cpp-ethereum/
http://www.ethdocs.org/en/latest/ethereum-clients/cpp-ethereum/
https://bounty.ethereum.org/
https://bounty.ethereum.org/
https://www.ethernodes.org/
https://www.ethernodes.org/
https://etherscan.io/chart/blocktime
https://etherscan.io/chart/blocktime
https://etherscan.io/chart/blocktime
https://etherscan.io/chart/blocktime
https://github.com/google/leveldb
https://github.com/google/leveldb
https://github.com/google/leveldb/blob/master/doc/index.md#cache
https://github.com/ethereum/go-ethereum/
https://cloud.google.com/compute/docs/
https://cloud.google.com/compute/docs/
https://blog.ethereum.org/2019/01/11/ethereum-constantinople-upgrade-announcement/
https://blog.ethereum.org/2019/01/11/ethereum-constantinople-upgrade-announcement/
https://eips.ethereum.org/EIPS/eip-1884
https://eips.ethereum.org/EIPS/eip-1884
https://github.com/elementus-io/parity-wallet-freeze
https://github.com/elementus-io/parity-wallet-freeze

experiment in blockchain: The dao attack. Journal of Cases on
Information Technology (JCIT), 21(1):19–32, 2019.

[43] Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM Trans-
actions on Networking (TON), 10(5):604–612, 2002.

[44] Kevin Owocki. A brief history of gas prices on ethereum. https://
gitcoin.co/blog/a-brief-history-of-gas-prices-on-ethereum/, 2018. [On-
line; accessed 05-August-2019].

[45] Palau, Albert. Analyzing the hardware requirements to be an ethereum
full validated node. https://medium.com/coinmonks/analyzing-
the-hardware-requirements-to-be-an-ethereum-full-validated-node-
dc064f167902, 2019. [Online; accessed 08-September-2019].

[46] Parity Technologies. Parity ethereum. https://www.parity.io/ethereum/,
2020. [Online; accessed 05-January-2020].

[47] PegaSys. Pantheon ethereum client system requirements.
http://docs.pantheon.pegasys.tech/en/latest/HowTo/Get-Started/System-
Requirements/, 2019. [Online; accessed 08-September-2019].

[48] Petrov, Andrev. An economic incentive for running ethereum
full nodes. https://medium.com/vipnode/an-economic-incentive-for-
running-ethereum-full-nodes-ecc0c9ebe22, 2018. [Online; accessed 08-
September-2019].

[49] Dani Putney. The aztec protocol: A zero-knowledge privacy sys-
tem on ethereum. https://www.ethnews.com/the-aztec-protocol-a-zero-
knowledge-privacy-system-on-ethereum, 2018. [Online; accessed 23-
August-2019].

[50] Schmideg, Adam. go-ethereum faq. https://github.com/ethereum/go-
ethereum/wiki/FAQ, 2018. [Online; accessed 08-September-2019].

[51] Us Securities and Exchange Commission. Report of Investigation
Pursuant to Section 21(a) of the Securities Exchange Act of 1934: The
DAO. Technical report, U.S. Securities and Exchange Commission,
2017.

[52] Szilágyi, Péter. Dynamic state snapshot. https://github.com/ethereum/
go-ethereum/pull/20152, 2019. [Online; accessed 05-January-2020].

[53] Wei Tang. EIP 2200: Structured Definitions for Net Gas. https://eips.
ethereum.org/EIPS/eip-2200. [Online; accessed 10-January-2019].

[54] Tezos. About Tezos. https://tezos.com/learn-about-tezos, 2019. [Online;
accessed 04-June-2019].

[55] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Bünzli, and Martin Vechev. Securify: Practical security analysis
of smart contracts. In Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, CCS ’18, pages
67–82, New York, NY, USA, 2018. ACM.

[56] Darrell Whitley. A genetic algorithm tutorial. Statistics and computing,
4(2):65–85, 1994.

[57] Gavin Wood. Ethereum yellow paper, 2014.
[58] Renlord Yang, Toby Murray, Paul Rimba, and Udaya Parampalli.

Empirically Analyzing Ethereum’s Gas Mechanism. CoRR, abs/1905.0,
2019.

[59] P Zheng, Z Zheng, X Luo, X Chen, and X Liu. A Detailed and Real-
Time Performance Monitoring Framework for Blockchain Systems. In
2018 IEEE/ACM 40th International Conference on Software Engineer-
ing: Software Engineering in Practice Track (ICSE-SEIP), pages 134–
143, may 2017.

15

https://gitcoin.co/blog/a-brief-history-of-gas-prices-on-ethereum/
https://gitcoin.co/blog/a-brief-history-of-gas-prices-on-ethereum/
https://medium.com/coinmonks/analyzing-the-hardware-requirements-to-be-an-ethereum-full-validated-node-dc064f167902
https://medium.com/coinmonks/analyzing-the-hardware-requirements-to-be-an-ethereum-full-validated-node-dc064f167902
https://medium.com/coinmonks/analyzing-the-hardware-requirements-to-be-an-ethereum-full-validated-node-dc064f167902
https://www.parity.io/ethereum/
http://docs.pantheon.pegasys.tech/en/latest/HowTo/Get-Started/System-Requirements/
http://docs.pantheon.pegasys.tech/en/latest/HowTo/Get-Started/System-Requirements/
https://medium.com/vipnode/an-economic-incentive-for-running-ethereum-full-nodes-ecc0c9ebe22
https://medium.com/vipnode/an-economic-incentive-for-running-ethereum-full-nodes-ecc0c9ebe22
https://www.ethnews.com/the-aztec-protocol-a-zero-knowledge-privacy-system-on-ethereum
https://www.ethnews.com/the-aztec-protocol-a-zero-knowledge-privacy-system-on-ethereum
https://github.com/ethereum/go-ethereum/wiki/FAQ
https://github.com/ethereum/go-ethereum/wiki/FAQ
https://github.com/ethereum/go-ethereum/pull/20152
https://github.com/ethereum/go-ethereum/pull/20152
https://eips.ethereum.org/EIPS/eip-2200
https://eips.ethereum.org/EIPS/eip-2200
https://tezos.com/learn-about-tezos

	Introduction
	Background
	Ethereum and the Ethereum Virtual Machine (EVM)
	Metering in EVM
	Gas Statistics
	Previously Known Attacks

	Case Studies in Metering
	Experimental setup
	Arithmetic Instructions
	Gas and System Resources Consumption
	High-Variance Instructions in the EVM
	Memory Caches and EVM Costs
	Summary

	Attacking the Metering Model of EVM
	Constructing Resource Exhaustion Attacks
	Effectiveness of Attacks with Synthetic Contracts
	Evaluation on Other Ethereum Clients
	REA as a Form of DoS
	Responsible Disclosure

	Towards a Better Approach
	Related Work
	Smart Contracts
	Gas Usage and Metering
	Virtual Machines and Metering

	Conclusion
	References

