DESENSITIZATION:
Privacy-Aware and Attack-Preserving Crash Report

Ren Ding*, Hong Hu*, Wen Xu, Taesoo Kim
Georgia Institute of Technology
{rding, hhu86, wen.xu, taesoo}@gatech.edu

Abstract—Software vendors collect crash reports from end-
users to assist in the debugging and testing of their products.
However, crash reports may contain users’ private information,
like names and passwords, rendering the user hesitant to share the
reports with developers. We need a mechanism to protect users’
privacy in crash reports on the client side while keeping sufficient
information to support server-side debugging and analysis.

In this paper, we propose the DESENSITIZATION technique,
which generates privacy-aware and attack-preserving crash re-
ports from crashed executions. Our tool adopts lightweight
methods to identify bug-related and attack-related data from the
memory, and removes other data to protect users’ privacy. Since
a large portion of the desensitized memory contains null bytes, we
store crash reports in spare files to save the network bandwidth
and the server-side storage. We prototype DESENSITIZATION and
apply it to a large number of crashes of real-world programs,
like browsers and the JavaScript engine. The result shows that
our DESENSITIZATION technique can eliminate 80.9% of non-
zero bytes from coredumps, and 49.0% from minidumps. The
desensitized crash report can be 50.5% smaller than the original
one, which significantly saves resources for report submission
and storage. Qur DESENSITIZATION technique is a push-button
solution for the privacy-aware crash report.

I. INTRODUCTION

Software vendors collect crash reports from their end-users
to improve the stability and security of their products [2], [5],
[36], [58], [79]. The crash report is either a coredump file
that captures the CPU context and the memory content of the
crashed program [1], [51], or the program input that makes the
execution crash [19], [80], [24], [4]. Unfortunately, in either
case, the crash report may contain privacy-sensitive information
of individual users. For example, a recent study on 2.5 million
crash reports of a popular web browser identifies an enormous
amount of private user data, including user names, passwords,
session tokens, and personal contact information [69]. A crash
report with private information is unwelcome to both users
and developers. While users are unwilling to share the crash
reports due to the concern of leaking their private information,
developers do not want to collect privacy-sensitive reports
where any storage breach may lead to bad publicity, and even
financial liability.

*The two lead authors contributed equally to this work.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA

ISBN 1-891562-61-4

https://dx.doi.org/10.14722/ndss.2020.24428
www.ndss-symposium.org

To protect users’ privacy while supporting timely bug
fixing, we need to remove users’ sensitive data from crash
reports before sending them to developers. We call this process
DESENSITIZATION. Several proposals aim to desensitize the
crash report, but unfortunately, we have not seen any real-world
deployment. Techniques like Scrash [13] rely on developers
to manually annotate sensitive data to remove them from
crash reports. However, the manual annotation is usually time-
consuming and error-prone, and does not work on closed-
source programs. Pattern-based search is a general method
to identify particular privacy-sensitive data, like URLs and
email accounts [69], but it cannot handle program-specific data.
Another set of works aims to desensitize the crashing input,
which should make the program crash in a similar manner as the
original [19], [80], [24], [4]. However, these proposals rely on
computation-heavy techniques, such as symbolic execution [15],
[22], [20], [16] or taint analysis [76], [61], [68], causing
significant burdens to users or developers. More importantly,
they require a non-trivial change to the current crash-report
systems, which mainly use crash files instead of crashing inputs
to classify and prioritize different bugs [2], [5], [36], [58], [79].

Given the understanding of the current obstacles, we identify
three desirable properties that a DESENSITIZATION technique
should have for wider deployment:

e Privacy-aware: The technique removes users’ private
information from the crash report as much as possible.

e Attack-preserving. The desensitized crash report still
contains sufficient information for effective bug analysis. If
the execution crashes due to a failed attack, the technique
should keep the attack residue in the report.

e Widely applicable. The technique should be lightweight
for end-users and compatible with current crash-report
systems. It should work on closed-source programs, cover
various types of sensitive data, and generate minimal crash
reports for resource-limited environments.

In this paper, we propose a bug-oriented and attack-oriented
method to desensitize crash reports so that they capture a
snapshot of the crashed program with minimal risk of leaking
users’ private information. Our observation is that although
there are many bugs on the client side, only a few general
techniques are used on the server side to diagnose bugs
and detect attacks. For example, call-stack-based analysis is
widely used to classify and prioritize crash reports [57], [8].
Therefore, DESENSITIZATION keeps only the information for
commonly used bug-analysis techniques and removes all other
data to protect users’ privacy. We design one general and four
lightweight techniques to identify bug-related and attack-related
data from the crashed memory snapshot. The general technique

| #define MAX_LEN 64

2 typedef struct { char “ptr; void (*print)(); } String;
3 void printString() { ... }
4 void vuln(char *input) {
char passwd[MAX_LEN];
char *buf = (char *) malloc(MAX_LEN);

load_passwd(passwd) ; buf

String *string = (String *) malloc(sizeof(String));

string->ptr = buf; string->print = &printString;
strcpy (buf, input);
10 string->print(Q);

1n 3

© w9 o w;

(a) Vulnerable source code.

stack heap ROP chain gadgets shellcode
[pop rsi xor rdx, rdx S
[ret
A add rbx, 0x8 S’
Vs ptr
/ s e
string print o b mov [rdx], rbx
l 3 syscall
xchg rax,rsp N N
ret Gpivot

(b) Memory layout before crash.

Fig. 1: A vulnerable code snippet and the memory layout before the execution crashes. The code has a heap-based buffer overflow bug
at line 9. Attackers corrupt a function pointer to pivot the stack, launch ROP attacks, and eventually run the shellcode. However, due to the
incorrect address, the program crashes and generates a coredump. The stack contains user password — a sensitive private data value.

scans the memory snapshot to identify all pointers, as most
crashes and attacks stem from corrupted pointers. For each type
of prevalent bug and attack, we design one technique to identify
specific information or tailor existing techniques for client-side
efficiency. Specifically, we design a heap module to identify
all heap metadata, a format string module to detect malformed
format strings, an ROP module to search for suspicious ROP
gadgets, and a shellcode module to collect possible payload.
The modular design makes our tool extensible to support future
bug-analysis and attack-detection techniques.

The prototype of our DESENSITIZATION technique can
generate desensitized crash reports from either crashed exe-
cutions or existing reports. For the runtime report generation,
our tool installs a signal handler to take over the execution
once the process crashes. It applies DESENSITIZATION on
the memory snapshot and generates the desensitized crash
reports that are compatible with existing formats, such as
coredumps (the default format on Linux [51]) and minidumps
(the default format on Windows and many large programs,
like Firefox [1]). It can also desensitize existing reports to
remove private information. Currently, our prototype supports
both 32-bit and 64-bit Linux ELF programs. We plan to add
the support of Windows PE binaries in future work.

To understand the efficacy and efficiency of our tool on
protecting users’ privacy, we evaluate it on four real-world
applications and one CTF (capture-the-flag) challenge: the
multimedia player ffmpeg, the PHP language interpreter php,
the JavaScript engine chakra, the web browser firefox, and the
DEFCON 2015 challenge tachikoma. We collect 13,390 crash
reports from 86 known bugs and emulated attacks, including
11,875 coredumps and 1,515 minidumps. The result shows
that on average, DESENSITIZATION can remove 80.9% of all
non-zero bytes from each collected coredump and remove
49.0% of that from each minidump. Further, DESENSITIZATION
helps reduce the file sizes of coredumps by half, which saves
network bandwidth for end-users to report the bug and reduces
disk usage for developers to store the reports. Meanwhile, the
desensitized crash reports still contain sufficient information to
support common bug-analysis and attack-detection techniques.
Specifically, the call-stack-based analysis produces the same
result for reports before and after applying DESENSITIZATION.
For example, we submit the original and desensitized reports
to socorro — the crash-analysis framework of firefox. The
platform groups them into the same group, indicating that our
tool keeps the necessary information for bug classification. Our

Type Semantics Examples

Cookies website tokens Geo=(4.3267961,52.096922)

Forms current user-input <form ... enctype="multipart-formdata">
Autofilling user-input history <form ... autocomplete="on">

Passwd: <input ... autocomplete="on">

TABLE I: Possible privacy leakage from minidumps of firefox,
including website tokens and user inputs. See §V-B3 for more details.

manual inspection on several attack-caused crashes confirms
that DESENSITIZATION keeps all attack residues necessary for
developers to analyze these attacks. DESENSITIZATION can
complete its work with reasonable resources, taking less than
15 seconds process each crash. Therefore, DESENSITIZATION
is a practical yet effective method to generate privacy-aware
and attack-preserving crash reports.

We make the following contributions in this paper:

e Privacy-first crash report. We design a new format of
crash report that can protect users’ privacy while retaining
sufficient information for server-side bug detection and
attack analysis. The new format is compatible with most
mainstream crash-report systems.

e Techniques to generate a new report. We implement
one general and four specific techniques to construct crash
reports in the new format from crashed processes. Our
tool is easily extensible for future analysis techniques.

e End-to-end system. Our evaluation shows that our tool
is practical for generating crash reports that protect user
privacy while keeping attack residues.

DESENSITIZATION is a push-button solution for privacy-
aware crash reports; developers just have to include the library
of DESENSITIZATION in their products. We have released the
source code of our tool and the collected crash reports at
https://github.com/sslab- gatech/desensitization.

II. PROBLEM DEFINITION
In this section, we first present one example to illustrate the
DESENSITIZATION problem. Then we define our threat model.

A. Motivating Example

We inspect the source code of firefox and its runtime, and
identify several scenarios in which users’ private information

https://github.com/sslab-gatech/desensitization

Techniques CallStack IP RevExec

Adobe-CR [2]
Apport [78]
Backtrace [¢]
Chromium-CR [36]
CREDAL [81]
Crash Graphs [45]
KLEE* [15]

Liblit et al. [48]
Mac-CR [5]
Modani et al. [50]
POMP [82]
Rebucket [27]
REPT [25]
RETracer [20]
Schroter et al. [70]
Socorro [57]
WER [33]
lanalyze* [55]

Signature

AN N

N OSSN SSASN
ANRN
ANAN

AN
ANANAN

DESENSITIZATION yes yes yes

TABLE II: Crash analysis and triage techniques, and underlying
mechanisms. CallStack relies on call stacks at the crashing point to
find unique bugs; IP uses the crashed instruction address to deduplicate
crashes; Signature adopts program-specific heuristics to the callstack
techniques for more effective triage. * indicates the uncertainty due to
the lack of proper documentation found. The last line shows whether
or not the desensitized crash reports still support these techniques.

is dumped into the crash report. Table I provides a summary
of our findings, where website cookies, user-inputs, and input
history could be leaked. We leave the detailed discussion of
these cases in §V-B3. Instead, we use a simplified example to
demonstrate the privacy issue in crash reports.

Figure 1 shows a vulnerable program that is exploited by
attackers, but the attack fails due to an invalid memory access.
The code in Figure 1a first loads the user’s password to a stack
buffer passwd (line 5). Then, it allocates two heap objects, buf
and string, and initializes their fields accordingly (line 6-8).
However, the strcpy at line 9 may overwrite the heap memory
beyond buf if the untrusted input has more than MAX_LEN bytes,
leading to the corruption of the string object. In that case, the
indirect function call at line 10 may divert the control-flow to an
attacker-expected location. Figure 1b shows the memory layout
of a failed attack, where attackers overwrite the function pointer
string->print with the address of a stack-pivot gadget. The
gadget changes rsp to the attacker-controlled memory region,
which contains a sequence of code addresses of ROP gadgets.
After running several gadgets, the attack finally executes the
shellcode. Due to the incorrect address, the execution crashes at
an invalid memory access. The operating system or a user-space
library (e.g., breakpad [35]) will generate a crash report that
captures the memory status. Once the user agrees, the crash
report will be sent to developers for bug analysis.

Privacy Concern. The crash report may contain users’ private
information. For example, the stack variable passwd in Fig-
ure 1b contains users’ password, which should be confidential.
However, current crash-report systems include all memory
content in the coredump or at least all stack content in the
minidump, which will leak the users’ password to developers. In
a recent study, researchers identified 20,000 session tokens and
600 passwords from browser crash reports, demonstrating the

Schemes Struct ROP Shcode

CAVER [47] v
DANGNULL [46] v
HOTracer [42] v

KOP [17] v
Polychronakis et al. [60]

Polychronakis et al. [65]

ROPecker [21]

ROPMEMU [37]

ROPscan [67]

SBCFI [63]

SHELLOS [75]

SigGraph [49] v

Heap

ANAN

AN N NN

DESENSITIZATION yes yes yes yes

TABLE III: Anomaly detection schemes and their detection targets.
The last line shows whether or not the desensitized reports still contain
necessary information to identify these attacks.

severity of the privacy leakage issue [69]. The straightforward
solution is to remove all privacy-sensitive data from the crash
reports before sending them to developers. However, existing
works either rely on developers to manually annotate such
variables or depend on non-scalable inter-procedural data-flow
analysis to find them [13]. We need an effective and efficient
solution to eliminate sensitive data from crash reports.

Attack/Bug Residue. To support bug analysis and attack
detection on the server side, the crash report should contain
sufficient information of the bug or residue of the attack. For
example, in Figure 1b, we can find various data pieces used
by the attacker, including the address of the stack-pivot gadget
Gpivot, several ROP gadget addresses (e.g., G1, G2, G3) and
the malicious shellcode S. With this information, developers
may determine the reason for the crash — a failed exploit
against a heap-based buffer overflow. They can also identify
the exploitation methods used in the attack, like stack pivoting,
ROP, and shellcode injection. Such information helps developers
pinpoint the bug location and enables them to correctly estimate
the bug severity (i.e., highly risky). Finally, they can fix the
bug by patching line 9 to avoid future crashes and attacks.

As we can see from the example, a DESENSITIZATION
technique contains two contradictory goals: one is to reduce
the user information from the crash report as much as possible
to protect the user’s privacy; another goal is to keep as much
information as possible to afford effective bug diagnosis and
attack analysis. Our work starts from widely used bug-analysis
techniques, and aims to generate a minimal crash report that
supports developer-side bug analysis and repair.

B. Bug-analysis and Attack-detection Techniques

We performed a study of existing bug-analysis and attack-
detection tools used on the server side, aiming to understand
the commonality of these techniques. Table II and Table III
show our study results about crash-classification techniques and
exploit-detection tools. Generally, most classification techniques
rely on either call stacks, program counters, or customized
signatures at crash sites for efficient triage. For example,
socorro [57], developed and used by the firefox team,
combines call-stack information and several program-specific
heuristics to group different crash reports. In addition, heavier

techniques, such as reverse execution [25], [82], [26], [81], are
also proposed to examine crashes in greater detail. Among
all anomaly-detection mechanisms in Table III, four types of
information are commonly used to detect attacks, i.e., the
heap metadata, program-specific structures, ROP gadgets, and
shellcode. For example, several works aim to detect ROP attacks
by identifying ROP gadgets during program execution or from
the execution trace [21], [37], [67], [63], [75].

ROPscan as an example. ROPscan [67] takes two steps to
identify ROP attacks from network packets or memory buffers:
it first sequentially scans every 4-byte value from the input
to find potential code pointers that point to executable code
locations (assuming a 32-bit system); it then starts to execute
the pointed-to code and identifies gadgets based on the length
of each block and the target of the ending instruction. If the
number of distinct gadgets exceeds the threshold, ROPscan
concludes the input contains a ROP payload. ROPscan can
detect ROP gadgets from the coredump generated in Figure 1b.
Specifically, given the whole memory snapshot captured in
the coredump, ROPscan first identifies the 4-byte value Gpivor
pointing to the executable code section. However, it cannot
concretely execute this gadget, as the value of rax is missing.
Then, it continues to identify the next code pointer G;. After
that, it tries to execute the code at G, which will reveal more
gadget addresses, i.e., G2, G3. ROPscan treats these three
consecutive ROP gadgets as an indicator of the ROP attack.

We design DESENSITIZATION to retain adequate infor-
mation in the crash report to support as many server-side
analysis techniques as possible, while keeping the client-side
computation lightweight to avoid heavy burden on end-users.
Although existing techniques may have different algorithms
to parse data, some types of data are widely used by most
techniques. Based on this observation, DESENSITIZATION
chooses to focus on collecting common data to support popular
analysis techniques with minimal overhead.

C. Threat Model

We assume a software developer who creates benign but
potentially buggy programs, and an end-user who likes to
use the program but cares about her privacy — she does not
want to share any credentials with the developer. The program
execution may trigger some program bugs, either accidentally
by the user’s rare operation or intentionally by an attacker. Due
to the bug, the execution terminates on the user side. The crash
report system embedded in the buggy program, or provided
by the underlying operating system, generates a crash report
that describes the execution failure. The user likes to share the
crash report with the developer to help diagnose the bug and
fix it in time. However, she has the concern that her private
information in the crash report may be leaked to the developer
or to others through the developer’s activity. The developer
does not want the liability of protecting the user’s privacy but
is eager to use the crash report to debug the program.

III. DESIGN

Our DESENSITIZATION technique identifies necessary in-
formation that is commonly related to bugs and attacks. First, it
scans the whole memory to identify pointers (§III-A), including
code pointers and data pointers. Our observation is that most

Module Collected Data Related Bugs & Attacks
Pointer Code ptrs ROP [73], JOP [11], COP [18], GOT.PLT
corruption, vtable injection [71], etc.
Data ptrs DOP [40], type confusion [47], use-after-
free [46], double-free [46], out-of-bound, etc.
Heap Chunk size heap overflow, overlapping chunks [74], heap
spray, etc.
PREV_IN_USE use-after-free [40], double-free [46], unsafe-
unlink, bin-dup, house-of-* series [74], etc.
ROP Gadgets & args ROP [73], JOP [11], COP [18], etc.
Fmtstr Strings & args format string attack
Shcode Payloads shellcode injection

TABLE 1IV: Information collected by DESENSITIZATION, and
potentially covered vulnerabilities and attacks. Our system supports
easy extension for developers to customize DESENSITIZATION for a
program-specific crash format, like nullifying more pointers to save
space or keeping more data for debugging purposes.

crashes are caused by corrupted pointers, while many attacks
manipulate pointers to achieve final goals. Second, our tech-
nique tackles other data that can provide debugging aids to track
down multiple types of vulnerabilities (§III-B). For example,
heap metadata is useful to identify heap overflows and use-
after-free bugs, and therefore we follow the design of each heap
manager to find all heap structures. Third, DESENSITIZATION
considers possible exploit residues in the memory and uses
heuristic-based methods to identify the related data of popular
attack vectors. Table IV provides a list of information collected
by DESENSITIZATION and potential vulnerabilities and attack
vectors that are related to the collected information. Note
that some vulnerabilities or attacks require a combination
of several modules of DESENSITIZATION to get sufficient
information. For example, the detection of dangling pointers
requires both data pointers and heap metadata. Other than
embedded techniques, our tool also provides convenient APIs
for developers to write customized DESENSITIZATION modules
based on their domain knowledge, like removing known useless
pointers for analysis to avoid potential information leakage or
keeping more data that are critical to detect bugs (§III-C).

System Architecture. Figure 2 shows the architecture of
our DESENSITIZATION technique and its position in current
crash-report systems. DESENSITIZATION is deployed on the
client side, either as an exception handler of the program,
or adopted by the operating system as a system-wide crash-
report generator. Once a process crashes, DESENSITIZATION
is invoked with the full memory space as the input. In current
systems, all memory content is directly dumped in the crash
reports. Instead, DESENSITIZATION takes several lightweight
analyses to identify bug-related and attack-related data from
the memory (shown as a small rectangle under each technique).
Then, our technique keeps all identified data in the memory
and nullifies others to remove the user’s private information.
Optionally, we store the desensitized memory as a sparse
file and compress it to reduce its size (not shown in the
figure). Finally, our technique utilizes existing systems to
deliver the crash report to the server through the network.
On the server side, developers can use any heavy technique to
analyze the crash, like taint analysis [76], [61], [68], symbolic
execution [15], [22], [20], [16] or even manual inspection.
Finally, they determine the reason for the crash and synthesize
a patch to fix the bug.

Desensitization

Execution]Pointerl | Heap I | ROP I |Shcode| lFmtStrI

5|~

Crash

Crash
Reason

Manual

] 7
+ + | |+ + + -
A = 7

— " [TaintTrack] —

< client

Fig. 2: Overview of DESENSITIZATION and its position in current crash-report systems. Once a process is crashed on the client side, our
lightweight tool will inspect the process memory to identify bug- and attack-related data, like pointers. It removes all other data from the
memory to generate a privacy-aware crash report. The report is sent to servers through network and is stored on the server side. Developers will
use heavy bug-diagnosis and attack-analysis techniques to find the root cause of the crash.

A. Pointer Identification

Pointers play important roles in the program’s normal
execution, bug diagnosis, and attack detection. Code pointers
hold the addresses of code segments, which enable efficient
implementations of dynamic behaviors, like callbacks and
polymorphism of object-oriented programming. Data pointers
connect program variables together and support efficient
memory accesses. Therefore, many debugging efforts start
by examining pointers in a crash report. For example, call-
stack-based analysis recovers the call stack by following stack
pointers and base pointers [57], [8]. Meanwhile, pointers are
common targets of attack techniques, including both traditional
attacks such as ROP and format string attacks, and recently
prevalent use-after-free attacks and type confusions.

DESENSITIZATION adopts generic approaches to identify
all pointers from the memory. Specifically, it examines every
pointer-size bytes in the crashed memory, e.g., 4 bytes for x86
systems and 8 bytes for x86-64 systems, and checks whether
they are potential code or data pointers. DESENSITIZATION
considers a pointer-size memory as a pointer if and only if its
value falls into one valid region of the memory space with
proper access permissions. We treat a pointer as a code pointer
if the pointed page has the execution permission; otherwise,
we label it as a data pointer. Values pointing to any invalid
memory range, or non-accessible memory region, like those
reserved for dynamic allocations, will be considered as non-
pointers. This method will not miss any pointers in memory,
but may include non-pointers in the crash report. Fortunately,
our evaluation shows that even with potential false positives, it
still significantly reduces the size of the crash report.

We adopt several optimizations to improve the performance
of memory scanning. First, DESENSITIZATION combines con-
secutive memory regions regardless of their permissions (as
long as accessible) to reduce the number of comparisons when
validating pointers. For example, crashes of firefox contain
340 memory regions, leading to heavy comparisons to validate
each pointer-size value. Merging continuous memory reduces
more than half of these regions, significantly improving the
validation performance. Second, our scanner maintains the
merged memory regions as an interval tree, which searches
address ranges in a logarithmic time complexity.

Capturing GOT.PLT. ELF binaries use the Global Offsets
Table (GOT) to access the functions and variables of external
libraries. Specially, the addresses of external functions are stored
in the GOT.PLT section (PLT for Procedure Linkage Table),

one entry for each function. A GOT.PLT entry originally refers
to an instruction of the PLT section and is changed to the real
address of the external function after its first invocation. These
entries are common corruption targets for attackers to bypass
randomization-based defenses [30]. Our pointer identification
will collect all normal GOT.PLT entries as valid code pointers.
Even if one GOT.PLT entry gets corrupted and becomes an
invalid pointer, DESENSITIZATION still strives to preserve it
due to its sensitivity toward bug-related and attack-related
debugging. Specifically, if DESENSITIZATION can identify the
GOT.PLT section from the dump information, it will simply
keep all entries in the section. Otherwise, it tries to identify the
GOT.PLT section based on the property of GOT.PLT entries,
i.e., they either point to instructions in the PLT section or point
to functions in other modules.

Supporting ROPscan. Pointer identification collects point-
ers, especially code pointers, so that the crash report after
DESENSITIZATION still contains sufficient information to
support the first step of ROPscan — code pointer identification.
In the case of the crash generated from Figure 1, all pointers
(i.e., buf, string, ptr, Gpivor, G1, G2, G3) will be identified
and kept in the desensitized crash report.

B. Bug-Specific and Attack-Specific Modules

Besides identifying pointers for general purposes, we
further investigate other potential data related to program
faults and malicious attacks in the crash memory. In particular,
DESENSITIZATION considers popular, general offensive meth-
ods that are widely used by real-world attacks, and strives
to preserve the necessary information in the crash report
correspondingly so that developers can diagnose the crash
and reveal the attack easily. Other than the supported bugs
and attacks, we design DESENSITIZATION to be extensible to
support future bug-analysis techniques.

1) Heap Structure: In recent years, heap-based vulnerabili-
ties and exploits have dominated security breaches [6], [41],
[101, [311, [321, [641, [431, [231, [771, [7]. These exploits utilize
various methods to abuse heap structures that lack sufficient
security checks in various implementations. [74] provides a
community-wide compilation of well-known heap exploits
against ptmalloc [34], where each technique corrupts specific
heap metadata to achieve certain attack primitives.

To help debug program faults and identify failed attacks
involving heap objects, DESENSITIZATION tries to identify and
save all heap metadata from the process memory space. Our

[used chunk [___] Free chunk [EZ22] Top chunk

Main arena
Unsorted Small Large
.bins| Bin, | |Bin13 |Bin71| |
T
Heap T T w!
Lo [hlw e v [
K A

Fig. 3: Heap structures implemented by ptmalloc in glibc. It
embeds metadata, like pointers, into the allocated memory region.

heap module is designed to be generic and thus can cover many
types of bugs and attacks. For example, from the desensitized
crash report, developers can identify corrupted heap structures
due to buffer overflows, or they can find dangling pointers of
freed memory, which might be the root causes of use-after-free
bugs. Currently, our DESENSITIZATION technique supports two
common heap allocators, ptmalloc, which is used by glibc
on Linux distributions, and jemalloc, which is adopted by
FreeBSD and other popular applications, such as firefox.

Figure 3 presents a typical view of the heap layout in
ptmalloc, which maintains multiple arenas for multi-threaded
applications, one for each thread. An arena is an instance of
structure malloc_state and serves the allocation and freeing of
its associated thread. Each arena contains several large amounts
of continuous areas of heap memory. Each heap chunk is in
the status of either allocated or freed, indicated by the chunk
metadata. The metadata of an allocated heap chunk contains
the size field describing the chunk size, the prev_size field
providing the size of the previous chunk (if it is freed), and
several flags bits, like the PREV_IN_USE bit indicating whether
the previous chunk is freed or not. A freed chunk has two
extra metadata fields, the fd pointer pointing to the next freed

chunk and the bk pointer pointing to the previous freed chunk.

To support efficient allocation, ptmalloc connects freed heap
chunks through the fd and bk pointers, and groups them into
different bins — one bin for all chunks with the same or similar
size. To free an allocated chunk, ptmalloc inserts it into a

proper bin according to its size before returning it to the system.

To allocate a new chunk, ptmalloc tries to find a large enough
cached chunk from the bins before requesting the memory
from the top chunk. If the crashed program uses ptmalloc,
DESENSITIZATION manages to parse the heap metadata as
above, starting from the information in arenas that are indicated
by the symbol main_arena. Then, it walks through all the
structures accordingly in an iterative manner, such as tracking
each chunk in memory space by its chunk size, until it finds
all heap metadata or reaches a parsing error due to corrupted
heap information.

Figure 4 presents a typical view of the heap layout in
jemalloc. jemalloc shares some structures with ptmalloc,
such as arenas and bins. The main difference is that jemalloc
saves all metadata in one dedicated memory region, separated
from the real payload. This design improves the security
of the heap manager, as the common heap overflow cannot
reach the metadata as easily as before. It also achieves
better performance, as heap structures are maintained as
efficient tree structures and traversal of these structures is
more convenient due to the memory locality. Starting from

gArenas 1 Used i") Page
! 1 Free !
arena_t i —
| chunk_t <RBTree> } I chunk; |—--JI
bin_t
[Bin, | Bin, | | [F IPa:geI
i —

Fig. 4: Heap structures implemented by jemalloc in firefox. It
uses dedicated memory region to store all heap metadata.

the main arena (i.e., gArenas), DESENSITIZATION parses
the tree of arenas (i.e., struct arena_t) to fetch all heap
structures. While each arena maintains a dynamic list of bins
(i.e., struct arena_bin_t), it also points to another tree of
chunks (i.e., struct arena_chunk_t), which contains a large
continuous memory space for allocation, similar to the function
of struct heap_info for ptmalloc. The sizes of the continuous
memories are fixed based on native systems (with usually
1 MB = 1 page * 250), and since there is no metadata
between user-requested regions anymore, DESENSITIZATION
simply records the data in the struct arena_chunk_t header,
rather than traversing through all user memory like it does
for ptmalloc. DESENSITIZATION identifies and saves all the
structures mentioned above from the process memory.

2) ROP Gadget Chain: Return-oriented programming (ROP)
is an indispensable step for modern memory-error exploits [73].
Despite ROP chains tending to be self-destructive during execu-
tion, DESENSITIZATION strives to save related information
if necessary. Note that the pointers of ROP gadgets have
been saved by the pointer identification. Therefore, our ROP
module focuses on saving the data in the ROP payload, which
can be used as operands of ROP gadgets. Specifically, if a
consecutive memory of K bytes contains more than N code
pointers, DESENSITIZATION considers the region as a potential
ROP payload and will keep all the data in between, including
pointers and non-pointers. The numbers K and N are tunable to
users. In our evaluation, we use K=48,N=4 for 32-bit systems and
K=96,N=4 for 64-bit systems, based on our experience. Further,
DESENSITIZATION conservatively keeps a 96-byte memory
region around stack pointer esp/rsp, which can provide both
a general debugging aid for program faults and tackle those
ROP attack-crashing programs.

Supporting ROPscan. ROP gadget chain identification keeps
the operands of ROP gadgets inside the desensitized crash
report, which supports the second step of ROPscan — the
speculative execution and gadget detection. In the example of
Figure 1, DESENSITIZATION will keep the operands for Gy,
G4, and (5. Therefore, ROPscan can start the execution from
(G1 and identify three consecutive ROP gadgets.

3) Shellcode: Code injection attacks insert malicious in-
structions, called shellcode, into the memory space of the
victim. Although NX and DEP disable direct code injection [3],
[29], attackers can create a writable-and-executable data region
through mprotect() and place shellcode inside, commonly
serving as the last exploit step. To search for potential shellcode
payloads in a lightweight manner, DESENSITIZATION scans
memory dumps for critical system call instructions outside the

text section, such as int 80 for x86 platform and syscall
for x86_64 platform. For each potential system call instruction,
DESENSITIZATION fetches the proceeding 200 bytes and tries
to disassemble them. As the fetch might truncate actual
payloads, DESENSITIZATION tolerates disassembling errors
within the first 16-bytes. If the disassembling process does
not find any error after the first 16-bytes, and the assembly
code is ended with one system call instruction, we treat the
extracted memory region as a valid shellcode payload. To cover
shellcode with more than 200 bytes, we repeatedly apply the
method to another 200 bytes before the valid shellcode, until we
cannot find more shellcode regions. All the identified shellcode
payloads are kept by DESENSITIZATION in the desensitized
crash report.

4) Malicious Format String: In format string exploits,
attackers manipulate printing formats to perform arbitrary read
and write with severe consequences. DESENSITIZATION hunts
all the valid strings that contain format specifiers defined
in the man page of Linux [50] through regular-expression
matching, including those with various length and precision
fields. DESENSITIZATION simply fetches memory between the
two closest null bytes (i.e., 0x00) as an overestimation for
each string. Next, it tries to find arguments for printf-like
functions. On 32-bit systems such as x86, arguments are passed
through stacks while the pointer of the format string is the
first argument. DESENSITIZATION searches for pointers that
point to any malicious format strings on stacks and saves
the six following pointer-size bytes to conservatively keep all
arguments. On 64-bit systems such as x86-64, the first several
function arguments are passed through registers, where the
pointer of the format string will be in register %rdi. In this
case, DESENSITIZATION cannot pinpoint the potential locations
of corresponding arguments, but just saves malicious format
strings and all their references in memory.

C. Supporting Future Analysis

The current design of DESENSITIZATION covers most of
the common bugs and attacks, but it is never complete due

to various bug types and quickly evolving exploit techniques.

Therefore, DESENSITIZATION provides friendly interfaces for
researchers to write their own modules to cover more bugs and
to support future analysis techniques. It also allows developers
to define customized policies based on their domain knowledge,
either to aggressively remove more pointers that are known to
be unnecessary for debugging or to conservatively keep more
non-pointers that are critical for bug analysis. For example,
developers can acquire extra data in critical sections to assist
backward execution at crash sites [25], [82] or search for more
attack payloads in error-prone call frames. DESENSITIZATION
provides configurable options for non-developers, such as
further removing data pointers in crash reports to avoid
uncommon information leakage. By taking various levels of
DESENSITIZATION techniques for certain address spaces of
the crashed execution, DESENSITIZATION produces new crash
reports in a flexible manner.

IV. IMPLEMENTATION

DESENSITIZATION contains two components: the parser
for extracting necessary information that needs to be kept in
the crash report and the writer that dumps the desensitized

data to physical disks in the sparse file format. We implement
DESENSITIZATION in 4,284 lines of Python code, publicly
available at https://github.com/sslab-gatech/desensitization.

1) Memory Parser: Currently, DESENSITIZATION sup-
ports generating desensitized crash reports in coredumps
or minidumps. Coredumps contain almost all the memory
content of the crashed process, including environment variables,
exception information, context of CPU, heap and stack of
each thread, loaded libraries, and modules. Minidumps collect
much less information to reduce the size of the report. For
example, by default, it does not include the heap region of
the crashed process. Considering the distinction in formats
and design concepts, we implement two different parsers
to generate coredumps and minidumps. To generate core-
dumps and parse binaries and libraries on the Linux platform,
DESENSITIZATION relies on an open-source tool [9] with
python bindings, pyelftools, for parsing various headers and
sections in ELF format and DWARF debugging information.
Due to the limited availability of public libraries for generating
minidumps in Python, we implement our own minidump parser
without relying on third-party codes. For disassembling binaries,
DESENSITIZATION works with pyxed [44], the python bindings
for Intel X86 Encoder Decoder (XED).

2) Report Writer: To produce minimal crash reports, the
writer of DESENSITIZATION stores the desensitized memory
as sparse files, as a large number of bytes are cleared to zero.
Specifically, it fseeks on positions of kept bytes in the processed
data to create “holes” in newly generated dumps.

V. EVALUATION

We perform empirical evaluations on real-world crashes to
answer the following questions of DESENSITIZATION regarding
its effectiveness, usability, and practicality:

e Privacy protection. What percentage of bytes can our
DESENSITIZATION technique nullify from the process mem-
ory? Can DESENSITIZATION remove sensitive data? (§V-B)

e Attack preservation. Can DESENSITIZATION retain suf-
ficient information to support common server-side crash
analysis? Can DESENSITIZATION preserve attack residue if
the program crashes due to failed attacks? (§V-C)

e Practicality. How well can DESENSITIZATION help reduce
the size of the crash report? Can DESENSITIZATION generate
the new crash report in a reasonable time with proper memory
usage? (§V-D)

A. Experiment Setup

To compare our new format of crash reports with existing
ones, we first generate the reports in old formats using existing
tools. Then, we apply our technique on these reports to identify
and remove users’ sensitive information. Specifically, we rely on
the Linux kernel to create coredumps and utilize the breakpad
library to generate minidumps. To simplify our description, we
denote the crashes triggered by failed attacks as attacker-driven
crashes (reports) and denote the crashes without any attack
involved as user-driven crashes (reports).

Generating user-driven reports. We use three different
methods to generate user-driven reports: one with the PoCs
of real-world bugs, one by fuzzing PoCs, and one by sending

https://github.com/sslab-gatech/desensitization

desensitized
801 WM pointer
I metadata

0 500 1000 1500 0

(a) ffmpeg (b) php (¢) chakra

250 500 750 1000 1250 0 250 500 750 1000 1250 1500

0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500 0 1000 2000 3000 4000 5000

(f) tachikoma

(d) ff-coredump

(e) £f-minidump

Fig. 5: Distribution of non-zero bytes in the original memory space. “desensitized” shows the bytes removed from the memory by
DESENSITIZATION, while “pointers” and “metadata” indicate the bytes that remain in the memory. Since the data related to heap structures,
ROP gadgets, format strings, and shellcode account for a small portion of the memory, we combine them as “metadata.”

abort signals. First, we get 19 PoCs for ffmpeg, 15 for php,
30 for chakra, and 15 for firefox from public resources [59],
[62], [72], each against a distinct bug. These PoCs simply
trigger bugs in programs and immediately crash the process.
Second, we utilize the AFL crash mode [83] to keep randomly
mutating the benign PoCs for 24 hours to generate more crashes.
We believe the random mutation will not introduce malicious
actions, and therefore the generated crashes are still user-driven.
Third, we use firefox to visit the Alex Top 1500 websites
and send the SIGABRT signal at a random time for the process
to terminate abnormally. In general, we obtain 7,507 normal
crashes, including 1,667 crashes for ffmpeg, 1,313 for php,
1,497 for chakra, and 3,030 for firefox.

Generating attacker-driven reports. We also use three
different methods to generate attacker-driven reports. First,
we find two exploits against ffmpeg, two against php, two
against chakra, and one against firefox. The details of the
exploited CVEs are discussed in §V-C2. Second, we also
utilize the AFL crash mode to collect more crashes. Unlike
those user-driven reports generated through fuzzing upon the
PoCs without attack payload, the current seed corpus contains
fragile, but full chain exploits. Random mutation on the exploits
before feeding them to the vulnerable programs makes the
executions crash at different exploit stages. We conservatively
treat them as attacker-driven crashes without checking each
input one by one. Third, we collect crashes from the DEFCON
2015 challenge tachikoma. We download the network traffic
throughout DEFCON 2015 [28], which presents exploits from
top hackers striving to compromise exploitable programs. As
the only x86 binary, tachikoma contains 14,966 LoCs with
seven intended bugs of various complexity, spanning buffer
overflows to logical errors. We extract exploits from 366,792

relevant network sessions and replay them to collect coredumps.

Totally, we get 5,883 attacker-driven coredumps, including 400
for ffmpeg, 200 for php, 100 for chakra, 50 for firefox, and
5,133 for tachikoma. More information on the PoCs, exploits,
and crashes can be found in Table VI in §A.

We evaluate DESENSITIZATION on a 32-core machine
running Ubuntu 16.04, with Intel Xeon Gold 6136 processors
at 3GHz and 128GB memory. We limit DESENSITIZATION
to only utilize four cores to process each crash as normal
desktops usually have a small number of cores, like four or
eight. DESENSITIZATION identifies necessary bug-related and
attack-related data from the memory and nullifies other bytes
to remove potential privacy-sensitive data.

B. Privacy Protection by DESENSITIZATION

Since the privacy information is program-specific, it is
challenging to quantitatively measure the privacy protection
after DESENSITIZATION. Instead, we use three different meth-
ods to understand and estimate the privacy protection. First,
we measure the reduction of non-zero memory bytes. This
reflects the privacy protection when the private information
is distributed evenly in the memory. Second, we retrieve
the printable strings from the crash reports and measure
their reduction during DESENSITIZATION. As much of the
common private information is printable strings, this result
gives us an estimation of privacy benefits. Third, we manually
inspect several cases in which firefox leaks the user’s private
information and confirm that with DESENSITIZATION, such
information is successfully nullified.

1) Memory Byte Reduction: Figure 5 shows the distribution
of non-zero bytes in the original memory snapshot, grouped
by the data types. Each unit on the x-axis represents one
crash report, sorted by the percentage of pointers, while the
y-axis depicts the percentage of each data type. The pointer
and the metadata are kept in the memory space, while the
desensitized data are set to zero to protect the user’s privacy.
The metadata data covers identified heap structures, ROP
gadget chains, shellcode, and malicious format strings. As
they occupy a small portion of all non-zero data, we combine
them in the figure. The numeric distribution of the remaining
data is given in Table V, where the number is an average.

On average, DESENSITIZATION can remove 80.9% of non-
zero bytes from the original memory snapshot; 89.5% of all
remaining data are pointers. If the user’s privacy is evenly
distributed in the memory, we can reduce the possibility of
information leakage by 80.9%. In fact, most of the user’s private
information is allocated in concentrated locations, like a string
representing a website cookie. As such information is not likely
to be pointers, we believe the real result of privacy protection
should be more appealing than what we reported here.

Figure 5a shows the result of applying DESENSITIZATION
on ffmpeg coredumps. On average, DESENSITIZATION can
nullify 93.50% of all non-zero bytes for each coredump.
Among the remaining data, 77% of them are pointers. Heap
metadata and ROP payloads account for 9.83% and 13.0%,
respectively. Shellcode payloads and malicious strings take
negligible portions in the desensitized memory. We inspect the
memory snapshot manually and find that a large portion of
the original memory contains multimedia files or part of their

Prog Size (K) Pointers Heap ROP Shcode FmtStr
ffmpeg 366 77.0% 9.83% 13.0% .110% .004%
php 974 90.2% 845% 1.28% .043% .016%
chakra 1,567 972% 1.04% 1.74% .014% 0
ff-core 9,953 88.7% 295% 8.25% .017% .052%
ff-mini 6 82.4% 0 17.6% 0 0
tachikoma 12 68.6% 2.02% 27.8% 1.59% 0
avg. - 89.5% 333% 7.09% 0.03% 0.04%

TABLE V: Average distribution of remaining data per crash report
produced by DESENSITIZATION across evaluating benchmarks.

copies. These data usually do not affect the bug analysis but
may reveal the user’s watching history. Removing them will
protect user privacy.

Figure 5b shows the result of desensitizing php coredumps.
Similarly, DESENSITIZATION can nullify around 58.9% of non-
zero data in each crashed memory and identify 37.1% of useful
data as pointers and 4.03% as other metadata. However, for php,
the ratios of useful data vary significantly from crash to crash:
in the worst case, 64.9% of data is kept in the desensitized
memory, while in the best case, less than 10% of non-zero
data will remain. We inspect the crashes and find that as a
language interpreter, php provides many functionalities, like
parsing multimedia files and maintaining network interfaces.
The collected PoCs may take different execution paths and crash
the program in diverse locations, resulting in different ratios
of useful data. For example, one PoC crashes the program by
triggering an infinite recursive call, leading to a large number
of stack frames. As each stack frame has many data pointers,
like return addresses and saved esp/rsp, DESENSITIZATION
only nullifies 35.1% of all non-zero data

The evaluation result of chakra in Figure 5c suggests that
DESENSITIZATION can consistently nullify about 89.1% of all
non-zero bytes in each coredump. Meanwhile, an average of
10.6%, 0.11%, and 0.19% of the original data are identified
and thus kept as pointers, heap structures, and potential ROP
residues. Other metadata are negligible (less than 0.002%). We
have to clarify that chakra relies on native systems for memory
allocation but maintains its own customized metadata. Currently,
DESENSITIZATION is only able to identify the relevant heap
structures from ptmalloc, and corruption on custom heap
metadata will be missed during the attack analysis. We can
extend our heap module to support the customized metadata
of chakra, as we have done for ptmalloc and jemalloc. We
leave this as a future work.

Figure 5d and Figure 5e provide the results of apply-
ing DESENSITIZATION on firefox crashes, the former for
coredumps and the latter for minidumps. Figure 5d shows
that DESENSITIZATION can nullify 77.8% of non-zero data
in coredumps and leave 19.7% as pointers, 0.65% as heap
structures, and 1.83% as potential ROP residues. Figure Se
indicates that DESENSITIZATION maintains 42.0% of non-zero
bytes as pointers (with no heaps) and 9.00% as ROP residues,
and nullifies 49.0% from each original memory. Apparently,
DESENSITIZATION identifies more portions of pointers on
minidumps. The reason is that a majority of non-pointer data of
firefox resides in the heap region, which are not captured by
minidumps. Our result indicates that minidump is less effective

for developers to diagnose bugs or detect attacks. Nevertheless,
our DESENSITIZATION can still remove a large amount of
unnecessary data from minidumps to protect the user’s privacy.

Figure 5f presents the results of DESENSITIZATION on
crashes of tachikoma. In particular, DESENSITIZATION can
nullify on average 95.6% of non-zero bytes in the coredumps.
While most are removed, DESENSITIZATION manages to keep
3.02% of the original memory as pointers, 0.09% as heap
structures, and 1.23% as potential ROP residues. Since the
coredumps of tachikoma are produced by failed attacks against
the synthesized binary, they are not comparable in terms of
sizes and complexity (e.g., heap structures) to those from
previous benchmarks. However, DESENSITIZATION is shown
to be consistent in removing data for special-purpose programs.

2) Reducing Printable Strings: To further quantify the
privacy benefit, we measured the reduction of printable strings
by DESENSITIZATION from the original reports. We define a
printable string as a sequence of printable characters with
a minimum length N. In our evaluation, we use different
values of N, including 1, 5, 9, and 17. Overall, the eval-
uation serves as a proof-of-concept for illustration due to
the lack of common schemes for measuring privacy leakage.
Figure 6 presents the evaluation results for all benchmarks with
different definitions of printable strings. Each figure shows
the percentage of printable strings left in the desensitized
reports. In general, DESENSITIZATION can remove more than
95.0% of printable bytes from the coredumps of ffmpeg, php,
firefox, and tachikoma, achieving a significant privacy benefit.
Further, if we define printable strings to have at least 9 bytes,
DESENSITIZATION achieves almost 100% of string reduction
for all reports from all programs. For those bytes that cannot
be effectively removed, we found that they are mainly kept by
the modules of ROP, format string, and shellcode as suspicious
payloads or arguments.

For chakra coredumps, DESENSITIZATION manages to
remove 84.2% of printable strings with the conservative
definition, i.e., N=1. However, as shown in Figure 6c, in extreme
cases, 83.7% of such bytes are left in the reports. Through
manual examination, we learned that those are actually false
positives due to the special address layout in certain executions.
Particularly, most printable strings left by DESENSITIZATION
have a short length from 2 to 6 bytes. While these bytes
look like printable strings, they are in fact pointers, such as
0x55554730 ("OGUU"). If we change the definition of printable
string to require at least nine consecutive printable bytes (per
alignment of x86-64 systems), DESENSITIZATION can remove
almost all of them. The same explanation applies to certain
cases of php coredumps in Figure 6b as well.

Figure 6e shows that DESENSITIZATION is less effective
when handling the minidumps of firefox. With the conserva-
tive definition, it only removes 37.0% of printable bytes on
average. Even if we increase the requirement of the length,
DESENSITIZATION still leaves more than half of printable
strings in the desensitized reports. This is mainly because most
user data, especially printable strings, are typically stored in the
non-stack regions and thus are not saved in minidumps when
the program crashes. With a limited number of printable bytes,
even a few false positives (like those we explain above) will
hurt the statistics of DESENSITIZATION. For example, when
handling strings with at least 9 bytes, DESENSITIZATION can

e len(s) >0

* len(s) > 4

H len(s)>8
len(s) > 16

—
o

T

__—

0 _
0 500 1000 1500 0 250 500 750 1000 1250 0 250 500 750 1000 1250 15

(a) ffmpeg (b) php (c) chakra

00

0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500 0 1000 2000 3000 4000 5000

(d) ff-coredump (e) £f-minidump (f) tachikoma

Fig. 6: Percentages of printable strings left in desensitized crash reports. We performed evaluation with different definitions (lengths) of
strings, shown in different colors. The overall result is that long strings are less common than short strings.

remove 154 bytes on average, leaving only 52 bytes from each
original crash. Yet the result still gives the reduction ratio of
printable bytes as 74.8%. Though DESENSITIZATION is not
designed to be perfect in terms of privacy preserving, Figure 6e
can be misleading in this sense.

We also performed an automated scan of private informa-
tion with simple regular expressions, followed by a manual
analysis of the scanning results. We found several categories
of interesting information left in the original crash reports but
removed by DESENSITIZATION. The information includes but
is not limited to local directories, local environment variables,
usernames, passwords, cookies, visiting URLs, source IPs,
network protocols, geo-location coordinates, and snippets of
user scripts yet to be executed. §V-B3 provides selective case
studies in more detail for firefox.

3) Case Studies on Privacy Protection: We studied the
source code and the runtime of firefox and identified three
scenarios where a minidump of the program will leak the
user’s privacy, such as website cookies and user inputs. We
inspected the desensitized minidumps and confirmed that
DESENSITIZATION successfully removes all these private data.

1 // Subclass of nsTString that allocates stack-based string.
2 class : public nsTString<T> {

3 :
4 nsTAutoStringN() : string_type(mStorage, 0, ...),
5 mInlineCapacity(N - 1) {

6 mStorage[0] = char_type(0); // null-terminate
7 ...

8 static const size_t kStorageSize = N;

9 .

10
1
12
13

14}

Fig. 7: Definition of nsTAutoStringN in firefox, inherited by
nsAutoString and nsAutoCString. The internal buffer mStorage may
leak users’ private information (shaded line).

friend class nsTSubstring<T>;
size_type mInlineCapacity;

char_type mStorage[N]; // internal buffer on stack

Source of Leakage. firefox adopts many techniques to make
the software work efficiently. One of these techniques is the
implementation of auto string classes, namely, nsTAutoStringN,
as shown in Figure 7. By default, the payload of a string is
allocated dynamically from the heap region, while the class
only keeps some structural information, including a pointer
pointing to the real payload in the heap. However, the class
also contains a fixed-size array, called mStorage, and uses it
to store the string content if the string is shorter than the array.
This design choice makes access to the string content more

10

efficient due to the memory locality and meanwhile renders the
object management simpler, like no explicit malloc or free of
the payload. The nsTAutoStringN class is inherited by many
others, such as nsAutoString and nsAutoCString. While the
former is designed for wide characters with an internal buffer
of 128 bytes, the latter has 64 bytes for narrow characters. If
a small string of these classes is allocated on the stack, its
content will be on the stack as well. Since the minidump keeps
all stack content of the crashing thread, short strings will be
dumped into the minidump, leading to privacy issues.

Leaking Cookies. The design of firefox adopts the principle
of privilege isolation. In particular, the parent process does
all the security-critical work, like file access and network con-
nection establishment, while child processes merely serve for
rendering and parsing. In function SetCookiStringInternal()
of Figure 13 in §B, a child process is in charge of
parsing cookies and storing cookie attributes (e.g., name,
value, host and expiring time) into stack variables of class
nsCookieAttributes. As class nsCookieAttributes is derived
from class nsAutoCString, any cookie attribute shorter than 64
bytes is stored in its internal buffer, which is in turn allocated on
the stack. Therefore, any crashes inside this function will dump
the cookie information to the crash report as long as the cookie
is shorter than 64 bytes. We inject a bug in firefox to make
the execution crash inside function SetCookiStringInternal ()
and use the modified firefox to visit popular websites. Most
of them will crash and generate a minidump file, where we
can find the cookie information of the corresponding website.
DESENSITIZATION is able to nullify the cookie contents, as
they are unlikely to be pointers, heap metadata, or any other
attack residues.

Leaking User’s Inputs through Form Submission. Form
submission is a common way for users to interact with web
applications, like submitting user names and passwords for
authentication. Figure 14 in §B shows the code of firefox
used for preparing the form data as requested by users. In
memory, each form field is always in its plaintext unless the
developer specifies one of multiple enctype attributes to it,
as defined in function GetFromForm(). When firefox handles
forms of multipart/form-data for users to upload files, func-
tion FSMultipartFormData: : AddNameValuePair() places user
inputs in objects of class nsAutoCString, which are allocated on
the stack in plaintext. Further, many hidden form fields collect
user information for web tracking, like geographic locations and
timestamps. All of them may leak users’ private information
through minidumps. We use the same method as before to verify
that the minidump contains user input if the execution crashes

inside function FSMultipartFormData: :AddNameValuePair().
Depending on the concrete website, we find extremely sensitive
information from form fields on the stack, like user names,
passwords, or even credit card information. DESENSITIZATION
helps eliminate these sensitive data from minidump files, as
most of them are alphanumeric characters, which are not
confused with other debug information in the crash report.

Leaking Filling History through Autofilling. Autofilling is
a convenient feature for users to fill a form quickly from
historical inputs. Specifically, when an HTML textbox (e.g.,
<form>, <input>, textarea) has the autocomplete attribute, the
browser will provide users a list of historical inputs. Figure 15 in
§B shows that in function EnterMatch(), a single user-provided
character triggers the browser to find matched historical inputs
and shows the results in a drop-down list. When users navigate
the drop-down list with up/down keys, or they select one record
from the list, the highlighted or selected record will be stored in
a stack variable of class nsAutoString. If the execution crashes
here, the user information will be copied into the minidump.
Note that some websites use customized JavaScript to handle
the autofilling by specifying the action type of forms, where the
filling history may be used differently. Similarly, we verify that
the minidump contains the filling history if firefox crashes at
particular functions. We confirm that DESENSITIZATION clears
the sensitive information from the collected minidumps.

C. Supporting Bug-analysis and Attack-detection

We evaluate desensitized crash reports to verify that they
still contain sufficient information for popular bug-diagnosis
and attack-analysis techniques. Our evaluation is performed
in two ways. First, we feed the crash reports before and after
DESENSITIZATION to existing bug-diagnosis tools and expect
the same analysis results. Second, we inspect several attacker-
driven crashes to make sure that all data related to the attack
construction are kept in the desensitized crash reports.

1) Supporting Bug Analysis: We use Socorro [57] and
Backtrace [8] as two bug-analysis tools for our evaluation. The
former is the default crash reporting service used by Mozilla
products, while the latter is a more generic commercial software
recommended by Mozilla for providing signature-based crash
classification. Both tools rely heavily on call stacks in crash
reports along with additional heuristics to generate a signature
for each crash. Crash reports with the same signature are
grouped together, and the number of crash reports in each
group is used to determine the priority for detailed analysis.

We feed all the collected coredumps before and after
DESENSITIZATION to Backtrace and compare their crash
signatures. We also submit the minidumps of firefox to
Socorro through its native crash reporting service and compare
signatures per crash. The result shows that DESENSITIZATION
has no impact on the crash signatures of any dumps, including
coredumps of ffmpeg, php, chakra, and firefox, as well as
minidumps of firefox. In other words, the crash signatures
generated by either tool are always the same before and after
our DESENSITIZATION on each crash report. This findings
validate that DESENSITIZATION merely removes unnecessary
data safely from the crash reports without altering any useful
information, at least for debugging processes like classification.

11

g @ GOT overwrite

@ Heap overflow

@ Heap overflow
»l, data pointer

function pointer .realloc@GOT " {/ [@ ROP chain 2
@ ROP chain v [2|@© shellcode © ROP chain 1] |@ shelicode
heap .bss heap| -bss

(a) CVE-2016-10190 (b) CVE-2016-10191

Fig. 8: Exploit steps against ffmpeg via two CVEs. Both CVEs are
heap overflows, and both attacks utilize ROP and code injection.

2) Case Studies of Attack Preservation: We illustrate how
the information identified and saved in crash reports by
DESENSITIZATION, such as pointers and heap metadata, can
support real-world attack analyses. Particularly, we implemented
several proof-of-concept tools to detect attack residues from
crash reports before and after DESENSITIZATION. The first
tool detects the corruption of various heap structures to identify
heap-based vulnerabilities. It walks through the linked lists to
find inconsistent metadata, such as abnormal chunk size, broken
linked bins, and dangling pointers. The second tool searches
for malicious format strings to detect format string attacks. It
feeds each potentially malicious string to a printf-like function
with other identified arguments and verifies that the function’s
side-effect to memory is consistent with the crash report. The
third tool scans for ROP residues left in the crash report. For
each potential ROP payload, the tool runs the gadgets through
instruction emulation and verifies that the side-effects to stack
and frame register (i.e., esp or rsp) match the crash report. The
last tool validates GOT.PLT entries with the help of external
debug symbols. We develop these tools based on our experience
of attack analysis for the purpose of verification. Developers
can pick other techniques to analyze a crash report [21], [67],

(371, [75], [66], [65].

As we mention in §V-A, we feed collected exploits to
each vulnerable program and collect the resulting crashes.
Meanwhile, we collect coredumps from tachikoma by replaying
the exploit traffic. Then, we apply our PoC tools against the
original crash reports and the desensitized ones. Our tools
report the same result about the failed attack for both versions
of the crash reports, showing that DESENSITIZATION keeps
important attack residues in the desensitized report.

ffmpeg. Figure 8 depicts exploits against two heap overflow
bugs of ffmpeg: CVE-2016-10190 and CVE-2016-10191. Both
attacks corrupt pointers on heap and stitch ROP gadgets and
finally execute malicious shellcode, but they differ slightly in
terms of corruption targets and gadget chaining due to the
nature of the vulnerabilities. In general, we collect 400 core-
dumps from the failing exploits through fuzzing. On average,
DESENSITIZATION is able to nullify 93.5% of irrelevant data
as described in §V-B and keep those of pointers and metadata.
Among all remaining bytes, 47,701 bytes are ROP payloads;
386 bytes are potential shellcode payload; 42,200 bytes are
identified as GOT.PLT entries. Although format string attacks
are not involved, DESENSITIZATION saves another 13 bytes
regarding format strings and related arguments.

Since DESENSITIZATION maintains the heap metadata, our
analysis tool on heap integrity is able to detect the same
overflown heap chunks in the desensitized crash report as those

rintf(): prlntf()
@ leak &bin &libc © leak &libc Taystem
@ hack free@got >| &system ® hack stack é &eXI't
© call free@got e @ return &’/bin/ls”
g GOT stack

(a) CVE-2015-8617 (b) CVE-2016-4071

Fig. 9: Exploit steps against php via two CVEs. Both CVEs are
format string bugs, and both attacks use the ret2libc technique.

in the original one. For exploits that crash in the ROP chains,
DESENSITIZATION maintains the memory values pointed by
stack pointers and keeps all the suspicious gadgets in the
crash report, helping to capture the residual ROP gadgets. For
those overwriting GOT.PLT entries with incorrect addresses,
DESENSITIZATION identifies entries in the memory and keeps
them in the crash report for validation. When the program
crashes in shellcode, most payloads are still in the crash report,
as DESENSITIZATION conservatively retains all potential ones.

php. Figure 9 shows exploits against two format string
vulnerabilities of php: CVE-2015-8617 and CVE-2016-4071.
The former allows attackers to learn the randomized function
address, while the latter recursively modifies the ebp values
on the stack until it overwrites the return address outside
the vulnerable function. We gather 200 coredumps from the
failing exploits through fuzzing. The proportions of unnecessary
data, pointers, and other metadata are similar to those of
previous ones. Particularly, DESENSITIZATION collects around
154 bytes of malicious format strings along with their arguments.
DESENSITIZATION additionally saves 12,494 bytes for potential
ROP payloads and 417 bytes for shellcode, which are apparently
false negatives. Meanwhile, DESENSITIZATION identifies 6,632
bytes for GOT.PLT entries.

DESENSITIZATION conservatively saves potential format
strings and their relevant pointer arguments in crash reports,
and allows our analysis tool to track down the attacks with
the desensitized crash reports in most cases. Note that 32-bit
systems are easier to tackle, as arguments are stored in the
stack region. Therefore, DESENSITIZATION can find the format
string pointer and keep their pointer arguments in relative offset
based on the format specifiers, even if the arguments are non-
pointer data in randomly mutated exploits. However, since
64-bit systems pass first several arguments through registers, it
is hard for DESENSITIZATION to identify possible format string
arguments. Thus, DESENSITIZATION only keeps pointers as
designed and might remove some arguments when they are non-
pointer data, resulting in false negatives. As php is compiled
as a 32-bit binary, DESENSITIZATION can save necessary
information about format strings to support our analysis.

chakra. We select CVE-2016-0193 and CVE-2017-0266 of
chakra for crash generation, which are caused by heap overrun
and type confusion due to incorrect JIT optimization. The
exploit of CVE-2016-0193 corrupts the length field of an array
object on the heap and uses the array to overwrite a virtual
table pointer to hijack the control flow for ROP attacks. CVE-
2017-0266 allows attackers to craft a fake DataView object
on the user-controlled memory for arbitrary memory read and
write, thereby corrupting GOT.PLT entries to execute arbitrary

12

code. In sum, we collect 100 coredumps from failed exploits.
DESENSITIZATION successfully removes the irrelevant data
while keeping pointers and heap structures in a ratio similar
to others. Furthermore, DESENSITIZATION saves around 221
bytes of shellcode payloads and 27,291 bytes of ROP residues,
as well as 10,072 bytes of GOT.PLT entries, but fails to find
any malicious format string in this case. Although chakra uses
a customized heap manager, DESENSITIZATION manages to
save pointers that are relevant to ROP chain residues, as well
as identified GOT.PLT entries in the crash report.

firefox. We generate firefox crashes by exploiting CVE-2019-
9810, which is used in Pwn2own 2019 [60]. The bug is an
array out-of-bound access due to an incorrect JIT optimization.
Our exploit leverages the bug to corrupt the length field of an
Uint32Array object on the heap, which helps to bypass ASLR
and leak the base address of module 1ibxul.so. Furthermore,
we use the corrupted Uint32Array object to modify the buffer
address of an adjacent Uint32Array object to achieve arbitrary
memory read and write. The exploit controls the PC value by
corrupting the virtual table of a HTMLDivElement object with
the address of a crafted virtual table. The stack is then pivoted
to the heap afterward, where an ROP chain is to be executed.
The ROP payload changes the permission of a particular page
as both writable and executable and executes the shellcode
there. By random mutation through a fuzzing-based approach,
we gather 50 coredumps of firefox from failed exploits. As
usual, DESENSITIZATION collects pointers and heap structures
while nullifying unnecessary data. In addition, it saves 1,718
bytes as shellcode and 5,129 bytes as malicious format strings.
Although our tool based on ptmalloc does not apply in this case,
DESENSITIZATION maintains 820,904 bytes for ROP residues
and 9,352 bytes for GOT.PLT entries in the crash report, which
will help other tools on ROP and shellcode detection to pinpoint
the attack details [21], [67], [37], [75], [66], [65].

tachikoma. The challenge tachikoma emulates an interactive
war game and introduces seven vulnerabilities for attackers to
exploit it. Most of the crashes do not have attack residues as
much network traffic is just random bytes for sniffing. Our anal-
ysis tools consistently pick up two attack vectors against distinct
vulnerabilities before and after applying DESENSITIZATION.
The first is caused by attackers overflowing a fixed-size stack
buffer by copying user input from the heap, but it fails due to
miscalculated offsets. Our tools can detect the misaligned heap
chunks and the ROP-like residues that end up crashing the
binary. The second is caused by attackers exploiting another
heap overflow vulnerability to redirect the control flow to the
shellcode on the heap. Accordingly, our tools can catch the heap
violation, stack pivoting, and prepared shellcode. Our results
coincide with the statistics of the CTF, where only two to three
of the seven vulnerabilities have been found and exploited by
the attending teams. Meanwhile, DESENSITIZATION is able
to remove the irrelevant data while keeping 8,503 bytes of
pointers and 288 bytes for GOT.PLT entries. It saves 251 bytes
as heap structures, 3,447 bytes as ROP residues, and 197 bytes
as shellcode, successfully maintaining useful information for
our analysis tools to pinpoint exploits.

D. Practicality of DESENSITIZATION

1) Performance of DESENSITIZATION: Figure 10 shows the
performance of DESENSITIZATION on desensitizing crashes

Second(s)

-+ e

T T T T t
ffmpeg php chakra ff-coredump ff-minidump

T
tachikoma

Fig. 10: Time for generating crash report by DESENSITIZATION.
Mostly, it incurs reasonable time of less than 15 seconds.

across evaluating benchmarks. In general, DESENSITIZATION
takes less than 15 seconds to process each program crash,
including the steps of identifying useful data in different types,
nullifying other data bytes, and writing the memory as a sparse
file. While coredumps from ffmpeg and firefox have a median
of 9 and 11 seconds respectively, DESENSITIZATION takes
less than 2 seconds consistently for those of php, chakra and
tachikoma. The time needed to process each minidump (i.e.,
0.5s) is significantly less than that of analyzing coredump (i.e.,
15s) due to their intuitive size differences.

Our optimizations on DESENSITIZATION can significantly
reduce the processing time. First, we find that loading a
coredump file into memory can result in an order of magnitude
more memory usage than the file size. For example, a coredump
file of ffmpeg is about 150 MB on disk, but it is bloated
to 1.8 GB when loaded into memory. The extra memory
space, where our analysis should ignore, contains only null
bytes. We optimize this process by only loading each program
segment using its file_size instead of memory_size. In this
way, the time required by DESENSITIZATION is reduced by
56%. Second, the number of mapped memory regions also
affects the overhead of DESENSITIZATION. Specifically, crashes
from firefox can include up to 340 mapped memory ranges,
causing a heavy burden to DESENSITIZATION for validating
pointers. Therefore, we merge consecutive memory regions to
reduce the number of comparisons. Furthermore, we maintain
the merged memory regions as an interval tree, sorting and
searching address ranges in logarithmic time complexity. The
overhead is therefore reduced by another 77%.

Figure 11 shows the peak memory usage for processing
crashes across benchmarks. In general, DESENSITIZATION
consumes less than 2.5 gigabytes at the peak to process each
crash. While coredumps from ffmpeg and firefox incur higher
memory usage with medians of 2 gigabytes, those of php,
chakra and tachikoma only takes around 154, 429 and 117
megabytes per crash, respectively. Again, DESENSITIZATION
needs less memory resource to process each minidump (i.e., 104
MB). In general, the memory usage is consistent with the file
sizes of processed crash reports. As we mentioned above, most
coredumps from ffmpeg and firefox present physical sizes of
more than 1 gigabytes, and so simply reformatting them into
their memory representation requires a considerable amount of
memory usage. Meanwhile, the complexity of structures within
the crash reports, such as the heap regions, also contributes
to the finding as DESENSITIZATION needs more memory to
preserve those pieces of information.

13

le3

w S

Memory (MB)
N

'

<~ 5

-

—_—

php

—

ff-coredump ff-minidump

$
tachikoma

ffmpeg chakra

Fig. 11: Peak memory usage for desensitizing crash reports.
Mostly, it incurs reasonable memory usage of less than 2.5 gigabytes.

2) File Size Reduction: As DESENSITIZATION strives to
nullify potential sensitive data, it creates a significant number of
zero bytes in the desensitized memory. By treating consecutive
zero bytes as holes, we can save the crash report — in a storage-
economy and bandwidth-economy way — as a sparse file, which
only keeps non-zero bytes. Most modern filesystems, like
ext4 on Linux and NTFS on Windows, support sparse files.
DESENSITIZATION also facilitates compression algorithms,
which adopt similar concepts. To understand the advantage of
DESENSITIZATION on file storage, we generate crash reports
in four settings: 1) storing the original memory as a sparse file,
denoted as orig-sparse; 2) storing the desensitized memory as
a sparse file, denoted as desen-sparse; 3) compressing the orig-
sparse file using the 7zip program, denoted as comp-sparse;
4) compressing the desen-sparse file using 7zip, denoted as
comp-desen. Figure 12 shows the size of different crash reports,
normalized to the size of the orig-sparse file. The crashes on
the x-axis are sorted by the percentage of identified pointers.

The figures in Figure 12 (except Figure 12e) show that
DESENSITIZATION can significantly reduce the file size of
coredumps, regardless of whether they are compressed or not.
On average, the sparse file of the desensitized memory is
only 49.5% of the original sparse file. With compression, a
comp-desen file is only 28.7% of the comp-sparse file. For
the chakra program (Figure 12c), DESENSITIZATION achieves
the maximum reduction of crash reports, where the desen-
sparse file only takes 26.1% of the original size, and the
comp-desen file saves 99.3% of disk space. In the worst case,
DESENSITIZATION can save 24.7% of storage for the php
program. When using compression, it still reduces the report
size to 4.48%.

From these result we can see that the effectiveness of
DESENSITIZATION on reducing report size has a strong neg-
ative correlation with the density of pointers (each figure is
sorted by the percentage of pointers). This result is reasonable
because, as shown in Table V, pointers dominate the remaining
non-zero data, on average 89.5%. Therefore, a memory space
with a low ratio of pointers will be significantly desensitized
and left with many large holes of null bytes, leading to a high
reduction rate by sparse files. However, the compression ratio is
less related to the percentage of pointers. Since the compression
mainly depends on the frequency and diversity of data, pointer
density is less important in this case. Although the results of
ffmpeg and tachikoma suggest a positive correlation between
them, we cannot find a similar relationship from other figures.

An interesting observation from Figure 12a is that when
the percentage of pointers is small, the desen-sparse file

100
+ desensitize+compress -
80{ * desensitize . :
* compress = —_ ’_”_/_/
g o] .,_.—:—-' _ - /—/
g N E -
B a0 = - - H
B ~
R e .
209 ¢ _ N — - —_———
= — —_ - P -
o _— — : == :
[500 1000 1500 0 250 500 750 1000 1250 0 250 500 750 1000 1250 1500 [250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500 0 1000 2000 3000 4000 5000
(a) ffmpeg (b) php (c) chakra (d) ff-coredump (e) £f-minidump (f) tachikoma

Fig. 12: Crash report size with various reduction techniques, unified to the sparse file of the original memory. desensitize saves the
desensitized memory as sparse file; compress compresses the sparse file of the original memory; desensitize+compress compresses the sparse

file of the desensitized memory.

has a smaller size than the comp-sparse file. In these cases,
DESENSITIZATION is more effective than compression on
reducing file sizes. By manually examining the original memory,
we find that those crashes take large multimedia files as inputs,
which are left in memory when the program crashes. As the
input data vary significantly in terms of frequencies and patterns,
the compression can only reduce them to around 40% of the
original file. However, DESENSITIZATION manages to remove
most of the input data so that holes of null bytes dominate
the desensitized memory, making the sparse file more effective
than compression in reducing the file size.

A comparison between Figure 12d and Figure 12e reveals
that DESENSITIZATION reduces file size more effectively for
coredumps than for minidumps, while the compression works
well for both. Specifically, the desen-sparse files are only 55.8%
of the original sparse files for coredumps, while for minidumps,
the number is around 92.3%. Simply compressing the original
spare files results in 11.2% of the original size for coredumps,
and for minidumps, the number is even smaller, 9.29%. The
ineffectiveness against minidumps by DESENSITIZATION is
caused by the selective dumping of the crashed memory. As
minidumps mainly contain thread stacks where many pointers
exist, DESENSITIZATION cannot desensitize as much as that
for the coredumps. Though DESENSITIZATION manages to
nullify 49.0% of non-zero bytes in minidumps, the removed
bytes are usually inter-mixed with other untouched ones on the
stack, rendering the sparse file less effective in terms of size
reduction. Since the stack pointers are similar to each other,
especially for the saved esp/rsp, the compression method is
still able to significantly reduce the file size.

Figure 12f shows that DESENSITIZATION can reduce the
sizes of tachikoma coredumps in a consistent ratio. The result
is consistent with the findings on memory byte reduction in
Figure 5f, where DESENSITIZATION can remove data in a
similar percentage for all crashes. In some extreme cases, the
desen-sparse files after DESENSITIZATION are still as high as
67.44% of the orig-sparse files. By manually examining these
crashes, we find that attackers tried to aggressively spray the
heap region with consecutive identical objects filled by data
pointers to increase the chance of a successful exploitation. As
DESENSITIZATION keeps all pointers, the desensitized sparse
file cannot achieve a great reduced size. However, it is necessary

to keep all such pointers to assist server-side attack analysis.

Meanwhile, the comp-sparse file shows a better compression
ratio than most others for this case due to the consecutive
identical objects with repeated patterns.

14

VI. DISCUSSION

We discuss several important aspects of DESENSITIZATION,
including its support to sophisticated attack analysis techniques
and possible attacks against the new crash report format.

A. Analyzability of Desensitized Crashes

DESENSITIZATION strives to achieve a new balance be-
tween user privacy and the analyzability of the crash reports.
Our design of DESENSITIZATION follows a common practice of
protecting user privacy that achieves a significant privacy benefit
at the cost of sacrificing some functionalities. For example,
the widely adopted minidump aggressively drops all data of
the crash outside the stack, with the observation that stack
data plays an important role in triaging and analyzing bugs [1].
Meanwhile, our tool starts from known analysis techniques and
aims to shrink the crash while keeping necessary information.

To mitigate the reduction of analyzability and support
special use cases, we design DESENSITIZATION in a modular
mode so that developers can customize it to compensate for its
security guarantee. We believe any practical solutions for a large,
complex piece of software would require domain knowledge
from experts, such as the developers of real-world applications.
We provide interfaces to allow developers to specify crash
memories for complete collection or removal of data within
the ranges. For example, data near the stack pointers at crash
sites can be saved if needed, which might be useful for limited
reverse execution by developers. On the other hand, matched
data patterns through regular expression can also be selectively
preserved when specified.

B. Hybrid Bug-report Model

Crash reports from a large number of users are highly
redundant: many crashes are caused by the same bug. Therefore,
current crash report systems widely adopt automatic bug-
classification techniques to group crash reports based on their
root causes and prioritize bugs with higher frequencies [57], [8].
In this case, our DESENSITIZATION technique helps reduce a
large amount of network bandwidth and server-side storage,
as it removes crash-unrelated information. However, since
developers can benefit from a detailed memory snapshot,
or even the crashing input, we can integrate our method
into a hybrid bug-report system. Specifically, for most end-
users, we deploy DESENSITIZATION to protect user privacy
and reduce the crash report size. Meanwhile, we can have
some volunteer users submit a complete memory snapshot

without DESENSITIZATION to assist developers in debugging
the program. To protect the privacy of volunteer users, the crash
report system can randomly select some from all volunteer users
and submit their complete crash report to developers. This
hybrid model has less bandwidth and storage while providing
sufficient information for debugging.

C. Attacks against DESENSITIZATION

Although DESENSITIZATION mainly adopts systematic
approaches for preserving necessary debugging information,
some design choices such as identifying thresholds for attacks
are considered heuristic. While most are decided based on the
survey of exploits publicly available, such as the parameters for
identifying ROP and shellcode payloads, the numbers can be
ad-hoc and thus provide a limited security guarantee. A stealthy
attacker, for example, can craft ROP gadgets with long ROP
sequences to bypass the detection from DESENSITIZATION, so

that the resulting attack residues would be partially removed.

Nevertheless, all the pointers involved in the gadget chains
would still be preserved in this case, leaving the possibility
for developers to track them down. Meanwhile, as discussed
above, DESENSITIZATION offers interfaces for customization,
including the preserving rules for crashing data. Therefore, more
sophisticated identification techniques from existing works [42],
[66], [65], [21], [37] can easily co-exist with the current
prototype once specified by the developers, with a potential
trade-off between accuracy and performance.

VII. RELATED WORK

SCRASH removes sensitive data from crash files to protect
users’ privacy [13]. It relies on developers to manually annotate
sensitive variables and uses data-flow analysis to identify
more sensitive data. It allocates sensitive data in a separated
memory region and quickly erases them during program
crashes. However, manual annotation incurs a heavy burden for
developers and the data-flow analysis has limited scalability;
the analysis requires program source code and thus does not
work on legacy binaries. Our system automatically identifies
and removes sensitive data through crash file analysis and thus
does not affect normal executions.

Brickell et al. propose a solution [12] to address the privacy
issue when multiple users share their bug reports [38]. In this

case, a server accepts many bug reports from professional users.

Then, the server adopts a machine-learning algorithm to train
a model to assign the description to each new, ambiguous
bug report from normal users. During the training and testing,
the server does not want the user to learn the internal of the
trained model, while the user does not want the server to learn
her execution traces. The proposed method combines several
cryptographic techniques to achieve its goal. Instead of sharing
the full bug report, our system removes sensitive information
from the crash file and minimizes the chance to leak a user’s
private information. We can use their cryptographic techniques
to protect the data left in the crash file, but that will require a
significant change on the server side.

Castro et al. try to generate a different input that forces
the program to execute (i.e., crash) in the same path as the

crashing input and send the new input to the server [19].

PANALYST moves most of the work from the client to the

15

server and relies on client-server interaction to construct the
new input [80]. To achieve this goal, both systems rely on
a logging system to record the crashing input, a tracing tool
to collect the execution path, a taint analysis engine to track
the user input, a symbolic execution engine to capture the
path constraints, and an SMT solver to provide a new input.
These techniques are computation-intensive and require a lot
of dependencies, either on the client side or on the server side,
and thus provide very limited deployability. CAMOUFLAGE
embeds two optimizations to reduce the information leakage
from the new input, specifically, path condition relaxation,
which modifies the path constraints to allow more satisfying
inputs, and breakable input conditions, which prevent the new
input from sharing bytes with the original one [24]. RETOME
improves the efficiency of symbolic execution by focusing on
input-related branches [4]. Our system identifies and removes
debugging-irrelevant data from the crash file locally and thus
is self-contained and efficient.

Budi et al. propose kb-anonymity to anonymize sensitive
datasets while preserving their behaviors before sending them
out for program testing and debugging [14]. The work focuses
on achieving indistinguishable property between multiple ho-
mogeneous data items — the sensitive data is retained but cannot
be linked to individuals. Our work cleans up personal sensitive
data for each crash file, which guarantees the anonymity.

A different input triggering the same execution path as the
original one may still leak some private information, especially
the path constraints that contain strict requirement on the
inputs. To further protect user privacy, several works search
for alternative execution paths that have relaxed constraints
on inputs while triggering the same crash [52], [53], [54].
MPP relies on symbolic execution to explore program states
to find all paths that induce the same crash [52]. REAP and
RESPA improve the practicability of MPP by limiting the
scope of symbolic execution [53], [54]. Specifically, REAP
places randomized, bounded detours around the original path
to avoid the path explosion issue. RESPA takes a principled
way to retain necessary nodes and find the shortest path to
reach the buggy location with the least information leakage.

Satvat et al. perform an empirical study on 2.5 million crash
reports and find an enormous amount of sensitive information,
like token IDs, session IDs, and passwords [69]. This result
confirms that current common crash report systems are leaking
users’ privacy to software vendors. The authors propose a
simple pattern-based method to identify and replace sensitive
data in URLs and bug descriptions. Our system focuses on the
crash file, which may contain more sensitive information.

VIII. CONCLUSION

We propose DESENSITIZATION, an extensible framework
that generates privacy-aware and attack-preserving crash reports.
DESENSITIZATION utilizes lightweight analysis to identify bug-
and attack-related data, and nullifies others to protect users’
privacy and reduce the report size. Our evaluation on real-world
crashes shows that DESENSITIZATION can effectively remove
86.6% of all non-zero bytes in coredumps and 40.9% of those
in minidumps. Additionally, the desensitized crash reports can
be reduced to 45.0% of their original sizes, saving significant
resources for report submission and storage.

ACKNOWLEDGMENT

We thank the anonymous reviewers, and our shepherd,

Stephen McCamant, for their helpful feedback. We are grateful
to Brendan Saltaformaggio for his valuable feedback and
discussions on earlier versions of this paper. This research
was supported, in part, by the NSF award CNS-1563848,
CNS-1704701, CRI-1629851 and CNS-1749711, ONR under
grant N0O0014-18-1-2662, N00014-15-1-2162, N00014-17-1-
2895, DARPA AIMEE, and ETRI IITP/KEIT[2014-3-00035],
and gifts from Facebook, Mozilla, Intel, VMware and Google.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

N. Adman and M. Satran, “Minidump Files,” https://docs.microsoft.com/
en-us/windows/desktop/Debug/minidump-files, 2018.

Adobe Systems Inc., “Adobe: Submitting Crash Reports,” https://helpx.
adobe.com/photoshop/kb/submit-crash-reports.html, 2018.

S. Andersen and V. Abella, “Data Execution Prevention. Changes to
Functionality in Microsoft Windows XP Service Pack 2, Part 3: Memory
Protection Technologies,” 2004.

S. Andrica and G. Candea, “Mitigating Anonymity Challenges in
Automated Testing and Debugging Systems,” in Proceedings of the
10th International Conference on Autonomic Computing (ICAC), San
Jose, CA, 2013.

Apple Inc., “Technical Note TN2123: CrashReporter,” https://developer.
apple.com/library/content/technotes/tn2004/tn2123.html, 2018.

H. Argp, “Pseudomonarchia jemallocum,” http://www.phrack.org/issues/
68/10.html, 2012.

P. Argyroudis and C. Karamitas, “Exploiting the jemalloc memory
allocator: Owning Firefox’s heap,” in Black Hat USA Briefings (Black
Hat USA), Las Vegas, NV, Aug. 2012.

Backtrace, “Crash Deduplication: Triaging Effectively,” https://backtrace.
io/blog/engineering/crash-deduplication/, 2017.

E. Bendersky, “Parsing ELF and DWAREF in Python,” https://github.com/
eliben/pyelftools, 2011.

blackngel, “Malloc des-maleficarum,” http://phrack.org/issues/66/10.html,
2009.

T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack.” in Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security (ASIACCS), Hong Kong, China, Mar. 2011.

J. Brickell, D. E. Porter, V. Shmatikov, and E. Witchel, “Privacy-
preserving Remote Diagnostics,” in Proceedings of the 14th ACM Con-
ference on Computer and Communications Security (CCS), Alexandria,
VA, Oct.—Nov. 2007.

P. Broadwell, M. Harren, and N. Sastry, “Scrash: A System for
Generating Secure Crash Information,” in Proceedings of the 12th
USENIX Security Symposium (Security), Washington, DC, Aug. 2003.

A. Budi, D. Lo, L. Jiang, and Lucia, “kb-Anonymity: A Model
for Anonymized Behaviour-preserving Test and Debugging Data,” in
Proceedings of the 2011 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), San Jose, CA, Jun. 2011.

C. Cadar, D. Dunbar, D. R. Engler e al., “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs,” in Proceedings of the 8th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), San Diego, CA, Dec. 2008.

C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler, “EXE: A
System for Automatically Generating Inputs of Death using Symbolic
Execution,” in Proceedings of the 13th ACM Conference on Computer
and Communications Security (CCS), Alexandria, VA, Oct.—Nov. 2006.

M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang, “Mapping
Kernel Objects to Enable Systematic Integrity Checking,” in Proceedings
of the 16th ACM Conference on Computer and Communications Security
(CCS), Chicago, IL, Nov. 2009.

N. Carlini and D. Wagner, “ROP is Still Dangerous: Breaking Modern
Defenses.” in Proceedings of the 23rd USENIX Security Symposium
(Security), San Diego, CA, Aug. 2014.

16

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

M. Castro, M. Costa, and J.-P. Martin, “Better Bug Reporting with Better
Privacy,” in Proceedings of the 13th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), Seattle, WA, Mar. 2008.

S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing
Mayhem on Binary Code,” in Proceedings of the 33rd IEEE Symposium
on Security and Privacy (Oakland), San Francisco, CA, May 2012.

Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng, “ROPecker: A
Generic and Practical Approach for Defending Against ROP Attacks,”
in Proceedings of the 2014 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2014.

V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for
In Vivo Multi-Path Analysis of Software Systems,” in Proceedings of
the 16th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Newport
Beach, CA, Mar. 2011.

T. O. Chris Evans, “The Poisoned NULL Byte,” https://googleprojectzero.
blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html, 2014.

J. Clause and A. Orso, “Camouflage: Automated Anonymization of
Field Data,” in Proceedings of the 33th International Conference on
Software Engineering (ICSE), Honolulu, HI, May 2007.

W. Cui, X. Ge, B. Kasikci, B. Niu, U. Sharma, R. Wang, and I. Yun,
“REPT: Reverse Debugging of Failures in Deployed Software,” in
Proceedings of the 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Carlsbad, CA, Oct. 2018.

W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and V. P. Kemerlis,
“RETracer: Triaging Crashes by Reverse Execution from Partial Memory
Dumps,” in Proceedings of the 38th International Conference on Software
Engineering (ICSE), Austin, Texas, May 2016.

Y. Dang, R. Wu, H. Zhang, D. Zhang, and P. Nobel, “ReBucket: A
Method for Clustering Duplicate Crash Reports Based on Call Stack
Similarity,” in Proceedings of the 34th International Conference on
Software Engineering (ICSE), Zurich, Switzerland, Jun. 2012.

DEF CON Communications, Inc., “DEF CON Media Server,” https:
/Imedia.defcon.org/, 2015.

S. Designer, “Non-executable User Stack,” 2000.

A. D. Federico, A. Cama, Y. Shoshitaishvili, C. Kruegel, and G. Vigna,
“How the ELF Ruined Christmas,” in Proceedings of the 24th USENIX
Security Symposium (Security), Washington, DC, Aug. 2015.

J. N. Ferguson, “Understanding the Heap by Breaking It,” in Black Hat
USA Briefings (Black Hat USA), Las Vegas, NV, Aug. 2007.

2463, “The Use of set_head to Defeat the Wilderness,” http://phrack.
org/issues/64/9.html, 2007.

K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt, “Debugging in the (Very)
Large: Ten Years of Implementation and Experience,” in Proceedings
of the 22nd ACM Symposium on Operating Systems Principles (SOSP),
Big Sky, MT, Oct. 2009.

W. Gloger, “Ptmalloc2 - a Multi-thread malloc Implementation,”
https://github.com/emeryberger/Malloc-Implementations/tree/master/
allocators/ptmalloc/ptmalloc2, 2001.

Google, “BreakPad: A Set of Client and Server Components which
Implement a Crash-reporting System,” https://chromium.googlesource.
com/breakpad/breakpad/.

——, “The Chromium Projects: Reporting a Crash Bug,” https://www.
chromium.org/for-testers/bug-reporting- guidelines/reporting-crash-bug,
2018.

M. Graziano, D. Balzarotti, and A. Zidouemba, “ROPMEMU: A
Framework for the Analysis of Complex Code-reuse Attacks,” in
Proceedings of the 11th ACM Symposium on Information, Computer and
Communications Security (ASIACCS), Xi’an, China, May—Jun. 2016.

J. Ha, C. J. Rossbach, J. V. Davis, I. Roy, H. E. Ramadan, D. E.
Porter, D. L. Chen, and E. Witchel, “Improved Error Reporting for
Software That Uses Black-box Components,” in Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), San Diego, CA, Jun. 2007.

C. Han, “A collection of JavaScript engine CVEs with PoCs,” https:
//github.com/tunz/js-vuln-db.

https://docs.microsoft.com/en-us/windows/desktop/Debug/minidump-files
https://docs.microsoft.com/en-us/windows/desktop/Debug/minidump-files
https://helpx.adobe.com/photoshop/kb/submit-crash-reports.html
https://helpx.adobe.com/photoshop/kb/submit-crash-reports.html
https://developer.apple.com/library/content/technotes/tn2004/tn2123.html
https://developer.apple.com/library/content/technotes/tn2004/tn2123.html
http://www.phrack.org/issues/68/10.html
http://www.phrack.org/issues/68/10.html
https://backtrace.io/blog/engineering/crash-deduplication/
https://backtrace.io/blog/engineering/crash-deduplication/
https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools
http://phrack.org/issues/66/10.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://googleprojectzero.blogspot.com/2014/08/the-poisoned-nul-byte-2014-edition.html
https://media.defcon.org/
https://media.defcon.org/
http://phrack.org/issues/64/9.html
http://phrack.org/issues/64/9.html
https://github.com/emeryberger/Malloc-Implementations/tree/master/allocators/ptmalloc/ptmalloc2
https://github.com/emeryberger/Malloc-Implementations/tree/master/allocators/ptmalloc/ptmalloc2
https://chromium.googlesource.com/breakpad/breakpad/
https://chromium.googlesource.com/breakpad/breakpad/
https://www.chromium.org/for-testers/bug-reporting-guidelines/reporting-crash-bug
https://www.chromium.org/for-testers/bug-reporting-guidelines/reporting-crash-bug
https://github.com/tunz/js-vuln-db
https://github.com/tunz/js-vuln-db

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]
[58]

[59]
[60]

[61]

[62]

[63]

[64]

H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-Oriented Programming: On the Expressiveness of Non-Control
Data Attacks,” in Proceedings of the 37th IEEE Symposium on Security
and Privacy (Oakland), San Jose, CA, May 2016.

Huku, “Yet Another free() Exploitation Technique,” http://phrack.org/
issues/66/6.html, 2009.

X. Jia, C. Zhang, P. Su, Y. Yang, H. Huang, and D. Feng, “Towards
Efficient Heap Overflow Discovery,” in Proceedings of the 26th USENIX
Security Symposium (Security), Vancouver, BC, Canada, Aug. 2017.

jp, “Advanced Doug lea’s malloc exploits,” http://phrack.org/issues/61/6.
html, 2003.

C. Karamitas, “Python Bindings for Intel’s XED,” https://github.com/
huku-/pyxed, 2014.

S. Kim, T. Zimmermann, and N. Nagappan, “Crash Graphs: An
Aggregated View of Multiple Crashes to Improve Crash Triage,” in
Proceedings of the 2011 IEEE/IFIP 41st International Conference on
Dependable Systems and Networks (DSN), Washington, DC, 2011.

B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee,
“Preventing Use-after-free with Dangling Pointers Nullification,” in
Proceedings of the 2015 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2015.

B. Lee, C. Song, T. Kim, and W. Lee, “Type casting verification: Stopping
an emerging attack vector.” in Proceedings of the 24th USENIX Security
Symposium (Security), Washington, DC, Aug. 2015.

B. Liblit and A. Aiken, “Building a Better Backtrace: Techniques for
Postmortem Program Analysis,” 2002, technical report.

Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang, “SigGraph: Brute
Force Scanning of Kernel Data Structure Instances Using Graph-based
Signatures,” in Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2011.

Linux, “printf(3) - Linus Man Page,” https:/linux.die.net/man/3/printf,
2018.

Linux Programmer’s Manual, “core - core dump file,” http://man7.org/
linux/man-pages/man5/core.5.html.

P. Louro, J. Garcia, and P. Romano, “Multipathprivacy: Enhanced privacy
in fault replication,” in Proceedings of the Ninth European Dependable
Computing Conference, 2012.

J. Matos, J. Garcia, and P. Romano, “Reap: Reporting Errors using
Alternative Paths,” in Proceedings of 2014 European Symposium on
Programming Languages and Systems, 2014.

——, “Enhancing Privacy Protection in Fault Replication Systems,” in
Proceedings of the 26th International Symposium on Software Reliability
Engineering (ISSRE), 2015.

Microsoft, “lanalyze,” https://docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/-analyze, 2018.

N. Modani, R. Gupta, G. Lohman, T. Syeda-Mahmood, and L. Mignet,
“Automatically Identifying Known Software Problems,” in IEEE 23rd
International Conference on Data Engineering. 1EEE, 2007, pp. 433—
441.

Mozilla, “Socorro,” 2010, https://github.com/mozilla-services/socorro.

——, “Mozilla Crash Reporter,” https://support.mozilla.org/en-US/kb/
mozillacrashreporter, 2018.

——, “Bugzilla,” https://www.bugzilla.org/, 2019.

——, “CVE-2019-9810,” https://www.mozilla.org/en-US/security/
advisories/mfsa2019-10/#CVE-2019-9810, 2019.

J. Newsome and D. X. Song, “Dynamic Taint Analysis for Automatic
Detection, Analysis, and SignatureGeneration of Exploits on Commodity
Software,” in Proceedings of the 12th Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2005.

Offensive Security, “Exploits Database by Offensive Security,” http:
/Iwww.exploit-db.com/, 2018.

N. L. Petroni Jr and M. Hicks, “Automated Detection of Persistent Kernel
Control-flow Attacks,” in Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS), Alexandria, VA, Oct.—
Nov. 2007.

P. Phantasmagoria, “Exploiting The Wilderness,” http://seclists.org/vuln-
dev/2004/Feb/25, 2004.

17

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]
(73]

[74]

(751

[76]

[77]

[78]

(791

[80]

[81]

[82]

[83]

M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos, “Network-
level Polymorphic Shellcode Detection using Emulation,” in Proceedings
of the 3th Conference on Detection of Intrusions and Malware and
Vulnerability Assessment (DIMVA), Berlin, Heidelberg, Germany, Jul.
2006.

——, “Emulation-based Detection of Non-self-contained Polymorphic
Shellcode,” in Proceedings of the 10th International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), Berlin, Germany,
Sep. 2007.

M. Polychronakis and A. Keromytis, “ROP Payload Detection using
Speculative Code Execution,” in Proceedings of the 6th International
Conference on Malicious and Unwanted Software (MALWARE), Oct.
2011.

F. Qin, C. Wang, Z. Li, H.-s. Kim, Y. Zhou, and Y. Wu, “Lift: A Low-
overhead Practical Information Flow Tracking System for Detecting
Security Attacks,” in Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2006.

K. Satvat and N. Saxena, “Crashing Privacy: An Autopsy of a Web
Browser’s Leaked Crash Reports,” arXiv preprint arXiv:1808.01718,
2018.

A. Schroter, N. Bettenburg, and R. Premraj, “Do Stack Traces Help
Developers Fix Bugs?” in Proceedings of the 7th IEEE Working
Conference on Mining Software Repositories (MSR), Big Sky, MT,
May 2010.

F. Schuster, T. Tendyck, C. Liebchen, L. Dvai, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in C++ applications.” in Proceedings
of the 36th IEEE Symposium on Security and Privacy (Oakland), San
Jose, CA, May 2015.

SecurityFocus, “SecurityFocus,” http://www.securityfocus.com/, 2010.

H. Shacham, “The Geometry of Innocent Flesh on the Bone: Return-into-
libc Without Function Calls (on the x86),” in Proceedings of the 14th
ACM Conference on Computer and Communications Security (CCS),
Alexandria, VA, Oct.—Nov. 2007.

Shellphish, “Educational

shellphish/how2heap, 2016.

K. Z. Snow, S. Krishnan, F. Monrose, and N. Provos, “SHELLOS:
Enabling Fast Detection and Forensic Analysis of Code Injection Attacks,”
in Proceedings of the 20th USENIX Security Symposium (Security), San
Francisco, CA, Aug. 2011.

D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “BitBlaze: A New
Approach to Computer Security via Binary Analysis,” in Proceedings of
2008 International Conference on Information Systems Security, 2008.

Heap Exploitation,” https://github.com/

st4g3r, “House of Einherjar - Yet Another Heap Exploitation
Technique on GLIBC,” https://github.com/st4g3r/House-of-Einherjar-
CB2016, 2016.

Ubuntu, “Apport Crash Duplication Detection,” https://blueprints.
launchpad.net/ubuntu/+spec/apport-crash-duplicates, 2007.

_ “Ubuntu:
CrashReporting, 2018.
R. Wang, X. Wang, and Z. Li, “Panalyst: Privacy-Aware Remote Error
Analysis on Commodity Software,” in Proceedings of the 17th USENIX
Security Symposium (Security), San Jose, CA, Jul.—Aug. 2008.

J. Xu, D. Mu, P. Chen, X. Xing, P. Wang, and P. Liu, “CREDAL.:
Towards Locating a Memory Corruption Vulnerability with Your Core
Dump,” in Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, Oct. 2016.

J. Xu, D. Mu, X. Xing, P. Liu, P. Chen, and B. Mao, ‘“Postmortem
Program Analysis with Hardware-Enhanced Post-Crash Artifacts,” in
Proceedings of the 26th USENIX Security Symposium (Security),
Vancouver, BC, Canada, Aug. 2017.

M. Zalewski, “AFL-Fuzz: Crash Exploration Mode,” https://lcamtuf.
blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html, 2018.

CrashReporting,” https://wiki.ubuntu.com/

http://phrack.org/issues/66/6.html
http://phrack.org/issues/66/6.html
http://phrack.org/issues/61/6.html
http://phrack.org/issues/61/6.html
https://github.com/huku-/pyxed
https://github.com/huku-/pyxed
https://linux.die.net/man/3/printf
http://man7.org/linux/man-pages/man5/core.5.html
http://man7.org/linux/man-pages/man5/core.5.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/-analyze
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/-analyze
https://github.com/mozilla-services/socorro
https://support.mozilla.org/en-US/kb/mozillacrashreporter
https://support.mozilla.org/en-US/kb/mozillacrashreporter
https://www.bugzilla.org/
https://www.mozilla.org/en-US/security/advisories/mfsa2019-10/#CVE-2019-9810
https://www.mozilla.org/en-US/security/advisories/mfsa2019-10/#CVE-2019-9810
http://www.exploit-db.com/
http://www.exploit-db.com/
http://seclists.org/vuln-dev/2004/Feb/25
http://seclists.org/vuln-dev/2004/Feb/25
http://www.securityfocus.com/
https://github.com/shellphish/how2heap
https://github.com/shellphish/how2heap
https://github.com/st4g3r/House-of-Einherjar-CB2016
https://github.com/st4g3r/House-of-Einherjar-CB2016
https://blueprints.launchpad.net/ubuntu/+spec/apport-crash-duplicates
https://blueprints.launchpad.net/ubuntu/+spec/apport-crash-duplicates
https://wiki.ubuntu.com/CrashReporting
https://wiki.ubuntu.com/CrashReporting
https://lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html
https://lcamtuf.blogspot.com/2014/11/afl-fuzz-crash-exploration-mode.html

APPENDIX B. Cases of Privacy Leakage
A. PoCs and Crash Distribution

struct nsCookieAttributes {

1
2 nsAutoCString name, value, host, path; ...
3}
Benchmark Bugs Crashes 4 nsresult CookieServiceChild::SetCookieStringInternal(...){
ffupeg (21) #4294, #4931, #4933, #4969, #5098, #5099, 1,667 s // loop to parse cookie string data
#5210, #5487, #5528, #3683, #5736, #5752, : doniCookieAttributes cookieAttributes;
#6107, #6303, #6491, #6640, #6804, #6873, 8 moreCookies = nsCookieService: :CanSetCookie(
#6887 9 aHostURI, key, cookieAttributes, requireHostMatch,
CVE-2016-10190. CVE-2016-10191 400 10 cookieStatus, cookieString, serverTime, ...)
? 1 // more actionms...
php (17) #71311, #71436, #71449, #71450, #71637 1,313 12} while (moreCookies);
(CVE-2016-4344), #71735 (CVE-2016-3132), 13}
#72099 (CVE-2016-4539), #72403, #72595, Fig. 13: The code of handling cookie strings in firefox. The shaded

#73029 (CVE-2016-7417), #73240, #74577,
#74593, #74604 (CVE-2017-9118), #74977

CVE-2015-8617, CVE-2016-4071 200

chakra (32) CVE-2017-11764, CVE-2017-11799, CVE- 1,497
2017-11839, CVE-2017-11841, CVE-2017-
11870, CVE-2017-11873, CVE-2017-11893,
CVE-2017-11911, CVE-2017-8548, CVE-2017-
8636, CVE-2017-8640, CVE-2017-8646, CVE-
2017-8656, CVE-2017-8671, CVE-2017-8729,
CVE-2017-8755, CVE-2018-0758, CVE-2018-
0767, CVE-2018-0769, CVE-2018-0776, CVE-

line may leave user’s cookies in crash reports.

1 nsresult FSMultipartFormData::AddNameValuePair(

2 const nsAString& aName, const nsAString& aValue) {

3 nsAutoCString encodedVal;

4 nsresult rv = EncodeVal(aValue, encodedVal, false);

5 // prepare more headers & data...

6 }

7 nsresult HTMLFormSubmission: :GetFromForm(HTMLFormElement* aForm,
8 HTMLFormSubmission** aFormSubmission, ...) {

9 // Get encoding

2018-0776, CVE-2018-0780, CVE-2018-0834, 10 auto encoding = GetSubmitEncoding(aForm)->OutputEncoding();
CVE-2018-0835, CVE-2018-0837, CVE-2018- 11 .// Choose encoder
0840, CVE-2018-0860, CVE-2018-0953, CVE- P ngt“y’se:j_N;gFgoRgﬁMggggéoigﬁm) .
2018-8279, CVE-2018-8291 14 // create heade;s & Eata for_FSMultipartFormData;
CVE-2016-0193, CVE-2017-0266 100 15 // in turn calls AddNameValuePair()
16 *aFormSubmission = new FSMultipartFormData(actionURL,
firefox (16) #1389812, #1397642, #1530958, #1532599, 30 17 target, encoding, aOriginatingElement);
#1536768, #1538120, #1544386, CVE-2018- 18 // Else, other encoders ...
12386, CVE-2018-12387, CVE-2018-5091, 19}
CVE-2018-5092, CVE-2018-5095, CVE-2018- Fi . : . .
> ’ ig. 14: The sample code of preparing form data in firefox.
5130, CVE-2019-9791, CVE-2019-9813 8 p preparing irefox
Alex Top 1500%* 3000%*
CVE-2019-9810 50 nsresult nsAutoCompleteController: :EnterMatch(

bool aIsPopupSelection, dom::Event* aEvent){
nsCOMPtr<nsIAutoCompleteInput> input(mInput);
nsCOMPtr<nsTAutoCompletePopup> popup(GetPopup());

TABLE VI: The bugs for generating crashes of various real-
world benchmarks, along with the number of crashes collected.
The rows in bold indicate bugs used for generating attacker-
driven crashes. The row with asterisk superscript for firefox in-
dicates the crashes caused by SIGABRT signals when visting
the websites. Visit https://trac.ffmpeg.org/ticket/[BUGID] and 0

int32_t selectedIndex;
popup->GetSelectedIndex(&selectedIndex);

bool shouldComplete;
input->GetCompleteDefaul tIndex (&shouldComplete);

https://bugs.php.net/bug.php?id=[BUGID] for the detailed reports 1l nsAutoString value;

of the ffmpeg and php bugs, respectively. The PoCs of all the chakra 12 if (selectedIndex >= 0) {

and firefox bugs can be found at [39] and [59]. 13 // selected index for popup ...
14 GetResultValueAt(selectedIndex, true, value);
15 } else if (shouldComplete) {
16 // incomplete input triggering matched entry
17 nsAutoString defaultIndexValue;
18 if (GetFinalDefaultCompleteValue(defaultIndexValue))
19 value = defaultIndexValue;
20 // else...
21 }

Fig. 15: The sample code of autofilling per history inputs in firefox.

18

	Introduction
	Problem Definition
	Motivating Example
	Bug-analysis and Attack-detection Techniques
	Threat Model

	Design
	Pointer Identification
	Bug-Specific and Attack-Specific Modules
	Heap Structure
	ROP Gadget Chain
	Shellcode
	Malicious Format String

	Supporting Future Analysis

	Implementation
	Memory Parser
	Report Writer

	Evaluation
	Experiment Setup
	Privacy Protection by Desensitization
	Memory Byte Reduction
	Reducing Printable Strings
	Case Studies on Privacy Protection

	Supporting Bug-analysis and Attack-detection
	Supporting Bug Analysis
	Case Studies of Attack Preservation

	Practicality of Desensitization
	Performance of Desensitization
	File Size Reduction

	Discussion
	Analyzability of Desensitized Crashes
	Hybrid Bug-report Model
	Attacks against Desensitization

	Related work
	Conclusion
	References
	Appendix
	PoCs and Crash Distribution
	Cases of Privacy Leakage

