
When Malware is Packin’ Heat;
Limits of Machine Learning Classifiers Based on

Static Analysis Features
Hojjat Aghakhani∗, Fabio Gritti∗, Francesco Mecca†, Martina Lindorfer‡,

Stefano Ortolani§, Davide Balzarotti¶, Giovanni Vigna∗ and Christopher Kruegel∗
∗University of California, Santa Barbara †Università degli Studi di Torino ‡TU Wien §Lastline Inc. ¶Eurecom
∗{hojjat, degrigis, vigna, chris}@cs.ucsb.edu †francesco.mecca402@edu.unito.it ‡mlindorfer@iseclab.org

§ortolani@lastline.com and ¶davide.balzarotti@eurecom.fr

Abstract—Machine learning techniques are widely used in
addition to signatures and heuristics to increase the detection
rate of anti-malware software, as they automate the creation of
detection models, making it possible to handle an ever-increasing
number of new malware samples. In order to foil the analysis of
anti-malware systems and evade detection, malware uses packing
and other forms of obfuscation. However, few realize that benign
applications use packing and obfuscation as well, to protect
intellectual property and prevent license abuse.

In this paper, we study how machine learning based on
static analysis features operates on packed samples. Malware
researchers have often assumed that packing would prevent
machine learning techniques from building effective classifiers.
However, both industry and academia have published results that
show that machine-learning-based classifiers can achieve good
detection rates, leading many experts to think that classifiers are
simply detecting the fact that a sample is packed, as packing is
more prevalent in malicious samples. We show that, different
from what is commonly assumed, packers do preserve some
information when packing programs that is “useful” for malware
classification. However, this information does not necessarily
capture the sample’s behavior. We demonstrate that the signals
extracted from packed executables are not rich enough for
machine-learning-based models to (1) generalize their knowl-
edge to operate on unseen packers, and (2) be robust against
adversarial examples. We also show that a naı̈ve application of
machine learning techniques results in a substantial number of
false positives, which, in turn, might have resulted in incorrect
labeling of ground-truth data used in past work.

I. INTRODUCTION

Anti-malware software provides end-users with a means
to detect and remediate the presence of malware on their
machines. Most anti-malware software traditionally consists
of two parts: a signature-based detector and a heuristics-
based classifier. While signature-based methods detect similar
versions of known malware families with a small error rate,
they become insufficient as an ever-increasing number of new
malware samples are being identified [56]. VirusTotal reports
that, on average, over 680,000 new samples are analyzed per
day [114], of which some are merely re-packed versions of
previously seen samples with identical behavior. Over the last

few years, the need for techniques that generalize to new,
unknown malware samples while removing expensive human
experts from the loop has led to approaches that leverage both
static and dynamic analyses combined with data mining and
machine learning techniques [26, 59, 80, 81, 93, 97, 98, 103].

Although dynamic analysis provides a clear picture of
an executable’s behavior, it has some issues in practice: for
example, dynamic analysis of untrusted code requires either
kernel-level privileges [27], thus expanding the attack surface,
or a virtual machine [27], which requires a substantial amount
of computing resources. In addition, malware usually employs
environmental checks to avoid detection [32, 58, 83], and
the virtualized environment may not reflect the environment
targeted by the malware [90]. To avoid such limitations, some
approaches [51, 56, 70, 82, 93] heavily rely on features ex-
tracted through static analysis. These approaches are appealing
to anti-malware companies that want to replace anti-malware
systems based on dynamic analysis. These static-analysis-
based anti-malware vendors, which have quickly grown into
billion-dollar companies, boast that their tools leverage “AI
techniques” to determine the maliciousness of programs solely
based on their static features (i.e., without having to execute
them). However, static analysis has known issues when applied
to obfuscated and packed samples [67, 77].1

It is commonly assumed that packing greatly hinders ma-
chine learning techniques that leverage features extracted from
static (file) analysis. However, both industry and academia
have published results showing that machine-learning-based
classifiers can achieve good detection rates. Many experts
assume that these results are due to the fact that classifiers just
learn to distinguish between packed and unpacked programs. In
fact, we would expect that machine-learning-based classifiers
will deliver poor performance in real-world settings, where
packing is increasingly seen in both malicious and benign
software [10, 59, 84]. Unfortunately, most related work did
not consider or only briefly discussed the effects of packing
when proposing machine-learning-based classifiers [43, 56,
80, 81, 82, 96, 97]. Surprisingly, our initial experiments
showed that machine-learning-based classifiers can distinguish
between packed benign and packed malicious samples in our
dataset. This led us to the following research question: does
static analysis on packed binaries provide a rich enough set of
features to build a malware classifier using machine learning?

1While packing can be applied to any program, hereinafter we focus on the
packing of Windows x86 binary programs.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24310
www.ndss-symposium.org

Our experiments require a ground-truth dataset for which
we can determine if each sample is (1) packed or unpacked
and (2) malicious or benign. We created our first dataset, the
wild dataset, with executables provided by a commercial anti-
malware vendor, which uses dynamic features, combined with
the labeled benchmark dataset EMBER [3]. We leveraged the
vendor’s sandbox, along with VirusTotal, to remove samples
with inconsistent benign/malicious labels from the dataset. For
identifying packed executables, we used the vendor’s sandbox
combined with the Deep Packer Inspector [110] tool and a
number of static tools. The fact that we built the dataset
mainly based on the runtime behavior of samples gives us high
confidence in our ground truth labels. We created a second
dataset, the lab dataset, by packing all the executables in the
wild dataset with widely used commercial and free packers.
Following a detailed literature study, we extracted nine families
of features from the executables in the two datasets. Even
though in our experiments we used SVM, deep neural networks
(i.e., MalConv [80]), and different variants of decision-tree
learners, like random forest, we only discuss the results of the
random forest approach as (1) we observed similar findings for
these approaches, with random forest being the best classifier
in most experiments, and (2) random forest allows for better
interpretation of the results compared to neural networks [35].

As a naı̈ve experiment, we first trained the classifier on
packed malicious and unpacked benign samples. The resulting
classifier produced a high false positive rate on packed benign
samples, which shows that the classifier is biased towards
detecting packing. Using n-grams, Perdisci et al. [77] also
observed that packing detection is an easier task to learn
compared to detecting maliciousness. In addition, we demon-
strated that “packer classification” is a trivial task by training
a packer classifier using samples from each packer (class) in
the lab dataset. The classifier achieved precision and recall
greater than 99.99% for each class. This indicates that a bias
in the training set regarding packers may cause the classifier to
learn specific packing routines as a sign of maliciousness. We
verified this by training the classifier on benign and malicious
executables packed by two non-overlapping subsets of packers,
which we refer to as good and bad packers, respectively. The
resulting classifier learned to label anything packed by good
packers as benign, and anything packed by bad packers as
malicious, regardless of whether or not the sample is malicious.

We extended the naı̈ve experiment by training the classifier
on different training sets with increasing ratios of packed
benign samples. To avoid the bias introduced by the use of
good and bad packers, we selected packed samples from the
lab dataset uniformly distributed over packers. Surprisingly,
despite the popular assumption that packing hinders machine-
learning-based classifiers, we found that increasing the packed
benign ratio in the training set helped the classifier to main-
tain relatively low false positive and false negative rates.
This shows that packers preserve some information about the
original binary that can be leveraged for malware detection.
For example, most packers keep .CAB file headers in the
resource sections of the executables. Jacob et al. [44] found
a similar trend for packers that employ weak encryption or
compression. By training on one packer at a time, we observed
that the information preserved about the original binaries is
not necessarily associated with malicious behavior, but is
“useful” for malware detection. Nevertheless, we argue that

such a classifier still suffers from three issues: (1) inability to
generalize, (2) failure in the presence of strong encryption, and
(3) vulnerability to adversarial samples.

Generalization. Training the classifier on packed samples is
not guaranteed to generalize to packers that are not included
in the training set. We excluded one packer at a time from the
training dataset and evaluated the classifier against samples
packed with the excluded packer. We observed false positive
rates of 43.65%, 47.49%, and 83.06% when excluding tElock,
PECompact, and kkrunchy, respectively. Moreover, the clas-
sifier trained on all packers from the lab dataset produced
a false negative rate of 41.98% on packed executables from
the wild dataset. This means that although packers preserve
some information, the trained classifier fails to generalize to
previously unseen packing routines. This is a severe problem
as malware authors often prefer customized packing routines
to off-the-shelf packers [34, 66, 110].

Strong & complete encryption. We argue that an executable
might be packed in a way that reveals no information related
to its behavior until it is executed. As a preliminary step, we
packed all executables in the wild dataset with our own packer,
called AES-Encrypter, which encrypts the executable with AES
and injects it as the overlay of the packed binary. When the
packed program is executed, AES-Encrypter decrypts the over-
lay and executes the original program within a new process.
All static features are always the same, except for features
extracted from the encrypted overlay. We trained and tested
the classifier on executables packed by the AES-Encrypter,
and, as expected, the classifier could not distinguish between
benign and malicious executables packed by AES-Encrypter.
This shows that packing can be performed without transferring
any (static) initial pattern to the packed program, if properly
optimized for this purpose.

Adversarial samples. Machine-learning-based malware classi-
fiers have been shown to be vulnerable against adversarial sam-
ples, especially those that use only static analysis features [33,
41, 89]. We expect that generating such adversarial samples
would be easier in our case, as static analysis of packed
binaries does not provide features that capture a sample’s
behavior. We first trained the classifier on a dataset whose
benign and malicious samples are packed with the same pack-
ers so that the classifier is not biased to detect specific packing
routines as a sign of maliciousness. The classifier maintained
a low error rate. From all malicious samples that the classifier
detected successfully, we managed to generate new samples
that the classifier no longer detects as malicious. Specifically,
we identified “benign” sequences of bytes that occurred more
frequently in benign samples and injected them into the target
binary without affecting the sample’s behavior. Very recently,
a group of researchers used a very similar technique to trick
Cylance’s AI-based anti-malware engine into thinking that
malware like WannaCry and tools such as Mimikatz were
benign [105]. They did this by taking strings from an online
gaming program and injecting them into malicious files. Since
games are highly obfuscated and packed, they confront such
an engine with a dilemma; either inherit a bias towards games
or produce high rates of false positives for them [1].

To investigate how real-world malware detectors operate on
packed executables, we submitted benign and malicious exe-
cutables packed by each packer to VirusTotal. We only focused

2

on six machine-learning-based engines that use only static
analysis features according to their description on VirusTotal
or the company’s website. Unfortunately, we observed that all
these six engines learned that packing implies maliciousness. It
must be noted that, we used commercial packers, like Themida,
PECompact, PELock, and Obsidium, that legitimate software
companies use to protect their software. Nevertheless, benign
programs packed by these packers were detected as malware.

As packing is being increasingly adopted by legitimate
software [84], the anti-malware industry needs to do better
than detecting packers, otherwise good and bad programs are
misclassified, causing pain to users and eventually resulting
in alert fatigue and missed detections. This is especially a
concern for previous studies that rely on anti-malware products
for establishing ground truth, as misclassification of packed
benign programs might have biased those studies [22, 43, 86,
88, 97].

In summary, we make the following contributions:
• We study the limits of machine-learning-based malware

classifiers that use only static features. We show that the lack
of overlap between packers used in benign and malicious
samples causes the classifier to associate specific packers
with maliciousness. We show that, if trained correctly, the
classifier is able to distinguish between benign and malicious
samples packed by real-world packers, though it remains
susceptible to unseen packing routines or, even worse, to
the application of strong encryption to the entire program.
Furthermore, we show that it is possible to craft evasive
samples that bypass detection via a naı̈ve adversarial attack.

• Our evaluation of six products on VirusTotal shows that
current static machine-learning-based anti-malware engines
detect packing instead of maliciousness.

• We release a dataset of 392,168 executables for which we
know whether each sample is (1) benign or malicious, and
(2) packed or unpacked. We also know the specific packer
for the lab dataset, which includes 341,444 executables.

We release the source code of all experiments in a Docker im-
age at https://github.com/ucsb-seclab/packware to sup-
port the reproducibility of our results.

II. MOTIVATION

Packing has long been an effective method for malware
authors to evade the signature-based detection of anti-malware
engines [71], but little is known about its legitimate usage
in benign applications. As the first step in this direction,
in 2013, Lakshman Nataraj [69] explored how anti-malware
scanners available on VirusTotal handle packing. He packed
16,663 benign system executables from various Windows OS
versions with four different packers (UPX, Upack, NSPack,
and BEP), and submitted them to VirusTotal. He showed
that 96.7% of the files packed with Upack, NSPack, and
BEP triggered at least ten detections on VirusTotal. Another
recent study [116] mined byte pattern-based signatures of anti-
malware products to force misclassifications of benign files,
and also found that the artifacts of packers are effective as
“malicious markers.” We argue that these results stem from the
fact that packing historically has been associated with malware
only. Consequently, a naı̈ve detection approach only based on
static features from packed samples will be heavily biased

Q2
2015

Q3
2015

Q4
2015

Q1
2016

Q2
2016

Q3
2016

Q4
2016

Q1
2017

Q2
2017

Q3
2017

Q4
2017

Q1
2018

Q2
2018

Q3
2018

Q4
2018

0%

20%

40%

60%

80%

100%

Pe
rc

en
ta

ge
 o

f P
ac

ke
d

Sa
m

pl
es benign suspicious malicious

Fig. 1: Prevalence of packed samples in the wild.

5 10 15 20 25
detections

0

20

40

60

80

sa

m
pl

ei
s

Fig. 2: The histogram of the number of detections on Virus-
Total for Windows 10 binaries packed with Themida.

towards associating packing with malicious behavior. In fact,
static analysis features that are shown to be useful for packing
detection [5, 15, 37, 44, 59, 76, 77, 102, 109] are also being
used by machine-learning-based malware detectors [28, 68, 82,
101, 102, 103].

We collected a large-scale, real-world dataset of malicious,
suspicious, and benign files from a commercial vendor of
advanced malware protection products. This dataset includes
samples that the vendor analyzed from customers around
the globe over the past three years. As Figure 1 shows,
packing is not only widespread in malware samples (75%),
but also common in benign samples (50% in the worst case).
Note that Figure 1 presents a lower bound for the ratio of
packed executables. Our findings overlap with the findings
of Rahbarinia et al. [84], who studied 3 million web-based
software downloads over 7 months in 2014, finding that both
malicious and benign files use known packers (58% and 54%,
respectively). Making matters even worse, more than half of
the 69 unique packers they observed (e.g., INNO, UPX) are
being used by both malicious and benign software. While
some packers (e.g., NSPack, Molebox) were exclusively used
to pack malware in their dataset, they conclude that packing
information alone is not a good indicator of malicious behavior.
We further packed 613 executables from a fresh installation of
Windows 10 (located in C:\Windows\System32) with Themida
and submitted them to VirusTotal. Figure 2 shows the his-
togram of the number of detections. Unsurprisingly, out of 613
binaries, 564 binaries were detected as malicious by more than
10 anti-malware tools. If we consider only the six machine-
learning-based anti-malware engines on VirusTotal, out of 613
binaries, 553 binaries were detected as malicious by more than
four tools.

As these numbers show, any approach that fails to consider
packed benign samples when designing and evaluating a
malware detection approach ultimately results in a substantial
number of false positives on real-world data. This is especially
a concern for machine-learning-based approaches, which, in
the absence of reliable and fresh ground truth, frequently rely
on labels from anti-malware products available on VirusTo-
tal [22, 43, 86, 88, 97]. Given the disagreement of anti-malware
products in labeling samples [42, 48, 65, 99], a common

3

practice is to sanitize a dataset, for example, by considering
decisions from a selected set of anti-malware products, or, as
another example, by using a voting-based consensus. While
this approach is problematic for various reasons [42, 65],
we believe that one main aspect is particularly troublesome:
Dataset pollution. Packed benign samples that are detected
by anti-malware products as malicious are incorrectly used
as malware samples. For example, a recent related work [22]
used a similar procedure for labeling, as stated by the authors:
“We train a classifier using supervised learning and therefore
require a target label for each sample (0 for benign and 1
for malware). We use malware indicators from VirusTotal. For
each sample, we count the number of malicious detections
from the various engines aggregated by VirusTotal, weighted
according to a reputation we give to each engine, such that
several well-known engines are given weight >1, and all others
are weighted 1. We use the result to label a sample benign or
malicious.” While we do not know which weights are used by
the authors, there is a good chance that their dataset is skewed,
since, as we showed above, a number of anti-malware engines
on VirusTotal detect packed benign samples as malware.

As studied by the anti-malware community, evaluating
existing malware detection methodologies poses substantial
challenges [57, 65, 90]. For example, Rossow et al. [90]
presented guidelines for collecting and using malware datasets.
Our work aims to find whether packing even retains rich
enough static features from the original binary to detect any-
thing meaningful besides the packing itself. To the best of our
knowledge, no prior work has considered the effects of packed
executables on machine-learning-based malware detectors that
leverage only static analysis features.

III. BACKGROUND

A. Executable Packers

A packer is a software component that applies a set of
routines to compress or encrypt a target program. The simplest
form of packing consists of the decryption or decompression
(at runtime) of the original payload followed by a jump to
the memory address that contains the target payload (this
technique is called “tail jump”). Ugarte et al. [110] classify
packers into six types, with an increasing level of complexity
in the reconstruction of the target payload:

Type I: A single unpacking routine is executed to transfer
the control to the original program. UPX is the most popular
packer in this class. Type II: The packer employs a chain
of unpacking routines executed sequentially, with the original
code recomposed at the end of the chain. Type III: Unpacking
routines include loops and backward edges. Though the origi-
nal code is not necessarily reconstructed in the last layer, a tail
transition still exists to separate the packer and the application
code. Type IV: In each layer of packing, the corresponding part
of the unpacking routine is interleaved with the corresponding
part of the original code. However, the entire original code will
be completely unpacked in memory at some point during the
execution. Type V: The packer is composed of different layers
in which the unpacking code is mangled with the original code.
There are multiple tail jumps that reveal only a single frame of
the original code at a time. Type VI: Packers reveal (unpack)
only a single fragment of the original code (as little as a single
instruction) at any given time.

We discuss approaches that are proposed for packing
detection, packer identification, and automated unpacking in
Appendix A. Here, we discuss the limitations of these methods.

Limitations of packing detection. Signature-based ap-
proaches to packing detection have a high false negative rate,
as they require a priori knowledge of packed executables
generated by each packer. As an example, PEiD is shown
to have approximately a 30% false negative rate [76]. Other
approaches apply static analysis to extract a set of features
or use hand-crafted heuristics to detect packed executables.
However, they are vulnerable to adversaries. As an example,
the Zeus malware family applies different techniques, such as
inserting a selected set of bytes into executables, in order to
keep the entropy of the file and its sections low [112]. Such
malware evades entropy-based heuristics, as they are often
used to determine if an executable is packed [59]. Dynamic
approaches seem to perform better, since they often look for a
write-execute sequence in a memory location, which is the
definition of packing. However, packed executables usually
employ different techniques to evade analysis, like conditional
execution of unpacking routines [21].

Limitations of generic unpackers. Packers usually employ
different techniques to evade analysis approaches utilized by
generic unpackers. For example, tELock and Armadillo lever-
age several anti-debugging routines to terminate the execution
in a debugging setting [9, 13]. Although some unpackers ex-
ploit hardware virtualization to achieve transparency [24], the
introduced performance overhead could be unacceptable [117].
Themida applies virtualization obfuscation to its unpacking
routine, which can cause slice size explosion [64]. In general,
generic unpackers rely on a number of assumptions that do
not necessarily hold in practice [110]: (1) the entire original
code is in memory at a certain point, (2) the original code is
unpacked in the last layer, (3) the execution of the unpacking
routine and the original code are completely separated, and
(4) the unpacking code and the original code run in the
same process without any inter-process communication. These
simplifications make these unpackers inadequate for handling
the challenges introduced by complex, real-world packers.
Moreover, generic unpackers often rely on heuristics that are
designed for specific packers [110].

B. Packing vs. Static Malware Analysis

In Appendix B, we discuss how machine learning is
being adopted by the anti-malware community to statically
analyze malicious programs. In particular, we reviewed a wide
range of static malware analysis approaches based on machine
learning [2, 7, 28, 39, 43, 44, 49, 51, 52, 53, 54, 56, 62, 63, 68,
70, 80, 81, 82, 86, 93, 94, 96, 97, 98, 102, 103, 104, 107, 108,
118]. Although static malware detectors have been shown to be
biased towards detecting packing [69, 77, 116], we observed
a number of limitations in related work when it comes to the
handling of packed executables. In particular, out of the 30
papers mentioned above: (1) Ten papers [2, 28, 39, 63, 68,
81, 82, 86, 98, 118] do not mention packing or obfuscation
techniques. (2) Ten approaches [7, 54, 56, 62, 93, 94, 96, 104,
107, 108] work only on unpacked executables, as mentioned
by the authors. They used either unpacked executables or
executables that they managed to unpack. (3) Seven papers [43,
49, 52, 53, 70, 80, 97] claim to perform well in malware

4

classification regardless of whether or not the executables
are packed. However, the authors did not discuss whether
any bias in terms of packing was present in their dataset
or not. More precisely, they did not mention using packed
benign executables in their dataset, or brief examinations have
been done on the effects of packed executables [49, 70],
though the evaluation has been thoroughly carried out only
on unpacked executables. (4) Only three papers [51, 102, 103]
focused on packed executables. However, they have two major
limitations: (a) they use signature-based packer detectors, such
as PEiD, to detect packing, while PEiD has approximately a
30% false negative rate [76], and (b) they augmented their
datasets by packing benign executables using only a small
number of packers. However, malicious executables might be
packed with a different set of packers, which can result in
a bias towards detecting specific packing techniques. Jacob et
al. [44] detect similar malware samples even if they are packed,
yet, their method is resilient only against packers that employ
compression or weak encryption, as they acknowledge.

Finally, most related work did not publish their datasets,
hence these approaches cannot be fairly compared to each
other.

IV. DATASET

Our experiments require a dataset composed of executable
programs for which we know if they are: (1) benign or
malicious and (2) packed or unpacked. We combined a labeled
dataset from a commercial vendor with the EMBER [3] dataset
(labeled) to build our wild dataset. We leveraged a hybrid
approach to label an executable as packed or unpacked. We
built another ground-truth dataset, the lab dataset, by packing
all executables in the wild dataset with widely used com-
mercial and free packers and our own packer, AES-Encrypter.
Following a detailed study of the literature, we extracted nine
families of features for all samples.

A. Wild Dataset

We used two different sources to create our wild dataset
of Windows x86 executables. (1) A commercial anti-malware
vendor provided 29,573 executables. These samples, observed
“in the wild,” were randomly selected from an original pool
that was analyzed by the anti-malware vendor’s sandbox in the
US during the period from 2017-05-15 to 2017-09-19. Along
with the benign/malicious label and the malicious behaviors
observed during the execution, the vendor identified which
executable was packed or not. (2) A labeled benchmark dataset,
called EMBER, was introduced by Anderson et al. [3] for train-
ing machine learning models to statically detect Windows mal-
ware. This dataset consists of 800,000 Windows executables
that are labeled. However, no information is provided regarding
packing. We randomly selected 56,411 x86 executables from
this dataset and submitted each sample to the commercial
anti-malware vendor’s sandbox, in order to identify if the
sample is packed. This also provides us confirmation whether
an executable is malware or benign software, as the sandbox
detects malicious behavior. Note that samples from these
two sources were observed “in the wild” sometime in 2017,
allowing more than enough time for current anti-malware
engines to have incorporated means to detect them. As these
two sources might have samples that are incorrectly labeled,

TABLE I: A: all, N/A: not available, B: benign, M: mali-
cious. Note that this is not the final version of the wild dataset.

Samples’ Origin Malicious/Benign Label’s Source # of SamplesVirusTotal Comm. Anti-mal. EMBER

A A N/A 29,573
A B N/A 15,736

(1) Comm. B B N/A 13,046
Anti-malw. A M N/A 13,837

M M N/A 13,536

A A A 56,411
A A B 24,348
A B B 24,225

(2) EMBER B B B 24,223
A A M 32,063
A M M 31,087
M M M 31,066

A A A 85,984
(1) ∪ (2) B B B 37,269

M M M 44,602

we performed a careful and extensive post-processing step,
which we describe in the following paragraphs.

Malicious vs. benign. We used three different sources to detect
whether an executable is malicious or benign. (1) VirusTotal:
We obtained reports for our entire dataset by querying Virus-
Total. All 85,984 executables in our dataset have been available
on VirusTotal for more than one year. From all engines used
by VirusTotal, we considered only seven tools that are well-
known as strong products in the anti-malware industry and
labeled each executable based on the majority vote. (2) The
anti-malware vendor: Since we sent samples extracted from
the EMBER dataset to the vendor’s sandbox, we have the
benign/malicious label for all samples. (3) EMBER dataset:
All samples that we selected from the EMBER dataset are
labeled by Endgame [29].

We discarded 4,113 samples for which there was a dis-
agreement about their benign/malicious nature between the
three sources. As Table I shows, at the end of this step, we
have 37,269 benign and 44,602 malicious samples left (a total
of 81,871 executables).

Packed vs. unpacked. Due to the limitations discussed in
Section III-A, we leveraged a hybrid approach to determine
if an executable is packed. In particular, for each sample, we
took the following steps: (1) The anti-malware vendor: We
submitted the sample to the vendor’s sandbox, and given the
downloaded report, we detected whether unpacking behavior
had occurred or not. The anti-malware tool detects the presence
of packed code by running the executable in a custom sandbox
that interrupts the execution every time there is a write to a
memory location followed by a jump to that address. At that
point in time, a snapshot of the loaded instructions is compared
to the original binary, and if they differ, the executable is
marked as packed. (2) Deep Packer Inspector (dpi): We
used dpi [110] to further analyze each sample. This framework
measures the runtime complexity of packers. Adding an extra
dynamic engine helps us to identify packed executables that
are not detected as packed by the first dynamic engine. For ex-
ample, the host configuration might make the sample terminate
before the unpacking process starts. In addition, this framework
gives us insights about the runtime complexity of packers in
our dataset. As dpi is not operating on .NET executables, we
removed all 13,489 .NET executables, 10,681 benign and 2,808

5

malicious, from our dataset, resulting in 68,382 executables,
26,588 benign and 41,794 malicious. (3) Signatures and
heuristics: We used Manalyze [60], Exeinfo PE, yara rules,
PEiD, and F-Prot (from VirusTotal) to identify packers that
leave noticeable artifacts in packed executables.

In particular, we labeled an executable as packed in our
dataset if one among the vendor’s sandbox, dpi, and signature-
based tools detects the executable as packed. In total, we
labeled 46,328 samples as packed divided into 12,647 benign
and 33,681 malicious samples. We further used heuristics pro-
posed by Manalyze for packing detection to determine samples
that might be packed. Manalyze labeled 24,911 samples as
“possibly packed,” of which 6,898 samples are not detected as
packed by other tools. We argue that this discrepancy might
be due to limitations with packing detection, which we discuss
in Section III-A. Nevertheless, we discarded all these samples
as we were not completely sure if they are packed or not.

Table X in the Appendix shows statistics about packed exe-
cutables that are detected by each approach. Of 17,043 benign
executables, 12,647 executables are packed, and 4,396 executa-
bles are unpacked, and of 40,031 malicious executables, 33,681
executables are packed, and 5,752 executables are unpacked.
While unpacked malware is shown to be rare [10, 59, 61], we
did not detect packing for 5,752 (13.61%) malicious samples.
Since this percentage could be considered somewhat higher
than expected, we attempted to verify our packer analysis
by randomly selecting 20 samples, and manually looking for
the presence or absence of unpacking routines. We observed
the unpacking routine code for 18 samples, but our packer
detection scheme did not detect them due to the anti-detection
techniques that these samples use. Since we do not need
any unpacked malicious executables for our experiments, we
discarded all 5,752 malicious samples that our system labeled
as unpacked. To confirm that all 4,396 benign samples that we
identified as unpacked are not packed, we manually looked
into 100 unpacked benign executables and did not find any
sign of packing. Simple statistics guarantee that more than
97.11% (95.59%) of these samples are labeled correctly with
the confidence of 95% (99%).

We further noticed that our dataset was skewed in terms
of DLL files, containing 4,005 benign DLLs but only 598 ma-
licious ones. We removed all these samples from our dataset.
In the end, the wild dataset consists of 50,724 executables
divided into 4,396 unpacked benign, 12,647 packed benign,
and 33,681 packed malicious executables.

Packer complexity. As Table X in the Appendix shows, dpi
detects the unpacking behavior for 34,044 executables in the
wild dataset. Table XI presents the packer complexity classes,
as defined by Ugarte et al. [110], for these executables.

Packers in the wild. Using PEiD, F-Prot, Manalyze, Exeinfo
PE, and yara rules, we matched signatures of packers for 9,448
executables, 1,866 benign and 7,582 malicious. We found the
artifacts of 48 packers in the wild dataset. As Table XII in the
Appendix shows, some packers like dxpack, MPRESS, and
PECompact have been used mostly in malicious samples.

B. Lab Dataset

Some of our experiments require us to know with certainty
which packer is used to pack a program. Therefore, we

TABLE II: Overview of the lab dataset.

Packer # Benign # Malicious Keeps Rich # Invalid
Samples Samples Header? Opcodes

Obsidium 16,940 31,492 29.82% 0
Themida 15,895 26,908 3 0
PECompact 5,610 28,346 3 723
Petite 13,638 25,857 3 318
UPX 9,938 20,620 3 0
kkrunchy 6,811 15,494 19.68% 61
MPRESS 11,041 11,494 19.84% 629
tElock 5,235 30,049 3 8
PELock 6,879 8,474 20.60% 461
AES-Encrypter 17,042 33,681 7 0

TABLE III: Summary of extracted features.
PE headers 28 Byte n-grams 13,000
PE sections 570 Opcode n-grams 2,500
DLL imports 4,305 Strings 16,900
API imports 19,168 File generic 2
Rich Header 66

obtained nine packers that are either commercially available or
freeware (namely Obsidium, PELock, Themida, PECompact,
Petite, UPX, kkrunchy, MPRESS, and tElock) and packed all
50,724 executables in our wild dataset to create the lab dataset.
None of the packers were able to pack all samples. For
example, Petite failed on most executables with a GUI, while
Obsidium in some cases produced empty executables. We
looked at logs generated by these packers and removed those
executables that were not properly packed. We also verified
that all packed executables have valid entry points. Finally,
we developed our own simple packer, called AES-Encrypter,
which, given the executable P, encrypts P using AES with
a random key (which is included in the final binary), and
injects the encrypted binary as the overlay of the packed binary
P’. When P’ is executed, it first decrypts the overlay and
then executes the decrypted (original) binary. Table II lists
the number of samples we packed successfully with each
packer. In total, we generated 341,444 packed executables.
To ascertain if packing does, in fact, preserve the original
behavior, we compared the behavior of these samples with the
original samples. Our results confirm that 94.56% of samples
exhibit the original behavior. We explain in Appendix C how
we conducted this comparison.

C. Features

Following a detailed analysis of the literature (see Sec-
tion B), we extracted nine families of static analysis features
that were shown to be useful in related work. We used
pefile [73] to extract features from three different sources: the
PE structure, the program’s assembly, and the raw bytes of
the binary. As Table III shows, we extracted a total of 56,543
individual features from the samples in our dataset.

(1) PE headers. Features related to PE headers have been
widely used in related work. In our case, we use all fields
in the PE headers that exhibit some variability across differ-
ent executables (some header fields never change [56]). We
extracted 12 individual features from the Optional and COFF
headers, which are described in Table XX in the Appendix.
Moreover, from the characteristics field in the COFF header,
we extracted 16 binary features, each representing whether
the corresponding flag is set for the executable or not. Thus,
we extracted 12 integer and 16 binary features from the PE
headers, resulting in a total of 28 features.

6

(2) PE sections. Every executable has different sections,
such as the .data and .text sections. For each section, we
extracted 8 individual features as described in Table XXI in
the Appendix. Moreover, from the characteristics field in the
section header, we created up to 32 binary features for each bit
(flag). For example, the feature corresponding to the 30th bit is
true when the section is executable. We ignored the bits (flags)
that do not vary in our dataset. For each section of the PE file,
we computed 32 (at most) binary, 7 integer, and one string
feature, named pesection sectionId field. The maximum
number of sections that an executable has in our dataset is
19. For each executable, we built a vector of 516 different
features obtained from its sections followed by the default
values for sections that the sample does not include. Based
on the related work, we augmented this set of features with
the following processing steps: (1) We extracted the above-
mentioned features for the section where the executable’s entry
point resides and added them to the dataset separately; (2) We
calculated the mean, minimum, and maximum entropy of the
sections for each executable. We did the same for both the size
and the virtual size attributes. As a result, we extracted a total
of 570 features from the PE sections.

(3) DLL imports. Most executables are linked to dynamically-
linked libraries (DLLs). For each library, we use a binary
feature that is true when an executable uses that library. In
total, we have 4,305 binary features in this set.

(4) API imports. Every executable has an Import Directory
Table that includes the APIs that the executable imports from
external DLLs. We introduce a binary feature for each API
function that is true if the executable imports that function. In
total, we have 19,168 binary features in this set.

(5) Rich Header. The Rich Header field in the PE file includes
information regarding the identity or type of the object files and
the compiler used to build the executable. Webster et al. [115]
have shown that the Rich Header is useful for detecting
different versions of malware, as malware authors often do
not deliberately strip this header. In particular, they observed
that “most packers, while sometimes introducing anomalies,
did not often strip the Rich Header from samples.” Based on
our observation, as Table II shows, while Obsidium, kkrunchy,
MPRESS, and PELock stripped the Rich Header for 70–80%
of binaries in the wild dataset, other packers always kept
this header, except for AES-Encrypter, which always produces
the same header. We followed the procedure by Webster et
al. [115] to encode this header into 66 integer features.

(6) Byte n-grams. Given that an executable file is a sequence
of bytes, we extracted byte n-grams by considering every n
consecutive bytes as an individual feature. Given the practical
impossibility of storing the representation of n-grams for n ≥ 4
in main memory, a feature selection process is needed [82].
Raff et al. [82] observed that 6-grams perform best over
their dataset. We used the same strategy to select the most
important 6-gram features, where each feature represents if
the executable contains the corresponding 6-gram. We first
randomly selected a set of 1,000 samples and computed
the number of files containing each individual 6-gram. We
observed 1,060,957,223 unique 6-grams in these samples. As
Figure 10a in the Appendix shows, and as Raff et al. [82]
observed, byte 6-grams follow a power-law type distribution,
with 99.99% 6-grams occurring ten or fewer times. We reduced

our set of candidate 6-grams by selecting 6-grams that occurred
in more than 1% of the samples in the set, which results in
204,502 individual 6-gram features. Then, we selected the top
13,000 n-gram features based on the Information Gain (IG)
measure [79], since our dataset roughly converges at this value,
as depicted in Figure 10b.

(7) Opcode n-grams. We used the Capstone [12] disassembler
to tokenize executables into sequences of opcodes and then
built the opcode n-grams. While a small value may fail to
detect complex malicious blocks of code, long sequences
of opcodes can easily be avoided with simple obfuscation
techniques [93]. Moreover, large values of n introduce a high
performance overhead [49, 93]. For these reasons, similarly to
most related work, we use sequences up to a length of four. We
represent opcode n-grams by computing the TF-IDF [92] value
for each sequence. While we could extract the assembly for
all samples in the wild dataset, out of the 341,444 samples in
the lab dataset, we could not disassemble 2,200 samples (see
Table II). For these programs, we put -1 as the value of opcode
n-grams features. In total, we extracted 5,373,170 unique
opcode n-grams, from which, only 51,942 n-grams occurred in
more than 0.1% of executables in the lab dataset (Figure 10c).
We only consider these opcode n-grams (reduction of 98.47%).
Figure 10d presents the Information Gain (IG) measure of
these opcode n-grams. We selected the top 2,500 opcode n-
grams (based on IG value) with their TF-IDF weights as
feature values, resulting into 2,500 float features.

(8) Strings. The (printable) strings contained in an executable
may give valuable insights into the executable, such as file
names, system resource information, malware signatures, etc.
We leveraged the GNU strings program to extract the printable
character sequences that are at least 4 characters long. We rep-
resent each printable string with a binary feature indicating if
the executable contains the string. We observed 1,856,455,113
unique strings, from which more than 99.99% were seen in
less than 0.4% of samples. After removing these rare strings,
we obtained 16,900 binary features.

(9) File generic. We also computed the size of each sample (in
bytes), and the entropy of the whole file. We further reference
to this small family of features as “generic.”

V. EXPERIMENTS AND RESULTS

In this work, we aim to answer the following question:
does static analysis on packed binaries provide rich enough
features to a malware classifier? We analyze multiple facets
of this question by performing a number of experiments. As
explained in the introduction, even though we used several
machine learning approaches (i.e., SVM, neural networks and
decision tress), we only discuss the results of the random
forest approach as (1) we observed similar findings for these
approaches, with random forest being the best classifier in
most experiments, and (2) random forest allows for better
interpretation of the results compared to neural networks [35].
Following a linear search over different configurations of
random forest, we found a suitable trade-off between learning
time and test accuracy. Table XIX in the Appendix shows the
parameters of the model.

Note that all malicious executables in our datasets are
packed. Unless stated otherwise: (1) we always partition the

7

dataset into training and test sets with a 70%-30% split, and
both the training and test sets are balanced over benign and
malicious executables; (2) We repeat each experiment five
times by randomly splitting the dataset into training and test
sets each time, and average the results of all five rounds; (3)
We use all 56,543 features to train the classifier; (4) We focus
only on real-world packers (we do not include AES-Encrypter
except for Experiment X).

We introduce and motivate research questions that help
us answer our main hypothesis. For each, we describe one
or more experiments followed by the corresponding results.
Our results fit into four major findings, which we divide as
follows. (I) Finding 1 and 3 may be intuitively known in the
community, though mostly based on anecdotal experience. We
confirm these findings with solid experiments. (II) Previous
works have shown preliminary evidence of Finding 2, but
with major limitations. We provide extensive evidence for this
finding. (III) We present additional evidence for Finding 4,
which is a fairly established fact confirmed by related work.

A. Effects of Packing Distribution During Training

RQ1. Does a bias in the distribution of packers used in
benign and malicious samples cause the classifier to learn
specific packing routines as a sign of maliciousness?

RQ1 is important for two reasons: (1) Machine learning
is increasingly being used for malware detection, while, as
discussed in Section III-B, most related work does not specify
considering packed benign executables, and the remaining few
neglect the bias that may be introduced by the overlap between
packers used in benign and malicious samples; (2) Nowadays,
packing is also widespread in benign samples [84]. To answer
RQ1, we conducted three experiments.

Experiment I: “no packed benign”. We trained the classi-
fier on 3,956 unpacked benign and 3,956 packed malicious
executables from the wild dataset. The resulting classifier
produced a false positive rate of 23.40% on 12,647 packed
benign samples. It should be noted that the classifier is fairly
well calibrated, with false negative and false positive rates
of 3.82% and 2.64% for 440 (unseen) packed malicious and
440 (unseen) unpacked benign samples. While this is a naı̈ve
experiment, it delivers an important message: excluding packed
benign samples from the training set makes the classifier biased
towards interpreting packing as an indication of maliciousness,
and such a classifier will produce a substantial number of
false positives in real-world settings, where packing is also
widespread in benign samples. This experiment shows that
packed benign executables must be considered when training
the classifier.

The overlap between packers that are used in benign
and malicious samples may cause the classifier to distinguish
between packing routines, i.e., packers. To further investigate
this issue, we performed the following two experiments.

Experiment II: “packer classifier”. We used the lab dataset
to create a packer classifier. We defined nine classes for the
classifier, one per packer. We trained and tested the classifier
on datasets with samples uniformly distributed over all classes.
In particular, we trained the classifier on 107,471 samples and
evaluated it against 46,059 samples. Note that we discarded

0% 25% 50% 75% 100%
Packed benign ratio (training)

0%

25%

50%

75%

100%
FP Rate
FP Rate (packed)
FN Rate

(a) wild dataset

0% 25% 50% 75% 100%0%

25%

50%

75%

100%

(b) lab dataset

Fig. 3: Experiment “different packed ratios”
the benign and malicious labels of samples. The classifier
maintained the precision and recall of 99.99% per class. This
result shows that “packer classification” is a simple task for
the classifier, which indicates that the lack of overlap between
packers that are used in benign and malicious samples of the
dataset might bias the classifier to associate specific packing
routines with maliciousness.

Experiment III: “good-bad packers”. We trained the clas-
sifier on a dataset in which benign samples are packed by
four specific packers, and malicious samples are packed by the
remaining five packers. We refer to these two non-overlapping
subsets of packers as good and bad packers, respectively. Then,
we tested the classifier on benign and malicious samples that
are packed by bad and good packers, respectively. We repeated
this experiment for each split of packers. The accuracy of
the classifier varied from 0.01% to 12.57% across all splits,
showing that the classifier was heavily biased to distinguish
between good and bad packers.

Finding 1. The lack of overlap between packers used in
benign and malicious samples will bias the classifier towards
distinguishing between packing routines.

B. Packers vs. Malware Classification

RQ2. Do packers prevent machine-learning-based malware
classifiers that leverage only static analysis features?

It is commonly assumed that machine learning combined
with only static analysis is not able to distinguish between
benign and malicious samples that are packed. We performed
the following three experiments to validate this assumption.

Experiment IV: “different packed ratios (wild)”. We trained
the classifier on different subsets of the wild dataset by increas-
ing the ratio of packed benign executables in the training set,
with steps of 0.05. The “packed benign ratio” is defined as the
proportion of benign samples that are packed. We always used
datasets of the same size to fairly compare the trained models
with each other, and tested models against the test set with
a “wild ratio” of packed benign samples, i.e., the maximum
ratio of packed benign executables that the vendor has seen in
the wild (i.e., 50% packed benign, see Figure 1). As Figure 3a
shows, increasing the packed benign ratio helps the classifier
to maintain a lower false positive rate on packed samples,
while the false negative rate slightly increases. However, the
false positive rate on unpacked samples considerably increases
from 3.18% to 16.24% as the classifier sees fewer unpacked
samples, which indicates that a classifier that is trained only
on packed samples cannot achieve high accuracy on unpacked
samples. As illustrated by Table IV, we always used training
sets of the same size, uniformly distributed over benign and
malicious executables. Table IV also demonstrates that as we

8

TABLE IV: Experiment “different packed ratios (wild).” Each row represents features that are important to the classifier.
PB Training Set # Features used by the classifier (Top 50)

Ratio #B (packed) #B (unpacked) #M import dll rich sections header strings byte n-grams opcode n-grams generic all

.0 0 3,077 3,077 1,446 (0) 53 (0) 37 (3) 148 (0) 20 (0) 2,278 (1) 2,674 (44) 2,067 (2) 2 (0) 8,725 (50)

.2 615 2,462 3,077 1,560 (1) 50 (0) 49 (0) 173 (0) 18 (0) 2,661 (1) 2,980 (48) 2,088 (0) 2 (0) 9,581 (50)

.4 1,231 1,846 3,077 1601 (1) 62 (0) 51 (0) 183 (0) 20 (0) 2,742 (0) 3,012 (49) 2,084 (0) 2 (0) 9,757 (50)

.6 1,846 1,231 3,077 1,571 (1) 55 (0) 45 (0) 200 (0) 19 (0) 2,754 (0) 2,976 (49) 2,081 (0) 2 (0) 9,703 (50)

.8 2,462 615 3,077 1,608 (1) 59 (0) 49 (0) 191 (0) 18 (0) 2,797 (0) 3,022 (49) 2,117 (0) 2 (0) 9,863 (50)
1. 3,077 0 3,077 1,404 (0) 50 (0) 42 (0) 200 (0) 20 (0) 2,662 (1) 2,911 (49) 2,081 (0) 2 (0) 9,372 (50)

TABLE V: Experiment “different packed ratios (lab)”
PB Training Set # Features used by the classifier (Top 50)

Ratio #B (packed) #B (unpacked) #M import dll rich sections header strings byte n-grams opcode n-grams generic all

.0 0 3,077 3,077 381 (8) 19 (0) 29 (1) 86 (5) 14 (0) 730 (12) 897 (24) 861 (0) 2 (0) 3,019 (50)

.2 615 2,462 3,077 508 (6) 48 (0) 49 (1) 158 (3) 24 (0) 2,463 (2) 2,729 (33) 2,034 (3) 2 (2) 8015 (50)

.4 1,231 1,846 3,077 504 (1) 56 (0) 46 (0) 161 (2) 25 (0) 2,871 (0) 2,939 (44) 2,195 (1) 2 (2) 8,799 (50)

.6 1,846 1,231 3,077 517 (0) 62 (0) 48 (1) 169 (3) 23 (1) 3,148 (0) 2,999 (43) 2,267 (0) 2 (2) 9,235 (50)

.8 2,462 615 3,077 496 (0) 77 (0) 47 (0) 183 (10) 25 (3) 3,372 (0) 3,151 (35) 2,273 (0) 2 (2) 9,626 (50)
1. 3,077 0 3,077 388 (0) 80 (0) 51 (1) 174 (14) 26 (4) 3,412 (0) 3,094 (29) 2,183 (0) 2 (2) 9,410 (50)

TABLE VI: Experiment “single packer”

Packer FPR FNR ROC F-1 # Features used by the classifier (Top 50)
(%) (%) AUC Score import dll rich sections header strings byte n-grams opcode n-grams generic all

PELock 7.21% 2.70% 0.95 0.95 752 (0) 118 (0) 33 (0) 101 (1) 20 (0) 1,409 (1) 2,188 (48) 1709 (0) 2 (0) 6,332 (50)
PECompact 9.93% 6.02% 0.93 0.93 565 (0) 81 (0) 56 (3) 110 (24) 22 (5) 2,856 (0) 2,974 (16) 1,868 (0) 2 (2) 8,534 (50)
Obsidium 5.53% 4.39% 0.95 0.95 507 (0) 4 (0) 0 (0) 54 (14) 10 (5) 2,546 (0) 2,274 (30) 1,110 (0) 2 (1) 6,507 (50)
Petite 3.54% 3.17% 0.97 0.97 769 (0) 173 (1) 54 (1) 123 (9) 22 (1) 1,708 (0) 2,403 (38) 1,866 (0) 2 (0) 7,120 (50)
tElock 6.06% 8.85% 0.93 0.93 4 (0) 3 (0) 59 (2) 200 (40) 22 (5) 2,419 (0) 2,628 (2) 1,027 (0) 2 (1) 6,364 (50)
Themida 6.45% 3.23% 0.95 0.95 2 (0) 2 (0) 52 (0) 127 (0) 21 (0) 4,091 (0) 3,678 (50) 1,190 (0) 2 (0) 9,165 (50)
MPRESS 8.10% 4.18% 0.94 0.93 633 (0) 145 (0) 0 (0) 45 (3) 20 (0) 1,427 (0) 2,861 (47) 2,130 (0) 2 (0) 7,263 (50)
kkrunchy 9.38% 6.93% 0.92 0.92 0 (0) 0 (0) 0 (0) 29 (23) 22 (5) 997 (0) 1,371 (20) 1,633 (0) 2 (2) 4,054 (50)
UPX 3.95% 4.98% 0.96 0.96 750 (1) 175 (0) 52 (1) 37 (23) 19 (6) 3,913 (0) 5,058 (17) 1,217 (0) 2 (2) 11,223 (50)

increase the ratio of packed benign executables in the training
dataset, byte n-gram features play a much more significant role
compared to other feature families.

Note that the performance of the classifier might be due
to features that do not necessarily capture the real behavior
of samples. For example, packed benign executables might be
packed by a different set of packers compared to malicious
executables. Table XII in the Appendix shows that the distribu-
tion of packers being used by benign samples is very different
from packers used by malicious samples. For example, there
are 13 packers for which we found signatures only in malicious
executables in our dataset (e.g., FSG, VMProtect, dxpack, and
PE-Armor). Although this discrepancy might not hold for the
entire wild dataset, it indicates that such a difference may
make the classifier biased to distinguish between good and
bad packers, and thus, results can be misleading.

Experiment V: “different packed ratios (lab)”. To mitigate
the uncertainty about the distribution of packers in the dataset,
we repeated the previous experiment on the lab dataset com-
bined with unpacked benign executables from the wild dataset.
We selected packed samples uniformly distributed over the
packers for training and test sets. Surprisingly, unlike the
popular assumption that packing greatly hinders machine
learning models based on static features, the classifier per-
formed better than our expectations, even when there was
no unpacked sample in the training set, with false positive
and false negative rates of 12.24% and 11.16%, respectively.
As Figure 3b presents, the false positive rate for packed
executables decreases from 99.76% to 16.03% as we increase
the ratio of packed benign samples in the training dataset.
Unsurprisingly, when there is no packed benign executable in
the training set, the classifier detects everything packed by
the packers in the lab dataset as malicious. Table V presents
the important features for the classifier based on the ratio of

packed benign executables in the dataset. Byte n-grams and PE
sections are the most useful families of features. We focused
on one packer at a time in the next experiment to identify
useful features for each packer.

Experiment VI: “single packer”. For each packer, we trained
and tested the classifier on only benign and malicious executa-
bles that we packed with that packer. Table VI presents the
performance of the classifier corresponding to each individual
packer. In all cases, the classifier performed relatively well,
with byte n-gram and PE section features as the most useful.

We are also curious to see how packers preserve informa-
tion when packing programs. To this end, for each packer, we
built different models by training the classifier on one family
of features at a time. In particular, we observed the following:

Rich Header. The Rich Header family alone helps the
classifier to achieve relatively high accuracy, except for those
packers that often strip this header (see Table II). As an
example, using only Rich Header features, the classifier that
is trained on executables packed with Themida maintains an
accuracy of 89.03%. Webster et al. [115] also showed that the
Rich Header is useful for detecting similar malware.

API imports. If we use tElock, Themida, and kkrunchy, API
import features are no longer useful for malware detection.
However, other packers preserve some information in these
features. For example, we trained the classifier on executables
that are packed with UPX and observed an accuracy of
89.11%. We noticed a similar trend for the DLL imports fam-
ily. Among the packers affected by these features, the number
of API imports was one of the most important features for
the classifier. Figure 5 presents the distribution of this feature
for UPX, Petite, and PECompact. We also observed specific
API imports to be very distinguishing, like ShellExecuteA.
Table XXII in the Appendix shows the number of benign

9

106 107 108 109

Feature header_SizeOfInitializedData

100

101

102

103

104

105

Nu
m

be
r o

f s
am

pl
es Benign (lab)

Malicious (lab)

(a) The lab dataset.
104 105 106

100

101

102

103

104

(b) Samples packed with UPX.
106 107 108 109

100

101

102

103

104

(c) Samples packed with tElock.
103 104 105 106 107

100

101

102

103

104

(d) Samples packed with PELock.
Fig. 4: The histogram of the feature header SizeOfInitializedData.

and malicious samples that import each of these APIs. For
example, Obsidium keeps importing the API FreeSid when
packing a binary, or it is well-known that UPX keeps one
API import from each DLL that the original binary imports to
avoid the complexity of loading DLLs during execution. This
indicates that packers preserve some information in the Import
Directory Table when packing programs.

Opcode n-grams. For each of Obsidium, tElock, and
Themida, we trained the classifier using opcode n-grams, and
the accuracy dropped to ∼50%. However, we observed the
accuracy of 89.01%, 88.72%, 88.27%, 77.25%, 77.04%, and
65.75% while training on samples packed with Petite, PELock,
Mpress, kkrunchy, UPX, and PECompact, respectively.

PE headers. For all packers, the classifier had an accuracy
above 90%. In particular, the “size of the initialized data” was
the most important feature in all cases but UPX. However, the
distribution of this feature differs across packers (see Figure 4).
While malicious samples packed with kkrunchy, Obsidium,
PECompact, tElock, and Themida have bigger initialized data
compared to benign executables, the same malicious samples,
packed with MPRESS, PELock, and Petite have smaller initial-
ized data. Interestingly, malicious samples packed with UPX
follow a distribution very similar to the distribution observed
for benign samples.

PE sections. The accuracy of the classifier was above 90%
for all packers, varying from 91.23% to 96.72%. As Figure 7
shows, the importance weights of features significantly differ
across different models. For example, the entropy of the entry
point section is a very important feature for the classifier that
is trained on MPRESS. However, this feature is not helpful
when we train the classifier on samples packed with Obsidium,
Themida, or PELock. The entry point of binaries packed with
MPRESS resides in the second section, .MPRESS2, for which
benign and malicious executables have a mean entropy of
6.16 and 5.77. However, for Obsidium, the entry point section
always has a high entropy, close to 8.

Finding 2. Packers preserve some information when packing
programs that may be “useful” for malware classification,
however, such information does not necessarily represent the
real nature of samples.

We should emphasize that related work has provided pre-
liminary evidence of Finding 2. Jacob et al. [44] showed that
some packers employ weak encryption, which can be used
to detect similar malware samples packed with these packers.
Webster et al. [115] also showed that some packers do not
touch the rich header, leaving it viable for malware detection.

C. Malware Classification in Real-world Scenarios

RQ3. Can a classifier that is carefully trained and not biased
towards specific packing routines perform well in real-world
scenarios?

RQ3 is a key question in the development of machine-
learning-based malware classifiers. In this work, we focus on
three specific issues:
• Generalization. Nowadays, runtime packers are evolving,

and malware authors often tend to use their own custom
packers [34, 66, 110]. This raises serious doubt about how
a classifier performs against previously unseen packers.
• Strong & Complete Encryption. Malware authors might

customize the packing process to remove the static features
that machine-learning-based classifiers can reasonably be
expected to leverage. Can malware classifiers be effective
in the presence of strong and complete encryption?
• Adversarial Examples. Despite their limited scope, recent

work [33, 41, 89] has shown that machine-learning-based
malware detectors are vulnerable to adversarial examples.
Is it possible to use the learned model to drive evasion?

To investigate the generalization question, we carried out the
next three experiments.

Experiment VII: “wild vs. packers”. First, we trained the
classifier on a dataset with a “wild ratio” of packed benign
samples extracted from the wild dataset, and tested it on the
lab dataset. As Table VIII shows, the classifier performed
poorly against all packers, with the highest accuracy being
78.19% against Themida. This is interesting, as we knew
that at least 50% of the packers in our dataset keep the
Rich Header, and, therefore, the classifier still should have
maintained high accuracy based on the earlier results. We argue
that this happened because the classifier chose features with
more information gain, and, while testing on the lab dataset,
those features are not helpful anymore. In fact, we trained
the classifier using only the Rich Header, and the classifier’s
accuracy against packers that keep the Rich Header increased
considerably, up to over 90%.

Experiment VIII: “withheld packer”. Second, we performed
several rounds of experiments on the lab dataset, in which we
withheld one packer from the training set and then evaluated
the resulting classifier on packed executables generated by this
packer (one round for each of the nine packers). To have
a fair comparison between rounds, we fixed the size of the
training set to 83,760, by selecting 5,235 benign and 5,235
malicious executables for each of the packers. We then tested
the classifier on 5,235 benign and 5,235 malicious executables
packed with the withheld packer. As Table VII shows, except
for the three noticeable cases of PECompact, tElock, and
kkrunchy, the classifier performed relatively well, with an F-1
score ranging from 0.90 to 0.95.

In all cases, we identified byte n-gram features extracted
from .CAB file headers (reside in the resource sections) as
the most important features. There are 6,717 benign and 1,269
malicious executables having these features enabled in the
wild dataset. In the previous experiment, the classifier did not
learn these features as there were more distinguishing features.
However, as packers mostly keep headers of resources despite

10

0 10 20 30 40 50 60 70 80
Feature api_import_nb

0.0

0.2

0.4

0.6

0.8

1.0
Ra

tio
 o

f s
am

pl
es Benign (lab)

Malicious (lab)

(a) The lab dataset.

0 10 20 30 40 50 60 70 800.0

0.2

0.4

0.6

0.8

1.0

(b) Packed with UPX.

0 10 20 30 40 50 60 70 800.0

0.2

0.4

0.6

0.8

1.0

(c) Packed with PECompact.

0 10 20 30 40 50 60 70 800.0

0.2

0.4

0.6

0.8

1.0

(d) Packed with Petite.
Fig. 5: The CCDF of the feature api import nb, i.e., the number of API imports.

TABLE VII: Experiment “withheld packer”

Withheld All features NO byte n-grams
Packer FPR (%) FNR (%) F-1 FPR (%) FNR (%) F-1

PELock 7.30% 3.74% 0.95 26.06% 1.51% 0.88
PECompact 47.49% 2.14% 0.80 42.75% 2.83% 0.81
Obsidium 17.42% 3.32% 0.90 70.09% 0.73% 0.74
Petite 5.16% 4.47% 0.95 12.45% 4.22% 0.92
tElock 43.65% 2.02% 0.77 73.98% 1.07% 0.72
Themida 6.21% 3.29% 0.95 21.28% 10.37% 0.85
MPRESS 5.43% 4.53% 0.95 28.65% 1.87% 0.87
kkrunchy 83.06% 2.50% 0.70 55.97% 0.38% 0.78
UPX 11.21% 4.34% 0.92 17.52% 9.02% 0.87

TABLE VIII: Experiment “wild vs. packers”

Packer All features Rich Header (only)
FPR (%) FNR (%) F-1 FPR (%) FNR (%) F-1

PELock 60.79% 0.0% 0.80 99.72% 0.0% 0.67
PECompact 66.48% 0.23% 0.76 22.56% 1.44% 0.89
Obsidium 82.10% 0.0% 0.73 100.0% 0.0%% 0.67
Petite 74.85% 0.02% 0.78 8.44% 1.54% 0.95
tElock 99.28% 0.03% 0.67 32.38% 1.35% 0.86
Themida 43.41% 0.21% 0.80 12.23% 1.44% 0.94
MPRESS 89.93% 1.23% 0.69 100.0% 0.0% 0.67
kkrunchy 100.0% 0.0% 0.67 100.0% 0.0% 0.67
UPX 50.46% 1.72% 0.79 18.32% 1.86% 0.91

the encryption of the body, this initial bias is intensified as
we packed each sample with multiple packers. In particular,
there are 28,765 benign and 2,428 malicious executables in the
lab dataset that include these sequences of bytes. However,
for PECompact the situation is a bit different, as we could
pack only 1,095 benign and 451 malicious samples that have
.CAB headers. For tElock, we could pack only 181 benign
and 444 malicious samples with .CAB headers. This explains
why the accuracy of the classifier is low against PECompact
and tElock. We looked at the most important features when
we withheld kkrunchy in the learning phase, and we found
that byte n-grams extracted from the version info field of
resources are very helpful for the classifier. Other packers
usually keep this information, hence the classifier learns it, but
fails to utilize that against samples packed with kkrunchy, as
the packer strips this information. We repeated the experiment
by excluding byte n-grams features, and the accuracy of the
classifier dropped significantly in all cases, except when we
withheld PECompact or kkrunchy (see Table VII).

Experiment IX: “lab against wild”. In this third experiment,
we trained the classifier on the lab dataset and evaluated it
on packed executables in the wild dataset. This experiment is
important as malware authors often prefer customized packing
routines to off-the-shelf packers [34, 66, 110]. To avoid any
bias in our dataset toward any particular packer, benign and
malicious executables were uniformly selected from the vari-
ous packers. We observed the false negative rate of 41.84%,
and false positive rate of 7.27%.

Experiments VII, VIII, and IX demonstrate that when using
static analysis features, the classifier is not guaranteed to
generalize well to previously unseen packers. As a preliminary
step towards the Strong & Complete Encryption issue, we
performed the following experiment.

Experiment X: “Strong & Complete Encryption”. In this
experiment, we trained the classifier on 11,929 benign and
11,929 malicious executables packed with AES-Encrypter and
evaluated it against 5,113 benign and 5,113 malicious executa-
bles packed with AES-Encrypter. As AES-Encrypter encrypts
the whole executable with AES, we would expect that static

analysis features are no longer helpful for a static malware
classifier. Surprisingly, the classifier performed better than a
random guess just because of two features, “file size” and “file
entropy,” with accuracy of 72.67%. As benign samples are
bigger in the wild dataset, obviously, packed benign executa-
bles are still larger than packed malicious executables as AES-
Encrypter just encrypts the original binary. Also, the entropy of
the packed executable is affected as a bigger overlay increases
the entropy of the packed program more. All other static
analysis features are the same across executables packed with
AES-Encrypter, except for byte n-grams and strings features,
as executables have different (encrypted) overlays. Since we
have more malicious samples in the wild dataset, our feature
selection procedures for extracting byte n-grams and strings
(see Section IV-C) tend to select those features that appear in
malicious samples with a higher probability, thus, we expect
that the accuracy of the classifier is still slightly better than
50%. In particular, removing the features “file size” and “file
entropy” from the dataset resulted in a classifier with an
accuracy of 56.85%. In fact, we repeated the feature selection
procedure for a balanced dataset of only executables packed
with AES-Encrypter, and we got an accuracy of 50% for the
classifier when removing these two features.

Experiment X raises serious doubts about machine learning
classifiers. When packing hides all information about the
original binary until execution, the classifier has no choice but
to classify any sample packed by such a packer as malicious.
This is an issue, as packing is increasingly being adopted by
legitimate software [84].

Experiment XI: “adversarial samples”. Recent work [33,
41, 89] has shown that machine-learning-based malware de-
tectors, especially those that are based on only static analysis
features, are vulnerable to adversarial samples. In our case,
this issue becomes magnified as packing causes machine
learning classifiers to make decisions based on features that
are not directly derived from the actual (unpacked) program.
Therefore, generating such adversarial samples would be easier
for an adversary.

11

TABLE IX: The false positive and false negative rates (%) of six machine-learning-based engines integrated with VirusTotal.

Packer AV1 AV2 AV3 AV4 AV5 AV6
FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR

PELock 81.48 18.32 72.35 28.26 81.49 19.09 88.34 12.84 89.96 10.29 91.14 8.84
PECompact 81.81 18.36 72.18 28.31 80.53 19.55 88.39 12.06 89.74 10.06 90.88 8.89
Obsidium 79.01 22.24 70.18 30.54 77.03 24.42 83.69 17.42 67.53 32.71 86.55 13.82
Petite 78.73 20.99 68.48 31.07 74.52 25.5 84.79 16.11 72.13 26.92 85.45 14.68
tElock 78.92 20.49 67.49 30.77 74.51 25.06 84.37 14.58 72.53 26.53 84.79 14.17
Themida 79.18 21.58 70.18 30.45 76.95 23.88 84.13 15.95 67.5 33.88 86.23 14.28
MPRESS 82.3 18.58 72.75 28.44 82.04 19.68 88.37 12.73 89.94 9.43 91.58 8.94
kkrunchy 78.79 21.15 69.71 30.32 77.27 23.28 83.11 16.89 67.29 32.07 86.72 13.98
UPX 78.37 22.36 70.04 30.62 76.04 23.72 82.8 17.01 67.34 33.07 85.54 13.98

AES-Encrypter 79.77 21.27 69.14 31.27 75.47 24.4 85.29 15.2 73.25 26.71 85.69 14.19

FP
 (p

ac
ke

d)

FP
 (u

np
ac

ke
d)

TN
 (p

ac
ke

d)

TN
 (u

np
ac

ke
d)

TP
 (p

ac
ke

d)

FN
 (p

ac
ke

d)

TN
+T

P
(p

ac
ke

d)

FP
+F

N
(p

ac
ke

d)

TP
+T

N
(u

np
ac

ke
d)

FP
+F

N
(u

np
ac

ke
d)

Test set0.5

0.6

0.7

0.8

0.9

1.0

Pr
ed

ict
io

n
sc

or
e

Fig. 6: Confidence of the “best possible” classifier on false
positives, false negatives, true positives, and true negatives.

Re
so

ur
ce

s n
um

.

Re
so

ur
ce

s M
EA

N
siz

e

2n
d

se
ct

io
n

en
tro

py

Re
so

ur
ce

s M
AX

 si
ze

En
try

po
in

t s
ec

tio
n

en
tro

py

Se
ct

io
ns

 M
AX

 e
nt

ro
py

Re
so

ur
ce

s M
AX

 e
nt

ro
py

Se
ct

io
ns

 M
EA

N
en

tro
py

Re
so

ur
ce

s M
EA

N
en

tro
py

Se
ct

io
ns

 M
EA

N
siz

e

Re
so

ur
ce

s M
IN

 si
ze

1s
t s

ec
tio

n
ad

dr
es

s

1s
t s

ec
tio

n
vi

rt.
 si

ze

Se
ct

io
ns

 M
AX

 si
ze

Se
ct

io
ns

 M
EA

N
vi

rt.
 si

ze

Se
ct

io
ns

 M
ax

 v
irt

. s
ize

2n
d

se
ct

io
n

vi
rt.

 a
dd

re
ss

3r
d

se
ct

io
n

vi
rt.

 si
ze

3r
d

se
ct

io
n

ad
dr

es
s

1s
t s

ec
tio

n
en

tro
py

Themida
Petite

UPX
tElock

PELock
PECompact

Obsidium
kkrunchy
MPRESS

0.00

0.02

0.04

0.06

0.08

0.10

Fe
at

ur
e

W
ei

gh
ts

Fig. 7: Experiment “single packer.” The weights of the top 20
features while training on only PE sections features.

In this experiment, first we carefully trained the classifier
on 3,956 unpacked benign, 3,956 packed benign, and 7,912
malicious executables whose packed benign and malicious
samples are uniformly distributed over the same packers from
the lab dataset and packed executables in the wild. We showed
that such a classifier is not biased towards detecting specific
packing routines as a sign of maliciousness. As expected,
the classifier performed relatively well in the evaluation, with
false positive and false negative rates of 9.70% and 5.33%,
respectively. Figure 6 shows the box and whisker plot of the
classifier’s confidence score on the test set. The mean confi-
dence of the classifier for packed and unpacked executables
that are classified correctly is 0.89 and 0.93, respectively.
For benign samples that the classifier misclassified (false
positives), the mean confidence is 0.68 and 0.58 for packed
and unpacked samples, respectively.

Then, we generated adversarial samples from all 2,494
malicious samples that the classifier detected as malicious
(i.e., true positives). To achieve this, we identified byte n-
gram and string features that occurred more in benign samples
and injected the corresponding bytes into the target program
without affecting its behavior. We verified this by analyzing
the sample with the ANY.RUN [4] sandbox. By injecting 34.24
(69.92) benign features on average, we managed to generate
2,483 (1,966) adversarial samples that cause the classifier to
make false predictions with a confidence greater than 0.5 (0.9).
We expect that a more complex attack is needed when the
classifier is trained using features extracted from dynamic
analysis, which represent the sample’s behavior.

Finding 3. Although we observed that static analysis features
combined with machine learning can distinguish between
packed benign and packed malicious samples, such a classi-
fier will produce intolerable errors in real-world settings.

Recently, a group of researchers found a very similar way
to subvert Cylance’s AI-based anti-malware engine [1, 105].
They developed a “global bypass” method that works with
almost any malware to fool the Cylance engine. The eva-
sion technique involves simply taking strings from an online
gaming program and appending them to known malware, like
WannaCry. The major problem that plagued Cylance was that
behaviors that are common in malware are also common in
games. Games use these techniques for various reasons, e.g.,
to prevent cheating or reverse engineering. Tuning the system
to flag the malware but not such benign programs is quite
difficult and prone to more errors, which in this case, confront
Cylance’s engine with a dilemma, either produce high false
positives for games or inherit a bias towards them.

D. Anti-malware Industry vs. Packers

RQ4. How is the accuracy of real-world anti-malware en-
gines that leverage machine learning combined with static
analysis features affected by packers?

In today’s world, legitimate software authors pack their
products. Therefore, it is no longer acceptable for anti-malware
products to detect anything packed as malicious. RQ4 is
important because most machine-learning-based approaches
rely on labels from VirusTotal in the absence of a reliable
and fresh ground-truth dataset [22, 86, 88, 97]. To this end,
we identified six products on VirusTotal that, either on the
corresponding company’s website or on a VirusTotal blog post,
are described as machine-learning-based malware detectors
that use only static analysis features. It should be noted that,
while VirusTotal clearly discourages using their service to
perform anti-malware comparative analyses [113], in the next
experiment, we aim only to see how these engines assign labels
to packed samples in general. We do not intend to compare
these tools with each other or against another tool.

12

Experiment XII: “anti-malware industry”. In February
2019, we submitted 6,000 benign and 6,000 malicious executa-
bles packed with each packer from the lab dataset to Virus-
Total to evaluate these six anti-malware products. As Table IX
shows clearly, all six engines have learned to associate packing
with maliciousness. Other engines on VirusTotal also produced
a similarly high error rate as these six engines. As we discussed
in Section II, related work have published results showing sim-
ilar trend [69, 116]. This experiment indicates that as packing
is being used more often in legitimate software [84], unless
the anti-malware industry does better than detecting packing,
benign and malicious software are going to be increasingly
misclassified.

Finding 4. Machine-learning-based anti-malware engines on
VirusTotal detect packing instead of maliciousness.

VI. DISCUSSION

We showed that machine-learning-based anti-malware en-
gines on VirusTotal produce a substantial number of false
positives on packed binaries, which can be due to the limita-
tions discussed in this work. This is especially a serious issue
for machine-learning-based approaches that frequently rely on
labels from VirusTotal [22, 86, 88, 97], causing an endless
loop in which new approaches rely on polluted datasets, and,
in turn, generate polluted datasets for future work.

One might say that this general issue with packing can
be avoided by whitelisting samples based on code-signing
certificates. However, we have seen that valid digital signatures
allowed malware like LockerGoga, Stuxnet, and Flame to
bypass anti-malware protections [50]. It should be noted that
although we showed that packer classification is an easy task
for the classifier to learn over our dataset, packing detection,
in general, is a challenging task [5, 5, 59, 102], especially
when malware authors use customized packers that evolve
rapidly [34, 66, 110]. While using dynamic analysis features
seems necessary to mitigate the limitations of static malware
detectors, malware could still force malware detectors to fall
back on static features by using sandbox evasion [116]. For
example, Jana et al. [45] discovered 45 evasion exploits against
36 popular anti-malware scanners by targeting file processing
in malware detectors. All these issues suggest that malware
detection should be done using a hybrid approach leveraging
both static and dynamic analysis.

Limitations. As encouraged by Pendlebury et al. [75] and
Jordaney et al. [46], malware detectors should be evaluated
on how they deal with concept drift. We have observed that
machine learning combined with static analysis generalizes
poorly to unseen packers, however, we did not consider time
constraints in our experiments, which we leave as future work.
Also, we focused only on Windows x86 executables in this
paper, but our hypothesis might also be applicable to Android
apps, for which packing is also getting more common [25].

VII. RELATED WORK

The theoretical limitations of malware detection have been
studied widely. Early work on computer viruses [18, 19]
showed that the existence of a precise virus detector that
detects all computer viruses implies a decision procedure

for the halting problem. Later, Chess et al. [14] presented
a polymorphic virus that cannot be precisely detected by
any program. Similarly, several critical techniques of static
and dynamic analysis are undecidable [55, 100], including
detection of unpacking execution.

Moser et al. [67] proposed a binary obfuscation scheme
based on opaque constants that scrambles a program’s control
flow and hides data locations and usage. They showed that
static analysis for the detection of malicious code can be
evaded by their approach in a general way. Christodorescu
et al. [16] showed that three anti-malware tools can be easily
evaded by very simple obfuscation transformations. Later, they
developed a system for evaluating anti-malware tools against
obfuscation transformations commonly used to disguise mal-
ware [17]. ADAM [119] and DroidChameleon [85] used simi-
lar transformation techniques to evaluate commercial Android
anti-malware tools. In particular, DroidChameleon’s results on
ten anti-malware products show that none of these is resistant
to common and simple malware transformation methods. Bacci
et al. [6] showed that while dynamic-analysis-based detection
demonstrates equal performance on both obfuscated and non-
obfuscated Android malware, static-analysis-based detection
has a poor performance on obfuscated samples. Although they
showed that this effect can be mitigated by using obfuscated
malicious samples in the learning phase, no obfuscated benign
sample is used, which raises the doubt that the classifier might
have learned to detect obfuscation. Hammad et al. [36] recently
studied the effects of code obfuscation on Android apps
and anti-malware products and found that most anti-malware
products are severely impacted by simple obfuscations.

VIII. CONCLUSIONS

In this paper, we have investigated the following question:
does static analysis on packed binaries provide a rich enough
set of features to a malware classifier? We first observed
that the distribution of the packers in the training set must
be considered, otherwise the lack of overlap between pack-
ers used in benign and malicious samples might cause the
classifier to distinguish between packing routines instead of
behaviors. Different from what is commonly assumed, packers
preserve information when packing programs that is “useful”
for malware classification, however, such information does not
necessarily capture the sample’s behavior. In addition, such
information does not help the classifier to (1) generalize its
knowledge to operate on previously unseen packers, and (2)
be robust against trivial adversarial attacks. We observed that
static machine-learning-based products on VirusTotal produce
a high false positive rate on packed binaries, possibly due to
the limitations discussed in this work. This issue becomes
magnified as we see a trend in the anti-malware industry
toward an increasing deployment of machine-learning-based
classifiers that only use static features.

To the best of our knowledge, this work is the first compre-
hensive study on the effects of packed Windows executables
on machine-learning-based malware classifiers that use only
static analysis features. The source code and our dataset of
392,168 executables are publicly available at https://github.
com/ucsb-seclab/packware.

13

ACKNOWLEDGMENTS

We would like to thank our reviewers for their valuable
comments and input to improve our paper. This material is
based on research sponsored by a gift from Intel, by the
National Science Foundation grant #CNS-1704253, and by
DARPA under agreement number #FA8750-19-C-0003. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copy-
right notation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorse-
ments, either expressed or implied, of DARPA or the U.S.
Government. This research has also received funding from the
European Research Council (ERC) under grant agreement No
771844 – BitCrumbs, from SBA Research (SBA-K1), which
is funded within the framework of COMET – Competence
Centers for Excellent Technologies by BMVIT, BMDW, and
from the federal state of Vienna, managed by the FFG. The
financial support by the Christian Doppler Research Associa-
tion, the Austrian Federal Ministry for Digital and Economic
Affairs and the National Foundation for Research, Technology
and Development is also gratefully acknowledged.

REFERENCES

[1] “Researchers Easily Trick Cylance’s AI-Based Antivirus Into Thinking
Malware Is ’Goodware’,” https://www.vice.com/en us/article/9kxp83/
researchers-easily-trick-cylances-ai-based-antivirus-into-thinking-
malware-is-goodware, July 2019.

[2] T. Abou-Assaleh, N. Cercone, V. Keselj, and R. Sweidan, “N-gram-
based detection of new malicious code,” in Computer Software and
Applications Conference, 2004. COMPSAC 2004. Proceedings of the
28th Annual International, vol. 2. IEEE, 2004, pp. 41–42.

[3] H. S. Anderson and P. Roth, “Ember: An open dataset for train-
ing static pe malware machine learning models,” arXiv preprint
arXiv:1804.04637, 2018.

[4] ANY.RUN, “Interactive malware analyzer,” https://any.run/, (Ac-
cessed: 2019-1-17).

[5] R. Arora, A. Singh, H. Pareek, and U. R. Edara, “A Heuristics-
based Static Analysis Approach for Detecting Packed PE Binaries,”
International Journal of Security and Its Applications, 2013.

[6] A. Bacci, A. Bartoli, F. Martinelli, E. Medvet, F. Mercaldo, and C. A.
Visaggio, “Impact of Code Obfuscation on Android Malware Detection
based on Static and Dynamic Analysis,” in Proc. of the International
Conference on Information Systems Security and Privacy, 2018.

[7] D. Bilar, “Opcodes As Predictor for Malware,” International Journal
of Electronic Security and Digital Forensics, vol. 1, no. 2, 2007.

[8] C. M. Bishop et al., Neural networks for pattern recognition. Oxford
university press, 1995.

[9] G. Bonfante, J. Fernandez, J.-Y. Marion, B. Rouxel, F. Sabatier, and
A. Thierry, “CoDisasm: Medium Scale Concatic Disassembly of Self-
Modifying Binaries with Overlapping Instructions,” 2015.

[10] T. Brosch and M. Morgenstern, “Runtime Packers: The Hidden Prob-
lem?” Black Hat USA, 2006.

[11] D. Bueno, K. J. Compton, K. A. Sakallah, and M. Bailey, “Detecting
Traditional Packers, Decisively,” in Proc. of the International Sympo-
sium on Research in Attacks, Intrusions and Defenses (RAID), 2013.

[12] Capstone, “Disassembler,” https://www.capstone-engine.org/, (Ac-
cessed: 2018-11-20).

[13] B. Cheng, J. Ming, J. Fu, G. Peng, T. Chen, X. Zhang, and J.-Y.
Marion, “Towards paving the way for large-scale windows malware
analysis: Generic binary unpacking with orders-of-magnitude perfor-
mance boost,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2018.

[14] D. M. Chess and S. R. White, “An Undetectable Computer Virus,” in
Proceedings of the Virus Bulletin Conference (VB), vol. 5, 2000.

[15] Y.-s. Choi, I.-k. Kim, J.-t. Oh, and J.-c. Ryou, “Encoded Executable
File Detection Technique via Executable File Header Analysis,” Inter-
national Journal of Hybrid Information Technology, 2009.

[16] M. Christodorescu and S. Jha, “Static Analysis of Executables to De-
tect Malicious Patterns,” in Proc. of the USENIX Security Symposium,
2003.

[17] ——, “Testing malware detectors,” ACM SIGSOFT Software Engi-
neering Notes, vol. 29, no. 4, pp. 34–44, 2004.

[18] F. Cohen, “Computer Viruses: Theory and Experiments,” Computers
& Security, vol. 6, no. 1, 1987.

[19] ——, “Computational Aspects of Computer Viruses,” Computers &
Security, vol. 8, no. 4, 1989.

[20] W. W. Cohen, “Learning trees and rules with set-valued features,” in
AAAI/IAAI, Vol. 1, 1996, pp. 709–716.

[21] K. Coogan, S. Debray, T. Kaochar, and G. Townsend, “Automatic
Static Unpacking of Malware Binaries,” in Proc. of the Working
Conference on Reverse Engineering (WCRE), 2009.

[22] F. Copty, M. Danos, O. Edelstein, C. Eisner, D. Murik, and B. Zeltser,
“Accurate malware detection by extreme abstraction,” in Proceed-
ings of the 34th Annual Computer Security Applications Conference.
ACM, 2018, pp. 101–111.

[23] S. Debray and J. Patel, “Reverse Engineering Self-Modifying Code:
Unpacker Extraction,” in Proc. of the Working Conference on Reverse
Engineering (WCRE), 2010.

[24] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware
analysis via hardware virtualization extensions,” in Proceedings of
the 15th ACM conference on Computer and communications security.
ACM, 2008, pp. 51–62.

[25] Y. Duan, M. Zhang, A. V. Bhaskar, H. Yin, X. Pan, T. Li, X. Wang, and
X. Wang, “Things You May Not Know About Android (Un)Packers: A
Systematic Study based on Whole-System Emulation,” in Proc. of the
Network and Distributed System Security Symposium (NDSS), 2018.

[26] T. Dube, R. Raines, G. Peterson, K. Bauer, M. Grimaila, and S. Rogers,
“Malware Target Recognition via Static Heuristics,” Computers &
Security, vol. 31, no. 1, 2012.

[27] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A Survey on
Automated Dynamic Malware Analysis Techniques and Tools,” ACM
Computing Surveys (CSUR), vol. 44, no. 2, 2012.

[28] Y. Elovici, A. Shabtai, R. Moskovitch, G. Tahan, and C. Glezer,
“Applying machine learning techniques for detection of malicious code
in network traffic,” in Annual Conference on Artificial Intelligence.
Springer, 2007, pp. 44–50.

[29] ENDGAME, “Endpoint protection,” https://www.endgame.com, (Ac-
cessed: 2018-12-26).

[30] Exeinfo PE, “Signature-based packer detector,” http://exeinfo.
atwebpages.com/, (Accessed: 2019-01-07).

[31] C. Feng and D. Michie, “Machine learning of rules and trees,” Machine
learning, neural and statistical classification, pp. 50–83, 1994.

[32] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Compatibility
Is Not Transparency: VMM Detection Myths and Realities,” in Proc.
of the Workshop on Hot Topics in Operating Systems (HotOS), 2007.

[33] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial examples for malware detection,” in European Sympo-
sium on Research in Computer Security. Springer, 2017, pp. 62–79.

[34] F. Guo, P. Ferrie, and T.-c. Chiueh, “A Study of the Packer Problem
and Its Solutions,” in Proceedings of International Symposium on
Recent Advances in Intrusion Detection (RAID), 2008.

[35] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “Lemna: Ex-
plaining deep learning based security applications,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 364–379.

[36] M. Hammad, J. Garcia, and S. Malek, “A Large-Scale Empirical
Study on the Effects of Code Obfuscations on Android Apps and
Anti-Malware Products,” in Proc. of the International Conference on
Software Engineering (ICSE), 2018.

[37] S. Han, K. Lee, and S. Lee, “Packed PE File Detection for Malware
Forensics,” in Proc. of the International Conference on Computer
Science and its Applications (CSA), 2009.

14

[38] I. U. Haq, S. Chica, J. Caballero, and S. Jha, “Malware Lineage in
the Wild,” arXiv preprint 1710.05202, 2017.

[39] O. Henchiri and N. Japkowicz, “A feature selection and evaluation
scheme for computer virus detection,” in Sixth International Confer-
ence on Data Mining (ICDM’06). IEEE, 2006, pp. 891–895.

[40] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[41] W. Hu and Y. Tan, “Black-box attacks against rnn based malware
detection algorithms,” in Workshops at the Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

[42] M. Hurier, K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “On
the Lack of Consensus in Anti-Virus Decisions: Metrics and Insights
on Building Ground Truths of Android Malware,” in Proc. of the
Conference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), 2016.

[43] I. Incer, M. Theodorides, S. Afroz, and D. Wagner, “Adversarially ro-
bust malware detection using monotonic classification,” in Proceedings
of the Fourth ACM International Workshop on Security and Privacy
Analytics. ACM, 2018, pp. 54–63.

[44] G. Jacob, P. M. Comparetti, M. Neugschwandtner, C. Kruegel, and
G. Vigna, “A Static, Packer-agnostic Filter to Detect Similar Malware
Samples,” in Proc. of the Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), 2013.

[45] S. Jana and V. Shmatikov, “Abusing File Processing in Malware
Detectors for Fun and Profit,” in Proc. of the IEEE Symposium on
Security and Privacy (S&P), 2012.

[46] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouret-
dinov, and L. Cavallaro, “Transcend: Detecting Concept Drift in
Malware Classification Models,” in Proc. of the USENIX Security
Symposium, 2017.

[47] M. G. Kang, P. Poosankam, and H. Yin, “Renovo: A Hidden Code
Extractor for Packed Executables,” in Proc. of the ACM Workshop on
Recurring Malcode (WORM), 2007.

[48] A. Kantchelian, M. C. Tschantz, S. Afroz, B. Miller, V. Shankar,
R. Bachwani, A. D. Joseph, and J. D. Tygar, “Better Malware Ground
Truth: Techniques for Weighting Anti-Virus Vendor Labels,” in Proc.
of the ACM Workshop on Artificial Intelligence and Security (AISec),
2015.

[49] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida, “Malware
phylogeny generation using permutations of code,” Journal in Com-
puter Virology, vol. 1, no. 1-2, pp. 13–23, 2005.

[50] D. Kim, B. J. Kwon, and T. Dumitraş, “Certified Malware: Measuring
Breaches of Trust in the Windows Code-Signing PKI,” in Proc. of the
ACM Conference on Computer and Communications Security (CCS),
2017.

[51] D. Kirat, L. Nataraj, G. Vigna, and B. S. Manjunath, “SigMal: A
Static Signal Processing Based Malware Triage,” in Proc. of the Annual
Computer Security Applications Conference (ACSAC), 2013.

[52] J. Z. Kolter and M. A. Maloof, “Learning to Detect and Classify
Malicious Executables in the Wild,” Journal of Machine Learning
Research, vol. 7, 2006.

[53] ——, “Learning to detect malicious executables in the wild,” in
Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2004, pp. 470–478.

[54] D. Kong and G. Yan, “Discriminant malware distance learning on
structural information for automated malware classification,” in Pro-
ceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2013, pp. 1357–1365.

[55] W. Landi, “Undecidability of Static Analysis,” ACM Letters on Pro-
gramming Languages and Systems (LOPLAS), vol. 1, no. 4, 1992.

[56] B. Li, K. Roundy, C. Gates, and Y. Vorobeychik, “Large-Scale Identi-
fication of Malicious Singleton Files,” in Proc. of the ACM Conference
on Data and Application Security and Privacy (CODASPY), 2017.

[57] P. Li, L. Liu, D. Gao, and M. K. Reiter, “On Challenges in Evaluating
Malware Clustering,” in Proceedings of International Symposium on
Recent Advances in Intrusion Detection (RAID), 2010.

[58] M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti, “Detecting
Environment-Sensitive Malware,” in Proceedings of International
Symposium on Recent Advances in Intrusion Detection (RAID), 2011.

[59] R. Lyda and J. Hamrock, “Using Entropy Analysis to Find Encrypted
and Packed Malware,” IEEE Security and Privacy, vol. 5, no. 2, 2007.

[60] Manalyzer, “Malware analysis tool,” https://manalyzer.org/, (Accessed:
2019-01-07).

[61] L. Martignoni, M. Christodorescu, and S. Jha, “OmniUnpack: Fast,
Generic, and Safe Unpacking of Malware,” in Proc. of the Annual
Computer Security Applications Conference (ACSAC), 2007.

[62] M. M. Masud, L. Khan, and B. Thuraisingham, “A scalable multi-
level feature extraction technique to detect malicious executables,”
Information Systems Frontiers, vol. 10, no. 1, pp. 33–45, 2008.

[63] E. Menahem, A. Shabtai, L. Rokach, and Y. Elovici, “Improving mal-
ware detection by applying multi-inducer ensemble,” Computational
Statistics & Data Analysis, vol. 53, no. 4, pp. 1483–1494, 2009.

[64] J. Ming, D. Xu, Y. Jiang, and D. Wu, “Binsim: Trace-based semantic
binary diffing via system call sliced segment equivalence checking,”
in Proceedings of the 26th USENIX Security Symposium, 2017.

[65] A. Mohaisen and O. Alrawi, “AV-Meter: An Evaluation of Antivirus
Scans and Labels,” in Proc. of the Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA), 2014.

[66] M. Morgenstern and H. Pilz, “Useful and Useless Statistics about
Viruses and Anti-Virus Programs,” in Proc. of the CARO Workshop,
2010.

[67] A. Moser, C. Kruegel, and E. Kirda, “Limits of Static Analysis
for Malware Detection,” in Proc. of the Annual Computer Security
Applications Conference (ACSAC), 2007.

[68] R. Moskovitch, D. Stopel, C. Feher, N. Nissim, and Y. Elovici,
“Unknown malcode detection via text categorization and the imbalance
problem,” in Intelligence and Security Informatics, 2008. ISI 2008.
IEEE International Conference on. IEEE, 2008, pp. 156–161.

[69] L. Nataraj, “Nearly 70% of Packed Windows System files are la-
beled as Malware,” http://sarvamblog.blogspot.com/2013/05/nearly-
70-of-packed-windows-system.html, 2013.

[70] L. Nataraj, S. Karthikeyan, G. Jacob, and B. Manjunath, “Malware
Images: Visualization and Automatic Classification,” in Proc. of the
International Symposium on Visualization for Cyber Security, 2011.

[71] J. Oberheide, M. Bailey, and F. Jahanian, “PolyPack: An Automated
Online Packing Service for Optimal Antivirus Evasion,” in Proc. of
the USENIX Workshop on Offensive Technologies (WOOT), 2009.

[72] J. Pearl, “Fusion, propagation, and structuring in belief networks,”
Artificial intelligence, vol. 29, no. 3, pp. 241–288, 1986.

[73] PEFILE, “Pe file parser,” https://github.com/erocarrera/pefile, (Ac-
cessed: 2018-10-28).

[74] PEiD, “Signature-based packer detector,” https://www.aldeid.com/
wiki/PEiD, (Accessed: 2019-01-07).

[75] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro,
“Tesseract: Eliminating experimental bias in malware classification
across space and time,” arXiv preprint arXiv:1807.07838, 2018.

[76] R. Perdisci, A. Lanzi, and W. Lee, “Classification of Packed Exe-
cutables for Accurate Computer Virus Detection,” Pattern Recognition
Letters, vol. 29, no. 14, 2008.

[77] ——, “Mcboost: Boosting scalability in malware collection and anal-
ysis using statistical classification of executables,” in 2008 Annual
Computer Security Applications Conference (ACSAC). IEEE, 2008,
pp. 301–310.

[78] M. Polino, A. Continella, S. Mariani, S. D’Alessio, L. Fontata,
F. Gritti, and S. Zanero, “Measuring and Defeating Anti-
Instrumentation-Equipped Malware,” in Proc. of the Conference on
Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2017.

[79] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[80] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K.
Nicholas, “Malware detection by eating a whole exe,” in Workshops
at the Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[81] E. Raff, J. Sylvester, and C. Nicholas, “Learning the PE Header,
Malware Detection with Minimal Domain Knowledge,” in Proc. of
the ACM Workshop on Artificial Intelligence and Security (AISec),
2017.

15

[82] E. Raff, R. Zak, R. Cox, J. Sylvester, P. Yacci, R. Ward, A. Tracy,
M. McLean, and C. Nicholas, “An Investigation of Byte N-Gram
Features for Malware Classification,” Journal of Computer Virology
and Hacking Techniques, 2016.

[83] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting System Emula-
tors,” in Proc. of the International Conference on Information Security
(ISC), 2007.

[84] B. Rahbarinia, M. Balduzzi, and R. Perdisci, “Exploring the Long
Tail of (Malicious) Software Downloads,” in Proc. of the International
Conference on Dependable Systems and Networks (DSN), 2017.

[85] V. Rastogi, Y. Chen, and X. Jiang, “DroidChameleon: Evaluating
Android Anti-malware Against Transformation Attacks,” in Proc. of
the ACM Asia Conference on Computer and Communications Security
(ASIACCS), 2013.

[86] H. Rathore, S. Agarwal, S. K. Sahay, and M. Sewak, “Malware
detection using machine learning and deep learning,” in International
Conference on Big Data Analytics. Springer, 2018, pp. 402–411.

[87] RDG Packer Detector, “Signature-based packer detector,” http://www.
rdgsoft.net/, (Accessed: 2019-01-07).

[88] M. Rhode, P. Burnap, and K. Jones, “Early-stage malware prediction
using recurrent neural networks,” computers & security, vol. 77, pp.
578–594, 2018.

[89] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici, “Generic black-
box end-to-end attack against state of the art api call based malware
classifiers,” in International Symposium on Research in Attacks, Intru-
sions, and Defenses. Springer, 2018, pp. 490–510.

[90] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson,
N. Pohlmann, H. Bos, and M. v. Steen, “Prudent Practices for
Designing Malware Experiments: Status Quo and Outlook,” in Proc.
of the IEEE Symposium on Security and Privacy (S&P), 2012.

[91] P. Royal, M. Halpin, D. Dagon, R. Edmonds, and W. Lee, “PolyUn-
pack: Automating the Hidden-Code Extraction of Unpack-Executing
Malware,” in Proc. of the Annual Computer Security Applications
Conference (ACSAC), 2006.

[92] G. Salton and M. J. McGill, “Introduction to modern information
retrieval,” 1986.

[93] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode
Sequences as Representation of Executables for Data-mining-based
Unknown Malware Detection,” Information Sciences, vol. 231, 2013.

[94] I. Santos, J. Nieves, and P. G. Bringas, “Semi-supervised learning
for unknown malware detection,” in International Symposium on
Distributed Computing and Artificial Intelligence. Springer, 2011,
pp. 415–422.

[95] I. Santos, X. Ugarte-Pedrero, B. Sanz, C. Laorden, and P. G. Bringas,
“Collective Classification for Packed Executable Identification,” in
Proc. of the Annual Collaboration, Electronic Messaging, Anti-Abuse
and Spam Conference (CEAS), 2011.

[96] V. S. Sathyanarayan, P. Kohli, and B. Bruhadeshwar, “Signature gener-
ation and detection of malware families,” in Australasian Conference
on Information Security and Privacy. Springer, 2008, pp. 336–349.

[97] J. Saxe and K. Berlin, “Deep Neural Network Based Malware Detec-
tion Using Two Dimensional Binary Program Features,” in Proc. of
the the International Conference on Malicious and Unwanted Software
(MALWARE), 2015.

[98] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, “Data Mining
Methods for Detection of New Malicious Executables,” in Proc. of
the IEEE Symposium on Security and Privacy (S&P), 2001.

[99] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “AVClass: A
Tool for Massive Malware Labeling,” in Proc. of the International
Symposium on Research in Attacks, Intrusions and Defenses (RAID),
2016.

[100] A. A. Selçuk, F. Orhan, and B. Batur, “Undecidable Problems in
Malware Analysis,” in Proc. of the International Conference for
Internet Technology and Secured Transactions (ICITST), 2017.

[101] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer, “Detection of
Malicious Code by Applying Machine Learning Classifiers on Static
Features: A State-of-the-art Survey,” Information Security Technical
Report, vol. 14, no. 1, 2009.

[102] M. Z. Shafiq, S. Tabish, and M. Farooq, “PE-Probe: Leveraging Packer
Detection and Structural Information to Detect Malicious Portable
Executables,” in Proc. of the Virus Bulletin Conference (VB), 2009.

[103] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “PE-Miner:
Mining Structural Information to Detect Malicious Executables in
Realtime,” in Proceedings of International Symposium on Recent
Advances in Intrusion Detection (RAID), 2009.

[104] M. Siddiqui, M. C. Wang, and J. Lee, “Detecting internet worms
using data mining techniques,” Journal of Systemics, Cybernetics and
Informatics, vol. 6, no. 6, pp. 48–53, 2009.

[105] Skylightcyber, “Cylance, I Kill You!” https://skylightcyber.com/2019/
07/18/cylance-i-kill-you/, July 2019.

[106] L. Sun, “Reform: A framework for malware packer analysis using
information theory and statistical methods,” 2010.

[107] R. Tian, L. Batten, R. Islam, and S. Versteeg, “An automated clas-
sification system based on the strings of trojan and virus families,”
in Malicious and Unwanted Software (MALWARE), 2009 4th Interna-
tional Conference on. IEEE, 2009, pp. 23–30.

[108] R. Tian, L. M. Batten, and S. Versteeg, “Function length as a tool for
malware classification,” in Malicious and Unwanted Software, 2008.
MALWARE 2008. 3rd International Conference on. IEEE, 2008.

[109] S. Treadwell and M. Zhou, “A Heuristic Approach for Detection of
Obfuscated Malware,” in Proc. of the IEEE International Conference
on Intelligence and Security Informatics (ISI), 2009.

[110] X. Ugarte Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “SoK:
Deep Packer Inspection: A Longitudinal Study of the Complexity of
Run-Time Packers,” in Proc. of the IEEE Symposium on Security and
Privacy (S&P), 2015.

[111] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas,
“RAMBO: Run-Time Packer Analysis with Multiple Branch Obser-
vation,” in Proc. of the Conference on Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), 2016.

[112] X. Ugarte-Pedrero, I. Santos, B. Sanz, C. Laorden, and P. G. Bringas,
“Countering entropy measure attacks on packed software detection,”
in Consumer Communications and Networking Conference (CCNC),
2012 IEEE. IEEE, 2012, pp. 164–168.

[113] VirusTotal, “Av comparative analyses,” https://blog.virustotal.com/
2012/08/av-comparative-analyses-marketing-and.html, (Accessed:
2019-3-31).

[114] ——, “File statistics,” https://www.virustotal.com/en/statistics/, (Ac-
cessed: 2018-11-26).

[115] G. Webster, B. Kolosnjaji, C. von Pentz, Z. Hanif, J. Kirsch, A. Zarras,
and C. Eckert, “Finding the Needle: A Study of the PE32 Rich
Header and Respective Malware Triage,” in Proc. of the Conference
on Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2017.

[116] C. Wressnegger, K. Freeman, F. Yamaguchi, and K. Rieck, “Automati-
cally Inferring Malware Signatures for Anti-Virus Assisted Attacks,” in
Proc. of the ACM Asia Conference on Computer and Communications
Security (ASIACCS), 2017.

[117] L.-K. Yan, M. Jayachandra, M. Zhang, and H. Yin, “V2e: combining
hardware virtualization and softwareemulation for transparent and
extensible malware analysis,” ACM Sigplan Notices, vol. 47, no. 7,
pp. 227–238, 2012.

[118] B. Zhang, J. Yin, J. Hao, D. Zhang, and S. Wang, “Malicious codes
detection based on ensemble learning,” in International Conference on
Autonomic and Trusted Computing. Springer, 2007, pp. 468–477.

[119] M. Zheng, P. P. C. Lee, and J. C. S. Lui, “ADAM: An Automatic
and Extensible Platform to Stress Test Android Anti-virus Systems,”
in Proc. of the Conference on Detection of Intrusions and Malware &
Vulnerability Assessment (DIMVA), 2013.

APPENDIX A
PACKING DETECTION AND AUTOMATED UNPACKING

Packing detection and packer identification. Detection of
packed software is known to be a challenging task [5, 59, 102].
Packer identification tools [30, 60, 74, 87] use signatures to
determine if a program is obfuscated with a particular packer.

16

Lyda et al. [59] and Jacob et al. [44] apply entropy analysis
techniques to a binary, assuming that a packed binary has a
high entropy. Sun et al. [106] proposed a different method for
randomness analysis that generates a randomness profile for a
packed executable to identify the packer employed to protect
the program. A similar work generates alternative randomness
profiles by combining byte histograms with entropy analysis
to mitigate common attacks against entropy analysis [112].
Other approaches leverage static features of PE headers and
sections [5, 15, 109], also with the use of machine learning
classifiers [37, 76, 77, 95, 102]. However, the problem of
distinguishing between packed and unpacked executables is
undecidable in general [91], although recent work raised hopes
that this problem could be tractable under certain space and
time constraints [11].

Automated unpacking. There have been many attempts at
unpacking executables in order to extract the original payload
for analysis [9, 23, 38, 47, 61, 77, 91, 111]. OmniUnpack [61]
scans the memory for the presence of malware at every
memory write. PolyUnpack [91] first uses static analysis
to acquire a static model of the executable code. Then, it
executes the binary in an isolated environment and compares
the execution context with the static code model. Coogan
et al. [21] exploit alias analysis, static slicing, and control-
flow analysis to statically construct a customized unpacker
for the executable, which can be executed later to obtain
the unpacked code. Similarly, Debray et al. [23] use offline
analysis of a dynamic instruction trace to automate the creation
of custom unpacking routines. Renovo [47] works under the
assumption that the entire unpacked binary resides in mem-
ory at a certain time. Bonfante et al. [9] take a sequence
of memory snapshots to extract instructions of the original
program that are executed. Haq et al. [38] augment this
approach by taking differential memory snapshots to minimize
noise. Polino et al. [78] study common ways used by malware
to evade Dynamic Binary Instrumentation (DBI) and present
an anti-DBI resistant unpacker. Ugarte et al. [111] proposed
domain-specific customized multi-path exploration techniques
to trigger the unpacking of all code regions. More recently,
Cheng et al. [13] proposed BinUnpack which works under the
assumption that the reconstruction of the Import Address Table
finishes ahead of the jump to the original entry point.

APPENDIX B
MACHINE LEARNING FOR STATIC MALWARE ANALYSIS

In this section, we discuss how machine learning is being
adopted by the anti-malware community to statically analyze
malware. We reviewed a wide range of static malware analysis
approaches based on machine learning [2, 7, 28, 39, 44, 49,
51, 52, 53, 54, 56, 62, 63, 68, 70, 80, 81, 82, 86, 93, 94, 96,
97, 98, 102, 103, 104, 107, 108, 118].

One of the first papers that proposed to use machine
learning for malware detection was presented by Schultz et
al. [98]. The authors used three different feature categories,
byte n-grams, (printable) strings, and DLL imports to examine
three different classifiers, a Naı̈ve Bayes classifier [31], a
Multi-Naı̈ve Bayes classifier, and an inductive ruler learner
(i.e., RIPPER [20]). Later, Masud et al. [62] used byte n-grams,
assembly instructions, and DLL function calls to train different
types of classifiers.

Byte n-gram features are one of the most common features
used in static malware detection [68, 82, 101]. Abou-Assaleh
et al. [2] used the L most frequent n-grams observed in
the training set (20 ≤ L ≤ 5000) to create a profile for
each sample, and assign each new sample to a particular
class using a nearest neighbor classifier. Kolter et al. [52, 53]
extracted 500 n-grams features with the highest information
gain and trained several classifiers. Zhang et al. [118] also used
information gain measures to select the top n-grams, followed
by a probabilistic neural network. Henchiry et al. [39] proposed
a hierarchical feature selection that considers only those n-
grams that appear above a certain threshold in a malware
family, as well as in more than a minimum number of malware
families. Jacob et al. [44] used bigram distributions to detect
similar malware without executing them, to mitigate analyzing
duplicate malware. They used a packer detector based on
different heuristics, such as code entropy, that automatically
configures the distance sensitivity based on the type of packing
used. Other related work [70] visualizes executables as gray-
scale images by treating bytes as gray-scale pixel values and
borrows image processing techniques to build a K-nearest
neighbor classifier. Similar to byte n-grams, opcode n-grams
have been used for malware detection [68, 93, 101]. Karim
et al. [49] tokenized the input programs into sequences of
opcodes to track malware evolution. Bilar et al. [7] leveraged
statistical differences between the opcode frequency distribu-
tion of malware and benign software to detect malicious code.

Related work focused on other types of features extracted
from the program disassembly. Menahem et al. [63] augmented
byte n-grams and PE header fields using attributes extracted
from functions in the disassembled program. Kong et al. [54]
constructed a function call graph and applied discriminant
distance metric learning to cluster malware. Tian et al. [108]
used the function length along with its frequency to classify
Trojans. Siddiqui et al. [104] used variable length instruction
sequences followed by tree-based classifiers to detect worms.
Sathyanarayan et al. [96] used API calls to obtain a signature
for each malware family. Although features from the program
disassembly are used widely in capturing malware signatures,
they are not always obtainable, as some executables cannot be
disassembled properly [101].

While many approaches focused on the binary code of
the program, some work has considered other parts of the
executables, such as PE headers. Shafiq et al. [103] proposed
PE-Miner, which uses 189 features from only PE headers
followed by a decision tree classifier. To diminish the bias
of PE-Miner in detecting packed executables, they introduced
PE-Probe [102], in which a multi-layer perceptron classifier
uses heuristics studied by Perdisci et al. [76] to detect packed
executables. Based on the outcome, the executable is analyzed
by two separate specialized structural models. They compared
the distribution of each feature for packed and unpacked exe-
cutables to identify those that are robust to packing (although
they did not report these features). Elovici et al. [28] used
Bayesian networks [72], decision trees, and artificial neural
networks [8] to create five different classifiers based on byte n-
grams and PE headers fields. Webster et al. [115] demonstrated
how the contents of the Rich Header fields in PE files can
help to detect different versions of malware. Saxe et al. [97]
applied a deep neural network with two hidden layers using a
histogram of byte entropy values, DLL imports, and numerical

17

TABLE X: Summary of the packing detection tools used to
build wild dataset.

Tool Benign Malicious
packed unpacked packed unpacked

(1) vendor’s sandbox 10,463 16,162 26,699 15,095
(2) dpi 6,049 20,576 27,995 13,799
(3) Manalyze 1,239 17,436 5,376 19,457
(4) PEiD+F-Prot 1,189 25,436 2,630 39,164
(5) yara 1,524 25,101 3,882 37,912
(6) Exeinfo PE 1,088 25,537 5,770 36,024

(1)+(2)+(3)+(4)+(5)+(6) 12,647 4,396 33,681 5,752

TABLE XI: Packer complexity in the wild dataset.
Type Benign Malicious All

Type I 708 (11.70%) 660 (2.36%) 1,368 (4.02%)
Type II 19 (0.31%) 2,069 (7.39%) 2,088 (6.13%)
Type III 5,321 (87.96%) 25,111 (89.70%) 30,432 (89.39%)
Type IV 0 (0.00%) 151 (0.54%) 151 (0.44%)
Type V 1 (0.01%) 3 (0.01%) 4 (0.01%)
Type VI 0 (0.00%) 1 (0.00%) 1 (0.00%)

PE fields as features. Li et al. [56] applied a combination of
a recurrent neural network (RNN) model and an SVM on
top of features extracted from PE headers and sections. To
avoid explicit feature extraction, Raff et al. [81] proposed using
a Long Short-Term Memory (LSTM [40]) network on raw
byte sequences obtained from only PE headers. In particular,
they considered only MS-DOS, COFF, and Optional headers.
MalConv [80] extends this work by training convolutional
neural networks on the entire body of executables.

TABLE XIV: Experiment “wild vs. packers” - MalConv
Packer FPR (%) FNR (%) F-1

PELock 65.40% 17.98% 0.68
PECompact 98.81% 0.98% 0.67
Obsidium 91.35% 5.64% 0.67
Petite 93.70% 1.67% 0.67
tElock 96.03% 2.06% 0.67
Themida 92.34% 5.27% 0.66
MPRESS 97.53% 0.59% 0.67
kkrunchy 98.10% 0.66% 0.66
UPX 85.46% 7.59% 0.67

APPENDIX C
LAB DATASET VALIDATION

To ascertain if (re-)packed executables in the lab dataset
present their original behavior during execution, we analyze
each sample in Cuckoo Sandbox and compare its behavior with
the original sample. For this comparison, we look at network
behavior and interaction with the file system and Windows
registry keys. We further look at APIs that are called during
the execution. Due to page limit restrictions, we explain the
details of our validation scheme in supplementary material,
which can be found at https://github.com/ucsb-seclab/
packware. In a nutshell, packing does preserve the original
behavior for more than 94.56% of samples.

APPENDIX D
RESULTS FOR ALTERNATIVE MODELS

Here, we present the results of major experiments for
two different types of classifiers, SVM and neural networks
(MalConv [80]). As we mentioned earlier, the trend is the same
as what was discussed in Section V.

TABLE XII: Packers identified by PEiD, F-Prot, Manalyze,
Exeinfo PE, and yara rules in the wild dataset.

Benign Malicious Benign Malicious

UPX 1,025 2,187 MEW 0 109
Simple Packer (dxpack) 0 2,293 EmbedPE 16 0
Armadillo 678 676 EXEStealth 0 54
MPRESS 3 955 NsPack 1 21
PECompact 49 307 PENinja 0 23
AHTeam EP Protector 0 271 Expressor 0 10
ASPack 54 202 U-Pack 0 18
PE-Armor 0 144 EXECryptor 1 10
ASProtect 14 103 pklite 10 0
VMProtect 0 61 Diminisher 4 33
FSG 0 43 Themida 0 10

TABLE XIII: Experiment “withheld packer” - MalConv
Withheld Packer FPR (%) FNR (%) Accuracy

PELock 41.70% 53.38% 52.46%
PECompact 67.37% 23.56% 54.54%
Obsidium 37.03% 44.16% 59.41%
Petite 7.44% 82.52% 55.02%
tElock 46.78% 37.82% 57.70%
Themida 30.77% 63.49% 52.88%
MPRESS 89.92% 5.88% 52.04%
kkrunchy 51.21% 43.63% 52.58%
UPX 20.05% 58.08% 60.95%

SVM. Figure 8a and Figure 8b show the false positive and
false negative rates of the SVM classifier in “different packed
ratios (wild)” and “different packed ratios (lab)”, as the packed
benign ratio increases in the training set. Table XVII and
Table XVIII demonstrate the importance of each family of
features in these two experiments. Similar to what we have
seen for the random forest classifier in “wild vs. packers”, but
to less extent, training the classifier using only the Rich Header
features helps the classifier to achieve better performance (Ta-
ble XVI) against packers that preserve this header. Table XV
also shows that the classifier fails to generalize to previously
unseen packing routines.

Neural Network. We used the architecture proposed by [80],
i.e., MalConv. Following extensive hyperparameter tuning, we
achieved the same or better performance on the validation
set in most experiments. It should be noted that a dataset of
400,000 samples was used to train MalConv. 2 However, in this
work, we used datasets with 20-30 times smaller size across all
experiments. As we discussed earlier, the nature of this work
requires us to label the samples (i.e., benign/malicious and
packed/unpacked) based on their dynamic behavior. Unfortu-
nately, such a requirement makes it extremely hard to build
huge datasets. For this reason, we did not achieve the highest
performance reported for MalConv for some experiments.
Also, as acknowledged by the authors, tuned hyperparame-
ters of MalConv will depend on the distribution of samples.
In experiments where we have different datasets, especially
Experiment “different packed ratios (lab)”, MalConv did not
achieve its highest performance. In all experiments, similar to
the original work, we trained the neural network for 10 epochs,
which was enough for convergence. Figure 9 shows the results
of “different packed ratios (wild)” and “different packed ratios
(lab)”. Table XIII also shows that the classifier performs poorly
against previously unseen packers. Table XIV shows a similar
trend for MalConv in Experiment “wild vs. packers”.

2They further used a dataset of 2 million samples to show that MalConv
has the capacity to perform better if it is trained on more data.

18

TABLE XV: Experiment “withheld packer” - SVM
Withheld All features NO byte n-grams
Packer FPR (%) FNR (%) F-1 FPR (%) FNR (%) F-1

PELock 61.32% 3.46% 0.75 49.88% 3.10% 0.79
PECompact 35.90% 4.90% 0.82 51.81% 8.0% 0.75
Obsidium 49.67% 1.07% 0.79 62.02% 3.04% 0.75
Petite 21.39% 0.87% 0.90 18.17% 4.20% 0.90
tElock 68.07% 1.34% 0.74 84.65% 1.62% 0.69
Themida 9.89% 9.28% 0.91 10.74% 50.39% 0.62
MPRESS 12.17% 6.83% 0.91 19.44% 4.09% 0.89
kkrunchy 59.32% 0.0% 0.77 56.07% 4.57% 0.76
UPX 7.39% 11.02% 0.91 10.64 14.74% 0.87

TABLE XVI: Experiment “wild vs. packers” - SVM

Packer All features Rich Header (only)
FPR (%) FNR (%) F-1 FPR (%) FNR (%) F-1

PELock 99.39% 0.77% 0.66 99.72% 0.0% 0.67
PECompact 62.56% 4.37% 0.76 45.14% 11.96% 0.75
Obsidium 67.99% 9.38% 0.69 100.0% 0.0%% 0.67
Petite 76.86% 0.69% 0.71 26.95% 13.08% 0.81
tElock 91.08% 0.53% 0.68 68.87% 11.96% 0.69
Themida 98.64% 0.29% 0.67 30.61% 10.88% 0.81
MPRESS 95.05% 0.25% 0.67 100.0% 0.0% 0.67
kkrunchy 99.30% 0.1% 0.67 100.0% 0.0% 0.67
UPX 41.55% 3.27% 0.83 43.04% 10.45% 0.77

0% 25% 50% 75% 100%
Packed benign ratio (training)

0%

25%

50%

75%

100%
FP Rate
FP Rate (packed)
FN Rate

(a) wild dataset

0% 25% 50% 75% 100%0%

25%

50%

75%

100%

(b) lab dataset

Fig. 8: Experiment “different packed ratios” - SVM

0% 25% 50% 75% 100%
Packed benign ratio (training)

0%

25%

50%

75%

100%
FP Rate
FP Rate (packed)
FN Rate

(a) wild dataset

0% 25% 50% 75% 100%0%

25%

50%

75%

100%

(b) lab dataset

Fig. 9: Experiment “different packed ratios” - MalConv

TABLE XVII: Experiment “different packed ratios (wild).”
PB Training Set # Features used by the classifier (Top 50)

Ratio #B (packed) #B (unpacked) #M import dll rich sections header strings byte n-grams opcode n-grams generic all

.0 0 3,077 3,077 26 (3) 1 (1) 20 (0) 46 (2) 5 (0) 104 (29) 120 (14) 0 (0) 1 (1) 323 (50)

.2 615 2,462 3,077 24 (4) 3 (0) 23 (0) 60 (3) 6 (1) 130 (28) 192 (14) 0 (0) 1 (0) 439 (50)

.4 1,231 1,846 3,077 33 (3) 5 (1) 22 (0) 57 (4) 4 (0) 140 (30) 209 (12) 0 (0) 1 (0) 471 (50)

.6 1,846 1,231 3,077 29 (3) 3 (1) 21 (0) 64 (5) 3 (0) 132 (30) 187 (11) 0 (0) 1 (0) 440 (50)

.8 2,462 615 3,077 25 (2) 3 (1) 23 (0) 57 (5) 4 (0) 121 (29) 201 (13) 0 (0) 1 (0) 435 (50)
1. 3,077 0 3,077 20 (5) 4 (1) 20 (0) 60 (3) 3 (0) 116 (26) 187 (15) 0 (0) 1 (0) 411 (50)

TABLE XVIII: Experiment “different packed ratios (lab)” - SVM
PB Training Set # Features used by the classifier (Top 50)

Ratio #B (packed) #B (unpacked) #M import dll rich sections header strings byte n-grams opcode n-grams generic all

.0 0 3,077 3,077 0 (0) 0 (8) 14 (14) 24 (24) 3 (3) 0 (0) 0 (0) 0 (0) 1 (1) 42 (50)

.2 615 2,462 3,077 3 (0) 4 (1) 20 (0) 49 (2) 9 (0) 113 (15) 179 (32) 1 (0) 0 (0) 378 (50)

.4 1,231 1,846 3,077 6 (1) 7 (1) 18 (0) 56 (2) 11 (0) 199 (28) 247 (17) 2 (1) 0 (0) 546 (50)

.6 1,846 1,231 3,077 7 (2) 7 (0) 22 (0) 58 (1) 9 (0) 236 (39) 386 (7) 3 (1) 0 (0) 728 (50)

.8 2,462 615 3,077 10 (1) 9 (0) 20 (0) 61 (1) 11 (0) 257 (36) 395 (12) 3 (0) 0 (0) 766 (50)
1. 3,077 0 3,077 14 (0) 10 (0) 22 (0) 58 (0) 11 (0) 281 (38) 405 (12) 2 (0) 0 (0) 803 (50)

TABLE XIX: The parameters of the random forest classifier used in the experiments.

Parameter Value

of trees 50
The maximum depth of each tree Infinity (Nodes are expanded until leafs)
The minimum number of samples required to split an internal node 2
The minimum number of samples required to be at a leaf node 1
The number of features to consider when looking for the best split

√
features

Bootstrap: whether bootstrap samples are used when building trees True
The function to measure the quality of a split Gini Impurity

100 101 102 103

Number of files containing each 6-gram

101

102

103

104

105

106

107

108

109

(a) The CCDF of number of 6-
grams occurring in x files.

.0 .0116 .02 .04 .06 .08 .1
Information Gain of each byte n-gram

0

25000

50000

75000

100000

125000

150000

175000

200000

(b) The CCDF of number of 6-
grams with IG value of y.

100 101 102 103 104 105

Number of files containing each opcode n-gram (LOG)

100

101

102

103

104

105

106

107

(c) The CCDF of number of
opcode n-grams occurring in x
files.

.0 .01 .0227 .03 .04 .05 .06
Information Gain of each opcode n-gram

0

10000

20000

30000

40000

50000

(d) The CCDF of number of op-
code n-grams with IG value of y.

Fig. 10: Opcode and byte n-grams distributions.

19

TABLE XX: Features extracted from PE headers.

Name Source Description

header ImageBase Opt. header The address of the memory mapped location of the file
header AddressOfEntryPoint Opt. header The address where the loader will begin execution
header SizeOfImage Opt. header The size (in bytes) of the image in memory
header SizeOfCode Opt. header The size of the code section
header BaseOfCode Opt. header The address of the first byte of the entry point section
header SizeOfInitializedData Opt. header The size of the initialized data section/s
header SizeOfUninitializedData Opt. header The size of the uninitialized data section/s
header BaseOfData Opt. header The address of the first byte of the data section
header SizeOfHeaders Opt. header The combined size of the MS-DOS stub, PE headers, and section headers
header SectionAlignment Opt. header The alignment of sections loaded in memory
header FileAlignment Opt. header The alignment of the raw data of sections
header NumberOfSections COFF. header The number of sections
header SizeOfOptionalHeader COFF. header The size of the optional header

header characteristics bitX COFF. header The corresponding flag to bit X is set for the executable or not

TABLE XXI: Features extracted per each section of the PE file (“features per section”). ‘id’ is the section number. For example,
feature PESECTION 10 NAME represents the name of the 10th section of the executables if present, otherwise none.

Name Description

pesection id name The section name
pesection id size The section size
pesection id rawAddress The address in the file
pesection id virtualSize The total size when loaded into memory
pesection id entropy The entropy of the section
pesection id numberOfRelocations The number of relocation entries
pesection id pointerToRelocations The address of the first byte of the relocation entries in file

pesection id characteristics bitX The corresponding flag to bit X is set for the section or not

TABLE XXII: Each row shows the number (percentage) of benign and malicious samples per packer that import the API.

API Import Obsidium Petite UPX MPRESS PELock PECompact
#B #M #B #M #B #M #B #M #B #M #B #M

RegCloseKey 2730
(16.12%)

16,675
(52.95%)

1,870
(13.71%)

2,443
(9.45%)

2,928
(29.46%)

3,276
(15.89%)

1,770
(16.03%)

1,809
(15.74%)

230
(3.34%)

321
(3.79%)

190
(3.39%)

447
(1.58%)

InitCommonControls 637
(3.76%)

152
(0.48%)

13 (0.1%) 128
(0.5%)

509
(5.12%)

61 (0.3%) 240
(2.17%)

59
(0.51%)

85
(1.24%)

34
(0.4%)

270
(4.81%)

44
(0.16%)

RegQueryValueA 479
(2.83%)

31 (0.1%) 435
(3.19%)

4 (0.02%) 428
(4.31%)

3 (0.01%) 395
(3.58%)

0 (0.0%) 269
(3.91%)

7
(0.08%)

14
(0.25%)

15
(0.05%)

MessageBoxA 1,075
(6.35%)

2,218
(7.04%)

13,628
(99.93%)

25,473
(98.51%)

95
(0.96%)

398
(1.93%)

246
(2.23%)

386
(3.36%)

91
(1.32%)

191
(2.25%)

226
(4.03%)

83
(0.29%)

ShellExecuteA 0 (0.0%) 0 (0.0%) 1,066
(7.82%)

2,542
(9.83%)

1,173
(11.8%)

2,416
(11.72%)

926
(8.39%)

690
(6.0%)

372
(5.41%)

329
(3.88%)

105
(1.87%)

564
(1.99%)

SysFreeString 0 (0.0%) 0 (0.0%) 205
(1.5%)

205
(0.79%)

541
(5.44%)

584
(2.83%)

408
(3.7%)

687
(5.98%)

148
(2.15%)

452
(5.33%)

484
(8.63%)

1,718
(6.06%)

FreeSid 107
(0.63%)

1,490
(4.73%)

1,210
(8.87%)

2,172
(8.4%)

1,047
(10.54%)

2,189
(10.62%)

673
(6.1%)

524
(4.56%)

87
(1.26%)

49
(0.58%)

31
(0.55%)

45
(0.16%)

wsprintfA 174
(1.03%)

1,574
(5.0%)

13,628
(99.93%)

25,473
(98.51%)

118
(1.19%)

622
(3.02%)

91
(0.82%)

581
(5.05%)

56
(0.81%)

269
(3.17%)

9 (0.16%) 13
(0.05%)

InitCommonControlsEx 803
(4.74%)

455
(1.44%)

216
(1.58%)

383
(1.48%)

316
(3.18%)

349
(1.69%)

192
(1.74%)

159
(1.38%)

101
(1.47%)

86
(1.01%)

218
(3.89%)

62
(0.22%)

GetDC 792
(4.68%)

635
(2.02%)

0 (0.0%) 0 (0.0%) 3,357
(33.78%)

3,160
(15.32%)

1,811
(16.4%)

1,554
(13.52%)

51
(0.74%)

151
(1.78%)

220
(3.92%)

369
(1.3%)

Samples 16,940 31,492 13,638 25,857 9,938 20,620 11,041 11,494 6,879 8,474 5,610 28,346

20

