
Data-Driven Debugging for Functional Side Channels

Saeid Tizpaz-Niari
University of Colorado Boulder
saeid.tizpazniari@colorado.edu

Pavol Černý
TU Wien

pavol.cerny@tuwien.ac.at

Ashutosh Trivedi
University of Colorado Boulder
ashutosh.trivedi@colorado.edu

Abstract—Information leaks through side channels are a per-
vasive problem, even in security-critical applications. Functional
side channels arise when an attacker knows that a secret value
of a server stays fixed for a certain time. Then, the attacker can
observe the server executions on a sequence of different public
inputs, each paired with the same secret input. Thus for each
secret, the attacker observes a (partial) function from public
inputs to execution time, for instance, and she can compare these
functions for different secrets.

First, we introduce a notion of noninterference for functional
side channels. We focus on the case of noisy observations, where
we demonstrate with examples that there is a practical functional
side channel in programs that would be deemed information-leak-
free or be underestimated using the standard definition. Second,
we develop a framework and techniques for debugging programs
for functional side channels. We extend evolutionary fuzzing
techniques to generate inputs that exploit functional dependencies
of response times on public inputs. We adapt existing results
and algorithms in functional data analysis (such as functional
clustering) to model the functions and discover the existence
of side channels. We use a functional extension of standard
decision tree learning to pinpoint the code fragments causing
a side channel if there is one.

We empirically evaluate the performance of our tool FUCH-
SIA on a series of micro-benchmarks, as well as on realistic
Java programs. On the set of micro-benchmark, we show that
FUCHSIA outperforms the state-of-the-art techniques in detecting
side-channel classes. On the realistic programs, we show the
scalability of FUCHSIA in analyzing functional side channels
in Java programs with thousands of methods. In addition, we
show the usefulness of FUCHSIA in finding (and locating in code)
side channels including a zero-day vulnerability in Open Java
Development Kit and another Java web server vulnerability that
was since fixed by the original developers.

I. INTRODUCTION

Developers are careful to assure that eavesdroppers cannot
easily access the secrets by employing security practices such
as encryption. However, a side channel might arise even if the
transferred data is encrypted. The side-channel eavesdroppers
can infer the value of secret inputs (or some of their properties)
based on public inputs, runtime observations, and the source
code of the program. An example is OnlineHealth service [1],
where the service leaks the conditions of patients through side
channels observable in the characteristics of network packets.

We consider known-message threats [2] where the attacker
knows the value of public inputs as well as execution times
when trying to find out the secret. In this threat model,
we consider the setting where the secret input stays fixed
across a number of interactions. This gives rise to functional
observations: for a secret input, we observe the program
executions on a number of public inputs. For a secret input s,
we obtain a partial function fs from public inputs to runtime
observations. We focus on timing side channels, where the
attacker’s observations are the execution time.

Functional side channels. We adapt the classical definition
of noninterference to functional side channels, where two
secret inputs s and t are indistinguishable for the attacker if
the functions fs and ft are equal. However, in the presence
of noise (a common situation for timing measurements), we
cannot require exact equality of functions. Instead, we define
two functional observations to be indistinguishable when they
are similar according to a notion of distance. We demonstrate
on a set of examples that it is critical to choose the distance that
represents functional observations, otherwise, side channels
might remain undetected or be underestimated.

Problem. Data-driven debugging focuses on automatically dis-
covering functional timing side channels, and on pinpointing
code regions that contribute to creating the side channels.

Algorithms. As functional timing side channels are hard
to detect statically with the current program analysis tools,
we turn to dynamic analysis methods. We propose to use
gray-box evolutionary search algorithms [3], [4] to generate
interesting secret and public inputs. We use functional data
clustering [5], [6] to model functional observations, discover
timing side channels, and estimate their strengths. It allows
us to compute an equivalence relation on secret inputs that
model the distinguishing power of the attacker. If this relation
has multiple equivalence classes, there is an information leak.
In order to find what parts of the code caused the leak, we
identify features that are common for secrets in the same
cluster (equivalence class), and features that separate the
clusters. Typical features in the debugging context are program
internals such as methods called or basic blocks executed
for a given secret value. We present functional extensions to
decision tree inference techniques to locate code regions that
explain differences among clusters. These code regions are
thus suspect of being a root cause of the side channels.

Experiments. We evaluate our tool FUCHSIA on micro-
benchmarks and 10 larger case studies. We use micro-
benchmarks to evaluate the scalability of components in our
tool and compare FUCHSIA to the state-of-the-art. The case
studies serve to evaluate scalability and usefulness on real-
world Java applications.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24269
www.ndss-symposium.org

Fig. 1. (a) Functional observations. (b) Attacker’s local observations. (c) Attacker’s remote observations.

Contributions. Our main contributions are:

– Defining functional noninterference in the presence
of noisy observation: We demonstrate functional side
channels caught by our definitions in programs that
would be deemed information-leak-free or underesti-
mated using the standard (non-functional) definition.

– Algorithms: We adapt existing theory and algorithms
for functional data clustering to discover the existence
of side channels. We develop a functional extension
of decision tree learning to locate the code regions
causing a side channel if there is one.

– Experiments: we show on micro-benchmarks that
FUCHSIA outperforms DifFuzz [7], a state-of-the-art
technique, in quantifying the strength of leaks using
the number of classes in timing observations.

– Case Studies: We show the scalability of FUCHSIA in
analyzing Java programs with thousands of methods.
FUCHSIA finds a zero-day vulnerability in OpenJDK
and vulnerability in Java web-server that was since
fixed by the original developers.

II. FUNCTIONAL SIDE CHANNELS

We first illustrate what an attacker can infer based on
functional observations, even in the presence of noise. Second,
we show that it is critical to use functional observations to
evaluate the resulting threats of side channels.

A. Functional observations and timing side channels

We consider the known-message threats [2] where the
attacker knows public values, but she cannot control them. We
focus on the situation where secret values remained unchanged
for some amount of time (e.g., passwords, social security
number, and friends of a user in social media). The attacker
who has access to the source code tries to infer the secret by
observing the execution time and knowing the public values.

Let us consider the classical definition of confidentiality:–
noninterference. A program is unsafe iff for a pair of secret
values s1 and s2, there exists a public value p such that the
behavior of the program on (s1, p) is observably different than
on (s2, p). If our observable is the execution time T , then the
program is unsafe iff: ∃s1, s2, p : T (s1, p) 6= T (s2, p). In our
setting, for each secret value, we observe the execution time
of a program on a number of public values. Thus, the program
is unsafe iff: ∃s1, s2 : (λp.T (s1, p)) 6= (λp.T (s2, p)). In other
words, the program is unsafe if the two secret values do not
correspond to the same function of public inputs.

Side channels in the presence of noise. Quantitative obser-
vations of a program’s runtime behavior are often noisy. For
instance, running a program with the same inputs twice on the
same machine result in different measurements of execution
time. Observing the program remotely adds a further level
of noise. Classical definitions of confidentiality properties,
therefore, need to be adapted to noisy environments. In the
noisy environment, no two observations are equal and our
definition needs to include ε tolerance:

∃s1, s2 : d(λp.T (s1, p), λp.T (s2, p)) > ε. (1)

In this definition, d is a distance between two functions.
The distance is suitably chosen, typically based on the noise
expected for a particular use case.

A straightforward extension of classical noninterference
with ε tolerance to our functional setting is to use the ∞-
norm for the distance function: d∞(fs1 , fs2) = supp |fs1(p)−
fs2(p)|, where fs(p) = λp.T (s, p). However, we now demon-
strate that the point-wise distance d∞ is not the only option,
and that depending on the type of noise, different distances are
needed. In particular, we show that if we use the point-wise
distance, we could certify a side-channel vulnerable program.

Gaussian noise (pointwise independent, mean 0). Consider
the two functional observations (red and black) of a program
in Figure 1a. The red function corresponds to the secret value
s1 and the black function corresponds to the secret value
s2. The eavesdropper can produce this graph easily by trying
possible inputs on their machine beforehand. At runtime, the
eavesdropper collects the public inputs and the execution time,
and tries to learn the secret by matching the observed data to
the red or black functions. In this example, we assume that
the noise for each pair of public-secret inputs is independent
and identically distributed. Furthermore, we assume that it is
distributed according to a Gaussian distribution with mean
0. Let us consider ε of 3ms, and then apply our definition
with distance d∞. We see that the two functional observations
are ε-close for this distance, so the attacker cannot infer the
secret value (s1 or s2). However, the functional observations
are clearly very different, and an eavesdropper can reliably
learn the secret. This can be captured using the L1-norm as the
distance function. This example shows the point-wise distance
d∞ may not be appropriate to detect certain side channels.

Gaussian noise (pointwise independent, mean C). Let us
consider the case where the noise is Gaussian, but with a non-
zero mean. The non-zero mean is fixed, but is unknown to
the attacker. This case arises if, for instance, the eavesdropper
is remote and cannot determine the delay introduced by the
network and separate it from the noise of the remote machine.

2

(a) Point-wise model P1. (b) Point-wise model P2. (c) Point-wise model P3.

(d) Functional model P1. (e) Functional model P2. (f) Functional model P3.

x-axis low input value
1 “0”
2 “1”
3 “00”
4 “01”
5 “10”
6 “11”
7 “000”
8 “001”
... ...
14 “111”
15 “0000”
16 “0001”
... ...
30 “1111”

Fig. 2: Programs P1, P2, P3 are leaking the number of set bits, the length of secret, and the secret values, respectively. In
programs P2 and P3, the clustering over functions are required to find the correct number of classes of observations.

Consider a program with two functional behaviors (red and
black) pictured in Figure 1b, where the red and black behaviors
correspond to secret s1 and secret s2, respectively.

At runtime, the attacker interacts with the remote server
running the same instance of the application with a fixed
secret value. The green timing function in Figure 1c shows the
execution-time function of public inputs obtained from observ-
ing the remote server. The green function looks far apart from
both local observations (black and red functions). However,
due to the effects of remote observations, the attacker knows
that the execution time is off by an unknown constant. The
attacker is in effect observing only the shapes of functions, i.e.,
their first derivatives. So, the distance is over the derivatives
of functions [6], [8]. The attacker can use this distance and
calculate that the green function is closer to the black function
than the red function. Note that if the L1 distance between the
first derivative of two timing functions is greater than ε, the
corresponding secret values can leak to a remote attacker.

B. Classes of observations in side channels

The number of distinct timing observations (or clusters)
over secret inputs is an important measure to evaluate the
resulting threats of side channels [9], [2]. Here, we illustrate
that it is critical to analyze functions to obtain clusters,
especially in dynamic analysis. We consider three side-channel
vulnerable programs. Program P1, a variant of square and
multiply algorithm [10], leaks the number of set bits in the
secret. Program P2, a vulnerable Jetty password matcher [11],
leaks the length of secret passwords. Program P3, a vul-
nerable google Keyczar password matcher [12], leaks the
value of secret passwords. Let public values be the sequence
〈“0”, “1”, “00”, “01”, . . . , “1111”〉, and secret values be the
set {“0”, “1”, “00”, “01”, . . . , “1111”}.

Figure 2 shows six plots about the execution times of three
programs: Figure 2 (a-c) are point-wise depictions and Figure 2
(d-f) are functional presentations. The x-axis is the index of

30 public values (see corresponding values in the table in
Figure 2). The y-axis is the cost of executing a pair of secret
and public values in the number of bytecode executed.

According to the point-wise definition, the number of
clusters can be obtained by fixing the public input and finding
the number of distinguishable classes of observations (different
cost values) over all possible secrets. Let’s consider a public
input value that gives the largest number of clusters for each
example. Let’s pick the index 30 on the x-axis for all examples
in Figure 2 (a-c). This choice results in 5, 2, and 5 clusters
for programs P1, P2, and P3, respectively. According to the
functional definition, we model the execution times of each
secret value as a function from the public input to the cost
of execution. Figure 2 (d-f) show 30 functions in each plot,
colored based on their cluster labels. Any two functions that
are ε = 0.1 close to each other belong to the same cluster.

For P1, there are 5 clusters in Figure 2 (a), and also 5
functional clusters in Figure 2 (d). This means that both the
point-wise and functional definitions agree that there are five
clusters (0 to 4 possible set bits). However, the results are
different for programs P2 and P3. Figure 2 (b) shows that
in each point on the public value, there are two classes of
observations (either the lengths of secret and public inputs
matched or not). On the other hand, the functional model in
Figure 2 (e) shows that there are 4 different functional clusters
that correspond to four possible lengths in the secret values.
Specifically, let’s look at Figure 2 (e) from the indices 7 to 14.
These are the low (public) values with the length of three (from
“000” to “111”). Secret values with length three are checked
against these public values, while all other secret values are
rejected immediately. As a result, the timing functions of secret
values with the length three goes up from 2 to 17 at index 7
and goes down from 17 to 2 at index of 15. Observe that
the clustering helps to group timing functions of secret values
with length three in the same class. Similarly, there are unique
indices for secrets with the lengths 1, 2, and 4 where the timing
functions jump up/down and reveal the length of secrets.

3

(a) Raw Timing Functions. (b) Clustered Timing Functions.

java.util.regex.Pattern.
Slice.match bblock 3964

end parts of tree

java.util.regex.Pattern.
Slice.match bblock 3964

java.util.regex.Pattern.
Slice.match bblock 3964

≤ 19 > 19

≤ 22 > 22

≤ 26 > 26

Fig. 3: (a) Regex timing functions. Execution times of 435 secret values are modeled as 435 timing functions. How are these
functions related? (b) 435 timing functions are clustered into 12 distinguishable classes of observations (clusters) using L1-norm
distances. The presence of different clusters indicate some properties of secret patterns are leaking. What properties of secret
patterns are leaking? (c) Regex decision trees. The number of calls to the basic block at line 3964 of Pattern.match()
method (shown in Figure 4) discriminates different clusters. The code region shows the value of secret patterns is leaking.

Similarly, the point-wise model for the program P3 in
Figure 2 (c) underestimates that the (whole) secret values are
leaking (found 5 clusters). The functional model in Figure 2 (f)
finds 30 clusters: there is a unique function for each of the 30
secret values (two samples are shown on top of Figure 2(f)).

III. OVERVIEW

We illustrate how our tool can be used for discovering and
explaining a zero-day timing side channel. We analyze the
java.util.regex 1 package of Open JDK 8. The package
includes 620 methods and over 8,000 lines of code.

Problem. The secret input is the regular expression compiled
as a pattern, and the public input is the guess that matches
against the pattern. The attacker’s goal is to infer a (fixed)
secret (or its properties) by observing the response time for
multiple public inputs. The key problem is to help the defender
discover the existence of such side channels.

Side channel discovery. The defender starts choosing a finite
set of secret and public values. In this example, the defender
uses FUCHSIA to generate the set of secret and public input
values. The fuzzing of FUCHSIA is an extension of AFL [3]
and Kelinci [4] where it generates multiple public input values
for each secret value to discover the functional dependencies of
response time over public inputs. The defender obtains 1,154
different secret patterns and 6,365 different matching guesses
during 4 hours of fuzzing. The lengths of guesses are at most
52 characters. For each secret value, FUCHSIA varies 6,365
different guesses and measures the execution time of regex.
Then, it fits B-spline [13] to model the timing functions for
each secret. Figure 3 (a) shows 435 different timing functions
over the public inputs from the guesses with the prefix “bb...”
to “gg...”. We choose the subsets of secret and public values
for simpler presentations. Next, the defender wants to know
how these timing functions are related and if there are timing
side channels.

The defender provides the notion of a distance and the tol-
erance ε. In this case, he considers L1-norm distance between
functions and the tolerance ε = 0.2. Given the distance norm

1https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

and the tolerance, FUCHSIA uses a non-parametric functional
clustering algorithm [5] to discover classes of observations.
The clustering algorithm finds 162 clusters over the 1, 154
secret values. The existence of 162 distinct classes of observa-
tions indicates the presence of a functional side channel in the
regex package. Figure 3 (b) shows 12 clusters for the subset
of 435 functions presented in Figure 3 (a).

Side channel explanation. Now, the defender wants to know
what properties of secret are leaking through the timing side
channels. The task is to learn the discriminant [14]. It helps the
defender localize the code regions causing to observe different
clusters and use the information to establish facts about the
leaks. Specifically, it shows which features are common for
secrets in the same cluster and which features separate different
clusters. FUCHSIA uses program internal features such as
methods called or basic blocks invoked. These are obtained
by running the same set of secret and public inputs on the
instrumented regex (using Javassist [15]). The instrumentation
provides 203 features about the internals of regex. FUCHSIA
applies an extension of the decision tree learning algorithm
from [16]. It produces a decision tree whose nodes are labeled
by program internal features and whose leaves represent sets
of secret values inside a cluster.

Figure 3 (c) shows (parts of) the decision tree model
learned for regex. Using this model, the defender realizes that
the executions of the basic block at line 3964 of Pattern

Regex.Pattern.Slice

boolean match(Matcher matcher, int i, ...
CharSequence seq){

int[] buf = buffer;
int len = buf.length;
for (int j=0; j<len; j++) { (line.3964)
if ((i+j) >= matcher.to){
matcher.hitEnd = true;
return false;

}
if (buf[j] != seq.charAt(i+j))
return false;

}
return next.match(matcher, i+len, seq);

}

Fig. 4: Pattern matching using regex (buf secret, seq public).

4

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

class in Slice.match() method is what distinguishes the
clusters. This basic block represents the loop body of the for
statement in the method shown in Figure 4. For instance, the
purple cluster, the functions with the second highest execution
times around the index 40 of Figure 3 (b), corresponds to
the case where match_bblock_3964 calls more than 22
times but less than 26 times. Note that the edge values in
the decision tree are also B-spline functions, but we map
them to their max values for the illustration. Inspecting the
relevant code, the defender realizes that the matching prefix
of secret patterns is leaking through the side channels. Hence,
an attacker can obtain the (whole) secret patterns, one part in
each step of observations. We reported this vulnerability, and
the OpenJDK security team has confirmed it. Since fixing this
vulnerability requires substantial modifications of library, the
developers suggested to add artificial extra delays when the
stored pattern is secret in order to mitigate it.

IV. DEFINITIONS

We develop a framework for detecting and explaining
information leaks due to functional timing observations.

A. Threat Model

We consider the known-message threat [2] and assume
that the secret inputs are less volatile than public inputs.
Thus, the attacker’s observations are functional where for each
secret value, she learns a function from the public inputs to
the execution times. In our threat model, the attacker, who
has access to the source code, can sample execution times
arbitrarily many times on her local machine with different
combinations of secret and public values. She can thus infer an
arbitrarily accurate model of the application’s execution times.
During the observations on the target machine, the attacker
intends to guess a fixed secret by observing the application on
multiple public inputs. These observations may not correspond
to her local observations due to several factors, such as, i)
target’s machine noises, ii) network delays, and iii) masking
delays added to every response time to mitigate side channels.

B. Timing Model and Functional Observations

Let R and R≥0 be the set of reals and positive reals.
Variables with unspecified types are assumed to be real-valued.

Definition IV.1. The timing model [[P]] of a program P is a
tuple (X,Y,Σ, δ) where:

– X= {x1, . . . , xn} is the set of secret-input variables,

– Y = {y1, . . . , ym} is the set of public-input variables,

– Σ ⊆ Rn is a finite set of secret-inputs, and

– δ : Rn×Rm → R≥0 is the execution-time function of
the program as a function of secret and public inputs.

A functional observation of the program P for a secret
input s ∈ Σ is the function δ(s) defined as y ∈ Rm 7→ δ(s,y).
Let F be the set of all functional observations. To characterize
indistinguishability between two functional observations, we

introduce a (normalized) distance function di,p : F×F → R≥0
on functional observations, for i, p ∈ N, defined as:

di,p
def
= (f, g) 7→

(
1

|Y |

∫
y∈Y

(
f (i)(y)− g(i)(y)

)p
dy

) 1
p

,

where f (i) represents i-th derivative (wrt y) of the function
f (0-th derivative is the function itself) and |Y | is a measure
for the domain of public inputs. The distance function di,p
corresponds to the p-norm distance between i-th derivatives
of the functional observations. Given the tolerance ε > 0 and
the distance function parameterized with i, p ∈ N, we say that
secrets s and s′ are indistinguishable if di,p(δ(s), δ(s′)) ≤ ε.

Depending upon the context, as we argued in Section II-A,
different distance functions may be of interest. For instance,
the distance between first derivatives may be applicable when
the shape of the functional observation is leaking information
about the secret and the second derivatives may be applicable
when the number of growth spurts in the observations is
leaking information. Similarly, in situations where the attacker
knows the mitigation model—say, temporal noises added to
the signal are n-th order polynomials of the public inputs—two
functional observations whose n-th derivatives are close in the
p-norm sense may be indistinguishable to the attacker. Finally,
depending upon the specific situation, an analyst may wish to
use a more nuanced notion of distance by taking a weighted
combination [17] of various distance functions characterized
by di,p. To keep the technical discourse simple, we will not
introduce such weighted combinations.

C. Noninterference and Functional Observations

Noninterference is a well-established [18], [19], [20] crite-
rion to guarantee the absence of side channels. A program
P is said to satisfy the noninterference property if: ∀y ∈
Rm∀s, s′ ∈ Σ we have δ(s,y) = δ(s′,y). To account for
the measurement noises in the observation of the execution
time, it is prudent (see, e.g., [21]) to relax the notion of
noninterference from exact equality in timing observations to
a parameterized neighborhood. For a given ε>0, a program P
satisfies ε-approximate noninterference if:

∀y ∈ Rm∀s, s′ ∈ Σ we have |δ(s,y)− δ(s′,y)| ≤ ε. (2)

We adapt the notion of ε-approximate noninterference in
our setting of functional observations by generalizing previous
notions of noninterference. We say that a program satisfies
functional ε-approximate noninterference if

∀s, s′ ∈ Σ we have di,p(δ(s), δ(s′)) ≤ ε, (3)

where di,p is a distance function over functional observations
defined earlier. For example, the distance d0,∞ in the defini-
tion (3) recovers the definition (2). For the rest of the paper,
we assume a fixed distance function d over functions.

D. Quantifying Information Leakage

The notion of noninterference requires that the attacker
should deduce nothing about the secret inputs from observing
the execution times for various public inputs. However, one
can argue that achieving noninterference is neither possible
nor desirable, because oftentimes, programs need to reveal in-
formation that depends on the secret inputs. We therefore need

5

a notion of information leakage. The number of distinguishable
classes in timing observations often provide a realistic measure
to evaluate the strength of information leaks. For example, the
min-entropy measure [9] quantifies the amounts of information
leaks based on the number of distinguishable observations.
Our data-driven approach with functional clustering algorithms
provides a lower-bound on the classes of observations.

V. DATA-DRIVEN DISCOVERY AND EXPLANATIONS

The space of program inputs are often too large (po-
tentially infinite) to exhaustively explore even for medium-
sized programs. This necessitates a data-driven approach for
discovery and explanation of functional side channels. In
the proposed approach, an analyst uses fuzzing techniques,
previously reported issues, or domain knowledge to obtain a set
of secret and public inputs. In particular, an extension of gray-
box evolutionary search algorithms can be used to generate
interesting inputs for functional side channel analysis. Our
technique then exploits functional patterns in the given inputs
and applies functional data clusterings to discover functional
side channels. To explain the discovered side channels, our tool
instruments the programs to print information about auxiliary
features (e.g., the number of times a method called or basic
block executed) and apply classification inferences to localize
code regions cause the side channel leaks. To summarize: given
a set of program input traces, the key computational problems
are a) to cluster traces exhibiting distinguishable timing be-
haviors and b) to explain these differences by exploiting richer
information based on the auxiliary features.

Hyper-trace Learning. Let Z={z1, . . . , zr} be the set of
auxiliary features. An execution trace of a program P is a
tuple

(x,y, z, t) ∈ Rn × Rm × Rr × R,

wherein x ∈ Σ ⊂ Rn is a value to the secret inputs, y ∈ Rm
is a value to the public inputs, z ∈ Rr are the valuations to
the auxiliary features, and t ∈ R≥0 is the execution time. We
assume the valuations of the auxiliary features deterministi-
cally depend only on the secret and public inputs. To keep
the execution time unaffected from the instrumentations, we
estimate the execution time on the un-instrumented programs.
Let T be a set of execution traces.

As our main objective is to explain the differences on func-
tional observations due to differences on secret and auxiliary
features, we rearrange the raw execution traces T to functional
traces H by combining traces with common values of the
secret inputs. Functional traces H are hyper-traces—as they
summarize multiple program executions—that model auxiliary
and timing values as a function of public inputs. A hyper-trace
τ is a tuple(
x, (Ai(x))ri=1, fT (x)

)
∈ Rn × ([Rm → R])r × [Rm → R],

wherein x is a value to the secret input, Ai and fT are
functions modeling values of auxiliary features and execution
time, respectively, as a function of public inputs for secret
x. Computation of hyper-traces from a set of raw-traces is
achieved by turning the discrete vectors of observations (for
auxiliary variables as well as execution time) into smooth func-
tions represented as linear combinations of appropriate basis

functions (e.g. B-spline basis system, Fourier basis functions,
and polynomial bases) [22]. We primarily use B-splines.

Side-Channel Discovery. Given a set H of hyper-traces,
H = {(xj , (Ai(xj))ri=1, fT (xj))}Nj=1, we use functional data
clustering over C = {fT (xj)}Nj=1 to detect different classes of
observations such that hyper-traces within a cluster are ε-close
according to the distance di,p.

Functional clustering approaches [5] can be broadly clas-
sified into non-parametric and model-based approaches. Our
tool uses a non-parametric functional clustering and imple-
ments two algorithms to cluster indistinguishable observations.
These algorithms—described in Section VI-A—take the timing
observations set C, an upper bound K on the number of
clusters, a distance function di,p, and the tolerance ε > 0 as
inputs, and returns the “centroids” of observational functions
F = {f1, f2, . . . , fk} for k ≤ K. Our algorithm guarantees
that each centroid fκ ∈ F (1 ≤ κ ≤ k) represents the timing
functions for the set of secret values Σκ such that x,x′ ∈ Σκ
if and only if di,p(fT (x), fT (x′)) ≤ ε.

Side-Channel Explanation. A (hyper) trace discriminant is
defined as a disjoint partitioning of the auxiliary variables
(functional) spaces along with a functional observation for
each partition. Formally, a trace discriminant Ψ = (F ,Φ) is
a set of functional observations F = {f1, f2, . . . , fk}—where
each fκ : Rm → R≥0 models the execution time as a function
of the public input—and a partition Φ = 〈φ1, φ2, . . . , φk〉
where each

φκ : [Rm → R]r → {True,False}

is a predicate over the functional auxiliary features. We define
size(Ψ) as the number of functions in the discriminant Ψ,
i.e. size(Ψ) = |F| = k.

Given a hyper-trace τ=(x, (Ai)ri=1, fT) and discrimi-
nant Ψ=(F ,Φ), we define the prediction error e(τ,Ψ) as
d0,2(fT , fκ) where 1≤κ≤k is the index of the unique value
in Ψ such that (x, (Ai)ri=1) |= φκ i.e. the predicate φκ
evaluates to true for the valuation of secret value x and the
functional auxiliary features (Ai)ri=1. This evaluation triggers
the functional observation fκ. Given a set of hyper-traces
H = {τ(xj)}Nj=1, and a discriminant Ψ, we define the fitness
of the discriminant as the mean of prediction errors:

µ(H,Ψ) =
1

N

N∑
i=1

e(τ(xj),Ψ).

Definition V.1 (Discriminant Learning Problem). Given a set
of hyper traces H, a bound on the size of the discriminant
K ∈ N, a bound on the error δ ∈ R, the discriminant learning
problem is to find a model Ψ = (F ,Φ) with size(Ψ) ≤ K
and prediction error µ(H,Ψ) ≤ δ.

It follows from Theorem 1 in [23] that the discriminant
learning problem is NP-HARD. For this reason, we propose
a practical solution to the discriminant learning problem by
exploiting functional data clustering and decision tree learning.

For learning the discriminant model, we adapt a decision
tree learning algorithm by converting various functional data-
values into categorical variables. For the r auxiliary features

6

Algorithm 1: (F ,Φ) = FUCHSIA(P,P ′,≺Y ,K, di,p, ε)
Input: Program P , the instrumentation P ′, order of public values ≺Y , cluster bound K, distance di,p, and tolerance ε.
Output: Discovered timing observations as functional clusters and their explanations as decision tree models.

1 Π,Σ = FUNCFUZZ(P,≺Y) . Obtain secret and public sets by fuzzing P given an order over public input domain ≺Y .
2 F = EXECTIME(P,Π,Σ) . Obtain timing functions F = {fT (si)}ni=1 by executing P on the set Π for each secret si.
3 A = EXECAUX(P ′,Π,Σ) . Obtain feature set A by executing P ′ similar to the execution of EXECTIME.
4 F = FDCLUSTERING(T,K, di,p, ε) . Obtain functional clusters F = 〈f1, f2, . . . , fk〉 over F given K, di,p, and ε.
5 Φ = DISCLEARNING(A,F) . Obtain discriminant Φ = 〈φ1, φ2, . . . , φk〉 given the set A and functional clusters F .
6 return F , Φ

evaluated for a secret x ∈ Σ, (x, (Ai(x))ri=1), our algorithm
clusters each auxiliary feature into k groups by employing
functional data clustering [5]. Let (x, (Li(x))ri=1) shows secret
value x and categorical feature variable Li =

{
`1i , `

2
i , . . . , `

k
i

}
for i = 1, . . . , r. Given the set of traces (xj , (Li(xj))

r
i=1, fκ)

with r categorical auxiliary features and the timing function
labeled with cluster color κ (1≤κ≤k), the decision tree infer-
ence learns hyper-trace discriminants efficiently.

Overall Algorithm. The workflow of FUCHSIA is given in
Algorithm 1. We provide a brief overview of each component
of FUCHSIA here and describe the details of implementations
in the next section. Given the program P with the secret
and public inputs where ≺Y defines an arbitrary order over
public input domains, the procedure FUNCFUZZ employs a
gray-box evolutionary search algorithm to generate public and
secret input values. The procedure EXECTIME models timing
functions over the public input set for each secret value on
the program P . The procedure EXECAUX produces the aux-
iliary features (method calls and basic-block invocations) by
executing the same inputs as EXECTIME on the instrumented
program P ′. Furthermore, the procedure EXECAUX models the
feature evaluations as functional objects over public inputs.
Given an upper bound on the number of clusters K, the
distance function di,p, and the tolerance ε, FDCLUSTERING
applies a functional data clustering algorithm to find classes of
observations F = 〈f1, f2, . . . , fk〉. Each cluster fi includes a
set of timing functions (corresponds to a set of secret values).
The procedure DISCLEARNING learns a set of discriminant
predicates 〈φ1, φ2, . . . , φk〉, one predicate for each cluster
defined over auxiliary features, using decision tree inferences.

VI. IMPLEMENTATION DETAILS

A. Implementations of components in FUCHSIA

FUNCFUZZ component. We implement fuzzing for our func-
tional side channel discovery using an extension of AFL [3]
and Kelinci [4] similar to DifFuzz [7]. The cost notion is the
number of bytecode executed for a given secret and public
pair. In our fuzzing framework, we generate multiple public
values for each given secret value. Then, we model the cost
of each secret value as a simple linear function (for the
efficiency of fuzzer) from the domain of public values to
the cost of execution. This helps exploit simple functional
dependencies of response time (abstracted in the number of
bytecode executed) on public inputs. During fuzzing, we record
the linear cost functions obtained for different secret values.
The fuzzing engine receives small rewards when the linear
model of a secret value has changed and larger rewards when a
new linear model found that is different than any other models

(in the same public input domain) observed so far. Notice that
these rewards are in addition to the internal rewards in AFL
such as when it finds a new path in the program.

EXECTIME component. For each secret value, we have a
vector of execution times over public inputs. We use func-
tional data analysis tools [13] to create B-spline basis and fit
functions to the vector of timing observations. The bases are
a set of linear functions that are independent of one another.
Given a known basis, B-spline models can approximate any
arbitrary functions (see [22] for more details). The output of
this step is a set of timing functions each for a distinct secret.

EXECAUX component. We use Javassist [15] to instrument
any methods in a given package. The instrumented program
P ′ provides us with the feature set Z that is method and basic
block calls. For each secret value, we have a vector of the
number of calls to the basic blocks and methods over the public
inputs. We generally fit B-spline over the valuations of each
auxiliary feature z ∈ Z, but we allow for simpler functions
such as polynomials. The result of this step is the set A that
defines functional values of auxiliary feature z ∈ Z in the
domain of public inputs.

FDCLUSTERING component. Given an upper-bound K on
the number of clusters and the distance norm d with the
tolerance ε, we implement FDCLUSTERING to discover k
clusters (k ≤ K). This clustering is an instantiation of
non-parametric functional data clustering [6]. We use two
algorithms: hierarchal [24] and constrained K-means [25].

Preparation for clustering. The input for the clustering is the
timing functions from EXECTIME component. We use the
distance function di,p to obtain the distance matrix D. The
distance matrix quantifies the distance between any timing
functions. We specify cannot-link constraints over the matrix
D. Cannot-link constraints disallow two functions that are
more than ε far to be in the same cluster.

Constrained K-means clustering. Given the upper bound K,
constrained K-means algorithm [26] obtains k clusters in each
iteration (k = 1 in the first iteration). If the algorithm could
not find k clusters (k ≤ K) with the cannot-link constraints,
it increases k to k + 1 and runs the next iteration. Otherwise,
it returns the cluster object F = 〈f1, f2, . . . , fk〉. The con-
strained K-means with cannot-link constraints is known to be
computationally intractable [27].

Hierarchical clustering. The clustering algorithm with com-
plete link method [28] obtains k clusters (k ≤ K). In each
iteration (k = 1 in the first iteration), it applies the hierarchal
clustering, and then checks the cannot-link constraints to

7

Fig. 5: FUCHSIA framework. (1) The defender feeds the program P to the fuzzing engine and generates a set of secret (Σ) and
public (Π) inputs. (2) The defender specifies the basis function B (such as B-Spline basis) and enables FUCHSIA to generate
timing functions F . (3) Given the functions, the defender specifies the tolerance ε and the distance norm (such as L1-norm),
and FUCHSIA identifies the clusters in timing functions. (4) On the instrumented version P ′, FUCHSIA uses the same basis B
and models the calls to each basic block with functions. (5) Given the cluster label and the basic block evaluations, FUCHSIA
applies decision trees to explain side channels with program internal properties.

make sure that all the functions in the cannot-link set are in
different clusters. If the condition is not satisfied, it increases
k to k + 1 and runs the next iteration. Otherwise, it returns
F = 〈f1, f2, . . . , fk〉. Hierarchical clustering is agnostic to the
constraints, and the constraints are checked after the clustering.

Point-wise clustering. We use the definition of well-establish
ε-approximate noninterference in [21], [7] for point-wise clus-
tering. For every public input value, we form cannot-link
constrains and apply one of the clustering algorithms with the
∞-norm and the tolerance ε. Finally, we choose the largest
number of clusters among all values of the public inputs.

DISCLEARNING component. Using the auxiliary variables
A as features and the functional clusters F as labels, the
problem of learning discriminant models becomes a standard
classification problem. The white-box decision tree model
explains what auxiliary features are contributing to different
clusters. We use the CART decision tree algorithm [29].

FUCHSIA framework. Figure 5 shows the steps of FUCHSIA
for a defender to discover and explain timing side channels.

(i) The user (defender) starts interacting with FUCHSIA
by feeding the program or library P to the fuzzing
engine. This involves modifying the fuzzing driver to
call the main method in program P with secret input
variables X , public input variables Y , and an order on
the public input ≺Y . FUCHSIA supports all variable
types and provides various options for ordering the
public input variables including the size (default), the
lexicographic order, and the number of set bits. The
user can optionally tune the parameter determining
the number of public values to be generated per each
secret value in the fuzzing driver (the default value for
this parameter is 3).
The user then invokes the fuzzer and has an option
of stopping it either after a pre-specified timeout T
(default is 2 hours), or when a desired number of
inputs is generated. After the fuzzing, the user gathers
the set of secret (Σ) and public (Π) inputs. Optionally,

the user can specify any other desired set of inputs
with unexpected behaviors.

(ii) In the next step, FUCHSIA identifies timing functions
for each secret input generated in the first step. The
defender has the option to choose the basis B for
timing functions, such as B-splines (default) or poly-
nomials. For each secret input, FUCHSIA runs the
program P on the set of public inputs Π, measures
the response times, and fits the basis to generate the
timing function. The defender obtains the set of timing
functions F , one for each secret value. Optionally, the
defender may use the number of byte-code executed
instead of the actual response time.

(iii) Next, FUCHSIA identifies natural clusters in this set of
timing functions F . To aid this, the defender provides
the distance norm di,p and a tolerance ε, and FUCHSIA
returns the cluster label for each timing function. The
implemented options for the di,p-norm include L1-
norm (p = 1, default), L∞-norm (p = ∞), and L2-
norm (p = 2) for the timing functions (i = 0, default)
and their first derivatives (i = 1).
The parameter ε (with the default value of 0.1) can
be fine-tuned based on the noises present the timing
observations using the following procedure: a) select
a secret value randomly; b) run the program (with
that secret value) multiple times on the set of public
values; c) create several timing functions and employ
the clustering algorithm; d) search for the smallest
value of tolerance ε such that the algorithm returns
one cluster. This sampling procedure can be repeated
multiple times (with different secrets) to get more
precise estimates. The accuracy of decision tree is
another key criterion to base the tuning of the ε
parameter and choose values leading to accurate trees.

(iv) The fourth step is to generate program internal traces
for the inputs reported in the first step. FUCHSIA
allows the user to specify features over program

8

internals—such as basic blocks traversed and set of
methods invoked—to base the explanation of the tim-
ing side channels. FUCHSIA runs the same set of secret
and public inputs on the instrumented program P ′ to
collect data about these features. This results in a rich
summary of the program traces expressed as the values
of these features. FUCHSIA uses the same basis B
(default) and model the number of calls to each basic
block with functions.

(v) In the last step, given the basic block evaluations
and cluster label for each secret value, FUCHSIA uses
the decision tree models to localize code regions that
contribute to the creation of timing side channels. This
step does not require parameters from the defender.

B. Environment Setup

All timing measurements in EXECTIME of Algorithm 1
are conducted on an Intel NUC5i5RYH [30]. We run each
experiment 10 times and use the mean for the analysis. All
other components are conducted on an Intel i5-2.7 GHz with
8 GB RAM. The FUCHSIA includes almost 2,000 lines of
code. The functional analysis and clustering are implemented
in R using functional data analysis package [31] and hierarchal
clustering package [28]. The fuzzing and instrumentations are
implemented in Java using AFL [3], Kelinci [4], and Javas-
sist [32]. The decision tree learning algorithm is implemented
in python using scikit-learn library [33].

C. Micro-benchmarks

We first compare the two clustering algorithms from
Section VI-A. Then, we examine the scalability of different
components in FUCHSIA. Finally, we study and compare the
results of FUCHSIA versus DifFuzz [7].

Programs. Two programs Zigzag and processBid are
shown in Figure 7. The applications Guess_Secret_1 [34]
and Guess_Secret_2 [35] (shown in Figure 7) take the
secret and public as the inputs and execute different sleep
commands depending on their values. PWCheck_unsafe is
a password checking example taken from [7]. Six versions of
branch and loop are considered, with one depicted in Figure 7.
Depending on the secret value, the program does compu-
tations with four types of complexities: O(log(N)), O(N),
O(N.log(N)), and O(N2) where N is the public input. Each
branch and loop program has all four loop complexities with
different constant factors such as O(log(N)) and O(2.log(N)).

Fig. 6: (a) Computation time. Hierarchical clustering is scal-
able better than constrained K-means. (b) Number of clusters.
Hierarchical clustering discovers a fewer number of clusters.

Input Generations. To study the micro-benchmark programs,
we generate inputs using our fuzzing technique. We run the
fuzzing for 30 minutes on each program and use the generated
inputs for the rest of analysis.

Clustering Parameters. We use both the functional data
clusterings (constrained K-means and hierarchical) as well
as point-wise clustering. For the point-wise clustering, the
distance is based on ∞-norm. For functional clusterings, we
consider the L1-norm distance (d1) with the tolerance ε1.

Clustering Comparison. Figure 6 shows the comparison
between the hierarchical and constrained K-means algorithms
(Section VI-A) using Branch_and_Loop_6 where the num-
ber of secrets varies from 32 to 1,024 all with 1,000 public
values. It shows that the constrained K-means is computa-
tionally expensive, while the hierarchical clustering is much
more scalable (up to 400×). Besides, the constrained K-means
discovers more clusters than the hierarchical one. Note that
the clusters discovered by both algorithms are valid, and we
prefer the one with the fewer number of clusters! We use the
hierarchical algorithm for the rest of this paper.

Scalability. We examine the scalability of components in
FUCHSIA for fitting functions, finding clusters, and learning
decision trees. We observe that FUCHSIA can handle more
than 250 timing functions each defined over more than 2,000
public values in less than 30 seconds. The computation time
grows in the quadratic factor with respect to the growth of
the number of secret values and public values. Learning the
decision tree model includes both fitting functions over the
auxiliary features and using CART algorithms in the functional
domain. We observe that this procedure is scalable and takes
less than one minute in the worst case.

DifFuzz Approach. DifFuzz is a recent side-channel detec-
tion technique that outperforms other state-of-the-art tech-
niques [7]. The approach extends AFL [3] and Kelinci [4]
fuzzers to detect side channels. The goal of DifFuzz is to
maximize the following objective: δ = |c(p, s1)− c(p, s2)|,
that is, to find two distinct secret values s1, s2 and a public
value p that give the maximum cost (c) difference. Because
the cost function (c) is the number of executed bytecodes, we
use BigInteger manipulations equivalent to sleep commands in
micro-benchmark programs. Note that the objective function
is based on ε-approximate noninterference where the goal is to
maximize the point-wise cost differences between two secrets.

DifFuzz versus FUCHSIA. Table I shows the results of
applying FUCHSIA and DifFuzz on the set of micro-benchmark
programs. We generate inputs for both approaches in 30 mins.
We analyze the input generated from these two approaches
in two criteria: 1) whether they deem the benchmark safe?
2) how many classes of observations do they find? Based on
the results in [7], the minimum value of cost difference δ for
unsafe variants is 8. However, in this study, a program is safe
if δ ≤ 1 that allows DifFuzz to deem the application unsafe for
smaller cost differences. In the same way, we set the tolerance
parameter based on L1 norm distance in FUCHSIA to be 1.

We highlighted differences between DifFuzz and FUCHSIA
in Table I. First, DifFuzz reports the max. cost difference
in Zigzag application as 1, so the program is safe. This
is largely due to the point-wise noninterference definition in
DifFuzz. The definitions with the L1-norm over the shapes

9

Fig. 7: Sample programs used in Micro-benchmark analysis.

1 Zigzag 2 processBid

Zigzag(int secret, int low) {
if(secret % 2 == 0){

if (low % 2 == 0) Thread.sleep(3);
else Thread.sleep(1);}

else Thread.sleep(2);}

processBid(int sec, int offer){
if (offer < secret) return false;
else { recordBid(offer); return true;}}

3 Branch loop 1

Branch_loop_1(int secret, int N) {
if (secret<100) for(int i=N; i>0; i /= 2) Thread.sleep(1);
else if (secret<195) for(int i=0;i<N; i++) Thread.sleep(1);
else if (secret < 290) for (int i = 0; i < N; i++) {

for (int j = N; j > 0; j /= 2) Thread.sleep(1);
}

else if (secret < 400) for(int i = 0; i < N; i++) {
for(int j = 0; j < N; j++) Thread.sleep(1);

}}

4 Guess Sec 2

Guess_Sec_2(int secret,int low,int t) {
if(low <= secret) {

if(t == 1) Thread.sleep(1);
else if (t == 2) Thread.sleep(10);
else Thread.sleep(1000);}

else {
if (t == 1) Thread.sleep(1);
else if(t == 2) Thread.sleep(100);
else Thread.sleep(1000);}}

TABLE I: Micro-benchmark results for FUCHSIA and DifFuzz [7]. Legends: #R: no. of methods, #SF : no. of secret values
(FUCHSIA), #PF : no. of public values (FUCHSIA), ε1: tolerance for L1-norm functional clustering (FUCHSIA), #KF : no. of
clusters (FUCHSIA), SafeF : Yes, if there is only 1 cluster (FUCHSIA), #SD: no. of secret values (DifFuzz), #PD: no. of public
values (DifFuzz), δ: max. cost difference (DifFuzz), SafeD: Yes, if δ ≤ 1 (DifFuzz), #KD: no. of clusters (DifFuzz).

FUCHSIA DifFuzz [7]

Benchmark #R #SF #PF ε1 SafeF #KF #SD #PD Max. δ SafeD #KD

Zigzag 13 70 6,912 1 No 2 3,007 1,532 1 Yes 1
Guess Secret 1 10 110 6,649 1 No 105 9,672 4,797 2 No 2
Guess Secret 2 5 72 7,414 1 No 7 6,480 3,476 0 Yes 1
processBid 3 116 8,100 1 No 112 2,282 1,170 4 No 2
pwcheck unsafe 3 118 9,560 1 No 115 15,290 7,660 47 No 16
Branch and Loop 1 4 179 1,761 1 No 4 8,303 4,477 30,404 No 4
Branch and Loop 2 8 226 2,111 1 No 5 9,003 4,524 30,404 No 5
Branch and Loop 3 16 224 2,101 1 No 7 4,419 2,556 30,405 No 6
Branch and Loop 4 32 229 2,121 1 No 9 8,612 4,656 30,405 No 6
Branch and Loop 5 64 238 2,213 1 No 19 10,523 5,337 30,405 No 7
Branch and Loop 6 128 255 2,200 1 No 24 7,539 3,869 30,405 No 5

can easily show higher costs and deem the application unsafe.
Second, we apply the point-wise and functional clusterings
for inputs generated by DifFuzz and FUCHSIA, respectively.
We observe that DifFuzz finds fewer clusters compared to
FUCHSIA. There are mainly two reasons for these differences.
The first factor is due to the point-wise definitions in finding
classes of side channels as illustrated in Section II-B. In
Guess_1 program, for each distinct secret value, there is a
unique public value where the execution time jumps from one
cost to another. These are captured by the functional clustering
where there is an almost equal number of secrets and clusters.
The second one is due to the objective function of DifFuzz that
tries to find two secret values (with the same public value)
such that the cost differences between them are maximized.
FUCHSIA, on the other hand, tries to find as many functional
clusters as possible. This factor is the main reason for the
differences in Branch_and_loop applications.

VII. CASE STUDIES

Table II summarizes 10 Java applications used as case
studies. We consider L1-norm distance between timing func-
tions (ε0,1) and their first derivatives (ε1,1). The main research
questions are “Do functional clustering and decision tree
learning (a) scale well and (b) provide useful information about
leaks?”

A) Regex. Regex’s case study was described in Section III.
To answer the research question: Usefulness: The decision tree
pinpoints a location in the regex package that leaks the value
of secret patterns. Scalability: The overall computation time
of clustering and decision tree learning is about 65 mins.

B) Jetty. We analyze the util.security package of

Eclipse Jetty web server. The package has a Credential
class which had a timing side channel. This vulnerability
was analyzed in [21] and fixed initially in [11]. Then, the
developers noticed that the implementation in [11] can still
leak information and fixed this issue with a new implementa-
tion in [36]. We consider this new implementation shown in
Figure 9 and apply FUCHSIA to check its security. The final
fix was done a few months later [37], but before we reported
our finding to the developers.

Inputs. The secret input is the password stored at the server,
and the public input is the guess. The defender starts by
choosing a finite set of secret and public values from the fuzzer.
The defender obtains 800 different secret passwords and 635
different guesses from the fuzzer. The lengths of passwords
are at most 20 characters.

Side Channel Discovery. For each secret value, FUCHSIA
varies 635 different guesses and measures the execution time
of Jetty. Then, FUCHSIA models the running time of 800 secret
values with B-spline basis. The next step is to find out how
these functions are related based on their functional distances.
Given the L1-norm as the distance function and the tolerance
ε = 0.1, FUCHSIA uses the clustering algorithm and returns 20
classes of observations as shown in Figure 8 (a). The existence
of 20 distinct classes of observations indicates the presence of
a functional side channel in the Jetty package.

Side Channel Explanation. Now, the defender wants to know
what properties of program internals leak through the tim-
ing side channels. FUCHSIA uses the instrumented Jetty and
obtains 56 internal features such as method calls and ba-
sic block invocations. Each secret value has the functional
evaluation of 56 internal features over the public inputs as

10

TABLE II: Case Studies. Legends similar to Table I, except, #M the number of methods in applications, ε0,1 : tolerance for
L1-norm of the timing model, ε1,1 : tolerance for L1-norm of the first derivative of the timing model, A: accuracy of the tree
model, H: height of the tree, #L: number of leaf nodes in the tree, T: computation time for decision tree learning (s).

Benchmark #M #R #S #P ε0,1 #K0,1 T0,1 ε1,1 #K1,1 T1,1 A H #L T
Regex 620 203 1,154 6,365 2e-1 162 1,801 2e-1 49 4,812 89.7% 14 120 2,084.0
Jetty 63 56 800 635 1e-1 20 49.7 1e-2 15 82.6 99.4% 12 20 52.1
iControl (SOAP) 41,541 127 342 1,164 1e-1 33 19.7 1e-1 19 43.2 98.2% 10 9 10.5
Javax (crypto) 612 56 1,533 1,045 1e-1 54 174.2 1e-1 32 253.0 88.6% 6 36 7.2
GabFeed 573 43 1,105 65 1e-1 34 58.5 1e-2 34 70.5 99.6% 31 34 41.7
Stegosaurus 237 96 512 60 2e-1 5 3.6 1e-1 3 3.6 100.0% 4 5 12.6
SnapBuddy 3,071 65 477 14 2e-1 13 2.8 2e-1 8 3.0 96.2% 14 13 3.1
ShareValue 13 7 164 41 6e-2 29 0.7 1e-2 14 0.7 99.3% 17 29 3.4
MST(Kruskal) 5 6 120 40 3e-1 20 0.4 3e-1 5 0.4 80% 7 20 3.0
Collab 185 53 176 11 1e-2 1 0.3 1e-2 1 0.3 N/A N/A N/A N/A

jetty.util.security.
Credential.stringEquals bblock 106

jetty.util.security.
Credential.stringEquals bblock 106

jetty.util.security.
Credential.stringEquals bblock 106

= β1 6= β1

= β2 6= β2

= β3 6= β3

iControl.ManagementEventSubscription
UserCredential.equals bblock 95

iControl.ManagementEventSubscription
UserCredential.equals bblock 87

iControl.ManagementEventSubscription
UserCredential.equals bblock 87

= 1 = 0

= β1 6= β1

= β2 6= β2

Fig. 8: (a) 800 Jetty timing functions are clustered into 20 groups using L1-norm. This indicates potential timing leaks in Jetty.
What properties are leaking? (b) Jetty decision tree. The number of calls to the basic block at line 106 of stringEquals (shown
in Figure 9) discriminates different clusters. The code region shows the length of secret passwords is leaking. (c) (parts of)
342 iControl timing functions are clustered into 9 groups. (d) (parts of) iControl decision tree model. It pinpoints basic blocks
in UserCredential.equals method. The code region indicates that the whole secret password can be compromised with
timing side channel attacks.

Fig. 9: String equality in Eclipse Jetty (s1 secret, s2 public).

stringEquals

boolean stringEquals(String s1, String s2) {
if (s1 == s2) return true;
if (s1 == null || s2 == null) return false;
boolean result = true;
int l1 = s1.length(), l2 = s2.length();
if (l1 != l2) result = false;
int l = Math.min(l1, l2);
for (int i = 0; i < l; ++i){ (line.106)

result &= (s1.charAt(i) == s2.charAt(i));}
return result;
}

well as a label from the clustering. Next, FUCHSIA uses
the decision tree inferences to localize code regions that
contribute to different observations. Figure 8 (b) shows (parts
of) the decision tree model learned for Jetty. Using this model,
the defender realizes that different calls to a basic block in
Credential.StringEquals() method are what distin-
guishes the clusters. This basic block represents the loop body
of the for statement in the method shown in Figure 9. For
instance, the green cluster (third from the bottom of the center
diagram, the bottom of the right diagram) corresponds to
the case where stringEquals_bblock_106 is executed
according to β3 function. Note that edge values are B-spline

functions over public values, and the max value for βi function
is i. For the example of β3, the max value is 3, and if the
basic block for a secret value is called at most three times,
it belongs to the green cluster. Using the decision tree model
and the relevant code, the defender realizes that the minimum
of the lengths (the secret and the guess) is leaking through the
calls to stringEquals_bblock_106.

Usefulness: The decision tree pinpoints a location in Jetty that
leaks the length of secrets. Scalability: The overall computa-
tion time is about 2 mins.

C) iControl (SOAP). iControl (SOAP)2 is an open source API
that uses SOAP/XML to establish communications between
dissimilar systems. The library has 41,541 methods. One key
confidentiality-related functionality of the library is to store
credentials of various users and to validate their credentials
against a given guess. The defender’s goal is to find out
whether there exist timing side channels in the library, and
if so, identify the code regions potentially responsible for
creating the side channels.

Inputs. The natural candidate for the secret input in this
application is the stored credential at the server, while the
public input is a given guess against a stored credential.
The defender considers the lexicographic ordering over public

2https://clouddocs.f5.com/api/icontrol-soap/

11

https://clouddocs.f5.com/api/icontrol-soap/

inputs to generate functional data. With a timeout of two
hours on fuzzing, the defender obtains 342 unique secret
credentials and 1, 164 unique guesses. The credentials include
secret passwords with the length of at most 16 characters.

Side Channel Discovery. FUCHSIA begins by varying 1, 164
guesses for each secret input and uses B-spline to model 342
timing functions. With the default parameters (L1-norm as
the distance norm and ε = 0.1) for the clustering, FUCHSIA
identifies 33 classes of observations. Figure 8 (c) shows timing
functions and corresponding clusters. The presence of multiple
clusters points towards the existence of timing side channels.

Side Channel Explanation. The defender specifies basic block
calls as the features to be used in the explanation of the side
channels. FUCHSIA runs previously identified inputs on the
instrumented version of iControl and generates 127 auxiliary
features (basic blocks) about the internals of iControl. Given
the set of traces containing the information on these features
and corresponding cluster labels, FUCHSIA uses decision
tree models to present an explanation for the side channels.
The decision tree is shown in Figure 8 (d). It pinpoints that
different calls to the basic block at the equality check in
ManagementEventSubscriptionUserCredential
class is a potential explanation of the timing differences.
Using this information and the relevant code, the defender
may infer that the application uses Java string equality check
to compare passwords. This leads to a password-matching
style vulnerability where an attacker can obtain a prefix of
secret passwords in each step of attack.

We reported this vulnerability to both F5 security team and
F5 open-source community developers. The F5 security team
has confirmed this vulnerability. Moreover, this explanation
helped them to identify a potential vulnerability in their closed-
source implementations.

D) Javax Crypto. Javax library provides the classes and
interfaces for cryptographic operations in Java. The crypto
package in the library has 612 methods and provides function-
alities such as creating and modifying symmetric secret keys.
We analyzed the crypto package of javax library3 against
timing side-channel vulnerabilities.

Inputs. The secret input is the symmetric secret key of en-
cryption algorithms (such as “DES”), and the public input is a
guess key to be compared against the secret key. During two
hours of fuzzing, the defender generates 1,533 secret keys and
1,045 guess keys. The length of a key is at most 16 bytes.

Side Channel Discovery. FUCHSIA identified 1,533 timing
functions using B-spline basis and returned 54 clusters, as
shown in Figure 10 (a), with default parameters (L1-norm and
ε = 0.1). The presence of 54 classes of observations indicates
the existence of timing side channels.

Side Channel Explanation. The next step is to identify the
culprit code regions and understand what properties of secret
keys are leaking. FUCHSIA runs the same set of secret and
guess inputs over the instrumented version (to output infor-
mation about the basic blocks) of the crypto library. This
results in generating 56 auxiliary features about the basic

3https://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/
classes/javax/crypto

block calls. Given the basic block evaluations and the cluster
for each secret value, the decision tree model explains which
basic blocks contribute to different timing observations. The
decision tree in Figure 10 (b) shows the calls to a basic block
in spec.SecretKeySpec.equals() method is the root
cause of timing side channels:

SecretKeySpec.equals(Object obj)

if (this == obj)
return true;

if (!(obj instanceof SecretKey))
return false;

String thatAlg = ((SecretKey)obj).getAlgorithm();
if (!(thatAlg.equalsIgnoreCase(this.algorithm))) {

...
}
byte[] thatKey = ((SecretKey)obj).getEncoded();
return java.util.Arrays.equals(this.key, thatKey);

This results in calling to util.Arrays.equals():

Arrays.equals(byte[] a, byte[] a2)

if (a==a2) return true;
if (a==null || a2==null) return false;
int length = a.length;
if (a2.length != length) return false;
for (int i=0; i<length; i++)

if (a[i] != a2[i]) return false;
return true;

This internal method for the equality check of byte arrays is
vulnerable to timing side-channel attacks. The method returns
as soon as there is a mismatch between two byte arrays. An
attacker can exploit this vulnerability to recover secret keys.

We reported this problem to OpenJDK security team.
During the discussion, we were informed that the vulnera-
bility has since been fixed in an updated version of JDK-
8 [38] (we analyzed JDK-8 project, while the fix appears in
JDK-8-u project). We also analyzed the implementations in
JDK-8-u project [38] with the same set of inputs from the
previous analysis. During this analysis, we found out that
there are 7 clusters in timing observations. This shows that
the new implementation has not completely fixed the side
channels. The decision tree explains that there are different
calls to the basic block at line 454 in isEqual() method of
MessageDigest class [39]. Looking into the source code,
we observed that the length of secret byte arrays is leaking
via timing side channels. Furthermore, the vulnerability applies
to any functionalities in javax that compare byte arrays. We
reported this vulnerability to the developers and suggested safe
implementations to fix it.

E) GabFeed. GabFeed is a Java application with 573 methods
implementing a chat server [21].

Inputs. The server takes users’ public key and its own private
key to generate a common key. The defender uses FUCHSIA
to obtain 1,105 server’s private keys and 65 public keys where
the public keys are ordered by their number of set bits. In total,
there are 71,825 test cases.

Side Channel Discovery. For each secret key, FUCHSIA varies
public keys and measures the execution time to generate
the common key. Next, FUCHSIA uses B-spline and creates
timing functions for each secret. The next step is to find the
equivalence relations over the secret input using the functional
clustering. The defender provides L1-norm and ε0,1 = 0.1 as

12

https://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/javax/crypto
https://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/javax/crypto

javax.crypto.spec
.SecretKeySpec.equals bblock 245

javax.crypto.spec
.SecretKeySpec.equals bblock 245

javax.crypto.spec
.SecretKeySpec.equals bblock 245

= β1 6= β1

= β2 6= β2

= β3 6= β3

OptimizedMultiplier.standard
Multiply BasicBlock 18

OptimizedMultiplier.standard
Multiply BasicBlock 18

OptimizedMultiplier.standard
Multiply BasicBlock 18

= 3 ∗ y 6= 3 ∗ y

= 127 ∗ y 6= 127 ∗ y

= 251 ∗ y 6= 251 ∗ y

Fig. 10: (a) (parts of) 1, 533 timing functions of javax Crypto are clustered into 5 groups. (b) (parts of) javax Crypto decision
tree model. It localizes the basic blocks in SecretKeySpec.equals that can leak the entire secret key due to the use of
Java internals to compare byte arrays. (c) 1, 105 GabFeed timing functions are clustered into 34 groups. (d) GabFeed decision
tree shows the basic block at line 18 of standardMultiply method is the discriminants. The code region shows the number
of set bits in the secret key is leaking.

com.bbnStegger.
hide BasicBlock 145

com.bbnStegger.
hide BasicBlock 145

com.bbnStegger.
hide BasicBlock 145

<= 5.5E7 ∗ y−2 > 5.5E7 ∗ y−2

<= 7.0E7 ∗ y−2 > 7.0E7 ∗ y−2

<= 8.5E7 ∗ y−2 > 8.5E7 ∗ y−2

model.Filter.
filter

image.OilFilter.
filterPixels

image.ChromeFilter.
access

image.AbstractBuffered
ImageOp.getRGB

image.BicubicScaling
Filter.filter

image.FlipFilter
.filter

= 0 = 1

= 1= 0

= 1= 0

= 0 = 1

= 1 = 0 = 0 = 1

Fig. 11: (a) 512 Stegosaurus timing functions are clustered into 5 groups. (b) Stegosaurus decision tree model. It pinpoints the
basic block at line 145 of the hide method. The code region indicates that the length of secret messages is leaking. (c) 477
timing functions of users’ profiles in SnapBuddy are clustered into 13 groups. (d) SnapBuddy decision tree model: calls to photo
filter functions are discriminants. The type of photo filters applied by users on their public profiles can leak their identities.

parameters to the hierarchal clustering, and FUCHSIA discovers
34 clusters as shown in Figure 10 (c). This step partitions 1,105
secret values into 34 distinguishable classes.

Side Channel Explanation. The next step is to find out what
properties of secret keys are leaking. FUCHSIA runs the
same secret and public inputs over the instrumented GabFeed
and obtains 43 different auxiliary features. Given the basic
block evaluations and the cluster for each secret value, the
task is to learn what basic blocks contribute to different
clusters. FUCHSIA uses the CART algorithm and produces
the model in Figure 10 (d). Using this model, the defender
observes that the number of basic block calls at line 18 of
the standardMultiply method explains different clusters.
The edge values in the decision tree model is a linear function
of the public input with different slopes. Inspecting the source
code, the basic block executes expensive shift left and add
operations over BigIntegers of public keys for each set bit in
the secret key. The slopes in the edge values of the decision
tree model depend on the number of set bits in the secret key.

Usefulness: The decision tree explains that the calls to an
expensive basic block is a linear function of public key where
the slope depends on the number of set bits in secret key.
GabFeed authentication algorithm leaks set bits in the secret.
Scalability: The overall computation time is about 2 mins.

F) Stegosaurus. Stegosaurus with 237 methods is a messaging
service that uses steganographic algorithms to hide secret

messages [40]. The application takes the secret message with
a 128-bit key and embeds the message in a random image.

Inputs. The secrets are the message and the key. The defender
uses FUCHSIA to generate 512 secret messages with a size
of at most 8 letters. We assume that the secret key is a fixed
random value chosen by the service. The public input is an
image chosen by the defender and ordered by their scales.

Side Channel Discovery. For each secret message, FUCHSIA
varies the scale of images from 80×80 to 1,024×1,024. Then,
it measures the execution time of the application to encode
the message in different images. In total, FUCHSIA models
512 timing functions. The next step is to find the equivalence
classes over these functions. The defender provides L1-norm
and ε0,1 = 0.2 as parameters to the clustering, and FUCHSIA
finds 5 classes of observations shown in Figure 11 (a).

Side Channel Explanation. The next step is to find out what
properties of secret messages are leaking. FUCHSIA uses the
instrumented version of Stegosaurus to generate basic block
calls for each execution. In total, FUCHSIA obtains 96 different
basic block calls each as a function over public inputs. Given
the basic block calls and the (timing) cluster of each secret
value, FUCHSIA uses the CART inference to explain which
of 96 basic blocks contributes to different observations. The
decision tree model is shown in Figure 11 (b). The defender
realizes that the number of basic block calls at line 145 of the
hide method explains different clusters:

13

hide()

for (int pos=0; pos<=message.length(); ++pos) {
...
while (pkCopy.compareTo(maxOffset) > 0) {

(l.145) pkCopy = pkCopy.subtract(maxOffset.multiply(perf));
}
...}

In the above code snippet, pkCopy is the fixed secret key,
perf is a constant BigInteger value, and maxOffset is the
BigInteger representation of the image scale (height×width).

Usefulness: The decision tree model shows the number of calls
to the basic block at line 145 depends on the secret message
length directly and the scale of the image inversely. Thus, the
length of secret messages is the leaking property. Scalability:
The overall computation time is less than 1 min.

G) SnapBuddy. SnapBuddy with 3,071 methods is a mock
social network where each user has their own page with
a photograph [41]. The size of profiles is a public input
(observable through the generated packets), and the identity
of users actively interacting with the server is a secret input.

Inputs. The defender considers the identities of 477 users
currently in the network as the secret inputs and varies the
size of public profiles from 13KB to 350KB.

Side Channel Discovery. FUCHSIA uses B-spline to model
the profile retrieval times for each user as a function of
profile sizes. FUCHSIA models 477 timing functions, one
for each user. The next step is to find out the relationships
between the timing functions of different users and determine
if there are timing side channels. For this aim, FUCHSIA
applies the clustering algorithm to identify different classes of
observations. FUCHSIA discovers 13 clusters (ε0,1=0.2) shown
in Figure 11 (c). The clustering partitions timing observations
for 477 users into 13 equivalence classes.

Side Channel Explanation. The next step is to find out what
properties of users’ public profiles are leaking. In this example,
in particular, it is difficult to find out the leaking property solely
based on the profile features since it is exhaustively large.
Some examples are the users’ locations, their names, their
friends, their friends’ name, their friends’ location, to mention
but few. This is one reason that we turn into collecting program
internal features through instrumentations. The instrumentation
provides 65 auxiliary features, and we model them as functions
over the profile sizes. Figure 11 (d) shows (part of) the decision
tree model that says users who do not apply any filter on
their images follow the black cluster (the bottom cluster in
Figure 11 (c)), while those who apply oilFilter on their images
are assigned to the pink cluster (the top cluster in Figure 11
(c)). The decision tree shows that it is the type of photo filters
applied by the users on their public profile images that are
leaking. A passive attacker can use this information to reduce
her uncertainty about the identity of a user whom the server
downloads his/her profile, especially if some filters used by a
few users in the SnapBuddy.

Usefulness: The decision tree model explains non-trivial facts
about leaks. It shows that different photo filters applied by
users on their profiles are leaking. The defender can use this
information to debug timing differences related to the image
filters. Scalability: The overall analysis takes less than 1 min.

H) Share Value. The application is an extension of classical
share value program studied in [42], [43]. In this case, every
user in the system has public and private shares. The program
calculates useful statistics about shares.

Inputs. The program has 164 users each with maximum of 400
private shares. The user can have 1 to 400 public shares.

Side Channel Discovery. FUCHSIA generates private and pub-
lic shares in the given range. In particular, it fixes private
shares for each user. Next, FUCHSIA varies the number of
public shares for each user and measure the response times to
calculate the statistics for each user. Then, it fits B-spline to
the execution times and applies the functional clustering that
discovers 29 clusters with ε0,1 = 0.06.

Side Channel Explanation. The next step is to find out what
properties of private shares are leaking by using richer infor-
mation from program internals. The decision tree model shows
that different intervals of calls to connect to a remote database
is the root cause of the leaks. Therefore, the number of secret
shares are leaking through the time required to connect a
remote DB. The overall analysis takes about 4 (s).

I) Kruskal. We analyze Kruskal’s algorithm [44] and its
implementation in [45]. Here, we assume that a graph data
structure with Kruskal’s algorithm is used in a security setting
where the graph nodes are public and the structure of the graph
(the connection of nodes) is secret.

Inputs. The input generation for Kruskal’s algorithm is based
on the domain knowledge of this problem. Given that the struc-
ture of graphs is secret, the defender constructs 4,800 graphs
as the following. The defender considers 120 different graph
structures from the interval between a spanning tree (n− 1)
and a complete graph (n× (n− 1)/2). For each structure, the
number of nodes (n) varies from 2 to 200 and the number of
edges is determined based on the structure of the graph. For
example, if the structure of a graph is a spanning tree, the
number of edges varies from 1 to 199.

Side Channel Discovery. For each graph structure, FUCHSIA
fits timing functions that are from the number of nodes to the
execution time. Then, FUCHSIA applies the clustering algo-
rithm and discovers 20 clusters with ε0,1 = 0.3. The presence
of the 20 clusters indicate the possibility of information leaks
about the graph structure.

Side Channel Explanation. The next step is to find out what
properties of program internals are leaking and establish the
facts about the leaks. We obtain program internal features
and apply decision tree algorithms on the set of features for
different secret values. The model shows the number of calls
to the compareTo method distinguish different clusters. This
indicates the sorting algorithm in the MST calculation that
depends on the number of edges is the cause of different
observations. An eavesdropper can use the side channel to
guess whether the graph is a sparse graph or a dense graph.
The overall analysis time takes about 4 (s).

J) Collab. Collab is a scheduling application that allows users
to create a new event and modify existing ones [46]. Users
can apply add, commit, and search operations on events. An
audit event is a secret, while other events are public.

14

Inputs. The defender considers 176 users in the system, each
with either zero or one audit events. The public inputs are the
operations performed on the public events of users.

Side Channel Discovery. For each user, FUCHSIA applies 1 to
11 operations randomly from the set of possible operations on
their public events and measure the response times. FUCHSIA
models 176 timing functions, one for each user in the system.
The next step is to find out the classes of observations on these
functions. FUCHSIA discovers only one cluster with a small
tolerance value, and the defender concludes that no information
about the audit events of users is leaking through timing side
channels. The clustering algorithm takes about 1(s).

VIII. RELATED WORK

Noninterference. Noninterference notion [18] has been widely
used to enforce confidentiality in various systems [19], [20],
[47]. Previous works [21], [7] extend the classical notion of
noninterference with relaxed notions called ε-bounded non-
interference. We adopt the well-established noninterference
definition to the functional setting with various noise models.

Static Analysis for side channels. Various works [21], [48],
[49], [50], [51] use static analysis for side-channel detections.
Chen et al. [21] casts the noninterference property as 2-safety
property [52] and uses Cartesian Hoare Logic [52] equipped
with taint analysis [53] to detect side channels. These static
techniques rely on the taint analysis that is computationally
difficult for real-world Java applications. The work [54] re-
ported that 78% of 461 open-source Java projects use dynamic
features such as reflections that are problematic for static
analysis. We use dynamic analysis that handles the reflections
and scales well for the real-world applications.

Dynamic Analysis for side channels. Dynamic analysis
has been used for side-channel detections [55], [7], [56],
[57], [58]. We compared our technique to DifFuzz [7] in
Section VI-C. Profit [56] considers a black-box model of
programs and study information leaks through network traffics.
It first aligns different traces of packets to identify phases in the
application. Then, it extracts packet-level features such as the
time differences between two packets. Finally, it uses Shannon
entropy to quantify information leaks related to each feature
and provide a ranking of features based on the amounts of
leaks. The trace alignment in Profit is analogous to clustering
in our technique to align traces of different secrets with
similar timing profiles. Similarly, the packet-level features are
analogous to extracting program internal features. The most
important difference is the use-case: our model of systems is
white-box and useful for defenders who have access to the
systems. We consider the variations in both secret and public
inputs, while the variations in Profit [56] is mostly related
to secrets. While Profit could quantify information leaks, it
can’t find out what properties of secrets are leaking. We
utilize program internal features and classifiers to localize code
regions correlated with different observations and establish
facts about leaking properties.

Side-channel Models. Chosen-message threats [2] where at-
tackers can control public inputs are recently extended for
different attack models [34], [59], [60]. Phan et al. [34]
consider synthesizing adaptive side channels where in each
step of the attack, the attacker chooses the best public input

that maximizes the amount of information leaks. In our known-
message threat model [2], however, the attacker only knows
public inputs and may not control them to choose ideal public
inputs. Many related works [34], [60], [7], [21] assume that
the observations such as execution times are precise and apply
abstractions such as the number of executed instructions. How-
ever, we support both realistic settings where the observations
are noisy timing measurements and abstractions.

Quantification of information leaks. The amount of leaks
can be estimated based on quantitative information flow [61],
[9], [62], [63], [64]. Smith [9] defines min-entropy measure
to quantify information leaks. With the assumption that the
secret inputs are uniformly distributed and the program is
deterministic, Smith [9] shows that the amount of information
leaked based on the min-entropy is log2|L| where L is the
classes of observations over the secret set. Our clustering
algorithms can exploit the min-entropy measure defined by
Smith [9] and give lower-bounds on the information leaks.

Localization of vulnerable code fragments. Machine learn-
ing techniques have been used to detect and pinpoint culprit
codes [14], [16], [65]. Tizpaz-Niari et al. [16] consider perfor-
mance issues in Java applications. They cluster the execution
time of applications and then explain what program properties
distinguish different functional clusters. The work [16] is lim-
ited to linear functions (as it needs to discover functions), while
ours supports arbitrary timing functions over public inputs.
In our security context, the program internal features can be
functional. We use an extension of the decision tree algorithm
in [16] to interpret different clusters. Symbolic executions
have also been used to find vulnerable fragments [50], [66],
[67]. Richer explanatory models are a unique aspect of our
work. Our decision trees pinpoint basic blocks, contributing to
different observations, as functions of public inputs.

IX. THREAT TO VALIDITY

Overheads in Dynamic Analysis. We proposed a dynamic
analysis approach to analyze functional side channels. Dy-
namic analysis often scales well to large applications. How-
ever, as compared with static analysis, they present additional
overheads such as time required to discover variegated inputs
and time needed for data collection.

Functional Regression and Order on Input Data. Our
approach assumes the existence of an order over the public
inputs to model timing functions. While such an order is
natural for numerical variables, it may require ingenuity to
define a suitable order for data types such as strings and
BitStream. While our approach can work with any arbitrary
user-defined ordering, often a suitable ordering can signifi-
cantly improve the simplicity of the timing functions in the
functional regression process. For instance, compare Figures 2
(d) and Figure 10 (d). Both of these applications model the
leaks of set bits with different orders on the public inputs.
Our approach captures the clusters in both examples, despite
the ordering in Figure 10 (d) results in simpler functions. In
practice, we restrict the functions explored in our regression
to the class of basis-splines (B-splines). These models are
parameterized by a given degree to model timing functions,
and regression is more efficient with low-degree splines. In
the case of higher-order target functions, we propose Gaussian
Processes as an alternative to model timing functions.

15

Use of Decision Trees. The proposed decision tree models for
discriminant learning partition the space of auxiliary features
into hyper-rectangular sub-spaces. More expressive models,
such as graph models, can be employed to learn richer classes
of discriminants. However, we posit that simpler models like
decision trees provide better interpretability. Another simplify-
ing assumption in our approach is to model auxiliary features
as functional attributes and map them to categorical labels.
A more general approach would be to map the functions to
numerical values and allow decision tree algorithms explore
the space of features to identify suitable partitions. Further
analysis of such mapping is left for future work.

Input Generations. Our approach requires a diverse set of
inputs either given by users or generated automatically using
the fuzzer. For instance, we used FUCHSIA to generate inputs
for the Regex case study, while we use the inputs relevant
to known vulnerabilities from DARPA STAC program for
SanpBuddy. The quality of the debugging significantly depends
on the presence of functional side channels in the given input
set. Our fuzzing approach relies on heuristics to generate a
diverse set of inputs, similar to existing evolutionary fuzzers.

Comparison with DifFuzz. We compared our approach
against DifFuzz [7] in Section VI-C. We chose DifFuzz as
an example of dynamic analysis tool with the point-wise
definition of noninterference. We showed that the functional
definition of noninterference gives a realistic sense of security.
Since the clustering as the main tool for finding classes
of observations took place after the input generations, the
comparison may not evaluate the fuzzing engines accurately.
We left combining fuzzing and clustering to detect the number
of clusters during the input generations for future work.

Timing Measurements. The time observations in our case
studies are measured on the NUC machine (see Section VI-B)
to allow for higher precision in time and network observations.
To further mitigate the effects of environmental factors such
as Garbage Collections on timing measurements, we take
the average of such measurements over multiple samples. In
addition, we turned off JIT compiler for a better precision.

X. CONCLUSION AND FUTURE WORK

We focused on the known-message setting under the as-
sumption that secret inputs are less volatile than public inputs.
In this setting, the observations appear as timing functions. We
propose a notion of noninterference in the functional setting
and show that it allows defenders to detect side channels using
functional data clustering. We propose decision tree algorithms
to pinpoint locations in the program that contribute to the
side channels. Our tool FUCHSIA scales well for large real-
world applications and aids debuggers to identify vulnerable
fragments in such applications.

This work opens potential promising directions for future
work. One direction is to combine the fuzzer with clustering
that can directly estimate the number of distinguishable obser-
vations during the input generations. In this case, the objective
is to find n secret values and m public values and maximize
the number of distinguishable clusters in timing observations.
Another direction is to study the potential timing side channels
for machine learning applications. Given a learning problem
with n samples and m features as public inputs, the feasibility

of leaking (hyper-)parameter [68] of machine learning models
via timing side channels is a relevant and challenging problem.

Acknowledgements. The authors would like to thank the
anonymous reviewers for their valuable comments to improve
our paper. This research was supported by DARPA under
agreement FA8750-15-2-0096.

REFERENCES

[1] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks in web
applications: A reality today, a challenge tomorrow,” in S&P, 2010, pp.
191–206.

[2] B. Köpf and M. Dürmuth, “A provably secure and efficient counter-
measure against timing attacks,” in CSF. IEEE, 2009, pp. 324–335.

[3] “American fuzzy lop,” 2016. [Online]. Available: http://lcamtuf.
coredump.cx/afl/

[4] R. Kersten, K. Luckow, and C. S. Păsăreanu, “Poster: Afl-based fuzzing
for java with kelinci,” in CCS. ACM, 2017, pp. 2511–2513.

[5] J. Jacques and C. Preda, “Functional data clustering: a survey,” Ad-
vances in Data Analysis and Classification, vol. 8, no. 3, pp. 231–255,
2014.

[6] F. Ferraty and P. Vieu, Nonparametric functional data analysis: theory
and practice. Springer Science & Business Media, 2006.

[7] S. Nilizadeh, Y. Noller, and C. S. Păsăreanu, “Diffuzz: differential
fuzzing for side-channel analysis,” in ICSE, 2019, pp. 176–187.

[8] M. O. de la Fuente and M. Febrero-Bande, “Utilities for statistical
computing in functional data analysis: The package fda. usc,” 2011.

[9] G. Smith, “On the foundations of quantitative information flow,” in
International Conference on Foundations of Software Science and
Computational Structures. Springer, 2009, pp. 288–302.

[10] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104–113.

[11] “Timing side-channel on the password in eclipse jetty,”
May 2017, https://github.com/eclipse/jetty.project/blob/
f3751d70787fd8ab93932a51c60514c2eb37cb58/jetty-util/src/main/
java/org/eclipse/jetty/util/security/Credential.java#L81.

[12] “Timing attack in google keyczar library,” 2009, https://rdist.root.org/
2009/05/28/timing-attack-in-google-keyczar-library/.

[13] J. Ramsay, G. Hooker, and S. Graves, Functional data analysis with R
and MATLAB. Springer Science & Business Media, 2009.

[14] S. Tizpaz-Niari, P. Černỳ, B.-Y. E. Chang, S. Sankaranarayanan, and
A. Trivedi, “Discriminating traces with time,” in TACAS. Springer,
2017, pp. 21–37.

[15] S. Chiba, “Load-time structural reflection in java,” in European Confer-
ence on Object-Oriented Programming. Springer, 2000, pp. 313–336.

[16] S. Tizpaz-Niari, P. Černý, B. E. Chang, and A. Trivedi, “Differential
performance debugging with discriminant regression trees,” in 32nd
AAAI Conference on Artificial Intelligence, 2018, pp. 2468–2475.

[17] T. Górecki and M. Łuczak, “First and second derivatives in time series
classification using dtw,” Communications in Statistics-Simulation and
Computation, vol. 43, no. 9, pp. 2081–2092, 2014.

[18] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in IEEE S&P, 1982, pp. 11–11.

[19] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE Journal on selected areas in communications, vol. 21,
no. 1, pp. 5–19, 2003.

[20] T. Terauchi and A. Aiken, “Secure information flow as a safety
problem,” in International Static Analysis Symposium. Springer, 2005,
pp. 352–367.

[21] J. Chen, Y. Feng, and I. Dillig, “Precise detection of side-channel
vulnerabilities using quantitative cartesian hoare logic,” in CCS, 2017,
pp. 875–890.

[22] J. O. Ramsay, Functional data analysis. Wiley Online Library, 2006.
[23] R. Alur and N. Singhania, “Precise piecewise affine models from input-

output data,” ser. EMSOFT, 2014, pp. 3:1–3:10.

16

http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/
https://github.com/eclipse/jetty.project/blob/f3751d70787fd8ab93932a51c60514c2eb37cb58/jetty-util/src/main/java/org/eclipse/jetty/util/security/Credential.java#L81
https://github.com/eclipse/jetty.project/blob/f3751d70787fd8ab93932a51c60514c2eb37cb58/jetty-util/src/main/java/org/eclipse/jetty/util/security/Credential.java#L81
https://github.com/eclipse/jetty.project/blob/f3751d70787fd8ab93932a51c60514c2eb37cb58/jetty-util/src/main/java/org/eclipse/jetty/util/security/Credential.java#L81
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/
https://rdist.root.org/2009/05/28/timing-attack-in-google-keyczar-library/

[24] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241–254, 1967.

[25] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl et al., “Constrained k-
means clustering with background knowledge,” in ICML, 2001, pp.
577–584.

[26] J. Song, H. Wang, and M. J. Song, “Package ckmeans,” 2017.

[27] I. Davidson and S. Ravi, “Clustering with constraints: Feasibility issues
and the k-means algorithm,” in 2005 SIAM international conference on
data mining. SIAM, 2005, pp. 138–149.

[28] R Core Team, R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
2013, ISBN 3-900051-07-0. [Online]. Available: http://www.R-
project.org/

[29] L. Breiman, J. Friedman, R. Olshen, and C. Stone, Classification and
regression trees. Wadsworth: Belmont, CA, 1984.

[30] “Intel nuc5i5ryh,” https://ark.intel.com/content/www/us/en/ark/
products/83255/intel-nuc-kit-nuc5i5ryh.html.

[31] M. Febrero-Bande and M. Oviedo de la Fuente, “Statistical computing
in functional data analysis: The R package fda.usc,” Journal of
Statistical Software, vol. 51, no. 4, pp. 1–28, 2012. [Online]. Available:
http://www.jstatsoft.org/v51/i04/

[32] S. Chiba, “Javassist - a reflection-based programming wizard for java,”
in Proceedings of OOPSLA Workshop on Reflective Programming in
C++ and Java, vol. 174, 1998.

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[34] Q.-S. Phan, L. Bang, C. S. Pasareanu, P. Malacaria, and T. Bultan,
“Synthesis of adaptive side-channel attacks,” in CSF. IEEE, 2017, pp.
328–342.

[35] Apogee-Research, “Guess secret version 2,” 2017, https:
//github.com/Apogee-Research/STAC/blob/masterCanonical
Examples/Source/Category3 vulnerable.java.

[36] “Timing side-channel on the length of password in eclipse
jetty,” May 2017, https://github.com/eclipse/jetty.project/commit/
2baa1abe4b1c380a30deacca1ed367466a1a62ea.

[37] “Fixed timing side-channel on the length of password in eclipse
jetty,” August 2017, https://github.com/eclipse/jetty.project/commit/
a7e8b4220a410b85c843bffcd13f07d70f1b3fe8.

[38] “Updated secret key comparison in openjdk-8-u,” https:
//hg.openjdk.java.net/jdk8u/jdk8u-dev/jdk/file/1832c29655eb/src/
share/classes/javax/crypto/spec/SecretKeySpec.java.

[39] “The comparison of byte arrays in openjdk-8-u,” https:
//hg.openjdk.java.net/jdk8u/jdk8u-dev/jdk/file/1832c29655eb/src/
share/classes/java/security/MessageDigest.java.

[40] Apogee-Research, “Stegosaurus application,” 2017, https://github.com/
Apogee-Research/STAC/.

[41] “Snapbuddy application,” 2016, https://github.com/Apogee-
Research/STAC/tree/master/Engagement Challenges/Engagement
2/snapbuddy 1.

[42] J. Agat, “Transforming out timing leaks,” in POPL. ACM, 2000, pp.
40–53.

[43] H. Mantel and A. Starostin, “Transforming out timing leaks, more or
less,” in ESORICS. Springer, 2015, pp. 447–467.

[44] J. B. Kruskal, “On the shortest spanning subtree of a graph and the trav-
eling salesman problem,” Proceedings of the American Mathematical
society, vol. 7, no. 1, pp. 48–50, 1956.

[45] “Kruskal’s algorithm implementations,” https://www.geeksforgeeks.org/
kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/.

[46] Apogee-Research, “Collab application,” 2017, https://github.
com/Apogee-Research/STAC/tree/master/Engagement Challenges/
Engagement 4/collab.

[47] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and M. Emmi,
“Verifying constant-time implementations.” in USENIX Security Sym-
posium, 2016, pp. 53–70.

[48] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and
S. Wei, “Decomposition instead of self-composition for proving the
absence of timing channels,” in PLDI, vol. 52, no. 6. ACM, 2017, pp.
362–375.

[49] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “Cacheaudit: A
tool for the static analysis of cache side channels,” ACM Transactions
on Information and System Security (TISSEC), vol. 18, no. 1, p. 4, 2015.

[50] S. Wang, P. Wang, X. Liu, D. Zhang, and D. Wu, “Cached: Identifying
cache-based timing channels in production software,” in 26th USENIX
Security Symposium, 2017, pp. 235–252.

[51] P. Gao, J. Zhang, F. Song, and C. Wang, “Verifying and quantifying
side-channel resistance of masked software implementations,” TOSEM,
vol. 28, no. 3, 2019.

[52] G. Barthe, P. R. D’Argenio, and T. Rezk, “Secure information flow by
self-composition,” in CSF. IEEE, 2004, pp. 100–114.

[53] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in
java applications with static analysis.” in USENIX Security Symposium,
vol. 14, 2005, pp. 18–18.

[54] D. Landman, A. Serebrenik, and J. J. Vinju, “Challenges for static
analysis of java reflection-literature review and empirical study,” in
ICSE. IEEE, 2017, pp. 507–518.

[55] D. Milushev, W. Beck, and D. Clarke, “Noninterference via symbolic
execution,” in Formal Techniques for Distributed Systems. Springer,
2012, pp. 152–168.

[56] N. Rosner, I. Burak Kadron, L. Bang, and T. Bultan, “Profit:
Detecting and quantifying side channels in networked appli-
cations,” NDSS, 2019, https://www.ndss-symposium.org/wp-content/
uploads/2019/02/ndss2019 05B-2 Rosner paper.pdf.

[57] S. Tizpaz-Niari, P. Černý, and A. Trivedi, “Quantitative mitigation of
timing side channels,” in Computer Aided Verification (CAV), 2019, pp.
140–160.

[58] S. Tizpaz-Niari, P. Černý, S. Sankaranarayanan, and A. Trivedi, “Effi-
cient detection and quantification of timing leaks with neural networks,”
in Runtime Verification (RV), 2019, pp. 329–348.

[59] L. Bang, A. Aydin, Q.-S. Phan, C. S. Păsăreanu, and T. Bultan, “String
analysis for side channels with segmented oracles,” in FSE’16. ACM,
2016, pp. 193–204.

[60] C. S. Pasareanu, Q.-S. Phan, and P. Malacaria, “Multi-run side-channel
analysis using symbolic execution and max-smt,” in CSF. IEEE, 2016,
pp. 387–400.

[61] B. Köpf and D. Basin, “An information-theoretic model for adaptive
side-channel attacks,” in CCS. ACM, 2007, pp. 286–296.

[62] M. Backes, B. Köpf, and A. Rybalchenko, “Automatic discovery and
quantification of information leaks,” in IEEE S&P. IEEE, 2009, pp.
141–153.

[63] B. Köpf and G. Smith, “Vulnerability bounds and leakage resilience of
blinded cryptography under timing attacks,” in CSF. IEEE, 2010, pp.
44–56.

[64] T. Chothia, Y. Kawamoto, and C. Novakovic, “A tool for estimating
information leakage,” in CAV. Springer, 2013, pp. 690–695.

[65] L. Song and S. Lu, “Statistical debugging for real-world performance
problems,” in OOPSALA, 2014, vol. 49, no. 10. ACM, 2014, pp.
561–578.

[66] S. Guo, M. Wu, and C. Wang, “Adversarial symbolic execution for de-
tecting concurrency-related cache timing leaks,” in ESEC/FSE. ACM,
2018, pp. 377–388.

[67] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing side-
channel leaks using program repair,” in ISSTA. ACM, 2018, pp. 15–26.

[68] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine
learning,” in IEEE Symposium on Security and Privacy. IEEE, 2018,
pp. 36–52.

17

http://www.R-project.org/
http://www.R-project.org/
https://ark.intel.com/content/www/us/en/ark/products/83255/intel-nuc-kit-nuc5i5ryh.html
https://ark.intel.com/content/www/us/en/ark/products/83255/intel-nuc-kit-nuc5i5ryh.html
http://www.jstatsoft.org/v51/i04/
https://github.com/Apogee-Research/STAC/blob/masterCanonical_Examples/Source/Category3_vulnerable.java
https://github.com/Apogee-Research/STAC/blob/masterCanonical_Examples/Source/Category3_vulnerable.java
https://github.com/Apogee-Research/STAC/blob/masterCanonical_Examples/Source/Category3_vulnerable.java
https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed367466a1a62ea
https://github.com/eclipse/jetty.project/commit/2baa1abe4b1c380a30deacca1ed367466a1a62ea
https://github.com/eclipse/jetty.project/commit/a7e8b4220a410b85c843bffcd13f07d70f1b3fe8
https://github.com/eclipse/jetty.project/commit/a7e8b4220a410b85c843bffcd13f07d70f1b3fe8
https://hg.openjdk.java.net/jdk8u/jdk8u-dev/jdk/file/1832c29655eb/src/share/classes/javax/crypto/spec/SecretKeySpec.java
https://hg.openjdk.java.net/jdk8u/jdk8u-dev/jdk/file/1832c29655eb/src/share/classes/javax/crypto/spec/SecretKeySpec.java
https://hg.openjdk.java.net/jdk8u/jdk8u-dev/jdk/file/1832c29655eb/src/share/classes/javax/crypto/spec/SecretKeySpec.java
https://hg.openjdk.java.net/jdk8u/jdk8u-dev/jdk/file/1832c29655eb/src/share/classes/java/security/MessageDigest.java
https://hg.openjdk.java.net/jdk8u/jdk8u-dev/jdk/file/1832c29655eb/src/share/classes/java/security/MessageDigest.java
https://hg.openjdk.java.net/jdk8u/jdk8u-dev/jdk/file/1832c29655eb/src/share/classes/java/security/MessageDigest.java
https://github.com/Apogee-Research/STAC/
https://github.com/Apogee-Research/STAC/
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_2/snapbuddy_1
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_2/snapbuddy_1
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_2/snapbuddy_1
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_4/collab
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_4/collab
https://github.com/Apogee-Research/STAC/tree/master/Engagement_Challenges/Engagement_4/collab
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_05B-2_Rosner_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_05B-2_Rosner_paper.pdf

	Introduction
	Functional Side Channels
	Functional observations and timing side channels
	Classes of observations in side channels

	Overview
	Definitions
	Threat Model
	Timing Model and Functional Observations
	Noninterference and Functional Observations
	Quantifying Information Leakage

	Data-Driven Discovery and Explanations
	Implementation Details
	Implementations of components in Fuchsia
	Environment Setup
	Micro-benchmarks

	Case Studies
	Related Work
	Threat to Validity
	Conclusion and Future Work
	References

