ConTEXT: A Generic Approach for Mitigating
Spectre

Michael Schwarz!, Moritz Lippl, Claudio Canella!, Robert Schillingm, Florian Kargll, Daniel Gruss!

1Graz University of Technology

Abstract—Out-of-order execution and speculative execution
are among the biggest contributors to performance and efficiency
of modern processors. However, they are inconsiderate, leaking
secret data during the transient execution of instructions. Many
solutions and hardware fixes have been proposed for mitigating
transient-execution attacks. However, they either do not eliminate
the leakage entirely or introduce unacceptable performance
penalties.

In this paper, we propose ConTExT, a Considerate Transient
Execution Technique. ConTEXT is a minimal and fully backward
compatible architecture change. The basic idea of ConTEXT is
that secrets can enter registers but not transiently leave them.
ConTEXT transforms Spectre from a problem that cannot be
solved purely in software [65], to a problem that is not easy to
solve, but solvable in software. For this, ConTExT requires min-
imal, fully backward-compatible modifications of applications,
compilers, operating systems, and the hardware. ConTExXT offers
full protection for secrets in memory and secrets in registers.
With ConTExT-light, we propose a software-only solution of
ConTEXT for existing commodity CPUs protecting secrets in
memory. We evaluate the security and performance of ConTExT.
Even when over-approximating with ConTExT-light, we observe
no performance overhead for unprotected code and data, and an
overhead between 0 % and 338 % for security-critical applications
while protecting against all Spectre variants.

I. INTRODUCTION

As arbitrary shrinking of process technology and increasing
processor clock frequencies is not possible due to physical
limitations, performance improvements in modern processors
are made by increasing the number of cores or by optimizing
the instruction pipeline. Out-of-order execution and specu-
lative execution are among the biggest contributors to the
performance and efficiency of modern processors. Out-of-order
execution allows processing instructions in an order deviating
from the one specified in the instruction stream. To fully utilize
out-of-order execution, processors use prediction mechanisms,
e.g., for branch directions and targets. This predicted control
flow is commonly called speculative execution. However,
predictions might be wrong, and virtually any instruction can
raise a fault, e.g., a page fault. Hence, in this case, already
executed instructions have to be unrolled, and their results
have to be discarded. Such instructions are called transient
instructions [59], [50], [90], [96], [14], [78].

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA

ISBN 1-891562-61-4

https://dx.doi.org/10.14722/ndss.2020.24271
www.ndss-symposium.org

2Know-Center GmbH

Transient instructions are never committed, i.e., they are
never visible on the architectural level. Until the discovery of
transient-execution attacks, e.g., Spectre [50], Meltdown [59],
Foreshadow [90], [96], RIDL [91], and ZombieLoad [78], they
were not considered a security problem. These attacks exploit
transient execution, i.e., execution of transient instructions, to
leak secrets. This is accomplished by accessing secrets in
the transient-execution domain and transmitting them via a
microarchitectural covert channel to the architectural domain.

The original Spectre attack [50] used a cache covert chan-
nel to transmit data from the transient-execution domain to the
architectural domain. However, other covert channels can be
used, e.g., instruction timings [50], [80], contention [50], [8],
branch-predictor state [24], or the TLB [49], [80]. For other
covert channels [98], [97], [34], [22], [60], [44], [26], [32],
[64], [72], [79], it is still unclear whether they can be used.

Several countermeasures have been proposed against
transient-execution attacks, often relying on software
workarounds. However, many countermeasures [99], [47],
[48], [3], [36] only try to prevent the cache covert channel
of the original Spectre paper [50]. This includes the officially
suggested workaround from Intel and AMD [36], [3] to prevent
Spectre variant 1 exploitation. However, Schwarz et al. [80]
showed that this is insufficient.

State-of-the-art countermeasures can be categorized into 3
classes based on how they try to stop leakage [67], [14]:

1) Mitigating or reducing the accuracy of the covert channel
communication, e.g., eliminating the covert channel or
making gadgets unreachable [48], [47], [99].

2) Aborting or preventing transient execution when accessing
secrets [36], [5], [3], [71], [37], [16], [69], [89].

3) Ensuring that secret data is unreachable [75], [30].

In this paper, we introduce a new type of countermea-
sure. Our approach, ConTExXT, prevents secret data from
being leaked in the transient-execution domain by aborting or
preventing transient execution only in a very small number
of cases, namely when the secret data would leak into the
microarchitectural state. ConTEXT is efficient and still runs
non-dependent instructions out-of-order or speculatively. We
show that our approach prevents all Spectre attacks by design.

Implementing ConTEXT in CPUs only requires repurpos-
ing one page-table entry bit (e.g., one of the currently unused
ones) as a non-transient bit. Instead of the actual secret value,
the CPU uses a dummy value (e.g., ‘0’) when accessing a
non-transient memory location during transient execution in
a way that could leak into the microarchitectural state. To
protect register contents, we introduce a non-transient bit per

register. For the special purpose rflags register (crucial
for control-flow changes), we introduce a shadow_rflags
register to track the taint bit-wise, i.e., every bit in the rflags
register has a corresponding taint bit. Same as for the memory
locations, the CPU will use a dummy value during transient
execution instead of the actual register content.

Today, mitigating certain Spectre variants already requires
annotation of all branches that could lead to a secret-dependent
operation during misspeculation [46]. We simply move these
annotation requirements to the root, such that the developer
only has to annotate the actual variables that can hold secrets
in the source code. We do not propagate this information
on the source level, i.e., we do not perform software-level
taint-tracking. Instead, we propagate this information into the
binary to create a separate binary section for secrets, using
compiler and linker support. For this section, the operating
system sets the memory mapping to non-transient. We split
the stack into an unprotected stack and a protected stack.
The protected stack is marked as non-transient to be used as
temporary memory by the compiler, e.g., for register spills.
Local variables are moved to the transient stack. Similarly, we
also split the heap into an unprotected and a protected part and
provide the developer with heap-allocator functions that use
the protected part of the heap. Thus, there is no performance
impact for regular variables. Preventing leakage only requires
a developer to identify the assets, i.e., secret values, inside
an application. Obviously, this is much easier than identifying
all code locations which potentially leak secret values. If new
Spectre gadgets are discovered (e.g., prefetch gadgets [14]),
ConTExT-protected applications do not require any changes.
In contrast, if every code location which potentially leaks
secrets has to be fixed, the application has to be changed for
new types of Spectre gadgets.

To emulate the minimal hardware adaptions ConTEXT re-
quires, we over-approximate it via ConTExT-light', a software-
only solution which achieves an over-approximation of the be-
havior using existing features of commodity CPUs. ConTExT-
light relies on the property that values stored in uncacheable
memory can generally not be used inside the transient-
execution domain [21], [59], except for cases where the value
is architecturally in registers, or microarchitecturally in the
load buffer, store buffer, or line fill buffer. While ConTExT-
light does not provide complete protection on most commodity
systems due to leakage from these buffers, it can provide
full protection on Meltdown- and MDS-resistant CPUs, e.g.,
on AMD CPUs, as long as secrets are not in registers. In
this paper, we focus on mitigating Spectre-type attacks and
consider Meltdown-type attacks out-of-scope. ConTExT-light
also allows determining an upper bound for the worst-case
performance overhead of the hardware solution. However,
this upper bound is not tight, meaning that the actual upper
bound can be expected to be substantially lower. Compared
to practically deployed defenses against certain Spectre vari-
ants [46], ConTEXT requires only a simpler direct annotation
of secrets inside the program, which can be easily added to any
existing C/C++ program to protect secrets from being leaked
via transient-execution attacks.

We evaluate the security of ConTEXT on all known Spectre
attacks. Due to its principled design, ConTEXT prevents the

Uhttps://github.com/IAIK/contextlight

leakage of secret data in all cases, as long as the developer
does not actively leak the secret. We evaluated the performance
overheads of ConTExT-light for several real-world application
where we identify and annoted the used secrets. Depending
on the application, the overhead is between 0% and 338 %.
In most cases it is lower than the overhead of the currently
recommended and deployed countermeasures [36], [5], [3],
[71], [75], [16], [53], [87]. To further support the performance
analysis, we extended the Bochs emulator with the non-
transient bits for registers and page tables and extended it with
a cache simulator.

Concurrent to our work, NVIDIA patented a closely related
approach to our design [10]. However, they do not provide
protection for registers, but only for memory locations.

Contributions. The contributions of this work are:

1) We propose ConTExXT, a hardware-software co-design for
considerate transient execution, fully mitigating transient-
execution attacks.

2) We show that on all levels, only minimal changes are
necessary. The proposed hardware changes can be partially
emulated on commodity hardware.

3) We demonstrate that ConTEXT prevents all known Spectre
variants, even if they do not rely on the cache for the covert
channel.

4) We evaluate the performance of ConTExT and show that
the overhead is lower than the overhead of state-of-the-art
countermeasures.

Outline. The remainder of this paper is organized as follows.
In Section II, we provide background information. Section III
presents the design of ConTEXT. Section IV details our ap-
proximative proof-of-concept implementation on commodity
hardware. Section V provides security and performance eval-
uations. Section VI discusses the context of our work. We
conclude our work in Section VII.

II. BACKGROUND

In this section, we give an overview of transient execution.
We then discuss known transient-execution attacks. We also
discuss the proposed defenses and their shortcomings.

A. Transient Execution

To simplify processor design and to allow superscalar
processor optimizations, modern processors first decode in-
structions into simpler micro-operations (uOPs) [25]. With
these ©OPs, one optimization is not to execute them in-order
as given by the instruction stream but to execute them out-
of-order as soon as the execution unit and required operands
are available. Even in the case of out-of-order execution,
instructions are retired in the order specified by the instruction
stream. This necessitates a buffer, called reorder buffer, where
intermediate results from pOPs can be stored until they can
be retired as intended by the instruction stream.

In general, software is seldom purely linear but contains
(conditional) branches. Without speculative execution, a pro-
cessor would have to wait until the branch is resolved before
execution can be continued, drastically reducing performance.
To increase performance, speculative execution allows a pro-
cessor to predict the most likely outcome of the branch using

various predictors and continue executing along that direction
until the branch is resolved.

At runtime, a program has different ways to branch, e.g.,
conditional branches or indirect calls. Intel provides several
structures to predict branches [41], e.g., Branch History Buffer
(BHB) [7], Branch Target Buffer (BTB) [57], [23], the Pattern
History Table (PHT) [25], and Return Stack Buffer (RSB) [25],
[63], [51]. On multi-core CPUs, Ge et al. [26] showed that the
branch prediction logic is not shared among physical cores,
preventing one physical core from influencing another core’s
prediction.

Speculation is not limited to branches. Processors can,
e.g., speculate on the existence of data dependencies [35]. In
the case where the prediction was correct, the instructions in
the reorder buffer are retired in-order. If the prediction was
wrong, the results are squashed, and a rollback is performed
by flushing the pipeline and the reorder buffer. During that
process, all architectural but no microarchitectural changes are
reverted. Any instruction getting executed out-of-order or spec-
ulatively but not architecturally is called a transient instruction.
Transient execution may have measurable microarchitectural
side effects.

B. Transient-Execution Attacks & Defenses

While transient execution does not influence the architec-
tural state, the microarchitectural state can change. Attacks
that exploit these microarchitectural state changes to extract
sensitive information are called transient-execution attacks.
So-called Spectre-type attacks [50], [35], [51], [63] exploit
prediction mechanisms, while Meltdown-type attacks [59],
[90], [91], [78], [13], [96] exploit transient execution following
an architectural or microarchitectural fault.

Kocher et al. [50] first introduced two variants of Spectre
attacks. The first, Spectre-PHT (Variant 1), exploits the PHT
and the BHB such that the processor mispredicts the code
path following a conditional branch. If the transiently executed
code loads and leaks the secret, it is called a Spectre gadget.
Kiriansky and Waldspurger [49] extended this attack from
loads to stores, enabling transient buffer overflows and, thus,
extending the number of possible Spectre gadgets.

Spectre-BTB (Variant 2) [50] targets indirect branches and
poisons the BTB with attacker-chosen destinations, leading
to transient execution of the code at this attacker-chosen
destination. An attacker mistrains the processor by performing
indirect branches within the attacker’s own address space to
the address of the chosen address, regardless of what resides
at this location. Chen et al. [17] showed that this can also be
exploited in SGX.

For a memory load, the processor checks the store buffer
for stored values to this memory location. Spectre-STL (Vari-
ant 4) [35], Speculative Store Bypass, exploits when the
processor transiently uses a stale value because it could not
find the updated value in the store buffer, e.g., due to aliasing.

Spectre-RSB [51] and ret2spec [63] are Spectre variants
targeting the RSB, a small hardware stack of recent return
addresses pushed during recent call instructions. When a ret
is executed, the top of the RSB is used to predict the return
address. An attacker can force misspeculation in various ways,

e.g., by overfilling the RSB, or by overwriting the return
address on the software stack.

All of the attacks discussed above have three things in
common. First, they all use transient execution to access data
that they would not access in normal, considerate execution.
Second, they use this data to influence the microarchitectural
state, which can be observed using microarchitectural attacks,
e.g., Flush+Reload [100]. Third, all are executed locally on
the victim machine, requiring the attacker to run code on the
machine. Schwarz et al. [80] extended the original Spectre
attack with a remote component and demonstrated that the
microarchitectural state of the AVX2 unit can be used instead
of the cache state to leak data.

Meltdown-type attacks exploit deferred handling of ex-
ceptions. They do not exploit misspeculation but use other
techniques to execute instructions transiently. Between the
occurrence of an exception and it being raised, instructions
that access data retrieved by the faulting instructions can
be executed transiently. The original Meltdown attack [59]
exploited the deferred page fault following a user/supervisor
bit violation, allowing to leak arbitrary memory. A variation
of this attack allows an attacker to read system registers [5],
[36]. Van Bulck et al. [90], [96] demonstrated that this
problem also applies to other page-table bits, namely the
present and the reserved bits. Canella et al. [14] analyzed
different exception types, based on Intel’s [42] classification
of exceptions as faults, traps, and aborts. They found that
all known Meltdown variants so far have exploited faults, but
not traps or aborts. With so-called microarchitectural data
sampling (MDS) attacks, Meltdown-type effects have been
demonstrated on other internal buffers of the CPU. RIDL [91]
and ZombieLoad [78] leak sensitive data from the fill buffers
and load port. Fallout [13] exploits store-to-load forwarding to
leak previous stores from the CPUs store buffer.

Defenses. Since the discovery of Spectre, many different
defenses have been proposed. The easiest and most radical
solution would be to entirely (or selectively) disable specula-
tion at the cost of a huge decrease in performance [50]. Intel
and AMD proposed a similar solution by using serializing
instructions on both outcomes of a branch [3], [36]. Ev-
tyushkin et al. [24] proposed to allow a developer to annotate
branches that could leak sensitive data, which are then not
predicted. Unfortunately, on Intel CPUs, serializing branches
does not prevent microarchitectural effects such as powering
up AVX units, or TLB fills [80].

For mitigating the RSB attack vector, Intel proposes RSB
stuffing [37]. Upon each context switch, the RSB is filled with
the address of a benign gadget.

Google Chrome limits the amount of data that can be
extracted by introducing site isolation [75]. Site isolation relies
on process isolation, i.e., each site is executed in its own
process. Thus, Spectre attacks cannot leak secrets of other
sites. Speculative Load Hardening [16] and YSNB [69] are
similar proposals, both limiting speculation by introducing data
dependencies between the array access and the condition.

SafeSpec [47] and InvisiSpec [99] introduce additional
shadow hardware for speculation. The results of transient
instructions are only made visible to the actual hardware when

the processor determined that the prediction was correct. Both
methods require major changes to the hardware.

DAWG [48] is another proposal requiring significant hard-
ware changes. The idea is to partition the cache to create
protection domains that are disjoint across ways and metadata
partitions. Additionally to hardware changes, the approach re-
quires changes to the replacement policy and cache coherence
protocol to incorporate the protection domain.

All local Spectre variants so far use either Flush+
Reload [100], [50], [35], [51], [63] or Prime+Probe [70],
[88] to extract information from the covert channel, requiring
access to a high-resolution timer. Thus, a defense mechanism
is to reduce the accuracy of timers [66], [73], [86], [93] and
eliminate methods to construct different timers [79].

To mitigate Spectre variant 2, both Intel and AMD extended
the ISA with mechanisms to control indirect branches [4],
[38], namely Indirect Branch Restricted Speculation (IBRS),
Single Thread Indirect Branch Prediction (STIBP), and Indirect
Branch Predictor Barrier (IBPB). With IBRS, the processor
enters a special mode, and predictions cannot be influenced
by operations outside of it. STIBP restricts the sharing of
branch prediction mechanisms among hyperthreads. IBPB al-
lows flushing the BTB. Future processors implement enhanced
IBRS [37], a hardware mitigation for Spectre variant 2. With
retpoline [89], Google proposes an alternative technique to
protect against branch poisoning by ensuring that the return
instruction predicts to a benign endless loop through the RSB.
Similarly, Intel proposed randpoline [12], a heuristic but more
efficient version of retpoline.

To mitigate Spectre variant 4, Intel provides a microcode
update to disable speculation on the store buffer check [38].
The new feature, called Speculative Store Buffer Disable
(SSBD), is also supported by AMD [2]. ARM introduced a
new barrier (SSBB) which prevents loads after the barrier from
bypassing a store using the same virtual address before the
barrier [5]. Future ARM CPUs will feature a configuration
control register that prevents the re-ordering of stores and
loads. This feature is called Speculative Store Bypass Safe
(SSBS) [5].

So far, all the proposed defense mechanisms against Spec-
tre attacks either require substantial hardware changes or only
consider cache-based covert channels. In the latter case, an
attacker can circumvent the defense by using a different covert
channel, e.g., AVX [80], TLB [77], or port contention [8]. This
focus on cache covert channels only and the huge decrease in
performance caused by state-of-the-art Spectre defenses shows
the necessity for the development of efficient and effective
defenses.

To mitigate microarchitectural attacks on the kernel,
and specifically KASLR breaks, Gruss et al. [30] proposed
KAISER, a kernel modification unmapping most of the kernel
space while running in user mode [30]. As KAISER also
mitigates Meltdown, the idea of KAISER has been integrated
into all major operating systems, e.g., in Linux as KPTI [62],
in Windows as KVA Shadow [43], and in Apple’s xnu kernel
as double map [58]. With the PCID and ASID support of mod-
ern processors, the performance overheads appear acceptable
for real-world use cases [28], [29]. Additionally, to mitigate
Foreshadow [90] on SGX enclaves, microcode updates are

necessary. To mitigate Foreshadow-NG [96], several further
steps need to be implemented for full mitigation. The kernel
must use non-present page-table entries more carefully, e.g.,
not store the swap disk page frame number there for swapped-
out pages. When using EPTs (extended page tables), the
hypervisor must make sure that the L1 cache does not contain
any secrets when switching into a virtual machine.

To mitigate MDS attacks [91], [78], [13], microcode up-
dates are necessary that enable a legacy instruction to flush the
affected microarchitectural buffers [40]. Furthermore, in envi-
ronments utilizing simultaneous multithreading, the operating
system must only schedule processes within the same security
domain to sibling threads to mitigate user to user attacks [40].
To protect from attacks against the kernel, the operating system
must guarantee a synchronized entry and exit on system calls
and interrupts such that no untrusted user code is executed
on a sibling thread [40]. To replace the expensive software
workarounds, newer CPU microarchitectures provide fixes in
hardware and, thus, are already resistant against Meltdown-
type attacks [39]. In this paper, we focus on mitigating only
Spectre-type attacks and consider Meltdown-type attacks out-
of-scope.

C. Taint Analysis

Taint tracking is used to track data-flow dependencies on
a hardware level [19], [83], binary-level [18], [76], or source
level [81]. Taint analysis has a wide range of security applica-
tions: detecting vulnerabilities, e.g., by tracking untrusted user
input; malware analysis, e.g., analyzing information flows in
binaries; test case generation, e.g., automatically generating
inputs. This can be either done statically [6], [94] or dynami-
cally [68], [74].

Dynamic taint analysis allows tracking the information flow
between sources and sinks [76]. Any value that depends on
data derived from a tainted source, e.g., user input, is consid-
ered fainted. Values that are not derived from tainted sources
are considered untainted. A policy defines how taint flows
as the program executes and how new taints are introduced.
Over-approximation can occur when tainting a value that is
not derived from a taint source.

Taint tracking has also been proposed on a hardware
level [92], [45], [56], [10], yet not in the context of speculative
execution.

III. DESIGN OF CONTEXT

In this section, we present the design of ConTExT, a
considerate transient execution technique.

The idea of ConTEXT is to introduce a new type of
memory mappings, namely non-transient mappings. The non-
transient option indicates that the mapping contains secrets
that must not be accessed within the transient-execution do-
main. Consequently, non-transient values must not be used in
transient operations, neither directly nor in a derived form, iff
the effect of the transient operation could be microarchitec-
turally observable. Thus, there cannot be any perturbations of
the microarchitectural CPU state, which might disclose non-
transient values via side channels. To track whether a value
is non-transient and must be protected, registers also track the

non-transient state. To ensure not only the original but also
derived values are protected, this information is propagated to
the results of operations using these values, until the secret is
destroyed, e.g., by overwriting it.

Security Claim. A processor with ConTExT mitigates all
speculative execution attacks as the processor cannot use
non-transient registers in any way that would influence the
microarchitectural state. Hence, if a software implementation
is leakage-free on a strict in-order machine, it will also be
leakage-free on an out-of-order or speculative machine with
ConTEXT, iff secrets are annotated.

ConTEXT is a multi-level countermeasure which works on
the application-, compiler-, operating-system-, and hardware-
level. An application developer annotates secret values, and
possible memory destinations for secret values in the source
code, which the compiler groups inside the binary and marks
as secret.

Besides annotation of secrets, it would also be possible
to architecturally define groups of secrets, e.g., based on the
data type as suggested by Carr and Payer [15], or by defining
all userspace memory and user input as secret as proposed
by Taram et al. [85]. However, this can be very expensive,
and consequently, related work is also investigating annotation-
based protection mechanisms [101].

When the operating system loads the binary, memory
regions containing the annotated secrets are marked non-
transient. The hardware does all subsequent tracking of secrets.
The operating system only has to be aware of secret register
states on interrupts, e.g., context switches. Other than these
minimal changes, there are no additional adaptions required
on any level of the software stack.

The full-protection ConTExT requires small hardware
changes, which retrofits already existing mechanisms in to-
day’s CPUsg, i.e., there is no re-design required. Moreover, the
change is fully backward compatible with existing hardware
and software (i.e., applications, libraries, and operating sys-
tems). As hardware changes cannot be conducted on commod-
ity CPUs, we evaluate ConTEXT based on ConTExT-light, an
over-approximation which only requires software changes. As
illustrated in Figure 1, ConTEXT is a more considerate variant
of transient execution. An unprotected application executes
all instructions, including the instruction leaking the secret.
In contrast, with the state-of-the-art solution of using Ifences,
the CPU stalls at the fence and aborts the transient execution,
i.e., it cannot continue to transiently execute any instruction at
all. ConTEXT has the advantage that the instructions leaking
the secret are not executed, while independent instructions
(marked with arrows) later on in the instruction stream can
still be executed during the out-of-order execution. Although
these instruction cannot retire, they already warm up caches
and buffers, e.g., by triggering prefetchers. With ConTExT-
light, the memory location containing the secret is marked
as uncachable, which already leads to a CPU stall in current
processors when accessing the memory location in transient
execution. However, independent instruction can still be ex-
ecuted during the out-of-order execution. Current CPUs im-
plement this by executing memory loads for memory marked
as uncachable only at retirement, i.e., the corresponding load
instruction is only executed if it is at the head of the reorder

buffer [27]. This is also the case for the Lock prefix [20]. We
envision to use the same mechanism for ConTEXT.

ConTEXT protects secrets which are stored in cache and
DRAM, i.e., attackers cannot access data from memory loca-
tions marked as non-transient during transient execution, and
registers if they have been filled with data from protected cache
or DRAM locations or other protected registers. ConTExT-
light cannot protect secrets while they are architecturally stored
in registers of running threads. Furthermore, ConTExT-light is
not designed as a protection against Meltdown-type attacks.
Mitigating Meltdown-type attacks, including MDS attacks, is
orthogonal to our work, and we consider it out of scope. We
only use it to obtain an upper bound for the performance
overheads of ConTEXT. Note that this upper bound is not tight,
i.e., the actual upper bound is expected to be substantially
lower.

ConTExXT is a multi-level countermeasure consisting of 3
major components which we describe in this section:

1) non-transient memory mappings (cf. Section III-A),

2) tracking of non-transient data (cf. Section III-B), and

3) software (i.e., OS, compiler, and application) support for
the hardware features (cf. Section III-C).

A. Non-Transient Memory Mappings

We present three possible implementations of non-transient
memory mappings, i.e., memory mappings, which indicate
that the values cannot be used during transient execution.’
All variants allow integrating ConTEXT into the current ar-
chitecture while maintaining backward compatibility, i.e., if
the operating system is not aware of ConTEXT, the changes
have no side effects. Hence, to implement ConTEXT, only one
of the following variants has to be implemented.

Currently Reserved Page-Table Entry Bit. There is already
sufficient space to store the non-transient bit in the page tables
of commodity CPUs. On Intel 64-bit (IA-32e) systems, each
page-table entry has 64 bits, comprised of a 52-bit physical-
address field and several flags. However, most processors do
not support full 52 bits, but only up to 46 bits, which allows
working with up to 64 TB of physical RAM if the hardware
supports it.

Figure 2 shows a page-table entry for x86-64. Besides the
already used bits, there are the 6 bits between bit 46 and
51, which are currently reserved for future use. This future
use could be the extension of the physical page number if
more physical memory is supported in future CPU generations.
However, it could also be the repurposing of one of the bits
(e.g., the last reserved bit) as a non-transient bit. This reduces
the theoretical maximum amount of supported memory by
factor 2. Thus, instead of 4 PB, CPUs could only support
2PB of physical memory. The repurposing of a reserved bit
is automatically backwards-compatible, as the reserved bits
currently have to be ‘0’. Hence, using such a bit does not
have any undesirable side effects on legacy software.

2Concurrent to our work, NVIDIA patented a proposal closely related to
our design [10]. However, they do not provide protection for registers, but
only for memory locations. Similarly, also in concurrent work, Intel released
a whitepaper introducing the idea of a new memory type against Spectre
attacks [84].

Serializing Barrier

ConTExT-light

ConTEXT

Unprotected

cmp rdi, .array_len

cmp rdi, .array_len

cmp rdi, .array_len

cmp rdi, .array_len

jbe .else

jbe .else

jbe .else

jbe .else

lfence

mov (rax + rdi),al

1

mov (rax + rdi),al

mov (rax + rdi),al

mov (rax + rdi),al

shl 12, rax

stall M

shl 12, rax

shl 12, rax

shl 12, rax

and 0xff000,eax

and 0xff000,eax

and 0xff000, eax

and 0xff000, eax

mov (rdx + rax),al

not execute

mov (rdx + rax),al

mov (rdx + rax),al

mov (rdx + rax),al

mov 0, rax

not executed

mov 0, rax

mov 0, rax

mov 0, rax

retqg

retqg

retqg

retqg

mov rax, (rsp + 8)

mov rax, (rsp + 8)

mov rax, (rsp + 8)

mov rax, (rsp + 8)

Fig. 1: Comparison of ConTEXT with the current solution against the first Spectre attack example [50]. The leaking access, i.e.,
the only line that must not be executed, is highlighted. The arrows show which instructions can be executed in the out-of-order
execution. An unprotected application executes all instructions, including the one leaking the secret. Serializing barriers and
ConTExT-light provide protection against Spectre-type attacks on commodity systems, as empirically shown in Figure 3.

P [Rw|uswjuc| R | D [paT| G | Ignored |

Physical Page Number
Res.
Reserved ‘ Ignored ‘ Prot. Key ‘ X
48 63

Fig. 2: A page-table entry on x86-64 consists of 64 bits
which define properties of the virtual-to-physical memory
mapping. Besides the already used bits, physical page number,
and ignored bits (which can be freely used), there are 6
physical address bits that are currently reserved for future use
since hardware is limited to 46-bit physical addresses. Future
processors may support longer physical addresses.

Currently Ignored Page-Table Entry Bit and Control
Register. An alternative to using one of the reserved bits
is to use one of the ignored bits. These bits can be freely used
by the operating system, thus, simply repurposing them is not
possible. However, if the feature has to be actively enabled,
the operating system is aware of the changed semantics of the
specific ignored bit. Note that this approach was already taken
for several other page-table bits, e.g., the protection key and the
global bit are enabled via CR4 and they are ignored otherwise.
Hence, we also propose enabling the feature using a bit in one
of the CPU control registers, e.g., CR4, EFER, or XCRO. These
registers are already used for enabling and disabling security-
related features, such as read-only pages, NX (no-execute) or
SMAP (supervisor mode access prevention). Moreover, these
registers still have up to 54 unused control bits which can be
used to enable and disable the non-transient bit.

An advantage of repurposing an ignored bit is that CPU
vendors do not lose potential address-space bits. That is, this
approach is compatible with physical address spaces of up
to 4PB in future hardware. However, the approach comes
with the limitation that operating systems cannot freely use

TABLE I: The currently supported memory types which can
be used in the PAT (Intel 64-bit systems), and the additional
non-transient type (bold-italic) as new memory type.

Value Type Description

0 uc Strong uncacheable, never cached

1 wC ‘Write Combining (subsequent writes are combined and written
once)

2 NS Non-transient, cannot read in transient execution d

3 - Reserved

4 WT Write Through (reads cached, writes written to cache and
memory)

5 WP Write Protected (only reads are cached)

6 WB Write Back (reads/writes are cached)

Uncacheable, overwritten by MTRR

the retrofitted ignored bit anymore, as it is now used as the
non-transient bit.

Memory Type using Page-Attribute Table. A third alterna-
tive is to retrofit the Page-Attribute Table (PAT), a processor
feature allowing the operating system to reconfigure various
attributes for classes of pages. The PAT allows specifying
the memory type of a memory mapping. On x86, there are
currently 6 different memory types which define the cache
policy of the memory mapping.

Table I shows the memory types which can be set using
the PAT, including our newly proposed non-transient memory
type. The PAT itself provides 8 entries for memory types. Such
a PAT entry is applied to a memory mapping via the 3 page-
table-entry bits ‘3’ (write through), ‘4’ (uncacheable), and ‘7’
(PAT). These 3 bits combined to a 3-bit number select one of
the 8 entries of the PAT.

Thus, to apply the non-transient memory type to a memory
mapping, the OS sets one of the PAT entries to the non-
transient memory type ‘2’. Then, this PAT entry can be applied
through the existing page-table bits to any memory mapping.
As the PAT supports 8 entries, and there are currently only 6
memory types (7 if the non-transient type is included), it is
still possible to use all supported memory types concurrently

on different pages, i.e., the approach is fully backwards-
compatible.

An advantage of this approach is that no semantic changes
have to be made to page-table entries, i.e., all bits in a page-
table entry keep their current meaning. However, this variant
may require more changes in the operating system, as e.g.,
Linux already utilizes all of the PAT entries (some memory
types are defined twice).

B. Secret Tracking

Non-transient mappings ensure that non-transient mem-
ory locations cannot be accessed during transient execution.
However, we still need to protect secret data that is already
loaded into a register. Registers in commodity CPUs do not
have a memory type or protection. Thus, we require changes
to the hardware to implement protection of registers. Based
on patents from Intel [45], VMWare [56], and NVIDIA [10],
we expect such tracking features to be implemented in future
CPUs. Venkataramani et al. [92] proposed a technique in hard-
ware that also taints registers, however, to identify software
bugs rather than overly eager speculative execution.

Tainting Registers. For ConTExXT, we introduce one ad-
ditional non-transient bit per register, i.e., a taint (cf. Sec-
tion II-C). The non-transient bit indicates whether the value
stored in the register is non-transient or not. If the bit is
set, the entire register is marked as non-transient, otherwise,
the register is unprotected. The taint generally propagates
from memory to registers and from registers to registers. The
rationale behind this is that results of operations on secret data
have to be considered secret as well. Accessing only parts of a
tainted register, e.g., eax instead of rax, still copies the taint
from the source register to the target register and taints the
entire target register, as we only have a single non-transient
bit per register. This is also true for taint propagation in any
other use of a tainted register.

One special case is the rflags register. The rflags
register is a special purpose register, updated upon execution
of various instructions. For the rf1ags register, we introduce
a shadow_rflags register to track the taint bit-wise due to
the special use of the single bits in this register for control
flow. The taint propagation rules still apply, but the bits of
rflags are tainted independently. Operations that update the
rflags register can execute transiently. However, using a
tainted bit from the rflags propagates the taint to the target
operands in the case of register targets. For memory targets,
regardless of the secret value, a default value is returned.
Finally, branching on a tainted bit from the rflags stalls the
pipeline to prevent any leakage. In general, we assume that
the protected application is written in a side-channel-resistant
manner. Hence, there should not be any secret-dependent
branches. If there are such branches, ConTEXT protects them
but it might lead to unnecessary stalls.

We keep taint propagation very simple and consider only
instructions with registers as destination operands. If any non-
transient memory location is used as a source operand to an in-
struction, the instruction taints the destination registers, i.e., the
non-transient bit is set for every destination register. Similarly,
if any non-transient register is used as a source operand to an
instruction, the instruction also taints the destination registers.

Thus, if a secret is loaded into a register, it is tracked through
all register operations.

The taint is not propagated if the destination operand(s)
are memory location(s), as all memory locations already have
a non-transient bit managed by the operating system. However,
if the instruction directly, or due to the fact that the destination
operand(s) are memory location(s), influences the microarchi-
tectural state, the instruction does not use the actual secret
value but instead either stalls or works with a dummy value.
This also includes branch instructions if the corresponding
shadow_rflags bit is set. That is, branching on a secret
stalls the pipeline.

Untainting Registers. There are not only operations which
taint registers, but also operations which untaint registers.
Replacing the entire content of a register without using non-
transient memory or registers untaints the register. We do this
to avoid over-tainting registers; a problem pointed out in earlier
works [82]. In particular, all immediate or untainted values
which replace the content of a register untaint it. Writing a
tainted register to a normal memory location, i.e., a memory
location which is not marked as non-transient, also untaints the
register. The rationale behind this is that if registers are spilled
to normal (i.e., insecure) memory locations, a potential secret
can be leaked anyway. If such a memory operation happens
unintentionally, it is a bug in the program and has to be fixed at
the software level. As the developer has knowledge of secrets
used in the application, it is assumed that the developer moves
secrets only to memory locations marked as non-transient
if the secrets should stay secret. In many cases, however,
moving secrets to normal memory is intentional behavior, as
the developer decided that the register does not contain a secret
anymore. For instance, the output of a cryptographic cipher
does not need protection from transient-execution attacks.
Thus, the automated untainting keeps the number of tainted
registers small.

Taint Propagation across Memory Operations. As the
taint bit is an additional bit for each register, it can only be
propagated to other registers, not to memory. If an operation
writes a secret (i.e., tainted) register to memory, the taint bit
is irrecoverably lost. While this is intended if the developer
explicitly writes values to memory, it might have undesirable
consequences if this happens implicitly, e.g., due to the inner
workings of the compiler. In Section III-C, we introduce the
required changes to the compiler which ensure that the com-
piler never accidentally spills non-transient values to transient
memory locations.

However, the compiler inevitably has to temporarily store
(insecure) registers within memory regions marked as non-
transient. With the solution as described so far, we would
over-approximate and taint more and more registers over
time by spilling them to non-transient memory locations and
reading them back from there. Hence, spilling registers is not
a security problem (i.e., tainted registers are never untainted,
only untainted registers are tainted), but a loss in performance
due to unnecessarily tainted registers.

Optimizing Performance via Caching. To prevent this
potential performance loss, we propose an additional change to
the cache to reduce the impact of the taint over-approximation.
We introduce one additional bit of meta data per 64 bits to

the cache, i.e., 8 additional bits of meta data per 64 B cache
line. This allows us to store the register-taint information
transparently in the cache. Note that this change does not
influence the architectural size of a cache line, as it only
extends the meta data that is already stored for each cache line.
Whenever a register is written to non-transient memory, the
taint bit of the register is stored in the corresponding cache line.
When reading from memory, the bit stored in the cache line has
precedence over the information from the TLB, i.e., the cache
overwrites the taint bit defined by the memory mapping. The
information in the cache allows the hardware to temporarily
keep track of the taint information of a register if the register
value is moved to the stack. This happens, e.g., if register
values are spilled on the stack, exchanged via the stack, or
upon function calls.

Evicting the cache line corresponding to a register is
never a security issue. An evicted cache line only loses the
information that a register was not tainted. Thus, if the cache
line is evicted, the registers become automatically tainted.

1) Taint Control: Besides the automated tainting and un-
tainting of registers, ConTEXT provides a privileged interface
to modify the taint of registers. This interface is necessary
for the operating system to save and restore taint values upon
context switches.

A straightforward solution would be to introduce new
instructions in the ISA. However, we try to keep the hardware
changes to a minimum, especially changes which are not
hidden in the microarchitecture. Hence, we propose instead
to use model-specific registers (MSR) to access the taint
information of registers.

Read/Write Taint. To read and write the current taint infor-
mation of all registers, we introduce an MSR IA32_TAINT.
The taint bit of every architectural register directly maps to
one bit of this MSR, which allows the operating system to
read and write all taint bits in a single operation. As there are
only 56 architectural registers (16 general purpose, 8 floating
point, 32 vector) which have to be tracked, one 64-bit MSR
is sufficient to read or write all taint bits at once. While the
physical register file typically contains more registers, these
are not visible to the developer. Hence, the MSR only has to
provide access to the taint bits of the architectural registers.

Interrupt Handling. MSRs can only be accessed indirectly
using an instruction (i.e., rdmsr on x86), and require regis-
ters both to specify the MSR and as source and destination
operands. On an interrupt, the first thing to save should
be the IA32_TAINT MSR, because it contains the taints
of the previous context. However, as registers must not be
clobbered in the interrupt routine, all the registers used in
the interrupt handler have to be saved first. We resolve this
problem by automatically copying the TA32_TAINT to an
additional MSR, TA32_SHADOW_TAINT, on every interrupt.
This ensures that the taint of all registers is preserved before
any taint is potentially modified by a register operation in the
interrupt handler. The TA32_SHADOW_TAINT can then be
treated like any other register, e.g., the operating system can
save it into a kernel structure upon a context switch.

When returning from an interrupt, the CPU restores the val-
ues from IA32__SHADOW_TAINT to the register taint values.
Hence, with this mechanism, we ensure that an interrupt does

not influence the taint value of any register. This also works
for the unlikely event of nested interrupts, i.e., if an interrupt
is interrupted by a different interrupt. The only critical region
in such a case is if the first interrupt has not yet locally saved
the TA32_SHADOW_TAINT MSR, and the second interrupt
overwrites the MSR. However, as long as within this critical
region (i.e., the time window between first interrupt and second
interrupt) no register is untainted, there can be no leakage. In
Section III-C, we show that this situation can be avoided solely
in software.

C. Software Support

We propose changes to applications, compilers, and oper-
ating systems to leverage the hardware extensions introduced
in Section III-A and Section III-B. The idea is that instead
of annotating all branches that potentially lead to a secret-
dependent operation, application developers simply annotate
the secret variables in their applications directly. These anno-
tations are processed by the compiler and then forwarded to
the operating system to establish the correct memory mappings
(cf. Section III-A).

Compiler. The compiler parses the annotations of secrets.
Annotations are already implemented in modern compilers,
e.g., with __attribute__ ((annotate ("secret")))
in clang. The secrets identified this way are allocated inside a
dedicated section of the binary. The compiler marks this sec-
tion as non-transient. The operating system maps this section
from the binary using a non-transient memory mapping.

Besides parsing the annotations, our modified compiler
ensures that it never spills data from registers marked as secret
into unprotected memory. Otherwise, an attacker could leak
the spilled secrets from memory. Still, it is unavoidable that
the compiler spills registers to the stack, e.g., to preserve
register contents over function calls. Furthermore, due to the
calling convention, some (possibly secret) values have to be
passed over the stack. Hence, we have to assume that the stack
contains secrets. As a consequence, the stack has to be mapped
using a non-transient memory mapping as well.

To reduce the performance impact of a non-transient stack,
we modify the compiler to only use the non-transient stack
if really necessary. This non-transient stack only contains
register spills, possibly function arguments, and return values.
All other values are stored at a different memory location, the
unprotected stack. This concept is similar to the SafeStack [52]
and our implementation even reuses parts of the SafeStack
infrastructure of modern compilers. The difference to SafeS-
tack, where only “unsafe” memory allocations (e.g., buffers)
are stored on the SafeStack, is that we move all variables
normally allocated on the stack to the unprotected stack. Thus,
for ConTEXT, only the absolute minimum is stored on the non-
transient stack, e.g., return addresses. By only moving local
variables to the unprotected stack, and leaving return addresses
and function arguments on the stack, we do not break ABI
compatibility with existing binaries. Thus, a developer can still
use external libraries without recompiling them, and libraries
compiled for ConTExT can be used in ordinary unprotected
applications.

Moving local variables from the stack to a different mem-
ory location does not impact the runtime of the application and

1 pushall

2 rep XOor rcx, rcx ; clear rcx, rep prefix keeps
taint

3 add rcx, IA32_TAINT

4 rdmsr ; taint in rax, rdx

5 [...]

6 popall

7 push rax, rcx, rdx

8 mov rcx, IA32_TAINT ; also updates
IA32_SHADOW_TAINT

9 wrmsr ; old taint in rax, rdx

10 pop rax, rcx, rdx

11 iret ; restores IA32 SHADOW_TAINT to registers

Listing 1: (Pseudo-)assembly for saving and restoring the taint
MSR without destroying the taint of any other register during
a context switch.

even gives additional protection against memory-corruption
attacks [52].

Operating System. For ConTEXT, the operating system is
in charge of setting up non-transient memory mappings. As
the operating system parses the binary, it can directly set
up the non-transient memory mappings, which are marked
as such by the compiler. The operating system requires ad-
ditional small changes. The operating system has to save
and restore taint values on context switches. The hardware
already saves the current taint value of all registers into
the TA32_SHADOW_TAINT MSR upon interrupts. Thus, the
operating system only has to read this register and save it
together with all other saved registers.

As interrupts can be interrupted by other interrupts, e.g.,
a normal interrupt can be interrupted by a non-maskable
interrupt (NMI), there is a critical section between reading the
MSR and saving the result. If registers are untainted in this
section, a nested interrupt would lose the taint information as
it overwrites the TA32_SHADOW_TAINT MSR. However, if
registers are not untainted in this section, no taint information
can be lost. Hence, we have to initialize the registers required
to read the MSR in a way that does not destroy the taint. For
this purpose, we define that the rep prefix for arithmetic and
logical operations on registers preserves the taint. Section III-C
shows (pseudo-)assembly code, which prepares the registers
with the required immediate values. Generally, overwriting
a register with an immediate or by using an idiom, e.g.,
XOr rax, rax,untaints the register. However, the rep prefix
prevents the untainting here.

In addition to the context switch, the operating system
has to flush the cache when the content of a non-transient
memory location is initially loaded from the binary. This is
important as the initial data transfer to the memory page
is not done through the non-transient user-space mapping.
Thus, the operating system has to either disable the cache
before this operation or flush the corresponding cache lines
afterwards. This functionality is already present in the x86
ISA and supported by modern operating systems. Thus, there
is no further change required.

IV. IMPLEMENTATION OF CONTEXT

In this section, we present our implementation of both
ConTEXT and ConTExT-light, which we use for the evaluation

(cf. Section V). As we cannot change real x86 hardware or
emulate the hardware changes required for ConTEXT on com-
modity hardware, we opted for a hardware simulation of our
changes using a full-system emulator (cf. Section IV-A). While
this does not allow to measure performance by measuring the
runtime, it allows measuring performance in the number of
memory accesses, non-transient memory accesses, taint over-
approximations, etc., for real-world benchmarks.

For ConTExT-light, we present a method to partially emu-
late the non-transient memory mapping behavior on commod-
ity hardware by retrofitting uncacheable memory mappings.
Thus, in Section IV-B, we present an open-source proof-of-
concept implementation of ConTExT-light which can already
be used and evaluated on commodity hardware. As ConTExT-
light is running on a real modern CPU architecture, the results
are more tangible than a simulation-based evaluation. Hence,
the performance overhead is an over-approximation, and any
real hardware implementation is expected to be more efficient
than ConTExT-light, as the CPU has to stall in fewer cases.

ConTExT-light is not designed as a protection against
Meltdown-type attacks. Mitigating Meltdown-type attacks, in-
cluding MDS attacks, is orthogonal to our work, and we
consider it out of scope.

A. Hardware Simulation

We simulated ConTEXT using the open-source x86-64
emulator Bochs [55] to get as close as possible to functionally
extending a real x86-64 processor with our features, non-
transient memory mappings (cf. Section III-A) as well as
secret tracking (cf. Section III-B). We incorporated hardware
and behavioral changes in our ConTExT-enabled Bochs.

For the hardware simulation, we considered alternatives,
such as the gem5 simulator [9] or an out-of-order RISC-V core.
However, gem5, as Bochs, is a software-based emulation, and
the overhead estimations from gem5 do not match the actual
overheads in practice, as layouting and microarchitectural
details have a huge influence on real hardware. Currently,
there is also no open-source implementation of a last-level
cache for RISC-V, and it would be difficult to reason about
the performance overheads on x86 based on a RISC-V im-
plementation. Hence, we implement the behavioral changes
in Bochs to analyze the functionality and use ConTExT-light
on a real CPU to approximate the performance overhead (cf.
Section IV-B).

Hardware Changes. To support secret tracking, a few minor
hardware changes are required. Mostly, these are single bits
to track whether a register is non-transient. These bits are
required in every page-table entry, TLB entry, and register.
Furthermore, we introduce additional meta-data bits per cache
line to minimize the performance cost of register spills (cf.
Section III-B).

Page-Table Entry. To distinguish non-transient from nor-
mal memory mappings, we have to mark every memory
mapping accordingly in the PTE. For backward- and future-
compatibility, repurposing one of the ignored bits is the best
choice (cf. Section III-A). Furthermore, repurposing a bit
ensures that the change does not result in any runtime or
memory overhead. If this bit is set, we treat the memory

mapping as a region which may contain secrets. The developer
has to do that both for memory locations containing secrets,
as well as memory locations where secrets are (temporarily)
stored.

Translation Lookaside Buffer. For performance reasons,
modern CPUs cache page-table entries in the TLB. Conse-
quently, we need an additional non-transient bit in the TLB,
caching the bit of the page-table entry. In Bochs, caching of
page-table entries is also implemented as a TLB-like structure
allowing the simulated hardware to automatically transfer the
added bit from the PTE to the TLB. Thus, for cached page-
table entries, memory accesses use the cached non-transient
bit from the TLB.

Cache. Bochs only implements an instruction cache, but
no data cache, which plays a vital role in our design to
cache taint information (cf. Section III-B). Hence, we extended
Bochs with data-cache emulation by implementing an 8-way
(inclusive) last-level cache. As the exact eviction strategy is
unknown [31], we used LRU as a good approximation as it
has been used in Intel CPUs until Ivy Bridge [31]. In our
emulated cache, we added 8 taint bits as metadata per cache
line. Note that this change does not influence the architectural
size of the cache or a cache line. While this sounds like a
large amount of additional metadata, it amounts to less than
1.6 % increase of the size of the last-level cache. Considering
that every cache line already holds a large amount of meta-
data (e.g., physical tag, cache-coherency information, possibly
error-detection bits), these additional 8 bits of metadata do not
result in a large hardware overhead, and are fully backward
compatible.

Model-Specific Registers. As described in Section III-B, we
added two new MSRs to Bochs. Accesses to IA32_ TAINT are
directly mapped to the taint bits of the architectural registers,
allowing the operating system to read and write all at once.
While the physical register file contains more registers [41],
we still require only two MSRs, as they only provide access
to the taint bits of the current architectural registers. As a
typical x86 CPU already contains several hundred MSRs [42],
[1], adding two new MSRs per CPU core is a negligible
hardware overhead. To save the current taint state on interrupts
(Section ITI-B1), we ensure data consistency between the two
MSRs; a write to ITA32_TAINT also (atomically) updates
TIA32_SHADOW_TAINT. This enables us to implement secure
context switches (cf. Section III-C).

Behavioral Changes. All behavioral changes are only enabled
if the operating system supports and enables ConTExT using
the corresponding bit in the control register (cf. Section III-A).
However, taint tracking is enabled unconditionally as it hap-
pens implicitly without additional cost. This applies to all op-
erations which transfer data from memory to registers or from
registers to registers. In our proof-of-concept implementation,
we added the taint tracking to 368 out of 557 instructions
implemented in Bochs. If no memory mapping is marked
as non-transient, then no register can be tainted. Thus, taint
tracking simply has no effect if there is no operating system
support.

10

B. ConTExT-light

In addition to the hardware emulation for ConTExT, we
implemented ConTExT-light (cf. Section III) for Linux. Our
implementation of ConTExT-light consists of two parts, a
kernel module, and a runtime library. For the full ConTEXT, we
provide a compiler extension that minimizes the performance
penalties of register spills.

For the proof of concept, we emulate non-transient memory
mappings via uncacheable memory mappings. Uncacheable
memory can generally not be accessed inside the transient
execution domain [21], [59] and we consider Meltdown-type
attacks out-of-scope since they are already fixed on most recent
hardware [59], [91], [78]. In contrast to ConTEXT, ConTExT-
light does not protect secrets while they are architecturally
stored in registers of running threads. Thus, the security
guarantees of ConTExT-light still hold in this case.

Kernel Module. We opted to implement the operating-
system changes as a kernel module for compatibility with a
wide range of kernels. The kernel module is responsible for
setting up non-transient memory mappings. As our proof-of-
concept implementation relies on uncacheable memory, we do
not retrofit page-table bits but use the page-attribute table to
declare a memory mapping as uncacheable.

The kernel module provides an interface for the runtime
library (cf. Section IV-B) to set up non-transient memory
mappings. This allows keeping the changes in the kernel space
minimal as most of the logic and parsing can be implemented
in user space. The kernel module ensures that the page-attribute
table contains an uncacheable (UC) entry by reprogramming
the page-attribute table if this is not already the case. If
the runtime library requests a mapping to be marked non-
transient via the kernel-module interface, the page-table entry
is modified to reference the UC entry in the page-attribute
table. Subsequently, the corresponding TLB entry is flushed.
We do not flush all cache lines of the mapping, as this would
incur additional overhead. Thus, the developer (or runtime
library) has to take care that values stored on pages marked as
non-transient are not cached before they are marked as non-
transient.

Runtime Library. The runtime library sets up all static
and dynamic non-transient memory mappings via the kernel-
module interface. Our proof-of-concept runtime library sup-
ports C and C++ applications and can even be included as a
single header file for simple projects. The header file provides
a keyword, nospec, to annotate variables as secrets using
the _ attribute__ directive. This keyword ensures that
the linker allocates the variables in a dedicated secret
section in the ELF binary. Moreover, the header file registers
a constructor function which is executed before the actual
application, to initialize ConTEXT at runtime.

When the application starts, the runtime library identifies
all memory mappings in the secret section from the ELF
binary. These memory mappings are then set to non-transient
(i.e., uncacheable) using the kernel module.

The runtime library is only active on application startup
and does not influence the application during runtime. During
runtime, it is only used if the developer requests dynamic non-
transient memory, i.e., non-transient heap memory. For this

purpose, the runtime library provides amalloc_nospec and
free_nospec function. These functions mark the allocated
heap memory immediately as non-transient.

Compiler. For the full ConTEXT with hardware support,
we also require compiler support. We extend the LLVM
compiler [54] in version 8.0.0 to not use the stack for local
variables, but move them to a different part of the memory
which we refer to as unprotected stack.” The normal stack
is marked as non-transient to not leak temporary variables
and function parameters the compiler puts on the stack. Thus,
to reduce the performance impact, we allocate local variables
which are defined by the developer in the unprotected stack,
which is not marked as non-transient.

Our implementation is based on the already existing SafeS-
tack extension [52]. We modify the heuristics to not move only
specific but all user-defined variables from the non-transient
stack to the unprotected stack (SafeStack in the original
extension). Allocations coming from function parameters and
registers spills are put on the non-transient stack.

V. EVALUATION

In this section, we evaluate ConTEXT and ConTExT-light
with respect to their security properties and their performance.
We evaluate ConTEXT on our modified Bochs emulator, and
ConTExT-light on a Lenovo T480s (Intel Core i7-8650U,
24 GB DRAM) running Ubuntu 18.04.1 with kernel version
4.15.0.

A. Security

We generally assume that the operating system is trusted
as it handles the non-transient memory mappings. First, we
explain how ConTEXT can be used to protect against all
Spectre attacks, and how current commodity hardware can be
retrofitted to partially emulate ConTEXT. Second, we show the
limitations of ConTExT.

1) Security of ConTExT: The security guarantees of Con-
TEXT are built on two assumptions: the application developer
correctly annotated all secrets as such, and the application does
not actively leak secrets (e.g., by writing them to memory lo-
cations not marked as non-transient). ConTEXT guarantees for
code that is leakage-free on a strict in-order machine that this
code will also be leakage-free on an out-of-order or speculative
machine with ConTEXT, iff secrets are correctly annotated. For
the evaluation, we distinguish two cases, based on whether the
secret values are used architecturally in the application or not
while an attacker mounts a transient-execution attack.

Security Argument. ConTEXT eliminates leakage of secrets
from transient-instruction execution into the microarchitec-
tural state. It is trivial to see that allowing no transient-
instruction execution eliminates any leakage. ConTEXT allows
the transient execution of instructions that do not influence the
microarchitectural state. An implementation, e.g., our proof-
of-concept, defines for each instruction whether it has to
stall (e.g., branch instructions if the corresponding taint bit
is set), use a dummy value instead of the secret value (e.g.,
operations with one or more secret input operands and one or

3The patches can be found in our GitHub repository https://github.com/
TAIK/contextlight.

11

1 char oracle[256 x 4096];

2 // nospec for ConTExT-1light

3 char /#nospec+/ secret = 'X';

4

s if (speculate()) {

// LFENCE here for mitigation
oracle([secret = 4096]1; // encode secret
oracle[’E’ x 4096]; // encode public value

© ® 9 o

—

300 £, ; ! »
§ ;; 200 | —o— .mr:mcd B
33 | 4o lfence /]
== 100 No secret (x45 —— ConTE&xT | Secret 058
65 70 75 80 85 90

Page of oracle

Fig. 3: Evaluation of Figure 1. The unprotected code snippet
leaks the secret "X’ (0x58) and public value "E’ (0x45) to the
cache (Lines 7 to 8). State-of-the-art lfence-based mitigation
(1fence in Line 6) prevents both indices from being cached.
A ConTExT-light annotation (Line 3) prevents the secret index
from being cached but allows the public index to be cached,
warming up the cache.

more memory input or output operands, and operations that
influence “uncore” or off-core microarchitectural elements),
or can run in an unmodified way (e.g., pure on-core register
operations). If an implementation correctly restricts these,
the microarchitectural state cannot be influenced by a secret.
Hence, in the extreme case where the entire memory is secret,
it is straightforward to see that ConTEXT would not allow any
transient-instruction execution. More specifically, ConTEXT al-
lows exactly the subset of instructions in the instruction stream
to run transiently that do not influence the microarchitecture
based on secrets.

Architecturally Unused Secrets. A secret is architecturally
unused if the secret is only stored in a non-transient memory
region, i.e., there is no part of the secret which is stored in a
register, cache, or normal memory region. For example, this is
the case if the secret was not used by the time of an attack.
However, the application can also be in such a state, although
the secret has already been used in the past. If all traces of the
secret in normal memory or the cache are already overwritten
(or evicted), the application returns again to the state where
secrets are architecturally unused.

In this state, an attacker can only target the secret itself and
not an unprotected copy of it. It is clear that such an attack
cannot be successful, as—per-definition—transiently executed
code cannot retrieve the value from a non-transient memory
region. Hence, ConTEXT is secure if its implementation fulfills
this property.

Architecturally Used Secrets. If the entire secret, or parts
of it, are stored in a register, cache, or a memory region
not marked as non-transient, the secret is considered architec-
turally used. In this case, an attacker can target any unprotected
copy of the secret, not only the original secret stored in the
non-transient memory region. However, an attack fails if the
target is marked as secret, e.g., by a non-transient memory
mapping, tainted register, or tainted cache line.

If a non-transient memory region is loaded into a reg-
ister, the register is tainted and, thus, it cannot be targeted.
Moreover, the taint is also applied to the corresponding cache
line and TLB entry. Any register-to-register operation which
copies the secret also copies the taint. Similarly, an operation
that copies the secret to a non-transient memory region is
also secure. Such operations include, for example, register
spills to the stack, temporary storage of registers in local
variables, or secrets as function arguments (depending on the
calling convention). Tainted registers can only be untainted
by destroying their content, i.e., overwriting them with non-
secret values. Overwriting a register with an immediate or by
using an idiom, e.g., xor rax, rax, generally untaints the
register. Using the rep prefix on arithmetic or logical register
operations preserves the taint.

Thus, registers cannot be untainted while containing a
secret. However, over-approximation can lead to more tainted
registers than necessary.

Operations that copy the secret to a memory region not
marked as non-transient could be attacked. However, such
operations are never implicitly generated by the compiler, as
the compiler only uses the stack as a temporary memory. Thus,
such an operation has to be explicitly defined by the application
developer, which violates the assumption that the application
does not actively leak secrets.

A remaining scenario is the context switch of the ap-
plication with used secrets. In such a case, the application
is stopped by the operating system, and the current register
content is saved to the kernel. As the operating system is aware
of register taints, and also considered trusted, it can leverage
the taint saving mechanism described in Section III-B1. The
registers can again be saved in a non-transient memory region
to prevent transient-execution attacks on the saved registers.
When returning from the kernel, all registers are first tainted
(an over-approximation, as they are restored from a non-
transient stack), but the original taint is restored just before
the end of the context switch. Thus, registers containing secrets
are always tainted and cannot be targeted.

2) Security Limitations of ConTExT-light: As ConTExT-
light is implemented using uncacheable memory, we evalu-
ated the security properties of uncacheable memory regarding
transient execution. We use the transient-execution proof-of-
concepts from Canella et al. [14] as test cases to verify that
ConTExT-light prevents any leakage of secret data. For all
proof-of-concepts which are applicable to our test system, we
successfully leaked the secrets before deploying ConTExT-
light. We furthermore used the AVX-based Spectre-PHT vari-
ant from Schwarz et al. [80] to verify that ConTExT-light
also prevents Spectre attacks, which do not use the cache
as a covert channel. To verify the effectiveness of ConTExT-
light in our experimental setup, we mark the memory mapping
containing the secret data as uncacheable using the PAT.
Additionally, using Flush+Reload, we verified that the memory
mapping is actually uncacheable. For all tested proof-of-
concepts, ConTExT-light successfully prevented any leakage
of the secret data (cf. Figure 3).

ConTExT-light cannot protect secrets while they are ar-
chitecturally stored in registers of running threads. Further-
more, ConTExT-light is not designed as a protection against

12

Meltdown-type attacks. Mitigating Meltdown-type attacks, in-
cluding MDS attacks, is orthogonal to our work, and we
consider it out of scope.

3) Limitations: ConTEXT can only be effective if used
correctly by the application developer, i.e., if the developer
marks all secrets as secret and does not actively leak secrets.
However, even if used correctly, there are certain limitations
which mostly result from a trade-off between performance
and security. In the following paragraphs, we point out where
application developers must take care to not accidentally leak
secrets.

ConTExXT does not allow taint to leave from registers
to the microarchitectural state. Hence, we have to stall the
pipeline if secret registers would influence the control flow,
e.g., a modification of the instruction pointer based on the
flags register.

Instructions such as CRC32 might also leak secrets if a
secret value is used as input, either directly or in combination
with an attacker-known value. However, as this is again a
secret-dependent operation, the developer has to ensure that
this does not leak any secrets.

Another responsibility of the developer is that secret values
are not actively copied to memory locations not marked as non-
transient. This cannot be prevented by either the compiler or
the hardware, as it is often necessary, e.g., the tainted output
of a crypto operation (ciphertext) is not secret anymore and
can be written to normal memory.

ConTExT-light. As ConTExT-light is only a partial emulation
of ConTEXT, it comes with some limitations compared to
ConTEXT. The largest difference to ConTEXT is that secrets
in registers, the load buffer, the store buffer, and the line
fill buffer are not protected. Thus, if a secret is in one of
these microarchitectural structures, it remains susceptible to
transient-execution attacks.

B. Performance

We evaluated the performance of ConTExT-light as an
upper bound for the performance overhead of ConTEXT. This
upper bound is not tight, and the actual upper bound can
be expected to be substantially lower. We also evaluate the
performance overhead of ConTEXT based on our full-system
emulation in Bochs. The SPECspeed 2017 evaluation for
the baseline and of the unprotected stack of ConTEXT is
performed on an 17-8700K machine while all other evaluations
are performed on an i7-8650U machine. Both systems run
Ubuntu Linux 18.04.1 with kernel 4.15.0.

We evaluated the software implications of our proposed
hardware changes using our modified version of Bochs and
a modified Linux kernel, based on kernel version 4.15. For
the Linux kernel, we only had to modify 52 lines in 9
files to support the save and restore of register taints on
context switches. These small changes result in a negligible
performance overhead on context switches, e.g., for syscalls.

The latency of syscalls increases by a constant value, which
is 48 cycles (averaged over 500000 syscall invocations). On
a standard Ubuntu Linux installation, we observed between
3000 and 5000 syscalls per second on average while perform-
ing regular office tasks. On our test system, we observe an

TABLE II: Performance evaluation of the unprotected stack
of ConTEXT using the SPECspeed 2017 integer benchmark.
The baseline was compiled with the unmodified compiler, the
ConTEXT run uses our modified LLVM compiler.

Benchmark i SPEC Score Overhead
Baseline ConTEXT [%]
600.perlbench_s 7.03 6.86 +2.42
602.gcc_s 11.90 11.80 +0.84
605.mcf_s 9.06 9.16 —1.10
620.omnetpp_s 5.07 4.81 +5.13
623.xalancbmk_s 6.06 5.95 +1.82
625.x264_s 9.25 9.25 0.00
631.deepsjeng_s 5.26 5.22 +0.76
641.]eela_s 4.71 4.64 +1.48
648.exchange2_s would require Fortran runtime
657.xz_s 12.10 12.10 0.00
Average +1.26

overhead on the system load of around 0.01 % at this syscall
rate. The highest syscall rates observed for real-world use
cases at Netflix was reported to be around 50 000 syscalls per
second [28]. On our test system, we observe an overhead on
the system load of around 0.13 % at this syscall rate.

1) Compiler Extension: We evaluated the impact of the
unprotected stack of ConTExT using the SPECspeed 2017
integer benchmark. Table II shows that similarly to the origi-
nal SafeStack implementation [52], the resulting performance
overhead is 1.26 % on average and, in the worst case, 5.13 %.

These results are not surprising as only addresses of
variables change. This only requires very little runtime code
for maintaining a second stack pointer. Thus, the small per-
formance overhead is mostly due to the setup time for the
additional non-transient stack.

We furthermore evaluated the performance impact intro-
duced by the non-transient stack. As a baseline, we consider
the case where we only have one non-transient stack and
compare it to our design where the non-transient stack is only
an additional stack to the regular unprotected one. Based on
Intel Pin [61], we implemented our own plugin to trace all
memory accesses. With the plugin, we evaluated how much
memory the non-transient stack consumes. For this purpose,
we ran the GNU Core Utilities, once compiled with the
unmodified compiler, and once compiled with our extended
LLVM compiler. Even for these lightweight applications, we
measured a reduction of average non-transient stack mem-
ory by 42.74%. The modified LLVM compiler sustained an
average non-transient stack usage of 4.7kB, whereas the
applications compiled with a vanilla compiler consumed, on
average, 8.2kB on the single non-transient stack. Moreover,
for 64 out of the 91 tested applications (i.e., 70.3%), the
compiler extension reduced the non-transient stack usage to
only 3528 B, which is below the smallest memory region that
can be set non-transient, i.e., the size of one virtual page
(4kB). The reason for these reductions is that the stack is
not used anymore for storing user-defined variables. Hence,
the compiler extension makes it practical to deploy ConTExT
with the additional non-transient stack.

2) ConTExT-light: We evaluated the performance impact
of ConTExT-light, both for unmodified applications as well

13

as applications where we annotate secret values as such.
For unmodified applications, we do not expect any runtime
overhead, except for a constant initialization overhead.

We confirmed this assumption experimentally. The average
initialization overhead when starting an application with our
current non-optimized implementation is 0.15 ms.

For applications with annotated secret values, there is a
performance overhead for architectural accesses to the secret.
Without ConTExT-light, the secret could be stored in the L1,
L2, or L3 cache, or the main memory. Hence, the maximum
overhead for a memory access is the difference between an
L1 cache hit and a cache miss. The minimum overhead for
a memory access is zero (i.e., cache miss in both cases). In
practice, we often see a cache miss instead of an L3 cache hit,
which makes an average overhead of 100 cycles on our test
system.

To evaluate the real-world performance, we applied
ConTExT-light to various real and artifical applications.* We
first evaluate ConTExT-light on pure cryptographic algorithms,
as they are the main target for Spectre attacks and thus require
protection. In addition to performance evaluations on pure
cryptographic algorithms, we also evaluate the performance of
real-world application when annotating secrets. In all cases, the
effort to identify and annotate secrets only required changing
between 3 and 27 lines in the source code.

OpenSSL RSA. We evaluated the performance by encrypt-
ing a message using OpenSSL’s RSA. For this, we pro-
vide OpenSSL with the secure heap allocation functions of
ConTExT-light. We verified that indeed all memory allocations
in OpenSSL use the secure functions using ltrace and
single-stepping. The performance overhead we measured when
annotating all buffers that may (temporarily) contain secrets in
an RSA encryption is 71.14 % (£ 4.66 %, n = 10000). This
is not surprising as RSA performs many in-place operations in
one secure buffer, and hence, higher overheads are expected.

AES. As a second cryptographic algorithm, we evaluated
AES, both in OpenSSL and in a custom AES-NI implemen-
tation. For our AES-NI implementation, we annotate the AES
key as well as the intermediate round keys as secrets. For AES-
NI, no other secret values, or values derived from secrets, have
to be stored in memory. As AES-NI expects all values in the
xmm registers, there is only the initial performance overhead
of copying the ConTExT-light-protected keys to the registers.
As this is a one-time operation, the overhead of 122 cycles
(n = 10000000, oz = 0.00), is negligible when performing
multiple encryptions or decryptions. For the encryption and
decryption step, there is no performance overhead at all. We
verified this by encrypting and decrypting a block 10 000 000
times. Both with and without ConTExT-light, the encryption
and decryption took 46 cycles per 16-byte block. While the
application is an artificial application, it shows that ConTExT-
light-protected cryptographic algorithms can be implemented
without any performance overhead.

To analyze the performance overhead of ConTExT-light
on a state-of-the-art AES implementation, we used OpenSSL’s

4The changes to existing applications and the artifical applications can be
found in our GitHub repository https://github.com/IAIK/contextlight.

AES-128-CBC. Similarly to the AES-NI example, we mea-
sured the number of cycles it takes to encrypt and decrypt the
same block. Without ConTExT-light, it takes on average 1371
cycles (n = 100000, oz = 36.90). For the protected variant,
we annotated the key as secret, and for simplicity, the entire in-
ternal encryption and decryption context EVP_CIPHER CTX
of OpenSSL. While this protects more variables than necessary,
it ensures that all secrets in the context of the encryption and
decryption are marked as uncachable. Even then, the overhead
is not too drastic with an average number of cycles for
encryption and decryption of 5196 (n = 100000, oz = 32.82).
This naive approach only requires to provide ConTExT-light’s
implementation of the heap management to OpenSSL using
CRYPTO_set_mem_functions and annotating the key us-
ing the nospec attribute. We verified using GDB that all
occurrences of the secret key are only stored in uncachable
memory. The result is that secret AES keys cannot be extracted
anymore using Spectre attacks, with a performance overhead
of 338 % (n = 100000, oz = 0.24).

However, as we showed with the AES-NI example, this can
still be improved by modifying the OpenSSL library itself, and
ensuring that only sensitive data is marked as such.

OpenSSH. For OpenSSH, the main asset is the private
key which is stored in memory and which is susceptible to
Spectre attacks.’ Hence, to evaluate the impact of protecting
the private key with ConTExT-light, we evaluate OpenSSH
with our modifications.

Conveniently, OpenSSH already encapsulates the private
key into its own global variable sensitive_data. The
variable is a structure of type Sensitive which can store an
arbitrary number of SSH keys. The private keys are stored in
sshbufs and referenced by the sensitive_data variable.
Hence, to apply ConTExT-light, we annotated the global
variable and changed the heap allocations in the sshbuf
functions to use the heap-manipulation functions provided by
ConTExT-light. This resulted in a change of 14 lines of code.

To benchmark the impact of the modification, we analyzed
the time it takes to connect to an SSH server, as well as how
long it takes to transfer a file from a server. The connection
time, which includes the initialization time of ConTExT-light,
increased on average by 24.7% (n = 1000, oz = 0.038)
from 369 ms to 459 ms. However, this amortizes when, e.g.,
transferring files. When copying a 128 MB file over SSH in
a local network, this overhead is only 5.4% (n 1000,
oz = 0.006) anymore. Furthermore, as soon as the connection
is established, there is no performance impact of ConTExT-
light noticeable.

VeraCrypt. Gruss et al. [33] presented a Meltdown attack
on the master password of VeraCrypt, the successor of True-
Crypt. As we expect this attack to be possible with Spectre
assuming a suitable gadget is found, we show that ConTExT-
light can protect the key material in VeraCrypt. VeraCrypt
uses a SecureBuffer class to store sensitive data, such
as the master password. Such a SecureBuffer is used,
amongst others, for the header key and the encrypted volume
header. Hence, it is sufficient to protect all instances of
SecureBuffer using ConTExT-light. This requires only 3
lines of additional code.

Shttps://marc.info/?1=openbsd-cvs&m=156109087822676&w=2

14

As the password and keys are used for mounting and
encrypting data, we analyze the performance overhead for
these operations introduced by ConTExT-light. For mounting
an encrypted container, the average time increases by 3.21 %
(n = 1000, oz = 0.001) from 1.59s to 1.64s. To test the
encryption performance, we copy 4 files each with 128 MB
to the mounted container. In this experiment, we measure an
average overhead of 0.13 % (n = 200, oz = 0.006), increasing
the time for the file operations by 0.6 ms. The reason for
this small overhead is that the bottleneck is the SSD and not
the encryption. On our i7-8650U, we achieve an encryption
speed with AES of 4.6 GB/s, which is significantly faster than
the SSD write speed. Hence, for file operations, there is no
observable performance overhead caused by ConTExT-light.

OATH One Time Password Tool. The OATH One Time
Password tool oathtool is used to generate one-time pass-
words for second-factor authentication. This tool supports the
Time-based One-time Password algorithm (TOTP), which is
used e.g., for Google’s or Facebook’s two-factor authentica-
tion. Based on a shared secret between the user and the service,
the tool calculates a cryptographic hash over the shared secret
and the current time. A part of this hash is then used as the
one-time password for the authentication. An attacker who can
extract the shared secret can generate a one-time password at
any time. Hence, we use ConTExT-light to protect this shared
secret. We do not protect the one-time password, as this is just
a temporary second factor that is valid for at most 30s.

Adding ConTExT-light to oathtool requires only 27
lines of code changes in 7 files. The main changes ensure that
the buffers storing the shared secret, as well as the buffers
used for the hash calculations, are marked as uncachable.
This is achieved by allocating them on the non-cachable
heap using malloc_nospec instead of on the stack or
normal heap. We verified the functional correctness of the
changes by comparing the generated one-time passwords with
the Google Authenticator application. As new passwords are
only generated every 30 seconds, any performance overhead
introduced by ConTExT-light is not relevant.

Password Manager. LastPass is a tool that can be used to
generate and securely store passwords and other sensitive data.
The command-line client, LastPass-cli, connects to a remote
server with user-provided credentials and retrieves or stores
the password and additional information on the remote server,
e.g., notes or attachments. To access the data, a user requires
the master password associated with an account for the first
access. This will store an encrypted local version of the data
from the server on the user’s disk. The second access will use
a key stored by an agent to decrypt the local version of the
data. Hence, we protect the password as well as the decryption
key as all other transmitted data is short-lived.

We enhanced LastPass-cli by adding ConTExT-light, which
requires changing 19 lines of code. These changes ensure
that buffers storing the master password, as well as the
decryption key, are marked as uncacheable. We tested the
application repeatedly to ensure functional correctness. To
evaluate the performance slowdown of ConTExT-light, we
repeatedly queried a password. In the experiment, we observed
a slowdown from 0.162s to 0.248 s for a slowdown of 53 %
with ConTExT-light applied.

NGINX. NGINX is a web server that can also be used for
a variety of other tasks, e.g., as a load balancer, mail proxy,
and HTTP cache. Similar to other web servers, NGINX allows
for secure connections to a client via HTTPS. To authenticate
that the client is communicating with the server, the client
verifies the server identity by checking its signature generated
using the certificate key, i.e., the server’s private key, with the
certificate, i.e., the server’s public key. Hence, when extracting
the certificate key, the attacker can impersonate the server.

We modified NGINX to protect the certificate key using
ConTExT-light, which requires changing 11 lines of code. We
do not protect individual sessions as the session keys are short-
lived and, hence, very hard to extract using a Spectre attack.
To determine the effect of ConTExT-light on the performance
of NGINX, we configured a local server with a generated
certificate and used the siege load testing and bechmarking
utility.6 With siege, we simulate 255 clients for a duration of
300s. With this test, we observe a decrease from 63695 to
59071 transactions, a decrease of 7.3 %. The average response
time per transaction increased from 0.62s to 0.65s.

Protected Data and Overhead Comparison. In all evaluated
applications, the amount of protected data is relatively small.
Sensitive data with the highest value for an attacker is mostly
either a password, passphrase, or key. Leaking a password
usually gives an attacker full access to the application or the
rest of the data. Hence, this is the preferable target for a Spectre
attack. Especially given the leakage and error rate of Spectre
attacks, it is only feasible to leak small amounts of data.
In an artificial proof-of-concept, Spectre-PHT achieved up to
10kB/s, whereas the fastest real-world attack only achieves
41 B/s with an error rate of 2 % [50]. Similarly, Spectre-BTB
achieves 1809 B/s with an error rate of 1.7 % [50]. While these
leakage rates are sufficient to extract a password or private key,
it is not feasible to leak larger amounts of data, such as emails
or databases. Moreover, Spectre attacks also require a specific
knowledge of where the data is located in memory [50]. Hence,
locating the targeted data might also require leaking other data
first, e.g., pointers, reducing the effective leakage rate further.

State-of-the-art Spectre mitigations always have a perfor-
mance impact on the software, regardless whether secrets are
present: For instance serialization barriers, the recommended
mitigation strategy for Spectre-PHT attacks, cause a high per-
formance overhead, i.e., 62-74.8 % [16]. Additional overheads
are caused by Spectre-BTB mitigations, e.g., retpoline (5—
10 %), or alternatively STIBP (30-50 %) [53] and IBRS (20~
30 %) [87], as well as mitigations for other Spectre variants.

ConTEXT reduces the overheads for non-annotated soft-
ware to a minimum (cf. Table II). The performance overheads
for annotated software when heavily using secrets is similar
to the state-of-the-art Spectre mitigations. However, this is
often just for a small period of time, e.g., for authentication.
Hence, ConTEXT is a viable alternative as its overhead is
inherently lower than the ones we observe with ConTExT-light,
and ConTExT-light already is in the range of state-of-the-art
mitigation approaches. ConTEXT improves the performance of
ConTExT-light by regular caching and hiding the latency of
register loads. Hence, the performance will be higher.

Ohttps://github.com/JoeDog/siege

15

VI

ConTEXT is not a defense for commodity systems. Con-
TExXT requires changes across all layers. Yet, compared to
all other defenses, it is the first proposal to achieve com-
plete protection [67], [14]. Concurrent to our work, NVIDIA
patented a similar idea [10]. However, they focus solely on
the protection of memory locations, i.e., not speculating on
memory that might contain secrets. As NVIDIA only provides
a patent and no whitepaper or scientific paper, it does not
discuss any changes required to the software level, e.g., the
operating system, compiler, or applications. Hence, there is
also no evaluation of the expected overheads. In contrast
to their work, we do provide protection on a register-level,
allowing speculatively cache and register fills. This clearly has
a lower performance impact. However, the various patents in
this area [45], [56], [10] give us additional confidence in the
practicality of our approach.

DISCUSSION

Naturally, ConTEXT is particularly interesting in cases
where isolation is not clear, e.g., to protect a sandbox envi-
ronment from the sandboxed code. There are different ways
to select what are secrets to protect. One extreme would be to
generally mark all data secret. As this is not practical, related
works either restrict it to an architecturally already defined
group, or let the user annotate secrets. Taram et al. [85] defined
all userspace memory and user input as secret. However, this
can be very expensive, and consequently, Yu et al. [101] pro-
posed a less expensive annotation-based protection mechanism.
While this is an important discussion, it is orthogonal to this
work. In related work, Brahmakshatriya et al. [11] annotate
secrets and modify LLVM to store the annotated and derived
secrets in a separate memory area. This approach is similar
to our approach. However, they do not try to mitigate Spectre
attacks, but memory leaks caused by traditional vulnerabilities.
Similarly, Carr and Payer [15] use data annotations to split
memory into sensitive and non-sensitive memory ranges based
on the data type. These papers show that annotating secrets is
a feasible approach to protect against memory leaks. Our work
shows that if we can mark secrets, we can provide complete
protection against Spectre attacks. From a problem which is,
according to Mcilroy et al. [65], currently not solvable in
software, ConTEXT shifts the landscape such that the problem
is not easy to solve, but solvable in software. ConTEXT is
the foundation to research future proposals investigating how
annotations can be automated, replaced, or simplified. Having
a backward-compatible way to annotate secrets and propagate
this information through the microarchitecture can be an
alternative to something like a CHERI-based processor [95].

Inadvertent Untainting. In line with countermeasures against
side-channel attacks, the countermeasure does not protect
secrets if a developer actively exposes the secret, e.g., by
writing it to memory not marked as non-transient. Even with
ConTEXT, it is the developer’s responsibility to take care of
secrets, i.e., when temporarily storing them somewhere.

ConTEXT only ensures that the compiler does not im-
plicitly copy annotated secrets to insecure memory locations,
e.g., when temporarily storing register values on the stack to
free a register. The developer is assumed to have the domain
knowledge on whether a particular variable is a secret. Hence,
we expect the developer to correctly decide whether data can
be moved to a normal memory location. If sensitive data has to

be copied to a different memory location, then the destination
has to be marked as non-transient as well. Moving sensitive
data only between registers is handled by the hardware taint
tracking. This does not complicate the workflow of a developer.
Currently, a developer has to decide for every branch whether
it can leak a value, and whether this value is a secret.

Secret Aliases. Pointer aliases to secret values marked as non-
transient are not a problem, as the pointer value itself (i.e., the
address) is not a secret. The check whether a memory area is
marked as non-transient is done at the page-table entry (which
might already be in the TLB). Pointer aliases still point to the
same physical location, i.e., the secret, and hence the same
page-table entry is used in the access. The CPU detects the
memory type upon this access and either stalls or continues,
independent of which pointer was used for the access. For
multiple mappings of the same memory location, i.e., shared
memory, all mappings must be marked non-transient unless
the programmer intends to keep one of them non-secret.

Dealing with Edge Cases. There are many elements in a
processor that generally could leak data such that a register
contains a secret. No matter where the data was leaked from—
the memory, the cache, the line fill buffer, the load buffer, the
store buffer, or just another register—if the register is tainted,
ConTExT does not execute any operation that depends on the
value from that register. Hence, under the assumption that
the secret has to move through a register (or already be in a
register), the protection ConTEXT provides is complete. Only
violating this assumption would allow bypassing ConTExT. To
the best of our knowledge, there is no mechanism on x86-64
that would allow performing an indexed array access without
loading the index into a register. This supports our assumption.

As ConTEXT prevents the value from being passed on from
the tainted register, we do not have any edge cases around the
various microarchitectural elements.

Microcode. ConTExXT likely cannot be implemented (effi-
ciently) in microcode or microcode updates. The reason is that
the behavior in the critical path when forwarding a value from
a register to a dependent instruction has to be modified. To the
best of our knowledge, there is no microcode involved in this
part for performance reasons.

Virtualization. Our approach is oblivious to virtualization.
EPTs equally contain non-transient bits. Identical to the way
several other page table bits are combined (e.g., the non-
executable bit), if any bit in the hierarchy is set to non-
transient, the page is non-transient. Naturally, the extensions
we implemented on the operating system level would have to
be identically implemented on the hypervisor level. We leave
this implementation effort for future work.

Implementation of the Microarchitectural Changes. While
a microarchitectural implementation would be interesting, this
is not necessary to see the practicality of our work. We already
have the uncacheable memory mapping, which is marked in the
page table. Uncacheable memory is not used during speculative
execution, although if it is already in a cache, line fill buffer,
load buffer, or store buffer, it might be leaked. Hence, there
is already a mechanism in current processors, which is very
similar to the one we propose. While uncacheable memory is
much slower than what we propose with ConTEXT, it clearly

16

shows that an implementation is possible and provides an
upper bound for the performance overhead.

VII. CONCLUSION

In this paper, we presented ConTExXT, a technique to
effectively and efficiently prevent leakage of secrets during
transient execution. The basic idea of ConTEXT is to transform
Spectre from a problem that cannot be solved purely in soft-
ware [65], to a problem that is not easy to solve, but solvable in
software. For this, ConTEXT requires minimal modifications of
applications, compilers, operating systems, and hardware. We
implemented these in applications, compilers, and operating
systems, as well as in a processor simulator.

Mitigating all transient-execution attacks with a principled
approach of course costs performance. We provide an approx-
imative proof-of-concept for ConTEXT which we use on com-
modity systems to obtain an upper bound for the performance
overhead. We argue why the actual performance overhead
for ConTEXT can be expected to be substantially lower. As
seen in our security evaluation, ConTEXT is the first proposal
for a principled defense tackling the root cause of transient-
execution attacks. ConTExT has no performance overhead
for regular applications. Even with the over-approximation of
ConTExT-light, namely between 0% and 338 % for security-
critical applications, it is still below the combined overhead of
recommended state-of-the-art mitigation strategies. The over-
head with ConTEXT will be substantially lower for most real-
world workloads. Our work shows that transient execution can
be made secure while maintaining a high system performance.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their comments and
suggestions that helped improving the paper. The project was
supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No 681402). It was also supported
by the Austrian Research Promotion Agency (FFG) via the K-
project DeSSnet, which is funded in the context of COMET
- Competence Centers for Excellent Technologies by BMVIT,
BMWFW, Styria and Carinthia. This work has additionally
been supported by the Austrian Research Promotion Agency
(FFG) via the project ESPRESSO, which is funded by the
Province of Styria and the Business Promotion Agencies of
Styria and Carinthia. This work has also been supported by
the Austrian Research Promotion Agency (FFG) via the com-
petence center Know-Center (grant number 844595), which
is funded in the context of COMET — Competence Centers
for Excellent Technologies by BMVIT, BMWFW, and Styria.
Additional funding was provided by generous gifts from ARM
and Intel. Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the authors
and do not necessarily reflect the views of the funding parties.

REFERENCES

[11 AMD, Software Optimization Guide for AMD Family 17h Processors,

Jun. 2017.

AMD, “AMDG64 Technology: Speculative Store Bypass Disable,”
2018, revision 5.21.18.

AMD, “Software Techniques for Managing Speculation on AMD
Processors,” 2018, revison 7.10.18.

[2]

[3]

[4]

[5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

AMD, “Software techniques for managing speculation on AMD pro-
cessors,” 2018.

ARM Limited, “Vulnerability of Speculative Processors to Cache
Timing Side-Channel Mechanism,” 2018.

S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” Acm Sigplan Notices, 2014.

S. Bhattacharya, C. Maurice, S. Bhasin, and D. Mukhopadhyay,
“Template attack on blinded scalar multiplication with asynchronous
perf-ioctl calls,” Cryptology ePrint Archive, Report 2017/968, 2017.

A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner, A. Sorniotti,
B. Falsafi, M. Payer, and A. Kurmus, “SMoTherSpectre: exploiting
speculative execution through port contention,” in CCS, 2019.

N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, 2011.

D. D. Boggs, R. Segelken, M. Cornaby, N. Fortino, S. Chaudhry,
D. Khartikov, A. Mooley, N. Tuck, and G. Vreugdenhil, “Memory
type which is cacheable yet inaccessible by speculative instructions,”
2019, uS Patent App. 16/022,274.

A. Brahmakshatriya, P. Kedia, D. P. McKee, D. Garg, A. Lal, A. Ras-
togi, H. Nemati, A. Panda, and P. Bhatu, “Confllvm: A compiler for
enforcing data confidentiality in low-level code,” in EuroSys, 2019.

R. Branco, K. Hu, K. Sun, and H. Kawakami, “Efficient mitigation
of side-channel based attacks against speculative execution processing
architectures,” 2019, uS Patent App. 16/023,564.

C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck, and
Y. Yarom, “Fallout: Leaking Data on Meltdown-resistant CPUs,” in
CCS, 2019.

C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A Systematic Evaluation
of Transient Execution Attacks and Defenses,” in USENIX Security
Symposium, 2019.

S. A. Carr and M. Payer, “Datashield: Configurable data confidentiality
and integrity,” in AsiaCCS, 2017.

C. Carruth, “RFC: Speculative Load Hardening (a Spectre variant #1
mitigation),” Mar. 2018.

G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “SgxPectre
Attacks: Stealing Intel Secrets from SGX Enclaves via Speculative
Execution,” in EuroS&P, 2019.

W. Cheng, Q. Zhao, B. Yu, and S. Hiroshige, “Tainttrace: Efficient
flow tracing with dynamic binary rewriting,” in ISCC, 2006.

J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum,
“Understanding data lifetime via whole system simulation,” in USENIX
Security, 2004.

T. Downs, “Where do interrupts happen?” Aug. 2019. [Online]. Avail-
able: https://travisdowns.github.io/blog/2019/08/20/interrupts.html
ECLYPSIUM, “System Management Mode Speculative Execution
Attacks,” May 2018. [Online]. Available: https://blog.eclypsium.com/
2018/05/17/system-management-mode- speculative-execution-attacks/
D. Evtyushkin and D. Ponomarev, “Covert channels through random
number generator: Mechanisms, capacity estimation and mitigations,”
in CCS, 2016.

D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Jump over aslr:
Attacking branch predictors to bypass aslr,” in MICRO, 2016.

D. Evtyushkin, R. Riley, N. C. Abu-Ghazaleh, ECE, and D. Pono-
marev, “BranchScope: A New Side-Channel Attack on Directional
Branch Predictor,” in ASPLOS, 2018.

A. Fog, “The microarchitecture of Intel, AMD and VIA CPUs: An
optimization guide for assembly programmers and compiler makers,”
2016.

Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A Survey of Microar-
chitectural Timing Attacks and Countermeasures on Contemporary
Hardware,” Journal of Cryptographic Engineering, 2016.

A. F. Glew and G. J. Hinton, “Method and apparatus for processing
memory-type information within a microprocessor,” 1995, european
Patent Office EP0783735A4.

17

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

(45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]

[53]

[54]

B. Gregg, “KPTI/KAISER Meltdown Initial Performance Regres-
sions,” 2018.

D. Gruss, D. Hansen, and B. Gregg, “Kernel Isolation: From an
Academic Idea to an Efficient Patch for Every Computer,” USENIX
;login, 2018.

D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and S. Man-
gard, “KASLR is Dead: Long Live KASLR,” in ESSoS, 2017.

D. Gruss, C. Maurice, and S. Mangard, “Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript,” in DIMVA, 2016.

D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A
Fast and Stealthy Cache Attack,” in DIMVA, 2016.

D. Gruss, M. Schwarz, and M. Lipp, “Meltdown: Basics, Details,
Consequences,” BlackHat USA, 2018.

M. Guri, M. Monitz, Y. Mirski, and Y. Elovici, “Bitwhisper: Covert
signaling channel between air-gapped computers using thermal manip-
ulations,” in /IEEE CSF, 2015.

J. Horn, “speculative execution, variant 4: speculative store bypass,”
2018.

Intel, “Intel Analysis of Speculative Execution Side Channels,”
Jul. 2018. [Online]. Available: https://software.intel.com/security-
software- guidance/api-app/sites/default/files/336983-Intel- Analysis-
of-Speculative- Execution-Side-Channels- White- Paper.pdf

——, “Retpoline: A Branch Target Injection Mitigation,” Jun. 2018,
revision 003.

——, “Speculative Execution Side Channel Mitigations,” 2018, revi-
sion 3.0.

e “Deep Dive: CPUID Enumeration Ar-
chitectural MSRs,” May 2019. [Online]. Avail-

able: https://software.intel.com/security-software- guidance/insights/
deep-dive-cpuid-enumeration-and-architectural-msrs#MDS-CPUID

and

——, “Deep Dive: Intel Analysis of Microarchitectural Data Sam-
pling,” 2019.

Intel, “Intel 64 and IA-32 Architectures Optimization Reference Man-
ual,” 2019.

Intel, “Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3 (3A, 3B & 3C): System Programming Guide,” 2019.

A. Tonescu, “Windows 17035 Kernel ASLR/VA Isolation In
Practice (like Linux KAISER).” 2017. [Online]. Available: https:
/Itwitter.com/aionescu/status/930412525111296000

G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache
attacks,” in AsiaCCS, 2016.

J. Jaeyeon and Y. Zhu, “Sensitive data tracking using dynamic
taint analysis,” 2014. [Online]. Available: https://patents.google.com/
patent/US9548986B2

kernel.org, “Documentation: Document array_index_nospec - kernel
version v4.16-rc1,” 2018. [Online]. Available: https://www.kernel.org/
doc/Documentation/speculation.txt

K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin, D. Pono-
marev, and N. Abu-Ghazaleh, “SafeSpec: Banishing the Spectre of a
Meltdown with Leakage-Free Speculation,” in DAC, 2019.

V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“DAWG: A Defense Against Cache Timing Attacks in Speculative
Execution Processors,” ePrint 2018/418, May 2018.

V. Kiriansky and C. Waldspurger, “Speculative Buffer Overflows:
Attacks and Defenses,” arXiv:1807.03757, 2018.

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in S&P, 2019.
E. M. Koruyeh, K. Khasawneh, C. Song, and N. Abu-Ghazaleh,
“Spectre Returns! Speculation Attacks using the Return Stack Buffer,”
in WOOT, 2018.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-Pointer Integrity,” in OSDI, 2014.

M. Larabel, “Bisected: The Unfortunate Reason Linux 4.20 Is Running
Slower,” Nov. 2018.

C. Lattner and V. S. Adve, “LLVM: A compilation framework for
lifelong program analysis & transformation,” in /IEEE / ACM Inter-

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]
[72]

[73]
[74]

[75]

[76]

[77]

[78]

[79]

national Symposium on Code Generation and Optimization — CGO
2004, 2004, pp. 75-88.

K. P. Lawton, “Bochs: A portable PC emulator for UNIX/X,” Linux
Journal, 1996.

E. N. Leake and G. Pike, “Taint tracking mechanism for computer
security,” 2013. [Online]. Available: https://patents.google.com/patent/
US8875288B2

S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
Fine-grained Control Flow Inside SGX Enclaves with Branch Shad-
owing,” in USENIX Security Symposium, 2017.

J. Levin, Mac OS X and 10S Internals: To the Apple’s Core.
Wiley & Sons, 2012.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading Kernel Memory from User Space,” in
USENIX Security Symposium, 2018.

F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in S&P, 2015.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: building customized
program analysis tools with dynamic instrumentation,” in ACM SIG-
PLAN notices, 2005.

LWN, “The current state of kernel page-table isolation,” Dec.
2017. [Online]. Available: https://lwn.net/SubscriberLink/741878/
eb6c9d3913d7cb2b/

G. Maisuradze and C. Rossow, “ret2spec: Speculative Execution Using
Return Stack Buffers,” in CCS, 2018.

C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. Al-
berto Boano, S. Mangard, and K. Romer, “Hello from the Other Side:
SSH over Robust Cache Covert Channels in the Cloud,” in NDSS,
2017.

R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest, “Spectre
is here to stay: An analysis of side-channels and speculative execution,”
arXiv:1902.05178, 2019.

Microsoft, “Mitigating speculative execution side-channel attacks in
Microsoft Edge and Internet Explorer,” Jan. 2018.

John

M. Miller, “Mitigating speculative execution side channel hardware
vulnerabilities,” Mar. 2018.

J. Newsome and D. X. Song, “Dynamic Taint Analysis for Automatic
Detection, Analysis, and SignatureGeneration of Exploits on Com-
modity Software.” in NDSS, 2005.

0. Oleksenko, B. Trach, T. Reiher, M. Silberstein, and C. Fetzer, “You
Shall Not Bypass: Employing data dependencies to prevent Bounds
Check Bypass,” arXiv:1805.08506, 2018.

D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Coun-
termeasures: the Case of AES,” in CT-RSA, 2006.

A. Pardoe, “Spectre mitigations in MSVC,” 2018.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard,
“DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks,”
in USENIX Security Symposium, 2016.

F. Pizlo, “What Spectre and Meltdown mean for WebKit,” Jan. 2018.

F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu, “LIFT: A
low-overhead practical information flow tracking system for detecting
security attacks,” in MICRO, 2006.

C. Reis, A. Moshchuk, and N. Oskov, “Site Isolation: Process Sep-
aration for Web Sites within the Browser,” in USENIX Security
Symposium, 2019.

E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted
to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask),” in S&P, 2010.

M. Schwarz, C. Canella, L. Giner, and D. Gruss, “Store-to-
Leak Forwarding: Leaking Data on Meltdown-resistant CPUs,”
arXiv:1905.05725, 2019.

M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, ‘“ZombieLoad: Cross-Privilege-Boundary
Data Sampling,” in CCS, 2019.

M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic Timers
and Where to Find Them: High-Resolution Microarchitectural Attacks
in JavaScript,” in FC, 2017.

18

[80]

(81]

(82]

[83]

[84]

(85]

(86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

M. Schwarz, M. Schwarzl, M. Lipp, and D. Gruss, “NetSpectre: Read
Arbitrary Memory over Network,” in ESORICS, 2019.

U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, “Detecting
format string vulnerabilities with type qualifiers.” in USENIX Security
Symposium, 2001.

A. Slowinska and H. Bos, “Pointless tainting?: evaluating the practi-
cality of pointer tainting,” in EuroSys, 2009.

D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A new
approach to computer security via binary analysis,” in International
Conference on Information Systems Security, 2008.

K. Sun, R. Branco, and K. Hu, “A New Memory Type Against
Speculative Side Channel Attacks,” 2019.

M. Taram, A. Venkat, and D. Tullsen, “Context-sensitive fencing:
Securing speculative execution via microcode customization,” in AS-
PLOS, 2019.

The Chromium Projects, “Actions required to mitigate Speculative
Side-Channel Attack techniques,” 2018.

V. Tkachenko, “20-30% Performance Hit from the Spectre Bug Fix
on Ubuntu,” Jan. 2018.

C. Trippel, D. Lustig, and M. Martonosi, “MeltdownPrime and Spec-
trePrime: Automatically-Synthesized Attacks Exploiting Invalidation-
Based Coherence Protocols,” arXiv:1802.03802, 2018.

P. Turner, “Retpoline: a software construct for preventing branch-
target-injection,” 2018. [Online]. Available: https://support.google.
com/faqs/answer/7625886

J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution,” in USENIX Security Symposium,
2018.

S. van Schaik, A. Milburn, S. Osterlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue In-flight Data
Load,” in S&P, May 2019.

G. Venkataramani, I. Doudalis, Y. Solihin, and M. Prvulovic, “Flexi-
taint: A programmable accelerator for dynamic taint propagation,” in
IEEE HPCA, 2008.

L. Wagner, “Mitigations landing for new class of timing attack,” Jan.
2018.

X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu, “Still: Exploit code detec-
tion via static taint and initialization analyses,” in Annual Computer
Security Applications Conference, 2008.

R. N. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie et al., “CHERI:
A hybrid capability-system architecture for scalable software compart-
mentalization,” in S&P, 2015.

O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom,
“Foreshadow-NG: Breaking the Virtual Memory Abstraction with
Transient Out-of-Order Execution,” 2018.

Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-space: High-
bandwidth and Reliable Covert Channel Attacks inside the Cloud,”
IEEE/ACM Transactions on Networking, 2014.

Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlicht-
ing, “An exploration of L2 cache covert channels in virtualized
environments,” in CCSW’11, 2011.

M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and
J. Torrellas, “InvisiSpec: Making Speculative Execution Invisible in
the Cache Hierarchy,” in MICRO, 2018.

Y. Yarom and K. Falkner, “Flush+Reload: a High Resolution, Low
Noise, L3 Cache Side-Channel Attack,” in USENIX Security Sympo-
sium, 2014,

J. Yu, L. Hsiung, M. El Hajj, and C. W. Fletcher, “Data Oblivious
ISA Extensions for Side Channel-Resistant and High Performance

Computing,” in NDSS, 2019.

