
UISCOPE: Accurate, Instrumentation-free, and
Visible Attack Investigation for GUI Applications

Runqing Yang †, Shiqing Ma ‡, Haitao Xu §, Xiangyu Zhang ¶, Yan Chen £

† Zhejiang University, ‡ Rutgers University, § Arizona State University,
¶ Purdue University, £ Northwestern University

†rainkin1993@zju.edu.cn, ‡shiqing.ma@rutgers.edu, §hxu@asu.edu,
¶xyzhang@cs.purdue.edu, £ychen@northwestern.edu

Abstract—Existing attack investigation solutions for GUI ap-
plications suffer from a few limitations such as inaccuracy
(because of the dependence explosion problem), requiring in-
strumentation, and providing very low visibility. Such limitations
have hindered their widespread and practical deployment. In this
paper, we present UISCOPE, a novel accurate, instrumentation-
free, and visible attack investigation system for GUI applications.
The core idea of UISCOPE is to perform causality analysis on
both UI elements/events which represent users’ perspective and
low-level system events which provide detailed information of
what happens under the hood, and then correlate system events
with UI events to provide high accuracy and visibility. Long
running processes are partitioned to individual UI transitions, to
which low-level system events are attributed, making the results
accurate. The produced graphs contain (causally related) UI
elements with which users are very familiar, making them easily
accessible. We deployed UISCOPE on 7 machines for a week,
and also utilized UISCOPE to conduct an investigation of 6 real-
world attacks. Our evaluation shows that compared to existing
works, UISCOPE introduces neglibible overhead (less than 1%
runtime overhead and 3.05 MB event logs per hour on average)
while UISCOPE can precisely identify attack provenance while
offering users thorough visibility into the attack context.

I. INTRODUCTION

When security alerts are raised, a swift attack investigation
should be conducted to determine the cause and scope of
the attack so that the impact of the attack can be minimized
and such attacks in the future can be prevented. Provenance
tracking and causality analysis is an important technique for
efficient attack investigation. Starting from a compromised sys-
tem entity (e.g., file, socket, or process), investigators perform
causality analysis on the collected provenance to figure out:
1) the root or origin of the entity, i.e., all the external entities
(e.g., a socket connection) affecting the target entity, and 2)
the causal path from the root to the entity. Such analysis
facilitates identifying attack root cause, assessing damage
incurred, and developing countermeasures. GUI applications
(e.g., browsers), one of the most popular attack vectors [7],
typically cause substantial accuracy degradation of causality
analysis as they may run for a long time and process many

independent tasks. In this paper, we hence focus on GUI
applications.

System event (e.g., system calls) auditing is a built-in
feature in mainstream operating systems and can be used for
such investigation. Existing work [41], [28], [25], [30], [45],
[52], [42], [37] has demonstrated their great potential, but they
suffer from a few major limitations.

1) Inaccurate analysis results. In many causality anal-
ysis, when a long-running process interacts with many input
and output objects, each output object will be conservatively
considered causally dependent on all the preceding input
objects. This is known as the dependency explosion problem.
Such problems lead to significantly inaccurate analysis results
when there are long-running processes involved and makes the
investigation impossible to move forward.

2) Requiring instrumentation on end-user systems.
Some approaches try to solve the dependency explosion prob-
lem using instrumentation on source code or binary. How-
ever, instrumentation is generally not practical and prohibited
in real-world production environments. Firstly, most COTS
software only provides executable binaries and do not pro-
vide source code. Secondly, intrusive modification of binary
code can make applications and operating system unstable.
Even more, it can introduce new vulnerabilities which can
be leveraged by malware [11], [9], [2]. As such, Microsoft
integrated the Kernel Patch Protection (KPP) into Windows
to prevent patching the kernel [8]. Thirdly, the party which
instruments COTS executables or operating systems has to
take full responsibility for all potential accidents, no matter
whether the accidents are caused by instrumentation or not.
Hence instrumentation is mostly prohibited in the enterprise
environment.

3) Lack of visibility. Human-perceivable attack investi-
gation report is largely preferred and would greatly facilitate
security experts to understand attacks and take necessary
remedies. Some existing non-instrumentation studies employ
statistical analysis [29], [41] (e.g., only considering causal
edges that rarely happened in the past) to guide causal de-
pendency graph pruning to address the inaccuracy in causality
analysis. However, they just provide system level information
(e.g., process id, file name) and cannot fully recover what
happened from the user’s perspective, which plays a vital role
in the forensic analysis [53].

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24329
www.ndss-symposium.org



Our solution. We propose UISCOPE, a novel accurate and
instrumentation-free attack investigation system which pro-
vides meaningful contextual information to enhance the vis-
ibility of forensics analysis. The basic idea of UISCOPE is
to combine low-level causality analysis with high-level UI
elements and events analysis to grain the advantages of both.
On one hand, we leverage detailed low-level system events
to fully recover what actually happens in the system. On the
other hand, we attribute the system events to high-level UI
elements and UI events to provide better visibility for attack
forensics and solve the dependence explosion problem (i.e.,
attributing system events to individual UI elements instead of
a single long-running process to avoid dependency explosion).
By instrumentation-free, we mean that UISCOPE leverages
existing built-in event logging system and does not require
extra instrumentation on the end user systems.

In UISCOPE, there are two types of event collectors: the UI
elements and events collector and the system events collector.
For the UI elements and events collector, we leverage the
accessibility service shipped with major operating systems,
and for the system event collector, we leverage built-in audit
systems such as Event Tracing for Windows (ETW). These
systems are provided by OS vendors and thus usually have
very low runtime and storage overhead. As such, we avoid
instrumenting end user systems.

After collecting all UI events and system events, UISCOPE
performs causality analysis on UI elements and events (through
the UI event analyzer) as well as system events (the system
event analyzer) to generate causal graphs for both types of
logs. We devise an additional correlation analyzer, which
correlates UI events and system events based on timestamp
alignment and resource attribution (e.g., attributing background
file accesses to the UI operation where the file resource
was initialized). The details of the corresponding algorithm
describing how UISCOPE deals with software background ac-
tivities are presented in Section III-F2. Through the correlation
algorithm, we partition a long-running process into individual
UI transitions, making the result more accurate. Also, the final
graph represents information in a way closely coupled with
UI interactions which users are very familiar with, allowing to
reconstruct the attack story from user’s perspective and provide
high visibility.

We deployed UISCOPE on 7 machines for a week and
utilized UISCOPE to conduct investigation of 6 real-world
attacks. Our evaluation shows that UISCOPE can not only
accurately identify the attack path but also provide fine-
grained human-comprehensible contextual semantics to users.
In addition, compared to existing works, UISCOPE introduces
negligible extra runtime overhead (less than 1%) and extra
space overhead (3.05 MB event logs per hour on average).
UISCOPE does not require any end system change or instru-
mentation and can be deployed as an add-on to any existing
threat detection system in production environments.

In summary, we make the following contributions:

• We identify a few limitations of existing attack forensics
techniques in practice and propose a novel accurate and
instrumentation-free attack investigation system, UISCOPE,
which also provides high visibility in attack forensics. It
leverages both UI information in the user space and system

events in the kernel space to achieve our aforementioned
design goals.

• We devise a novel UI event analyzer which analyzes UI
events causality, and a correlation analyzer which correlates
UI events with system events to produce accurate and highly
visible causal graphs.

• Based on our design, we build a prototype on Windows
and evaluate on 7 machines and 6 real-world attacks. Results
show that compared to existing works, UISCOPE introduces
negligible extra runtime overhead (less than 1%) and extra
space overhead (3.05 MB event logs per hour on average)
while provides more accurate and highly visible attack
forensics.

II. MOTIVATION

A. Motivating Example

One day, an office clerk Bob tried to download a piece
of software (WinSCP.exe) from a website benign.com.
While waiting for the download to complete, he received an
email informing that he had been selected as a winner for
an iPad and asking him to claim the award on a website. It
was actually a phishing email leading to a malicious website.
The website uses the WordPress free host service and uses
the domain name well-known.wordpress.com. It also
leverages login detection techniques [10] to test if the user
has logged into any well-known bank website. In our attack
story, Bob happened to login www.bank.com to manage
his company’s bank account. Hence, the malicious website
launched a clickjacking attack [5] by creating a transparent
frame containing a transfer form with the receiver being the
attacker’s own bank account on top of the “Get iPad” button.
Bob clicked the “Get iPad” button, which actually triggered a
transfer from his bank account to the attack’s bank account,
without being noticed by Bob.

The good news was that Bob’s company deployed protec-
tion techniques. The security system raised an abnormal trans-
fer alert. Following this alert, forensics investigation began
from the abnormal transfer socket communication, and tried
to find how/when/where this happened and investigate if Bob
was an insider attacker who stole money from the company.

B. Existing Attack Investigation Solutions

1) Low-level Events Causality Analysis: Traditional
causality analysis [34], [35] tracks the lineage of system
objects (e.g., files and sockets) and subjects (e.g., processes)
via system events (e.g., syscalls) and analyzes the causal
relations among system objects and subjects to generate causal
graphs. With such graphs, investigators can perform backward
provenance queries with the symptom (i.e., the abnormal
transfer socket) to understand the root cause of the attack or
forward provenance queries to identify the effects of the attack.

Fig. 1 (I) shows a typical dependence graph generated by
traditional causality analysis for this investigation. Note that
in this figure (and also the rest of the paper), we use diamond
nodes to denote sockets, box nodes to denote processes, and
oval nodes to denote files. Also, nodes in red represent the
symptom event(s), the events which investigation starts from.
Specifically, when investigators perform backward tracking to
find which website is related to the abnormal transfer, they

2



Congratulations！

Get iPad

http://well-known.wordpress.com

www.bank.com:443

Chrome

Ⅱ.Statistics-based works  Ⅲ. UIScope

benign.com:443

x.x.x.x:80

UI Control Dependency

System-System Dependency

UI Element

Process
Socket

File

3 AddElement

3 RemoveElement

E
Type: Button

Text: Get iPad

G
Type: Text

Text: Balance:$2,333

H
Type: Button
Text: Transfer

UI Content Dependency
UI-System Dependency

Balance: $ 2,333

Transfer

https://www.bank.com
 B

Type: Hyperlink
Text: well-known.word

press.com

A
Type: Document

Text: mail.google.com

F
Type: Document

Text: www.bank.com

well-known.wordpress.com:80
mail.google.com:443

www.bank.com:443

D
Type: Text

Text: Congratulations!

Chrome 

drive.google.com:443

benign.com:443 x.x.x.x:80 mail.google.com:443

Ⅰ. Traditional causality analysis
well-known.wordpress.com:80

www.bank.com:443y.y.y.y:80

Attack-unrelated Events (FP)

well-known.wordpress.com:80

Missed Event (FN)

C
Type: Document

Text: well-known.word
press.com

Fig. 1. Comparison between existing causality analysis solutions and our UISCOPE on the motivating example.

would be substantially distracted, because Chrome is a long
running process and could have been used to visit hundreds of
websites during an attack window (e.g., mail.google.com,
benign.com, drive.google.com and many other sites
in the figure), and thus the suspicious file is conservatively
related to hundreds of preceding websites. This is known as
the dependence explosion problem, which makes any further
tracking attempt nearly impossible. This is a major limitation
of traditional causality analysis.

Many previous works tried to address this problem via
program analysis [37], [44], [45], [36]. Some of them require
source code or binary level instrumentation [37], [44], [45],
which is intrusive and not practical in enterprise environments,
as discussed in Section I. Taint analysis [32], [51], [33]
is another way to solve the dependency explosion problem.
However, it causes tremendous runtime and space overhead,
which makes it rarely used in production environments.

2) Statistics-based Graph Pruning: Observed that most
attack-related events are abnormal and rarely occur in historical
event logs of an enterprise network, PrioTracker [41] and
NoDoze [29] proposed statistics-based attack investigation
approaches to prioritize abnormal events and causal depen-
dencies. They introduce quantitative metrics (i.e., frequency
and topological features) to distinguish normal and abnormal
events and present a pruned causal graph to investigators. Pri-
oTracker only considers the abnormality of individual events
while NoDoze takes the abnormality of event chains into con-
sideration and thus can generate more precise causal graphs.

Fig. 1 (II) presents the causal graph generated by NoDoze
for the investigation, which is more concise than the graph
generated by traditional techniques (Fig. 1 (I)). However,
NoDoze cannot accurately locate the IP address which is the
real source of the abnormal transfer. As shown, NoDoze traces

back to two benign sockets, benign.com and x.x.x.x.
The reason is that visiting well-known.wordpress.com
which is hosted by WordPress is a common and normal
behavior (because WordPress is one of the largest blog host
websites) while benign.com:80 and x.x.x.x:80 are
rarely visited websites and thus deemed abnormal instead. As
such, statistics based approach may produce unstable results.
In other words, the qualify of the results heavily depends on
the dataset used to calculate the observed distribution (e.g.,
which website gets more visits).

C. Problem Statement and UISCOPE

As discussed in the previous section, many low-level
event causality analysis based approaches are not applicable
in real world systems as they may suffer from the depen-
dence explosion problem, causes heavy runtime overhead or
requires instrumentation. Statistics based graph pruning has
difficulty handling attacks leveraging popular (and benign)
applications and/or websites. Furthermore, graphs generated
by both approaches lack the user understandable high-level se-
mantic information. Fig. 1 (II) shows a simplified causal graph
generated by NoDoze (Note that using traditional low-level
events causality analysis will introduce too many irrelevant
sockets and we preclude it from our discussion). With such
graphs, even if NoDoze may find the real malicious socket
well-known.wordpress.com:80 by tuning thresholds
or using high quality data to calculate the observed distribution,
it still cannot provide sufficient information to answer the
key question in the investigation: is Bob an insider (i.e., did
he intentionally initialize the transfer) or an victim of social
engineering (e.g., fooled by clickjacking)? Without knowing
more contextual information, it is impossible to answer this
type of questions.

3



UI Event
Analyzer

System Event
Analyzer

Correlation
Analyzer

System Events

UI Elements and Events
Event Analyzer

UI Element
and Event
Collector

System Event
Collector

Event Collector

Fig. 2. UISCOPE System Architecture.

The aforementioned limitations motivate the following de-
sign goals for our own system:

• Accurate: It should produce accurate investigation results,
i.e., low false positive and false negative rates.

• Applicable: It requires NO extra end system change and
causes low overhead so that it is deployable in an enterprise
environment.

• Visible: Its output should be visible to human investigators
so that they can easily understand what happened with the
application level context information. Visibility plays a vital
role in the forensic analysis [53].

As far as we know, existing approaches cannot achieve all
the three goals. Therefore, we propose a novel investigation
system, UISCOPE, which combines low-level event causality
analysis with high-level user interface (UI) elements/events
analysis to achieve a balance of all the aforementioned goals.
That is, UISCOPE can achieve high attribution accuracy and
high visibility for GUI applications while incurring trivial over-
head and requiring no instrumentation. UISCOPE is orthogonal
to existing non-instrumentation techniques (e.g., probabilistic
solutions [41], [29]). While the detailed design will be dis-
cussed in Section III, Fig. 1 (III) shows the UISCOPE graph
for the aforementioned investigation. In this graph, we use
the same shape and color to represent low-level system events
as before. We also introduce a new set of nodes and edges
to represent UI elements and new relations, which is defined
in Section III. Specifically, hexagons represent UI elements
and nodes with gray background denote UI elements operated
by the user. Dashed lines show the tree structure of different
UI elements pointing from the parent node to the child node,
which denotes causality as well. A dotted line represents
connection between a UI element and a system event and the
arrow is from the action initiator. A double solid line represents
connection between two UI elements and the destination is
affected by the source via some user operation. For example,
in Fig. 1 (III), hexagon H represents the Transfer button
that was actually clicked by Bob; hexagon E is the Get iPad
button which Bob intended to click, and hexagons C, D, E, F, G
are Document Object Model (DOM) elements in the same page
with the button. Bob first clicked the link in his email (node
B), which led him to a new web page (whose UI elements
rooted in C). After Bob clicking the transparent button over
the Get iPad button (node H), a socket was created and
was used to perform the unintended money transfer. The UI
element nodes in this graph tell us that in the same web page,
there were two clickable buttons in an identical position. If
we reconstruct what was seen by Bob, we can get a graph like
Fig. 1 (III), indicating that Bob was fooled by a clickjacking
attack.

Additionally, Fig. 1 (III) attributes low-level system ob-
jects (e.g., detailed socket addresses and file names) to the
corresponding high-level UI elements (i.e., web pages in this
case), that are well partitioned and denote autonomous sub-
executions. Doing so, we can accurately associate low-level
system information with individual autonomous and high-level
user actions. This avoids attributing all low-level events to the
same process, achieving low false positive/negative rates in
causality analysis, as shown by our results in Section IV-B. De-
tails of how the attribution is done including how background
events are processed will be discussed in Section III-F.

D. Threat Model

We assume that both Event Tracing for Windows (ETW)
and Accessibility libraries provided by OSes (introduced in
Section III) are trusted, and audit logs (i.e., system events
captured with ETW and UI events by Accessibility libraries)
cannot be tampered with. Attacks that can compromise these
two auditing systems are beyond the scope of this study. This
assumption is consistent with previous literature [29], [41],
[30]. In this paper, we focus on GUI-related attacks, in which
user involvement is needed to initiate/trigger an attack (e.g.,
phishing attacks, driven-by downloads and insider attacks). For
attacks which do not entail any user interactions, we apply the
same methods as previous works [29], [41], [30].

III. SYSTEM DESIGN

A. System Design Overview

The overall workflow of UISCOPE is shown in Fig. 2.
UISCOPE has two major components: the event collector and
the event analyzer. Specifically, the event collector consists
of the UI element and event collector and the system event
collector. The event analyzer contains the UI event analyzer,
the system event analyzer and the correlation analyzer.

The overarching idea of UISCOPE is to perform both UI
event causality analysis and low-level system event causality
analysis independently, and then attribute groups of low-level
system events to high-level UI event. In UISCOPE, we use
UI events to deliver visibility to investigators and solve the
dependency explosion problem in low-level causality analysis
by attributing low-level events to high-level UI elements and
events, which are well partitioned. Doing so, UISCOPE can
generate accurate (i.e., no dependence explosion problem) and
visible (i.e., through human understandable UI elements and
events) results. Moreover, we do not require instrumentation
or heavyweight runtime monitoring so that our technique is
applicable in production systems.

4



B. Event Collector

1) UI Element and Event Collector: We develop a UI
element and event collector based on Windows UI Automation
[46], to efficiently monitor interesting UI events triggered by
user interactions. Windows UI Automation is an accessibility
library developed by Microsoft. There are similar accessibility
libraries on other platforms as well including NSAccessibility
for Mac OS X [23], ATK and XAutomation for Linux [40]
and so on. Enforced by the federal IT Accessibility
Laws and Policies [27], mainstream OSes have to de-
velop these libraries to support accessibility features. With
these features, disabled people can have more control of the
user interface of electronic devices, such as 1) retrieving
information about UI elements (e.g., title of a window, name
of a button), 2) adjusting UI elements (e.g., customizing a
screen’s color, zooming in and out on a web page), and 3)
getting notification of changes to UI (e.g., website content
loaded, a hyperlink clicked). Essentially, Windows UI Automa-
tion provides UISCOPE the capability of logging UI events
triggered by any changes to UI elements.

UI Automation works by subscribing provided UI events,
and UISCOPE queries the accessibility services to get the
corresponding UI trees when a UI event happens. There are
around 100 different UI events, falling into 5 categories,
including property change, element action, structure change,
global desktop change and notification [47]. Among all these
events, three type of events, namely Focus, Invoke, and
SelectionItem_ElementSelected, are used to cap-
ture common user interactions. Specifically,
• Focus events indicate that the focus of the user shifts

from one element to another. For example, either clicking
a hyperlink or yielding a new web page would trigger a
Focus event. And at a specific time in the system, only one
element can gain focus, and only that element can receive
user inputs (e.g., via keyboard or mouse).

• Invoke events indicate when a UI element is triggered,
such as clicking a button.

• SelectionItem_ElementSelected events indicate
that an item (i.e., a group of elements) or an element is
selected, such as an email in the Outlook or a browser
tab is selected.

Besides, each UI event has a uniform format with 170
fields [48], out of which, eight fields provide wealthy semantics
helpful to understand user interactions:
• ProcessId represents the process identifier (ID) of a UI

element.
• EventType specifies the UI event type (e.g., Focus).
• ControlType specifies the type of the UI element which

triggers the event, such as a hyperlink, a document or a tab.
• ClassName is the class name of the UI element assigned

by software developers. Most of the time, ClassName
together with ControlType can determine what kind of
element triggers an event.

• RuntimeId is a unique identifier (ID) of a UI element,
used to identify the UI element which triggers an event.

• BoundingRectangle is the point coordinates of a UI
element’s enclosing rectangle. It represents the element’s
position on the screen.

• Name is the name of UI element and is usually the same
as the human-perceivable text on the screen. For example,

the hypertext of a hyperlink or the title of a web page is
often recorded in the Name field of an event.

• Text contains the hidden value of a UI element, such as
URL of a web page or a hyperlink.

Timestamp:  2019/9/2 12:34:332156

PID: 3345

InvokeEventType:
(1)

(2)
Process

ClassName: NetUISimpleButton
(3)ControlType: Button

Element Details

BoundingRectangle: {left:1262, top:232, right:1451, bottom:272}
RuntimeId: [2A.72B44.4.2A1E6340.0]

Text: N/A
Name: New Microsoft World Document.docx

B. UI TreeA. Outlook Email GUI

C. A UI event of clicking the attachment button

Fig. 3. Example of our collected UI information of the Outlook email
composition page. (A) is the Outlook GUI which was seen by users, and
(B) is the corresponding UI tree. (C) is a UI event raised by clicking the
email attachment button highlighted in green in (A) and (B).

Example. Fig. 3 (A) presents an example of our collected
UI information of the Outlook email composition page, in
which important UI elements are marked in different colored
boxes. Fig. 3 (B) shows the corresponding UI tree, and each
node in the tree denotes a UI element. Our UI element
and event collector will collect such information at runtime,
and the UI can be reconstructed (during analysis) with such
information. In Fig. 3 (C), we showcase a UI event of clicking
the attachment button. As shown in the figure, we will collect
event related information (C-1), process related information
(C-2) and also UI element related information (C-3).

2) System Event Collector: UISCOPE uses OS built-in
audit systems for system event collection. These systems
are pre-installed on target systems. Without any additional
configuration or optimization, they can be used in production
runs. They are also of high quality and have technical support
from official providers. UISCOPE leverages Event Tracing for
Windows (ETW) [15] to collect system events on Windows. It
allows users to collect system-level events (e.g., system calls)
with negligible overhead [15]. ETW has been widely in both
academia [29], [45], [25], [24], [42] and industry [16]. Similar
to previous attack investigation tools [29], [41], UISCOPE only
monitors security-relevant events.

5



Timestamp:  2019/9/2 12:32:538364

Parent PID: 102
PID: 25336
TID: 322

Process
ProcessCreate EventType:

Command: MicrosoftEdge.exe
Env: OS=Windows_NT

Event Details

PID: 32248
Return Values

(1)

(2)

(3)

(4)

Fig. 4. Example of an ETW event.

Example. Fig. 4 shows an example ETW event entry. The
first block (1) includes the basic information of the event such
as the timestamp of the event (Timestamp), the event type
(EventType) and so on. The second block (2) shows the process
and thread triggering the event and its parent process. The
third block (3) lists details of the event. For instance, for a
ProcessCreate event, we will have the command of the created
process and the environment where the created process was
executed. The last block (4) has return values. In this case, it
returns the child process PID value.

C. Event Analyzer Definitions

The event analyzers analyze the collected UI and system
logs to derive dependencies between event entries (to construct
the final causal graph). In this section, we first define a number
of dependencies and then explain how they are derived.

UI Control Dependency. When a UI element change directly
affects other UI elements, we say they have UI control de-
pendencies. A UI element can affect another one directly by
adding and removing operations. Thus, there are two types
of UI Control Dependencies: AddElement (for adding a UI
element) and RemoveElement (for removing a UI element.
For example, after the user clicks a hyperlink on a web page
and a new page is loaded to replace the current one. We will
create a RemoveElement edge from the hyperlink element
to the root element of the current page and an AddElement
edge from the hyperlink element to the root element of the new
page. It implies that all elements in this tree will be (directly or
transitively) affected. In our paper, we use double solid lines
to represent this type of dependency.

UI Content Dependency. UI elements are organized in a
tree structure. A parent tree node usually represents a larger
element such as a web page, and all the child nodes represent
sub-elements in this web page. The affiliation relations of UI
elements introduce content dependencies. In our paper, we use
dashed lines to represent this type of dependency.

UI-System Dependency. A UI-system dependency is intro-
duced if the UI element lead to the system event (e.g., creating
a new socket for page loading in browsers) or the UI element
is affected by the system event (e.g., loading data from a
socket to refresh a web page). Such dependencies are critical
for attributing low-level system events to execution structures
enforced by UI elements (to avoid dependence explosion).
In our paper, we use dotted lines to represent this type of
dependency.

System-System Dependency. Previous literature [34] clearly
defined dependencies between system objects (i.e., Files,

Algorithm 1 UI Event Analyzer
Input: LU - List of UI events in the chronological order
Output: Graph - Provenance graph whose vertexes are UI elements and edges UI
Control or Content Dependency.
Functions: GetUITree(U) - Returns the entire UI tree related to a UI event U
FindRootOfAddedElements(Tcur, Tprev),

F indRootOfRemovedElements(Tcur, Tprev) - Returns the root element of a
set of added or removed UI elements by comparing two UI trees
Graph.addV ertex(E) - Add a UI element to the graph if it is not included
Graph.addEdge(Esrc, Edst, DependencyType) - Add a edge from Esrc to
Edst if the edge does not exist and the type of edge is set by DependencyType

GetChildren(E) - Returns a set of child nodes of UI element E in a tree
Variable: T.root - the root element of the UI Tree T

U.element - The UI element operated by a UI event U

1: function UIEVENTANALYZER(LU )
2: Ucur ← null
3: Tcur ← null
4: Uprev ← LU [0]
5: Tprev ← GetUITree(Uprev)
6: AddTreeToGraph(Tprev.root, Graph)
7: for i = 1; i < Size(LU ); i ++ do
8: U = LU [i]
9: Ucur ← U

10: Tcur ← GetUITree(U)
11: /* Build AddElement UI Control Dependency */
12: Eadd ← FindRootOfAddedElements(Tcur, Tprev)
13: AddTreeToGraph(Eadd, Graph)
14: Graph.addEdge(Ucur.element, Eadd, AddElement)
15: Set timestamp of above new added edge as the timestamp of Ucur

16: /* Build RemoveElement UI Control Dependency */
17: Eremove ← FindRootOfRemovedElements(Tcur, Tprev)
18: Graph.addEdge(Ucur.element, Eremove, RemoveElement)
19: Set timestamp of above new added edge as the timestamp of Ucur

20: Uprev ← Ucur

21: Tprev ← Tcur

22:
23: function ADDTREETOGRAPH(Eroot, Graph)
24: for each Echild ∈ GetChildren(Eroot) do
25: /* Build UI Content Dependency Recursively */
26: Graph.addV ertex(Eroot)
27: Graph.addV ertex(Echild)
28: Graph.addEdge(Eroot, Echild, UIContentDependency)
29: AddTreeToGraph(Echild, Graph)

Sockets) and subjects (i.e., Processes). We adapt the same
definition and use the term System-System Dependency
to represent this category of dependency in our paper. In our
paper, we use solid lines to represent this type of dependency.

In addition, we use the term initial event to denote system
object creation events.

D. UI Event Analyzer

The UI analyzer is to find UI control dependencies and
content dependencies. The detailed analysis procedure is pre-
sented in Algorithm 1. For a list of given UI events in the
chronological order and also all the related UI elements orga-
nized in trees. Our goal is to compute a provenance graph, with
UI elements as nodes, connected by UI control dependency
and content dependency. After initializing the variables (lines
2 to 6), the algorithm starts to examine individual UI events
and related UI Trees in the queue (lines 7 to 21) to build UI
Control Dependency based on temporal association. Basically,
changes in the UI Tree causally depend on the UI element
operated by the previous UI event, based on the fact that
there exists only one human user action at a time and that UI
changes following it are responding to such action. For each
event, after getting the related UI tree (line 10), it finds all the
associated UI elements in the newly added or removed tree and

6



F
Type: Document

Text: www.bank.com

 B
Type: Hyperlink

Text: well-known.word
press.com

A
Type: Document

Text: mail.google.com

C
Type: Document

Text: well-known.wordpress.com

D
Type: Text

Text: Congratulations

E
Type: Button

Text: Get iPad

G
Type: Text

Text: Balance:$2,333

H
Type: Button
Text: Transfer

Ⅰ. UI Event with UI Tree Ⅱ. UI Event with UI Tree

UI Control Dependency
UI Content Dependency

3 RemoveElement

3 AddElement

 B
Type: Hyperlink

Text: well-known.word
press.com

A
Type: Document

Text: mail.google.com

F
Type: Document

Text: www.bank.com

D
Type: Text

Text: Congratulations

E
Type: Button

Text: Get iPad

G
Type: Text

Text: Balance:$2,333

H
Type: Button
Text: Transfer

Ⅳ. Generated Graph

C
Type: Document

Text: well-known.wordpress.com

timestamp 2: 
Focus, Element A

timestamp 3: 
Focus, Element B

C
Type: Document

Text: well-known.wordpress.com

D
Type: Text

Text: Congratulations

E
Type: Button

Text: Get iPad

Ⅲ. UI Event with UI Tree

timestamp 6: 
Focus, Element H

6 RemoveElement

Fig. 5. A log example of UI Event Analyzer.

updates the graph accordingly (lines 11 to 19). Specifically,
it introduces AddElement and RemoveElement types of
control dependency to the root element of all added and
removed UI elements, respectively. Note that, all added or
removed elements only have one root element and we adopt
the existing lowest common ancestor algorithm [17] to find the
root element. Lastly, it updates Uprev and Tprev to the current
UI event and the current UI tree respectively (lines 20 to 21). If
UI events do not add or remove elements, it simply updates the
Tprev and Uprev without adding new edges to the graph. We
use the function AddTreeToGraph(Eroot, Graph) to add a
new tree to the existing graph (lines 24 to 29). In this function,
the algorithm recursively traverses the whole UI tree starting
from the root element Eroot, creates UI Content Dependency
between parent nodes and child nodes, and adds them all to
the graph.

Example. Fig. 5 presents an example of how Algorithm
1 works on the motivating example where Bob clicked a
hyperlink in the phishing email and was attacked by click-
jacking. Fig. 5 (I), (II), and (III) are UI events and their
corresponding UI trees occurring at timestamp 2, timestamp
3, and timestamp 6, respectively. UI elements with gray
background represent the ones operated by users. Fig. 5
(IV) is the generated graph by the event analyzer. At times-
tamp 2, the web page mail.google.com was loaded and
a Focus event was triggered. Because this is the first UI
event, UI elements A and B were added to the graph. At
timestamp 3, Bob clicked the hyperlink (element B), then
the previous web page mail.google.com (elements A
and B) was removed from the tree and a new web page
well-known.wordpress.com (elements C, D, E, F, G,
H) was added. The new page was thus added to the graph,
together with a RemoveElement edge from element B to
the root element of the removed page (element A) and an
AddElement edge from element B to the root element of the
new page (element C). Note the timestamp of the edges is 3. At
timestamp 6, Bob was tricked to click the Transfer button
(element H) masqueraded as a Get iPad button (element E).
The embedded web page www.bank.com (elements F, G,
and H) was removed, thus a RemoveElement pointing from
element H to the root element of the removed page (element
F) was added with timestamp 6.

E. System Event Analyzer

We follow the standard causality analysis method used in
previous literature [37], [44], [45], which returns a causal graph

with system subjects or objects as nodes and System-System
Dependencies as edges.

F. Correlation Analyzer

1) UI-System Dependency: UI events and system events
capture behaviors of the same attack from two different levels:
foreground with visibility and background with fine-grained
information. After acquiring the UI causal graph from the UI
event analyzer and the low-level event causal graph from the
system event analyzer, we analyze the correlations of the two
so that low-level system events can be attributed to individual
UI elements (instead of the whole process) which makes the
graph both visible and accurate (more accurate than using a
single node to represent the whole graph like in traditional
graphs, which leads to dependency explosion).

We devise a timestamp-based attribution approach based
on two observations: 1) an application has only one currently
focused UI tree at a certain time; 2) system events and UI
events are typically triggered by the same attack behavior at
the same time. That is, the two categories of events are mostly
time-aligned. There are also many background events and we
will discuss them in III-F2.

System events and UI events are correlated based on two
mechanisms. Firstly, for a system object that is associated
with a sequence of system events such as a socket with many
socket read/write events, we use the creation of system object
to correlate with UI events. This is known as the initial event
based correlation. Secondly, we mainly use a timestamp
based alignment to correlate general system events and UI
elements/events, and this is referred as the timestamp based
correlation. Basically, system events occurring between two
UI events chronologically would be attributed to the former
UI event (or UI elements added by the UI event). The details
of the attribution process is presented in Algorithm 2. After
initializing variables (line 2), the algorithm generates two
graphs using the UI Event Analyzer and the System Event
Analyzer, respectively, and add them to the result graph (lines
3 to 6). Then it starts to examine individual processes occurring
in the graph (lines 7 to 15). For each process, it first checks
whether the process has GUI. If so, it extracts two sub-lists
of events related to the process and attributes system objects
or subjects to UI elements by invoking the function Attribute
(lines 10 to 12).

The function Attribute() first orders all system and UI
events chronologically in list LU (line 18). For each event

7



Algorithm 2 Correlation Analyzer
Input: LS - A list of system events in the chronological order
LU - A list of UI events in the chronological order
Output: Graph - A complete provenance graph combining both UI and system events.
Variable: Eactive - The current active UI element
Minit - A key-value map of initialized objects and active UI elements
U.element - The UI element operated by a UI event U
S.sink, S.source - The system object pointed to or from by a system event S
Function: GetProcessV ertexes(Graph) - Return all vertexes of processes
ExtractEventsByProcess(L, process) - Extract events related to a specific
process from a list of events L.
AddGraphToGraph(Gfrom, Gto) - add the vertexes and edges in Gfrom to
Gto if those vertexes and edges do not exist in the Gto

ReorderInChronologicalOrder(Listone, Listtwo) - merge two lists into a
list in the chronological order
FindRootOfAddedElements(E,Graph) - check whether there is AddElement
dependency pointing from the element E, if yes, return the sink element of the
dependency, otherwise return null.

1: function CORRELATE(LS , LU )
2: Graph← a new empty graph
3: Gsystem ← SystemEventAnalyzer(LS)
4: Gui ← UIEventAnalyzer(LU )
5: AddGraphToGraph(Gsystem, Graph)
6: AddGraphToGraph(Gui, Graph)
7: for each process ∈ GetProcessV ertexes(Gsystem) do
8: if HasGUI(process) then
9: /* For GUI applications*/

10: SubLsystem ← ExtractEventsByProcess(LS , process)
11: SubLui ← ExtractEventsByProcess(LU , process)
12: Attribute(process, SubLsystem, SubLui, Graph)
13: else
14: /* For non-GUI applications, we follow traditional methods*/
15: continue
16:
17: function ATTRIBUTE(process, Lsystem, Lui, Graph)
18: Levent ← ReorderInChronologicalOrder(Lui, Lsystem)
19: for i = 0; i < Size(Levent); i ++ do
20: event← Levent[i]
21: if IsUIEvent(event) then
22: U ← event
23: Eadd ← FindRootOfAddedElements(U.element,Graph)
24: if Eadd 6= null then
25: /* Activate the root of the new added elements */
26: Eactive ← Eadd

27: else
28: /* Activate the operated element if no new element occurs */
29: Eactive ← U.element

30: else if IsSystemEvent(event) then
31: S ← event
32: if IsInitialEvent(S) then
33: /* Timestamp-based approach */
34: Minit.put(S.sink,Eactive)
35: Graph.addEdge(Eactive, S.sink, UISystemDependency)
36: else
37: /* Initial event-based approach */
38: Einit ←Minit.get(S.object)
39: if S.source = proc then
40: Graph.addEdge(Einit, S.sink, UISystemDependency)
41: else
42: Graph.addEdge(S.source, Einit, UISystemDependency)

in the list, it first checks the event type. If it is a UI event,
it checks whether the UI event causes new elements in the
UI tree. If so, it marks the root element of newly added
UI elements as the current active element (lines 24 to 26).
Otherwise, it marks the element operated by the current UI
event as the active one (lines 27 to 29). Basically, system events
occurring between two active elements chronologically will be
attributed to the former element. If the event is a system event,
it first tests whether the event is an initial event (line 32). If so,
it records the relationship between the initialized resource and
the current active element in the map Minit (line 34). Then
it adds a new UI-System Dependency edge pointing from the
active element to the sink (line 35). Otherwise, it retrieves
the UI element related to the operated resource from previous
records in Minit and conducts the same operations as before

(lines 38 to 42). Note that the direction of the newly created
edge is the same as the one of the system events. For instance,
the FileRead event creates an edge pointing from a file
object to a UI element while the FileWrite event creates an
edge pointing from a UI element to a file object. The essence
of lines 38 to 42 is as follows. We observe that the usage of
a system object (e.g., socket read) may not be in the same
time window of a UI event, rendering the timestamp-based
alignment (lines 33-35) ineffective, while its initialization (e.g.,
socket creation) can be correctly aligned with the trigger of
the UI event (e.g., button clicking) in most cases. Thus, for a
(background) system event related to some system object, we
trace back to the time when the system object was initialized
and attribute the event to the active UI element at that moment.

2) Background Activities: One may question if our tech-
nique (based on timestamps and system object initialization)
provides a sound solution for background activities. In the
following, we discuss the possible background behaviors of
popular applications and argue that our technique is highly
effective in practice, which is also demonstrated by our exper-
iment in Section IV-B.

GUI programs are mostly driven by keyboard and mouse
inputs. The execution trace of such a program is dominated by
event processing loops and the system events that are directly
or indirectly triggered by the loop body. UISCOPE captures
keyboard and mouse inputs by monitoring UI events, and
then uses timestamp-based correlation and initial event-based
correlation to attribute system events to UI events. We classify
GUI applications into two categories: static and dynamic based
on if there are activities triggered in the background. For
static applications(i.e., no background activity), UI events and
corresponding system events are triggered synchronously and
UISCOPE works well. For example, there are no background
activities in Notepad PlusPlus when there are no user
inputs. For dynamic applications (i.e., with background activi-
ties), using time-based correlation is not enough. For example,
Chrome can download videos or other files in the background
while the user is browsing in the foreground. Browser is the
most common and complex dynamic application type. In the
following, we will use browsers as an example to demonstrate
how UISCOPE handles background activities.

The accuracy of UISCOPE for browsers is affected by 1)
the types of visited websites, 2) the duration of web sessions,
3) the number of websites with background activities. We use
Chrome to monitor the behaviors of 500 popular websites in
an hour after being loaded. Those websites are selected from
Alexa top websites [1]. Foreground activities will trigger new
UI events that will be captured by our system, and UISCOPE
has high attribution accuracy. Thus, we focused on monitoring
website behaviors that are left in the background without user
interactions. Specifically, the GUI automation tool [4] first
triggers typical behaviors of a website (e.g., playing video on
www.youtube.com) to simulate initial user activities when
the website was visited. Then it does not interact with the
website anymore to simulate the scenario in which the website
has been put in the background. Furthermore, we only consider
network events because network events in the background are
much more complex and diverse than file events. For instance,
the cache and cookie of all websites loaded by Chrome are
stored in several deterministic files or folders (e.g., an SQLite
database for cookies). Furthermore, our preliminary results

8



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360
# of active time unit (each unit is 10 s)

0

50

100

150
# 

of
 w

eb
sit

es

Fig. 6. The number of active time units is small for most websites.

on 20 minutes running of 20 background web pages show
that 84% of total file events are related to 10 files, several
of which are the aforementioned cache and cookie files. It
indicates that file access in Chrome is simple and typical.
Finally, 436 websites were successfully monitored and used
in this experiment are listed in Table VI. After analyzing the
data, we make a few important observations.

Observation 1: Most new website activities are narrowed in
a short period of time and activities in the background are
not common. We monitor website activities every 10 seconds
as a unit and count the total number of units the website
initializes at least one new socket. The result is shown in Fig. 6.
The Y-axis in the graph represents the number of websites and
the X-axis represent the number of active units. For example,
the first bar denotes that 173 websites are active in only one
unit (10 seconds). From the graph, we know that 71.11% of the
436 websites finish all the work within 1 minute and 89.44%
of websites are idle for at least 55 minutes during the whole
time (1 hour).

Observation 2: Most socket sessions are initialized during
web page loading. Fig. 7 shows the average number of
initialized socket sessions within 60 seconds after a website is
visited. For such sockets, we observe that around 87.13% of all
socket sessions are initialized within 10 seconds and 94.11%
socket sessions are initialized within 20 second. Together with
the analysis results in observation 1, it verifies the usefulness of
our timestamp-based event attribution approach (Section III-F).

0 10 20 30 40 50 60
timestamp (each unit is 1 second)

0

2

4

6

8

10

# 
of

 in
iti

al
ize

d 
so

ck
et

s

Fig. 7. The number of initialized socket sessions within the first 60 second.

Observation 3: Background activities are usually repeated
behaviors. We analyzed the socket connection destinations of
all sockets, including both existing sockets and new sockets,
and the results are shown in Fig. 8. Blue bars are the number
of both types of sockets and red bars are the number of newly
created sockets. The X-axis is time, and one hour period is
divided to 360 units. As we can see, there are not many
new sockets after the pages are loaded, which implies that
websites in the background connect to a limited set of domain
names repeatedly. To further verify our finding, we manually
check with source code of some of these sites. Fig. 9 shows

4 websites that have the maximum number of background
activities. The Y-axis represents the top 10 frequent top-level
domain names and X-axis shows the number of socket sessions
that are related to a certain domain name. As we can see,
most socket connections are related to a limited number of
top-level domain names, indicating that background behaviors
are largely repeated connections. This allows UISCOPE to use
pattern based filters to remove such background activities.

Adaptive Adversary. In an adaptive attack scenario in which
the attacker is aware of the presence of UISCOPE, the attacker
may intentionally use delayed background activities that do not
have the resources initialized when the UI event occurs (e.g.,
using a timer to postpone the creation of a socket to download
a payload). Such attacks may lead to incorrect attribution
of low-level events to UI operations. But we argue that 1)
this is a common unsolved challenge for all existing attack
investigation systems (e.g., [34], [35], [41]). 2) Practically, it is
very difficult to perform such attacks, and many popular attack
vectors cannot be delayed. For example, about 71% attacks use
phishing emails for initial compromise [7], and the adversary
is not able to do delay actions in this scenario.

Example. Fig. 10 presents an example of how Algorithm
2 works on the motivating example. Fig. 10 (I) and (II)
show the graphs generated by the UI Event Analyzer and
the System Event Analyzer. Fig. 10 (III) shows the final
output graph. We use the logic time in this case to denote
the order of all the events. Elements B and H were clicked at
timestamps 3 and 6 respectively, which lead to two sockets
being initialized at timestamps 4 and 7. According to the
algorithm, the root (element C) of newly added elements and
the operated element (element H) were marked as active at
timestamps 3 and 6, respectively. Thus, the socket events are
attributed to elements C and H, respectively. System events
occurring at timestamps 5 and 9 are non-initial events and we
attribute them to elements C and H through the tracing-back
to initial system object method. The red dotted line in Fig. 10
represents UI-System Dependency defined in Section III-C.
Note that benign.com:80 was initialized before those two
UI events for downloading the software WinSCP.exe, thus it
was attributed to previous UI elements. Furthermore, the non-
initial system event related to benign.com:80 occurring
at time 8 was attributed to the previous element to which
the socket creation belongs to. Observe that by separating a
process to different autonomous UI trees and attributing low-
level system events to these trees, our technique achieves the
effect of partitioning a long-running execution to autonomous
units, which is the key to avoiding dependence explosion.

IV. EVALUATION

We evaluate UISCOPE by answering following questions.

• Q1: How much runtime and space overhead does UISCOPE
incur in production environments? (Section IV-A)

9



0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360
timestamp (each unit is 10 second)

0.0

0.2

0.4

0.6

0.8

# 
of

 in
iti

al
ize

d 
so

ck
et

s

existing and new sockets
new sockets

Fig. 8. The number of initialized socket for each time slice starting from 1 minute to 1 hour.

0 50
googlevideo.com

google.com
gstatic.com

googlesyndication.com
youtube.com
google.co.uk

doubleclick.net
ytimg.com

fonts.googleapis.com
googleadservices.com

www.youtube.com

0 100
adsafeprotected.com
teads.tv
1rx.io
casalemedia.com
adrta.com
vidible.tv
pubmatic.com
advertising.com
rubiconproject.com
moatads.com

www.dailymotion.com

0 50 100
doubleclick.net

nytimes.com
chartbeat.net

adsafeprotected.com
google.com

rubiconproject.com
gstatic.com

googlesyndication.com
bluekai.com

media.net
www.nytimes.com

0 100 200
akamaihd.net
foxnews.com
doubleclick.net
moatads.com
krxd.net
google.com
rubiconproject.com
chartbeat.net
edgekey.net
criteo.com

www.foxnews.com

the number of socket sessions

to
p 

le
ve

l d
om

ai
n

Fig. 9. Long-term active website examples.

• Q2: How accurately can UISCOPE cohere UI elements
and System objects/subjects? (Section IV-B)

• Q3: How effective is UISCOPE in conducting real-world
attack investigation and how does it compare to the state-
of-the-art? (Section IV-C)

Experiment Setup. We deploy UISCOPE on 7 Windows
computers and run experiments for a week to collect UI events
and system events triggered. Note that we do not require those
7 users to perform any specific actions, and our purpose is to
collect event traces generated by their daily usage. In addition,
we simulate six real-world attacks listed in Table V to evaluate
the effectiveness of UISCOPE in attack investigation.

TABLE I. THE RUNTIME OVERHEAD OF THE UI COLLECTOR

App Native (ms) UI Collector (ms) Overhead

Notepad 22882 22909 0.12%
Notepad PlusPlus 21458 21502 0.20%

Sublime Text 30386 30415 0.10%
Explorer 31090 31174 0.27%

Paint 28551 28713 0.57%
Snipping Tool 13785 13791 0.05%

Chrome 48511 48836 0.67%
Edge 50832 51184 0.69%

WinScp 32080 32186 0.33%
FileZilla 34511 41079 19.03%
Outlook 33138 33404 0.80%
Skype 29085 29336 0.86%

Adobe Reader 35356 35581 0.63%
Foxit Reader 36744 37057 0.85%

A. Performance Overhead

UISCOPE includes two event logging tools, the UI col-
lector and the system event collector, for trace collection on
end hosts. System event traces are deemed to be the major

data source for most existing attack investigation systems.
UISCOPE uses the Windows built-in audit system ETW as its
system event collector. ETW has been evaluated to be quite
lightweight, only imposing 0.4% ∼ 2.5% runtime overhead
[42]. The space overhead caused by ETW mainly depends
on what event types ETW is configured to capture. We use
ETW to monitor the same system event types (i.e., only the
security-relevant types) as existing works [38], [57], [50], [28],
[31], and thus the space overhead by ETW in UISCOPE is
around 210 MB per week after deploying their system, which
is reasonable. Therefore, we focus on evaluating the run-time
overhead and space overhead introduced by the UI collector.

5 TCPReceive

9 TCPReceive
Chrome 

8 TCPReceive

benign.com:80

1 TCPConnect 4 TCPConnect

well-known.wordpress.com:80
www.bank.com:443

7 TCPConnect

Ⅱ. Graph generated by System Event Analyzer

Ⅲ. Correlated Graph

3 RemoveElement

3 AddElement

A
Type: Document

Text: mail.google.com

F
Type: Document

Text: www.bank.com

C
Type: Document

Text: well-known.wordpress.com

D
Type: Text

Text: Congratulations

E
Type: Button

Text: Get iPad

G
Type: Text

Text: Balance:$2,333

6 RemoveElement

H
Type: Button
Text: Transfer

Ⅰ. Graph generated by UI Event Analyzer

3 RemoveElement

3 AddElement
A

Type: Document
Text: mail.google.com

F
Type: Document

Text: www.bank.com

C
Type: Document

Text: well-known.wordpress.com

D
Type: Text

Text: Congratulations

E
Type: Button

Text: Get iPad

G
Type: Text

Text: Balance:$2,333

H
Type: Button
Text: Transfer

well-known.wordpress.com:80

4 5

7
www.bank.com:443 9

 B
Type: Hyperlink

Text: well-known.word
press.com

 B
Type: Hyperlink

Text: well-known.word
press.com

6 RemoveElement

UI Control Dependency

UI-System Dependency
UI Content Dependency

Fig. 10. A log example of correlation analyzer.
1) Runtime overhead: We evaluate the runtime overhead

of UI collector in UISCOPE for 14 different GUI applications.
Firstly, we collect a lot of application traces from real-world
scenarios. Then, we automate these workloads in two different
environments, i.e., with and without UISCOPE collecting UI
events and trees. Table I shows the results. Column 2 represents

10



TABLE II. SPACE OVERHEAD EVALUATION RESULTS

S-0 S-1 S-2 S-3 S-4 S-5 S-6 Total

CPU I5-9400 I7-6500U I7-8700 I7-8700 I7-7500U I7-8550U I5-7400 N/A
RAM (GB) 8 8 16 16 16 16 8 N/A

Windows Version 7 10 10 10 10 10 10 N/A
Duration (hours) 16.7 108.7 95.4 54.6 37.4 28.7 121.9 463.4

# of UI Events/Trees 1,131 32,824 18,687 34,010 22,766 8,704 354,907 473,029
Size (MB) 14.84 251.44 55.18 179.86 81.16 23.78 753.35 1416.62

the average running time of running on native environment,
column 3 represents the average running time of the same user
interaction with UI collector, and the column 4 is the runtime
overhead. The table shows that the UI collector introduces
negligible (less than 1%) runtime overhead for almost all
applications. UI collector introduces 19.03% overhead for
FileZilla. The reason is that the GUI of FileZilla has
its own customized UI Automation APIs [13], which issues
larger overhead.

2) Space overhead: Table II presents the details about the
collected UI event logs on each host. For each user machine,
Table II lists the hardware configuration (i.e., CPU and RAM),
Windows OS installed, duration of running the event collectors,
number of UI events triggered by daily user behavior, and
storage space for the UI events. Note that the users are free to
enable or disable UISCOPE, so the duration of event logging
varies from user to user.

In summary, being deployed on 7 user machines for a
week (with a total active duration of 463.4 hours), UISCOPE
collected 1416.62 MB UI log including 473,029 UI events
and the corresponding UI trees. On average, the UI collector
component on one machine generates 3.05 MB event logs per
hour. Hence, the space overhead is negligible, compared to
system logging.

B. Accuracy of Events Correlation

1) Static Applications: To evaluate the accuracy of event
correlation, it is necessary to obtain the ground truth.
We did the following experiments with 12 popular appli-
cations, including editor software (Notepad PlusPlus,
Sublime Text, and Notepad), communication software
(Outlook and Skype), file transfer software (WinSCP
and FileZilla), PDF Reader (Adobe Reader and
Foxit Reader), and miscellaneous software (Explorer,
Snipping Tool, and Paint). These static applications
introduce no or negligible background activities (e.g., checking
new versions after opening the software).

For each application, we use a UI automation tool [54]
to trigger a typical application specific behavior and collect
system events, e.g., file opening and saving for Notepad
PlusPlus. We repeat this process three times in isolated
environments and extract a common set of system events from
these three runs. The pairings of the used UI events and the
corresponding common set of system events are considered
our ground truth of one behavior.

For each application, we performed its specific behavior 10
times with different settings (e.g., opening 10 different files),
and obtain the ground truth for the 10 instances. Next, for each
application, we trigger all the 10 behavior instances, collect
the generated system events, and use UISCOPE to perform

TABLE III. ATTRIBUTION ACCURACY OF STATIC APPLICATIONS

App Operation Timestamp Timestamp +
Initial Event

TPR FPR TPR FPR

Notepad
Open 100 0 100 0
Save 100 0 100 0

Save as 100 0 100 0

Notepad PlusPlus
Open 100 0 100 0
Save 100 0 100 0

Save as 100 0 100 0

Sublime Text
Open 100 0 100 0
Save 100 0 100 0

Save as 100 0 100 0

Explorer
Delete File 100 0 100 0

Rename 100 0 100 0
Copy Paste 100 0 100 0

Paint
Open 100 0 100 0
Save 100 0 100 0

Save as 100 0 100 0

SnippingTool
New 100 0 100 0
Save 100 0 100 0

Save as 100 0 100 0

WinScp
Login 100 0 100 0

Download 81.32 2.21 100 0
Upload 90.23 1.13 100 0

FileZilla
Login 100 0 100 0

Download 85.2 1.63 100 0
Upload 80.1 2.17 100 0

Outlook
Open Email 81.4 2.06 99.2 0.07

Upload 100 0 100 0
Download 100 0 100 0

Skype Upload 100 0 100 0
Download 91.37 1.05 100 0

Adobe Reader
Open 100 0 100 0
Save 100 0 100 0

Save as 100 0 100 0

Foxit Reader
Open 100 0 100 0
Save 100 0 100 0

Save as 100 0 100 0

Average - 97.41% 0.29% 99.97% 0.002%

the correlation. Then we compare the results with the ground
truth to evaluate UISCOPE. As mentioned in Section III-F,
we develop two attribution methods: timestamp-based and
initial event-based. We apply different combinations of these
attribution methods to the collected traces. Table III shows
the attribution accuracy results on the 12 popular applications
under different operations. The last row shows the average
value of True Positive Rate (TPR) and False Positive Rate
(FPR) for all the 12 applications.

We can see that on average 97.41% system events can be
attributed to the correct UI events only based on timestamps,
which is consistent with our observation in Section III-F2.

11



TABLE IV. ATTRIBUTION ACCURACY OF DYNAMIC APPLICATIONS

NumberOfWebsites StayTime Timestamp Timestamp + Initial Event

TPR FPR # of unique domain
of FP per website TPR FPR # of unique domain

of FP per website

10 10 88.57% 1.26% 13.06 94.20% 0.64% 2.69
10 20 90.83% 1.01% 13.51 95.52% 0.49% 2.23
10 30 90.55% 1.04% 15.49 96.22% 0.42% 2.34

20 10 85.58% 0.75% 18.97 92.53% 0.39% 3.66
20 20 86.68% 0.71% 22.38 93.54% 0.33% 3.42
20 30 85.61% 0.75% 25.27 93.47% 0.34% 3.69

30 10 83.27% 0.57% 23.82 91.48% 0.29% 4.37
30 20 84.05% 0.54% 28.04 92.19% 0.26% 4.41
30 30 77.98% 0.75% 30.74 86.55% 0.46% 4.98

When we apply both methods at the same time, the average
TPR improves from 97.41% to 99.97%, and the average FPR
reduced from 0.29% to 0.002%. Overall, UISCOPE achieves
high attribution accuracy (99.97%) and negligible false pos-
itives. A few events were missing for the action of opening
emails with Outlook, and it is because Outlook supports
HTML emails that can load resources dynamically in the
background. WinScp and FileZilla have relatively small
TPR under only the timestamp-based method because file
downloads/uploads happen in parallel. With two attribution
methods enabled, UISCOPE can still get 100% accuracy.

2) Dynamic Application: We evaluate UISCOPE on
Chrome which is the most complex dynamic application. As
mentioned in Section III-F2, the accuracy of UISCOPE for
browsers is affected by 1) the types of visited websites, 2)
the duration of web sessions, 3) the number of websites with
background activities. We evaluated UISCOPE on Chrome
over these three variables and summarized the results in
Table IV. To calculate the TPR and FPR, we use the same
method in Section III-F2 to obtain the ground truth for 463
websites listed in Table VI.

In this experiment, we randomly select a given number of
websites (NumberOfWebsites, column 1) from 463 website
and load them one by one. The interval of loading two different
web pages is a constant number (StayTime, column 2). Then
we apply UISCOPE to the collected trace and calculate the TPR
and FPR by comparing with the collected ground truth data.
To evaluate the significance of our two approaches (timestamp-
based and initial-event based), we apply the timestamp based
approach (columns 3 to 5) and the timestamp plus initialization
based method (columns 6 to 8). Besides FPR and TPR, we
calculate the average number of unique domains involved in
the false positives of each tested website (columns 5 and 8).
In order to cover more types of websites, we repeat the above
process 1000 times and calculate average TPR and FPR for
each setting, and Table IV shows the average value for each
setting in each row.

From the table, we can see that 1) timestamp based
approach could correctly attribute most events and initial-event
based approach could further increase the TPR and decrease
the FPR, which conforms to the observation 2 mentioned in
Section III-F2. That is, most socket sessions are initialized
during web page loading. 2) increasing NumberOfWebsites
decreases the accuracy because with more background web-
sites, the more false dependencies would be introduced to the
foreground website.

0% 10% 20% 30% 40% 50%
frequency

gstatic.com
adnxs.com

doubleclick.net
yahoo.com

adsafeprotected.com
google.com

facebook.com
pubmatic.com

rubiconproject.com
moatads.com

do
m

ai
n 

in
vo

lv
ed

 in
 fa

lse
 p

os
itv

es

Fig. 11. Frequency of domains occurring in the false positives.

Although UISCOPE cannot handle newly created socket
in the background, the number of unique domains of false
positives per website is relatively small (2.23 ∼ 4.98).
We further explore those false positives of each website
and find that they are related to many common domains,
which conforms to the observation 3 mentioned in section
III-F2. Fig. 11 shows the top 10 common attributed domains
by background communication. Y-axis represents domains
and X-axis represents the frequency of wrong attribution.
From the figure, we can see that these domains are related
to advertisement (moatads.com, rubiconproject.com,
pubmatic.com, adnxs.com, adsafeprotected.com,
and doubleclick.net), Google services (gstatic.com,
google.com) and social media (facebook.com and
yahoo.com). For those frequent domains, we can remove
them to further reduce the FPR. Furthermore, we evaluate
Edge and the results show that Edge has similar accuracy
to Chrome. Specifically, our system achieves 94.8% TPR and
0.51% FPR when NumberOfWebsites is 10 and StayTime is
20, and 92.7% TPR and 0.25% FPR when NumberOfWeb-
sites is 30 and StayTime is 20.

Lastly, we want to point out that UISCOPE correlates events
to prune unnecessarily large investigation graphs. Thus in this
context, FP cases mean that a portion of the graph cannot be
pruned by UISCOPE .

C. Attack Investigation

We demonstrate the effectiveness of UISCOPE in attack
provenance tracking by applying it to 6 real-world attacks,
including Phishing email [20], Remote Code Execution [55],
MS Office Macro Attack [56], Credential-based Attack [22],
Watering Hole Attack [18], and Insider Attack [21]. In the
following, we will use the Remote Code Execution attack to

12



TABLE V. ATTACK INVESTIGATION SUMMARY ON THE REST 5
REAL-WORLD ATTACKS

Attacks Short Description Root cause
by UISCOPE

Phishing
email
[20]

Motivating example discussed in Section II-A. D
MS

Office
Macro
Attack
[56]

An malicious document was downloaded and
executed as an Outlook attachment and the

enclosed macro was triggered by Excel to
perform malicious behaviors.

D

Watering
Hole

Attack
[18]

An malicious file was uploaded to a popular
forum. A victim visited the forum through

Google search, and downloaded and executed the
malicious file.

D
Insider
Attack
[21]

An insider attacker downloaded sensitive files
from a FTP server and compress and send out

such files through Outlook.
D

Credential-
based
Attack
[22]

An attacker accessed the machine with the stolen
VNC credential and transfer bank money through

passwords automatically saved by Chrome.
D

present a case study and other five attacks are summarized in
Table V. The first column shows the attack name and reference.
The second column summarizes the attack scenario and the last
column indicates if UISCOPE can find the root cause of the
attack. And we can see that, UISCOPE is capable of finding
all root causes of different types of attacks.

1) Case Study: Remote Code Execution: Remote Code
Execution (RCE) is a vulnerability that can provide an attacker
with the ability to execute malicious code and take complete
control of an affected host, no matter where the host is
geographically located.

Scenario. In this attack, UISCOPE and a threat detector have
been installed and enabled on a user’s machine. The user
accidentally navigates to a malicious Flappy Bird game
website with the browser Edge by clicking on a hyperlink
returned from Google Search. The website asks the user to
press the ‘enter’ key to control the bird. The website leverages
CVE-2018-8495 [55] to perform an attack. Once the enter
key is held, the website will invoke a pop-up window asking
if the user wants to start, and as soon as the enter key is
released, a malicious PowerShell script gets executed on
the victim’s machine. While the user is thinking he is playing
the game by using the enter key, he actually has been tricked
to execute malicious code on his own machine.

Threat alert. Soon, the threat detector installed detects mali-
cious PowerShell script running and thus raises an alert.

Investigation. An incident investigator starts investigation
with our tool. With the given threat alert and the audit
logs (UI events and system events) collected, UISCOPE
could efficiently yield a semantics-rich human-comprehensible
causal graph shown in Fig. 12. By provenance track-
ing in the graph, the investigator can quickly find that
the malicious PowerShell script was from the website
http://FakeWebsite.com, which was opened by click-
ing a link return by google.com (element B). The inves-
tigator then examines the FakeWebsite and finds that a
suspicious hyperlink (element D) contains suspicious keywords
(i.e., PowerShell and vbs) in its URL string. Close scrutiny
of the suspicious hyperlink would reveal that the hyperlink

exploits an Edge vulnerability CVE-2018-8495 [55] to execute
a vulnerable benign VBS program xxx.vbs which further al-
lows the attacker to execute any PowerShell code remotely
to have full control over the victim’s machine. However, the
vulnerability would open a pop-up window to explicitly ask for
user’s consent. No user would be fooled into clicking ’OK’
and run the program. Then the investigator looks into other
behaviors of FakeWebsite and finds that after the website
was loaded, a pop-up window (element F) with the text “How
do you want to open it” showed up, and an OK button (element
H) in the window was focused by default. And the website asks
the user to press the enter key to control the game character
(element E), which causes the OK button to be pressed. This
explains how the attacker acquired the permission.

This case demonstrates that UISCOPE can not only
assist identifying the attack provenance but also provide
fine-grained human-comprehensible contextual semantics to
users. Comparatively, Fig. 13 shows the graph gener-
ated by NoDoze. Although NoDoze contains the mali-
cious socket fakewebsite.com:443 in the graph be-
cause fakewebsite.com was rarely visited, it misses the
google.com which is frequently visited and it cannot pro-
vide context information to understand the attack or prevent
similar attacks from happening again.

V. DISCUSSION

Accuracy. UIScope works well for static GUI applications
(with almost 100% accuracy) in which UI events and cor-
responding system events are triggered synchronously; and
UIScope obtains around 90% accuracy for dynamic GUI ap-
plications (e.g., Chrome) in which system events are triggered
asynchronously. If the initialization of system events and UI
events do not appear close together in time, our system could
result in wrong attributions. For instance, the advertisement
JS code embedded in websites could use setTimeout API
to update pictures after a certain time in the background. To
attribute such system events accurately, existing solutions [39]
instrument applications to track fine-grained events while UIS-
cope introduces around 10% wrong attributions as a trade-off
to avoid instrumentation. We believe UIScope is practical in
real-world scenarios for a few reasons reasons: 1) more than
71% attacks use phishing emails for initial compromise [7]
and the system events and UI events are typically triggered
very closely in time in these scenarios; 2) UISCOPE essentially
performs graph pruning, and FP cases mean that UISCOPE
is not able to remove some nodes in the graph, which does
not cause fatal problems in invetigation. UISCOPE filters out
over 99% false positives and makes attack investigation quite
effective, compared with traditional non-intrusive work [34];
3) UIScope is orthogonal to other existing instrumentation-free
techniques. We could leverage probabilistic solutions [29] to
complement UIScopes results.

Privacy. Information collected by UISCOPE may raise po-
tential privacy issues. We argue that 1) UISCOPE targets an
enterprise environment in which employers have the right
to monitor the computers owned by them in United States
according to the law [6]; 2) Sensitive information such as
passwords cannot be retrieved due to security policy encoded
in the Accessibility framework; 3) There exists a lot of work
(e.g., data masking) that can be used for protecting sensitive
information, which can be adopted to protect users’ privacy.

13



1 AddElement1 RemoveElement

 B
Type: Hyperlink

Text: FakeWebsite.com

A
Type: Pane

Text: google.com
2

2 AddElement
C

Type: Pane
Text: FakeWebsite.com

H
Type: Button

Text: OK

Root
Type: Pane
Text: Edge

F
Type: Window

Text: How do you want 
to open it

 D
Type: Hyperlink

Text: wshfile:test/../../xxx.vbs" ;
powershell -xxx"

 G
Type: Text

Text: Microsoft Windows 
Based Script Host

Wscript.exe

Powershell

google.com:443 fakewebsite.com:443Text

 E
Type: Text

Text: Use the enter key to 
control the flappy bird.

Fig. 12. Causality Graph generated by UISCOPE for the RCE scenario.

Powershell

Wscript.exe

Edge

fakewebsite.com:443

x.x.x.x:443

y.y.y.y:443

Fig. 13. Causality Graph generated by NoDoze for the RCE scenario.

Technical feasibility of UI event logging. The federal law
[27] requires all applications used by U.S. Federal agencies to
support accessibility, and most popular applications and OSes
support such UI event logging. Considering one in four US
adults living with a disability [3], accessibility support is an
inevitable trend. For applications not built with the underlying
system GUI APIs, Windows has provided an interface [13]
to help them support accessibility on the Windows platform.
Popular third-party GUI applications/frameworks (e.g., Qt and
Chrome) have leveraged this interface to support accessibility.

VI. RELATED WORKS

Along with the previous works discussed in Section II-B,
there exist other studies that are related to UISCOPE.

Attack Investigation. For Web-based attacks, JSgraph [39]
is able to track and reconstruct fine-grained details about the
JS code. For our motivation example, JSgraph could provide
details about how the website tests if a user has logged into
any well-known bank website, how it creates a transparent
frame, and which JS file performs the attack, which cannot
be captured by UIScope. However, JSgraph only works for
Chrome and needs expensive user efforts to instrument source
code while UIScope is a generic and instrumentation-free
solution. For non-instrumentation techniques, HOLMES [49]
focuses on detecting APT attacks and providing high-level
APT stages (e.g., initial compromise, foothold establishment,
and privilege escalation) that summarize the attackers action
specific to the APT life cycle, while UIScope is a generic
solution which attributes system events to UI elements to
provide high-level context information. NoDoze [29] and
PrioTracker [41] leverage statistical analysis to guide causal
dependency graph pruning to address the inaccuracy in causal-
ity analysis. However, those techniques would not work on
UI events because there would not be a way to differentiate
anomalous from non-anomalous UI events. Furthermore, all
those works only rely on system events which cannot provide
visible contextual information like UISCOPE.

Log Reduction. There exists a line of work [38], [57],
[50], [28], [31], [43] focusing on reducing the log size of

system events while preserving the dependency for provenance
tracking. UISCOPE collects the same types of system events as
those works and our system only reply on must-have fields of
system events (e.g., timestamp), thus UISCOPE is orthogonal
to these approaches and can incorporate those them to reduce
the storage of system events.

Other Digital Forensic Tools. Many other digital forensic
tools focus on analyzing digital artifacts (e.g., memory [14]
and disk [12]) left in computers after an attack happened.
Then security analysts manually analyze and identify causality-
related events (e.g., timeline analysis [19], [26]). Compara-
tively, UISCOPE starts to monitor the system before attacks
and automatically correlate system and UI events to con-
struct a dependency graph for provenance tracking. Some
forensic tools could extract high-level semantics by analyzing
application-specific logs, e.g., email forensic tools. However,
those tools highly rely on the format of application logs. If
logs are stored with an unknown format, those tools cannot
works. Comparatively, UISCOPE supports capture high-level
semantics of all GUI applications by monitoring UI events.

VII. CONCLUSION

We develop UISCOPE, an accurate and instrumentation-
free attack investigation system with high visibility. UISCOPE
highlights the critical role of user interaction with the system
through GUI in partitioning system operations and tracing the
provenance of attack. By leveraging user-space user interaction
logs to complement kernel-level system events with human-
perceivable contextual semantics, UISCOPE is able to provide
accurate and visible investigation results, even to ordinary
users who are not tech-savvy. UISCOPE is lightweight and
efficient, incurring negligible performance overhead. UISCOPE
is applicable in production environments, requiring no end
system change or instrumentation. Our evaluation shows that
UISCOPE can efficiently and precisely identify the provenance
of real-world attacks.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers
and our shepherd, Prof. Adam Bates, for their feedback in
finalizing this paper. We would also like to thank Xue Leng
and Jiuyuan Wang for informative discussions on the submitted
manuscript. This work is supported, in part, by NSFC under
U1936215, DARPA under FA8650-15-C-7562, NSF under
1748764, 1901242 and 1910300, ONR under N000141410468
and N000141712947, and Sandia National Lab under award
1701331. Any opinions, findings, and conclusions in this paper
are those of the authors only and do not necessarily reflect the
views of our sponsors.

14



REFERENCES

[1] “Alexa top websites,” https://bit.ly/2N1rZPi , accessed on 2019-09-10.
[2] “Captain hook:pirating avs to bypass exploit mitigations,”

https://goo.gl/zVyuAL, accessed on 2019-09-10.
[3] “Cdc: 1 in 4 us adults live with a disability,” http://bit.ly/2QWsrAU ,

accessed on 2019-09-10.
[4] “Chromedriver - webdriver for chrome,” https://bit.ly/35wPgiu, ac-

cessed on 2019-09-10.
[5] “Clickjacking,” https://bit.ly/2ZUPSxa, accessed on 2019-09-10.
[6] “Electronic communications privacy act of 1986 (ecpa),”

http://bit.ly/33odQRz , accessed on 2019-09-10.
[7] “Internet security threat report,” https://symc.ly/2rzm4c5 , accessed on

2019-09-10.
[8] “Kernel Patch Protection, howpublished = https://goo.gl/s4idr7, note =

Accessed on 2019-09-10,.”
[9] “Khobe 8.0 earthquake for windows desktop security software,”

https://goo.gl/5UhzpQ, accessed on 2019-09-10.
[10] “Login detection,” https://bit.ly/2N0t7Cw, accessed on 2019-09-10.
[11] “Plague in (security) software drivers,” https://goo.gl/kmycvb, accessed

on 2019-09-10.
[12] “Sleuth kit,” https://bit.ly/2sLenAS , accessed on 2019-09-10.
[13] “Ui automation providers,” http://bit.ly/37Ib5hi , accessed on 2019-09-

10.
[14] “Volatility: An advanced memory forensics framework,”

https://bit.ly/2s18miV , accessed on 2019-09-10.
[15] “Event tracing for windows,” http://bit.ly/2EbzKxM, 2019, accessed on

2019-09-10.
[16] “Hidden treasure: Intrusion detection with etw,” http://bit.ly/2VG0DUZ,

2019, accessed on 2019-09-10.
[17] “Lowest common ancestor,” https://bit.ly/2udA2lD, 2019, accessed on

2019-09-10.
[18] “Many watering holes, targets in hacks that netted facebook, twitter and

apple,” http://bit.ly/30otNqs, 2019, accessed on 2019-09-10.
[19] “Plaso: super timeline all the things,” http://bit.ly/2WP3MyC, 2019,

accessed on 2019-09-10.
[20] “Spear phishing campaign targets ukraine government and military,”

https://bit.ly/2XaiUGu, 2019, accessed on 2019-09-10.
[21] “Target to pay $18.5m for 2013 data breach that affected 41 million

consumers,” http://bit.ly/2W77ZQU, 2019, accessed on 2019-09-10.
[22] “Trickbot adds remote application credential-grabbing capabilities to its

repertoire,” http://bit.ly/2VubtZk, 2019, accessed on 2019-09-10.
[23] A. Developer, “NSAccessibility,” https://apple.co/2w2z8Ww, 2019, ac-

cessed on 2019-09-10.
[24] P. Gao, X. Xiao, D. Li, Z. Li, K. Jee, Z. Wu, C. H. Kim, S. R.

Kulkarni, and P. Mittal, “Saql: A stream-based query system for real-
time abnormal system behavior detection,” in 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 639–656.

[25] P. Gao, X. Xiao, Z. Li, F. Xu, S. R. Kulkarni, and P. Mittal, “AIQL:
Enabling efficient attack investigation from system monitoring data,” in
2018 USENIX Annual Technical Conference (USENIX ATC 18), 2018,
pp. 113–126.

[26] Google, “Timesketch: Collaborative forensic timeline analysis,”
http://bit.ly/2JmCnAT, 2019, accessed on 2019-09-10.

[27] T. U. S. Government, “It accessibility laws and policies,”
http://bit.ly/2VFOwaD, 2019, accessed on 2019-09-10.

[28] W. U. Hassan, L. Aguse, N. Aguse, A. Bates, and T. Moyer, “Towards
scalable cluster auditing through grammatical inference over provenance
graphs,” in Network and Distributed Systems Security Symposium
(NDSS 18), 2018.

[29] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage,” in Network and Distributed Systems Security Symposium (NDSS
19), 2019.

[30] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo,
R. Sekar, S. D. Stoller, and V. Venkatakrishnan, “Sleuth: Real-time
attack scenario reconstruction from cots audit data,” in 26th USENIX
Security Symposium (USENIX Security 17), 2017, pp. 487–504.

[31] M. N. Hossain, J. Wang, R. Sekar, and S. D. Stoller, “Dependence-
preserving data compaction for scalable forensic analysis,” in 27th
USENIX Security Symposium (USENIX Security 18), 2018, pp. 1723–
1740.

[32] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, and A. D.
Keromytis, “A general approach for efficiently accelerating software-
based dynamic data flow tracking on commodity hardware,” in Network
and Distributed Systems Security Symposium (NDSS 12), 2012.

[33] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso, and
W. Lee, “Rain: Refinable attack investigation with on-demand inter-
process information flow tracking,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security (CCS
17), 2017, pp. 377–390.

[34] S. T. King and P. M. Chen, “Backtracking intrusions,” ACM SIGOPS
Operating Systems Review, vol. 37, no. 5, pp. 223–236, 2003.

[35] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen, “Enriching in-
trusion alerts through multi-host causality.” in Network and Distributed
Systems Security Symposium (NDSS 05), 2005.

[36] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang,
D. Xu, S. Jha, G. Ciocarlie et al., “Mci: Modeling-based causality
inference in audit logging for attack investigation,” in Network and
Distributed Systems Security Symposium (NDSS 18), 2018.

[37] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance via
binary-based execution partition.” in Network and Distributed Systems
Security Symposium (NDSS 13), 2013.

[38] ——, “Loggc: garbage collecting audit log,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security
(CCS 13), 2013, pp. 1005–1016.

[39] B. Li, P. Vadrevu, K. H. Lee, and R. Perdisci, “Jsgraph: Enabling
reconstruction of web attacks via efficient tracking of live in-browser
javascript executions.” in NDSS, 2018.

[40] B. Linux, “ATK Package,” http://bit.ly/2WJM92Y, 2019, accessed on
2019-09-10.

[41] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal,
“Towards a timely causality analysis for enterprise security,” in Network
and Distributed Systems Security Symposium (NDSS 18), 2018.

[42] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate,
low cost and instrumentation-free security audit logging for windows,”
in Proceedings of the 31st Annual Computer Security Applications
Conference (ACSAC 15), 2015.

[43] S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie, A. Gehani,
V. Yegneswaran, D. Xu, and S. Jha, “Kernel-supported cost-effective
audit logging for causality tracking,” in 2018 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 18), 2018, pp. 241–254.

[44] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI:
Multiple perspective attack investigation with semantic aware execution
partitioning,” in 26th USENIX Security Symposium (USENIX Security
17), 2017, pp. 1111–1128.

[45] S. Ma, X. Zhang, and D. Xu, “Protracer: Towards practical provenance
tracing by alternating between logging and tainting.” in Network and
Distributed Systems Security Symposium (NDSS 16), 2016.

[46] Microsoft, “UI Automation - Windows applications,”
http://bit.ly/2Q4Vn7v, 2018, accessed on 2019-09-10.

[47] ——, “UI Automation Events Overview,” http://bit.ly/2WMJ8yQ, 2018,
accessed on 2019-09-10.

[48] Microsoft, “Property identifiers,” https://bit.ly/2tCxDQO, 2019, ac-
cessed on 2019-09-10.

[49] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrish-
nan, “Holmes: real-time apt detection through correlation of suspicious
information flows,” in 2019 IEEE Symposium on Security and Privacy
(SP).

[50] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer,
“Provenance-aware storage systems,” in 2006 USENIX Annual Techni-
cal Conference (USENIX ATC 06), 2006, pp. 43–56.

[51] Panda, “Platform for architecture-neutral dynamic analysis,”
http://bit.ly/2W5KaJc, 2019, accessed on 2019-09-10.

[52] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si,
X. Zhang, and D. Xu, “HERCULE: attack story reconstruction via
community discovery on correlated log graph,” in Proceedings of the

15



32nd Annual Computer Security Applications Conference (ACSAC 16),
2016.

[53] B. Saltaformaggio, Z. Gu, X. Zhang, and D. Xu, “Dscrete: Automatic
rendering of forensic information from memory images via application
logic reuse,” in 23rd USENIX Security Symposium (USENIX Security
14), 2014.

[54] TinyTask, “Simple + fast + free: Automation for everyone,”
http://bit.ly/2vXwrWm, 2019, accessed on 2019-09-10.

[55] Wikipedia contributors, “Cve-2018-8495,” http://bit.ly/30nvxjN, 2019,
accessed on 2019-09-10.

[56] ——, “Macro virus,” http://bit.ly/2w3W9Z2, 2019, accessed on 2019-
09-10.

[57] Z. Xu, Z. Wu, Z. Li, K. Jee, J. Rhee, X. Xiao, F. Xu, H. Wang, and
G. Jiang, “High fidelity data reduction for big data security dependency
analyses,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security (CCS 16), 2016, pp. 504–516.

APPENDIX

16



TABLE VI. TESTED WEBSITE LIST

Accommodation
and Hotels

www.vrbo.com www.pegipegi.com www.ihg.com www.thetrainline.com
www.marriott.com www.airbnb.com.au www.hotels.com www.hyatt.com

www.airbnb.ru www.trivago.com.tr www.airbnb.de www.travelzoo.com
www.expedia.it www.airbnb.co.uk www.choicehotels.com hotelscan.com
www.abritel.fr www.airbnb.fr www.caesars.com www.costcotravel.com

www.oyorooms.com www.airbnb.com.br www.trivago.de secure.accorhotels.com
magazine.trivago.it www.wyndhamhotels.com www.agoda.com www.fewo-direkt.de

www.airbnb.ca www.jalan.net magazine.trivago.es www.booking.com
www.trivago.co.uk www.homeaway.com blog.couchsurfing.com hiltonhonors3.hilton.com
www.expedia.co.uk www.airbnb.it www.hostelworld.com www.secretescapes.com
www.trivago.com.br www.airbnb.es www.gosur.com discover.expediapartnercentral.com

Consumer Electronics

sharp.cn www.made-in-china.com consumer.huawei.com www.sony.jp
www.samsung.com www.lavamobiles.com na.panasonic.com www.boulanger.com
www.mediamarkt.de www.micromaxinfo.com www.apple.com www.gearbest.com

www.lg.com www.mediaexpert.pl shop.huawei.ru www.darty.com
www.pccomponentes.com www.mediamarkt.es www.vivo.com.cn www.vatanbilgisayar.com

www.onlinetrade.ru www.uscellular.com www.oneplus.com www.mvideo.ru
www.saturn.de www.kimovil.com www.newegg.com unity.com

www.gadgetsnow.com www.shutterfly.com www8.hp.com hd.oppo.com
www.sonymobile.com www.roku.com www.currys.co.uk www.bhphotovideo.com

www.euro.com.pl www.mi.com www.vmall.com eshop.htc.com
www.vodafone.de

E-commerce and Shopping

www.ebay-kleinanzeigen.de www.wildberries.ru search.jd.com hz.58.com
shopping.yahoo.co.jp www.olx.ua www.amazon.es www.target.com

shopee.co.id www.leboncoin.fr www.ebay.com articulo.mercadolibre.com.ar
www.flipkart.com sale.aliexpress.com www.amazon.de www.amazon.co.jp
www.ebay.co.uk www.olx.pl www.ebay.com.au www.amazon.fr

err.tmall.com market.yandex.ru www.hepsiburada.com www.sahibinden.com
listado.mercadolibre.com.mx www.amazon.co.uk www.tokopedia.com www.etsy.com

allegro.pl list.tmall.com www.alibaba.com login.tmall.com
kakaku.com www.amazon.com slickdeals.net www.bukalapak.com

www.ebay.de produto.mercadolivre.com.br world.taobao.com www.amazon.ca
www.amazon.it hongkong.craigslist.org miao.tmall.com www.dmm.com
www.amazon.in www.walmart.com www.avito.ru

Finance
www.binance.com cn.investing.com www.tradingview.com www.fidelity.com

www.investopedia.com www.schwab.com www.boursorama.com iqoption.com
www.moneycontrol.com www.alipay.com

Investing

olymptrade.com pit.blockchain.com www.advfn.com www.ig.com
new.nasdaq.com etherscan.io www.rakuten-sec.co.jp jfinfo.com
www.etoro.com us.etrade.com www.aastocks.com finance.eastmoney.com

yuanchuang.10jqka.com.cn www.forexfactory.com www.rico.com.vc www.kitco.com
robinhood.com news.cnyes.com finviz.com www.fool.com

nifty50etf.nseindia.com www.xm.com stocktwits.com www.morningstar.com
www.finanzen.net minkabu.jp nikkei225jp.com www.tdameritrade.com

www.ml.com zerodha.com about.vanguard.com www1.oanda.com
xueqiu.com www.clear.com.br

Maps

www.viamichelin.it www.falk.de wikiroutes.info 2gis.ru
fr.mappy.com www.driveplaza.com www.onefivenine.com actualite.lachainemeteo.com

www.meteofrance.com economia.uol.com.br moscow.flamp.ru mapfan.com
www.mapquest.com www.openstreetmap.org www.targeo.pl www.langenscheidt.com
www.city-data.com www.bustime.ru www.mapion.co.jp www.arasikackm.com

www.marinetraffic.com www.viamichelin.fr en.mapy.cz www.here.com
www.geoportail.gouv.fr www.tuttocitta.it map.goo.ne.jp www.komoot.de

www.trendsmap.com geoguessr.com www.worldatlas.com ekitan.com
www.viamichelin.de ditu.amap.com

News and Media

www.naver.com news.finance.yahoo.co.jp sohu.com www.ifeng.com
www.ukr.net timesofindia.indiatimes.com www.rambler.ru edition.cnn.com

matome.naver.jp www.nytimes.com www.toutiao.com sina.cn
elpais.com www.goo.ne.jp finance.yahoo.com www.yidianzixun.com

www.globo.com news.yahoo.com www.iqiyi.com www.sina.com.cn
www.yahoo.co.jp www.livedoor.com finance.sina.com.cn www.163.com
drudgereport.com map.yahoo.co.jp www.bbc.com www.tribunnews.com

sports.news.naver.com www.onet.pl news.google.com economictimes.indiatimes.com
section.blog.naver.com www.ndtv.com www.qq.com www.indiatimes.com

news.yahoo.co.jp news.mail.ru search.yahoo.co.jp www.foxnews.com
www.wp.pl www.bild.de www.t-online.de headlines.yahoo.co.jp

www.interia.pl www.washingtonpost.com www.msn.com www.dailymail.co.uk
us.yahoo.com www.yahoo.com vnexpress.net www.rt.com

www.uol.com.br lenta.ru map.naver.com www.detik.com
www.theguardian.com

17



Restaurants and
Delivery

www.odyssys.net www.just-eat.co.uk www.swiggy.com www.doordash.com
www.wongnai.com popslotscasino.com www.inmoment.com www.subway.com.hk
www.seamless.com www.ubereats.com www.skipthedishes.com www.mcdonalds.com

www.chick-fil-a.com www.zomato.com www.opentable.com dominos.com.mx
menu.wendys.com www.lieferando.de sg.theasianparent.com www.bk.com

www.pizzahut.com.hk zmenu.com www.chowhound.com www.olivegarden.com
postmates.com www.icomera.com order.littlecaesars.com hds-streaming.com
www.pyszne.pl www.starbucks.com www.singleplatform.com deliveroo.co.uk

www.grubhub.com www.mcdonalds.co.jp

Search Engines

www.google.ca www.google.co.in special-offers.online www.so.com
www.baidu.com www.justdial.com www.startpage.com www.google.co.th
www.google.fr www.google.com.mx www.ask.com www.google.com.au

www.sogou.com www.google.be www.google.ru search.daum.net
www.google.com.ar www.google.com.vn www.bing.com www.google.de

www.google.nl yandex.ru www.google.com.pe map.baidu.com
www.google.ro www.google.pl duckduckgo.com www.google.co.jp

www.google.com.tr www.google.com.tw www.google.com.hk www.wjx.cn
m.sm.cn www.google.es www.google.com.ua yandex.com.tr

search.myway.com www.google.it www.google.co.uk www.google.cl
www.google.com.br y2mate.com whatismyip.li www.hao123.com

search.seznam.cz

Social Networks

ostrovok.ru www.reddit.com namu.wiki incorrect-good-omens.tumblr.com
programminghumour.tumblr.com story.snapchat.com www.pinterest.com.mx www.pinterest.de

www.slideshare.net www.shafa.com ask.fm www.pinterest.fr
bakusai.com www.pinterest.co.uk www.znds.com enterprise.foursquare.com

ok.ru www.whatsapp.com www.weibo.com vk.com
www.messenger.com www.pp.cn perple.exblog.jp lihkg.com

twitter.com www.facebook.com www.ptt.cc www.dangbei.com
zhuanlan.zhihu.com www.linkedin.com ameblo.jp www.meetup.com

medium.com www.instagram.com www.tagged.com www.fiverr.com
www11.eyny.com www.pinterest.com www.pinterest.es zalo.me

www.dcard.tw

Sports

sports.yahoo.com www.yr.no lequipe.fr www.americanas.com.br
www.gazzetta.it www.kooora.com www.mundodeportivo.com www.espncricinfo.com
www.marca.com www.goal.com bbs.hupu.com as.com
global.espn.com www.championat.com www.mlb.com www.skysports.com

www.cricbuzz.com

TV Movies and
Music

www.nicovideo.jp www.crunchyroll.com soundcloud.com www.dailymotion.com
www.imdb.com www.google.com www.youtube.com www.netflix.com

www.vesti.ru vimeo.com

Others

stackoverflow.com Xinhuanet.com Yahoo.co.jp www.bestbuy.ca
www.trivago.hk bbs.tianya.cn www.twitch.tv outlook.live.com

www.papajohnschina.com airregi.jp en.wikipedia.org www.kawauchisyun.com
templates.office.com www.gojek.com www.fishbowl.com www.okezone.com

www.360.cn acomputerblog.blogspot.com www.csdn.net www.att.com
www.microsoft.com Babytree.com

18


