
SODA: A Generic Online Detection Framework for
Smart Contracts

Ting Chen∗, Rong Cao∗, Ting Li∗, Xiapu Luo†‖, Guofei Gu‡, Yufei Zhang∗, Zhou Liao∗, Hang Zhu∗, Gang Chen§,
Zheyuan He∗, Yuxing Tang∗, Xiaodong Lin¶, and Xiaosong Zhang∗

∗Center for Cybersecurity, University of Electronic Science and Technology of China, China, brokendragon@uestc.edu.cn
†Hong Kong Polytechnic University, Hong Kong, daniel.xiapu.luo@polyu.edu.hk

‡SUCCESS Lab, Texas A&M University, USA, guofei@cse.tamu.edu
§Chengdu Kongdi Technology Inc., China, 975868494@qq.com

¶University of Guelph, Canada, xlin08@uoguelph.ca

Abstract—Smart contracts have become lucrative and prof-
itable targets for attackers because they can hold a great
amount of money. Unfortunately, existing offline approaches for
discovering the vulnerabilities in smart contracts or checking the
correctness of smart contracts cannot conduct online detection
of attacking transactions. Besides, existing online approaches
only focus on specific attacks and cannot be easily extended to
detect other attacks. Moreover, developing a new online detection
system for smart contracts from scratch is time-consuming and
requires deep understanding of blockchain internals, thus making
it difficult to quickly implement and deploy mechanisms to
detect new attacks. In this paper, we propose a novel generic
online detection framework named SODA for smart contracts on
any blockchains that support Ethereum virtual machine (EVM).
SODA distinguishes itself from existing online approaches through
its capability, efficiency, and compatibility. First, SODA empowers
users to easily develop apps for detecting various attacks online
(i.e., when attacks happen) by separating information collection
and attack detection with layered design. At the higher layer,
SODA provides unified interfaces to develop detection apps against
various attacks. At the lower layer, SODA instruments EVM
to collect all primitive information necessary to detect various
attacks and constructs 11 kinds of structural information for the
ease of developing apps. Based on SODA, users can develop new
apps in a few lines of code without modifying EVM. Second, SODA
is efficient, because we design on-demand information retrieval to
reduce the overhead of information collection and adopt dynamic
linking to eliminate the overhead of inter-process communica-
tion. Such design allows users to develop detection apps using
any programming languages that can generate dynamic link
libraries. Third, since more and more blockchains adopt EVM
as smart contract runtime, SODA can be easily migrated to
such blockchains without modifying apps. Based on SODA, we
develop 8 detection apps to detect the attacks exploiting major
vulnerabilities in smart contracts, and integrate SODA (including
all apps) into 3 popular blockchains: Ethereum, Expanse and
Wanchain. The extensive experimental results demonstrate the
effectiveness and efficiency of SODA and our detection apps.

‖ The corresponding author.

I. INTRODUCTION

Background. Many blockchains support smart contracts,
which are autonomous programs executing the predefined
logic automatically and mandatorily [1]. Smart contracts have
become lucrative and profitable targets for attackers because
they can hold a great amount of money. For example, the most
valuable smart contract on Ethereum holds about 1.8 million
ETH [2], the native cryptocurrency of Ethereum which is
worthy of about 400 million USD [3]. Many attacks happened
in recent years, resulting in severe financial loss. For example,
by exploiting the re-entrancy vulnerability in the DAO smart
contract, an attacker caused 70 million USD financial loss [4].
Besides, without proper authority management, a critical func-
tion of the Parity multisig wallet contract led to 31 million
USD financial loss [5]. The same smart contract has another
vulnerability that allows hackers to kill the smart contract and
therefore 153 million USD were frozen [6]. Additionally, the
EOSBet smart contract did not handle notifications properly
so that attackers incurred 0.5 million USD financial loss by
exploiting such vulnerability [7]. Negative impacts will be
persistent because attacking transactions cannot be deleted
after they are added to the blockchain, and even extended
because other blockchains adopt Ethereum virtual machine
(EVM) as the runtime of smart contracts, given more than
20 million smart contracts have been deployed into Ethereum.

Existing approaches. Existing approaches for protecting smart
contracts can be roughly divided into offline and online.
Offline approaches analyze smart contracts to discover vulner-
abilities [8]–[17], check their correctness [18]–[21], reverse
engineer the bytecode of smart contracts [22]–[26], detect
malicious smart contracts [27], [28], to name a few. However,
offline methods cannot guarantee that all vulnerabilities can be
detected and removed due to the lack of runtime information
and the inherent limitations of the selected techniques. There-
fore the smart contracts after processing by these approaches
can still be attacked. Online approaches attempt to detect at-
tacks targeting smart contracts or protect smart contracts from
attacks after deployment [29]–[37], which can be classified
into two categories. The first category inserts protection code
into the source/bytecode of smart contracts [29], [31]–[33].
However, their capabilities [29], [31]–[33] are restricted by the
size limit of EVM bytecode [38] and the gas mechanism [39].
The second category inserts protection code into the runtime
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of smart contracts (e.g., EVM) [30], [34]–[37]. However,
these approaches cannot be easily extended to detect new
attacks [30], [35], or lack detailed design, implementations and
evaluations [34], [36], or are resource-consuming and could
miss many attacks [37]. We detail existing approaches in §VIII.

Our approach. We propose a novel generic online detection
framework named SODA (i.e., Smart contract Online Detection
framework against Attacks.) for smart contracts on any EVM-
compatible blockchains. How to extend SODA to protect smart
contracts from attacks is discussed in §VII. SODA distinguishes
itself from existing online approaches through its capability,
efficiency, and compatibility. First, SODA is an extensible
framework that empowers users to easily develop apps for
online detection of various attacks. To achieve this goal,
SODA separates information collection and attack detection
with layered design (§III-A). At the higher layer, SODA pro-
vides unified interfaces for developing detection apps. At the
lower layer, SODA instruments EVM to collect all primitive
information necessary to detect attacks (§III-C). Moreover, we
construct 11 kinds of structural information (§III-D) to ease
the development of detection apps. Based on SODA, users can
develop new apps in a few lines of code without modifying
EVM. To demonstrate it, we develop 8 apps to detect attacks
that exploit major vulnerabilities in smart contracts, including
re-entrancy, unexpected function invocation, invalid input data,
incorrect check for authorization, no check after contract
invocation, missing the Transfer event, strict check for balance,
and dependency of block number and timestamp, respectively.

Second, SODA is efficient, because we design on-demand
information retrieval which just collects the information re-
quired by the registered apps, to reduce the overhead of infor-
mation collection. Besides, SODA runs apps asynchronously to
further reduce overhead because the execution of smart con-
tracts needs not to wait for the outcomes of apps. Furthermore,
SODA adopts dynamic linking to eliminate the overhead of
inter-process communication (IPC). Thus, users can develop
detection apps using any programming languages that can
generate dynamic link libraries (DLLs). Such design enables
installing/removing detection apps during the execution of
the blockchain, and thus facilitates quick response to new
attacks. Extensive experiments show that the overhead of
SODA without/with 8 detection apps in processing historical
blocks is 0.4%/25.5%, respectively (§V-D), which is acceptable
for retrospective analysis (e.g., attack forensics). Besides, the
overhead of SODA with all 8 apps in processing newly mined
blocks is negligible because block mining is more time-
consuming than attack detection (§V-D). The experimental
results also demonstrate that the proposed on-demand infor-
mation retrieval is effective to reduce overhead (§V-E) and the
detection latency is negligible (§V-F).

Third, SODA is compatible with any blockchain that
adopts EVM as its smart contract runtime. EVM was first
designed for Ethereum and then quickly adopted by many
other blockchains (e.g., Expanse [40], Wanchain [41], To-
mochain [42], SmartMesh [43], CPChain [44], Thunder-
Core [45]). Therefore, SODA can be used by them. To
demonstrate its compatibility, we integrate SODA including 8
detection apps into 3 blockchains, namely Ethereum, Expanse
and Wanchain. After running these blockchains with SODA,
we detect many attacks. It is worth noting that SODA is the

first online detection system for Expanse and Wanchain.

The potential users of SODA include, but is not limited
to, security analysts who concern with security events/attacks
happened on blockchains, the developers of smart contracts,
and third parties that assess smart contracts in the private chain.
Therefore, we assume that the users of SODA are trusted and
the detection apps running on SODA are benign.

Contributions. This work has three major contributions:

• We design and implement SODA, a novel generic online
framework for detecting attacks happened on EVM-compatible
blockchains. SODA distinguishes itself from existing online
approaches through its capability, efficiency, and compatibility.

• Based on SODA, we develop 8 apps with new methods to de-
tect attacks exploiting major vulnerabilities in smart contracts.
Moreover, we integrate SODA into 3 popular EVM-compatible
blockchains. SODA, the detection apps and experimental results
will be released at https://github.com/pandabox-dev/SODA.

• Conducting extensive experiments to evaluate SODA, we
observe that SODA along with the detection apps detected
many attacks with low overhead.

II. BACKGROUND

Block. A blockchain is a growing list of blocks [46], each of
which contains a cryptographic hash of the previous block for
linking the previous block, a timestamp when the block was
mined, and transactions [46]. Blocks are produced by mining.

Account. There are two kinds of accounts in Ethereum:
external owned account (EOA) and smart contract [39]. An
EOA is controlled by a private key and does not contain the
EVM bytecode. A smart contract account contains its EVM
bytecode of executable code, and it should be created by an
EOA or another smart contract. Each account is referred to by
its address, a 20-byte value.

Smart Contract. A smart contract is typically developed in
a high-level language (e.g., Solidity [47]), and then compiled
into EVM bytecode, which is a sequence of EVM instructions.
EVM uses its interpreter to execute EVM instructions and
it currently supports more than 130 unique EVM instruc-
tions [39]. Before invoking a smart contract, its EVM bytecode
should be deployed on the blockchain. To call a function in a
smart contract, the function id rather than the function name
of the callee should be provided. The function id is the first
4 bytes of the hash of the function signature which is the
function name with the list of parameter types [48].

Stack, Memory, Storage. EVM is a stack-based virtual ma-
chine, and it uses a stack to record the operands, computation
results of EVM instructions, function parameters etc [39].
Memory is a temporary space to store function parameters,
function return values etc [39]. Storage is a database-like
permanent space to store key-value pairs [39].

Transaction. A transaction is a message sent by an ac-
count [49], [50]. There are two types of transactions dif-
ferentiated by senders. More precisely, an EOA sends an
external transaction and a smart contract sends an internal
transaction [49]. A block only records external transactions
because internal transactions can be reproduced by executing
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smart contracts. A transaction carries critical information, e.g.,
the amount of ETH to send, the EVM bytecode of a smart
contract to be deployed, the parameters for invoking a smart
contract.

Event. Smart contracts emit events using logging instructions,
i.e., LOG0, LOG1, LOG2, LOG3, and LOG4 [47]. An event
consists of zero or more topics and a data field [47].

ETH, Token. ETH is the native cryptocurrency of Ethereum.
When a block is mined, the miner will be rewarded with ETH.
Ethereum supports numerous tokens, which are cryptocurren-
cies implemented as smart contracts. A token should usually
be compatible with some token standards, e.g., ERC-20 [51],
ERC-721 [52]. Otherwise, third-party tools (e.g., wallets, ex-
change markets) cannot interact with it properly [53].

Full node. To mine and verify blocks, a blockchain full node
downloads all historical blocks from the other nodes and
replays the transactions contained in the blocks. A full node is
equipped with an EVM for running smart contracts. Therefore,
a full node can observe all information of blocks, transactions,
and the execution of smart contracts.

III. DESIGN AND IMPLEMENTATION OF SODA

A. Architecture
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Fig. 1. Architecture of SODA
As shown in Fig. 1, SODA is integrated into a full node of

any EVM-compatible blockchain, because only a full node can
mine blocks. It separates the information collection and attack
detection with layered design for the ease of developing detec-
tion apps. More precisely, SODA uses three modules, namely
block collector, trans collector and ins collector, to collect
the primitive information of blocks, transactions, and executed
EVM instructions, respectively, from the smart contract layer,
the consensus layer and the data layer of a full node. Note that
EVM serves the data, consensus, and application layers [54],
where the data layer contains the defined data structures and
the data types (e.g., account, transactions), the consensus layer
regulates how nodes reach consensus, and the smart contract
layer stores smart contracts [54]. The primitive information
will be sent to the module info collector (§III-C), which will
provide the required information to the detection apps. For
the ease of understanding the behaviors of smart contracts,
we abstract 11 kinds of structural information and develop the
module, information abstraction layer (IAL, §III-D) to con-
struct them by summarizing the primitive information from the
info collector. The collected runtime information is maintained
in the information queue, from which detection apps consume
runtime information asynchronously.

A detection app can obtain both the primitive information
collected by the info collector and the structural information
provided by the IAL for detecting specific attacks. More
precisely, the app should be first registered through the unified
interface provided by the module manager (§III-B), and then
the manager will inform the info collector about what informa-
tion should be sent to the app. An app will inform the logger
if it detects an anomaly (e.g., an attack, a vulnerable smart
contract), and the logger raises an alert with the description
of the abnormal situations. All detection apps run inside the
process of a full node but in a different thread from the
thread running the EVM, as shown in Fig. 1. Such design
has three advantages. First, costly IPC is eliminated. Second,
it is allowed to run apps asynchronously. Third, it empowers
users to develop detection apps without modifying the EVM.

B. Manager

The manager is responsible for registering and unregister-
ing detection apps. When the full node starts, the manager
loads all DLLs in a default folder into the memory, and exe-
cutes the function register() in each DLL, which provides the
information for registering and initializing the app, including
the runtime information needed by the app, the block number
indicating when the app should be launched, and the functions
used to receive different runtime information. The manager
uses a dictionary to maintain the registration information of
all apps. The dictionary records key-value pairs, where the
key is the type of runtime information and the value is the
list of apps that need such runtime information. If the full
node is not running, unregistering an app simply removes the
corresponding DLL from the default folder.

A detection app can be dynamically registered when the
full node is running by sending the manager a registration
message, which carries the full path of the app, the runtime
information required by the app, the block number denoting
when the app should be launched, and the functions used to
receive different runtime information. Similarly, an app can
be dynamically unregistered when the full node is running by
sending the manager a deregistration message, which carries
the information about the app to be unregistered and the block
number indicating when the app should be stopped. For ease
of use, we add two APIs, registerApp() and unregisterApp()
to EVM for registering and unregistering an app, respectively.
Then, users can just call them in the console of the full node
to register or unregister apps.

C. Info Collector

The info collector obtains all runtime information, includ-
ing the information of blocks, transactions and the executed
EVM instructions by customizing EVM and taking into ac-
count the effects that can be made by each transaction and
each executed EVM instruction. More precisely, SODA records
all fields of each block and each transaction. If an EVM
instruction reads a value, SODA records the value and the
location being read. Similarly, if an EVM instruction writes
a value, SODA records the value, the location being written
and the previous value stored in that location. Note that the
location being read or written can be a field of a block (e.g.,
the hash of a block), a transaction, or a stack item, a memory
region, or a storage slot of a smart contract.
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Block Collector. The block collector obtains all fields of
each block. After studying the official source code of EVM
developed in Go, We learn that a block consists of a block
header and a block body defined in block.go. The block
header contains useful metadata, such as the block number, the
difficulty to mine the block, the miner who produces the block,
the mining reward to the miner, the timestamp when the block
was mined. The block body contains external transactions. A
block can have 0 transaction so that the block body is empty.
To achieve consensus, EVM verifies blocks in the function
Process() in state processor.go, which will be invoked for each
downloaded block. Hence, we add code in Process() to record
all fields of each block.

Trans Collector. The trans collector obtains all fields of
each external and internal transaction by different processes.
An external transaction carries much information, including
the addresses of the transaction sender and the transaction
receiver, the amount of ETH to send, and the input data. If
the transaction is used to deploy a smart contract, the input
data contains the bytecode of the smart contract [39]. If the
transaction is used to call a function, the input data contains
the function id indicating which function should be invoked
and function arguments [39]. We add code into the function
ApplyTransaction() in state processor.go, which executes each
external transaction in a block, to record all fields of an
external transaction. The information carried by an internal
transaction carries is similar to that of an external transaction.
We record all fields of each internal transaction by adding
code into the interpretation handlers of the EVM instructions
CREATE, CALL, CALLCODE, DELEGATECALL, STATICCALL, SELF-
DESTRUCT which can produce internal transactions [39].

Ins Collector. There are more than 130 EVM instructions
supported by an EVM [39]. We add code into the interpretation
handlers of all EVM instructions to record the runtime infor-
mation of all executed EVM instructions. To avoid missing any
useful information, we record all the effects that can be made
by each instruction. The kinds of instruction information that
can be obtained by SODA are as follows.

(1) SODA records the name of a field, the location in the
field to be read and the read value, if an instruction reads
a field of a block, a transaction or the executed smart contract.
For example, for the instruction BLOCKHASH, which gets the
blockhash of a given block [39], SODA records the name of
the field, “block hash”, and its value.

(2) SODA records the original balance and the new balance if
an instruction changes the balance of an account. For example,
for the instruction CALL which can send ETH from the account
A to the account B [39], SODA records the original balances
and the new balances of A and B, respectively.

(3) SODA records the stack items consumed or added by an
instruction. For example, since the instruction ADD consumes
the top two stack items to get the summation and pushes the
result on the stack top [39], SODA records the two addends
which are the two consumed stack items and the one added
stack item which is the summation.

(4) SODA records the value and its location in the memory or
the storage, if an instruction reads the memory or the storage.
For example, for the instruction MLOAD, which reads 32 bytes

from the memory, SODA records the 32 bytes and the first
stack item indicating the location in the memory to read [39].

(5) SODA records the original value, the new value and its
location, if an instruction writes the memory or the storage. For
example, for the instruction SSTORE which writes 32 bytes to
the storage, SODA records the first stack item which indicates
the location in the storage from where to write, the original
value by reading the specified location in the storage, and the
second stack item which stores the new value [39].

We use the instruction CALLDATACOPY to demonstrate what
information will be recorded by SODA. In Fig. 2, CALLDATA-
COPY copies some data from the input data of an external
transaction to the memory [39]. It consumes three stack items,
which indicate the location in the memory to store data (locm),
the location in the input data to read data (loci), and the length
of data (length), respectively [39]. SODA records these three
stack items, the value read from the input data and the original
value stored in the memory before data copy.

input data

stack

memory

Fig. 2. The effects made by CALLDATACOPY

On-demand Information Retrieval. Since obtaining and
sending all runtime information to detection apps will incur
unnecessary high overhead. To reduce such overhead, we de-
sign on-demand information retrieval based on the fact that an
app may just need partial information to fulfill its functionality.
For example, we develop an app to detect re-entrancy attacks
(§IV-B) and this app just needs transaction information, so
on-demand information retrieval does not collect and send
the information of blocks and executed EVM instructions.
SODA coordinates apps, the manager and the info collector
to realize on-demand retrieval. More precisely, an app informs
the manager about the required information during registration.
By aggregating the registration messages from all apps, the
manager maintains a dictionary which maps each kind of
information to the apps needing such information. The info
collector collects the required information and sends them to
apps according to this dictionary.

D. IAL

To ease the development of apps, besides the primitive
information, IAL abstracts 11 kinds of structural information
from the info collector and provides them to apps. We briefly
introduce each structural information here and explain how
IAL constructs them in Appendix A.

(1) Contract bytecode. IAL obtains the bytecode of a smart
contract and its address when the smart contract is created.

(2) Contract invocation. IAL collects the information of con-
tract invocation, including how to invoke the contract (e.g., by
executing CALL or CALLCODE), the addresses of the caller and
the callee, the function id and arguments, the amount of ETH
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sent along with contract invocation, whether the invocation is
successful or failed.

(3) Stack access. IAL obtains the information of stack access
whenever a smart contract accesses it, including the executed
EVM instruction, the stack items popped from the stack and
the stack items pushed on the stack.

(4) Memory access. IAL obtains the information of memory
access whenever a smart contract accesses the memory, includ-
ing the executed EVM instruction, the memory location to be
read/written, the value being read/written, and the new value
that will be written in the memory.

(5) Storage access. IAL gets the information of storage access
whenever a smart contract accesses the storage, including the
executed EVM instruction, the storage slot being read/written,
the value being read/written, the new value that will be written
in the storage slot.

(6) ETH transfer. IAL obtains the information of ETH trans-
fer whenever ETH is transferred, including how to transfer
ETH (e.g., by an external transaction or executing CALL), the
addresses of the ETH sender and the ETH receiver, and the
amount of ETH.

(7) Balance change. IAL obtains the information of balance
change whenever the balance of an account changes, including
the account address, the original balance and the new balance.

(8) Control flow transfer. IAL obtains the information of
control flow transfer whenever the control flow of the executed
smart contract transfers, including the executed EVM instruc-
tion, the current program counter and the program counter of
the next executed instruction.

(9) Comparison. IAL obtains the information of comparison
whenever a smart contract executes comparison instructions,
including the executed instruction, the operands being com-
pared and the comparison result.

(10) Arithmetic operation. IAL obtains the information of
arithmetic operations whenever a smart contract executes arith-
metic instructions, including the executed arithmetic instruc-
tion, the operands and the result.

(11) Event. IAL obtains the information of an event whenever
a smart contract emits it, including the executed instruction,
the topics and the data of the event.

E. Logger

Logger will be called to produce a warning if an anomaly
is detected. The warning contains the app that captures the
anomaly, the runtime information required by the app, the
hash of the external transaction that triggers the anomaly, and
the number of the block containing such external transaction.
The warning can facilitate anomaly investigation and smart
contracts debugging.

IV. DETECTION APPS BASED ON SODA

To demonstrate how to quickly develop useful detection
apps on SODA, we implement 8 apps (§IV-B – §IV-I) to
detect the attacks exploiting major vulnerabilities in smart
contracts. Before introducing our apps, we first describe how
apps communicate with SODA (§IV-A) without IPC.

A. Communicate between Detection Apps with SODA

The detection apps run within the same process with
SODA and therefore their communications are intra-process
which are faster than inter-process communications (IPC).
Communications are required in three scenarios. First, an app
registers and unregisters to the manager by invoking two
APIs, registerApp() and unregisterApp() provided by SODA.
Second, the info collector sends the required information to
apps. Technically, it sends the information to a queue, then the
thread running apps asynchronously get the information from
the queue and invokes the apps who need such information.
Third, the thread running apps receives the results from apps,
which are the return values of the invoked functions. Then, the
thread invokes the logger if an anomaly is detected.

Listing 1 shows the core code of an example app which
writes the bytecode of deployed smart contracts into the disk.
When the full node starts, the manager invokes register() (Line
1) to get registration information including the information
needed by the app (i.e., contract bytecode provided by the
IAL) and the function to process the runtime information
(i.e., handleBytecode()) (Line 2). Then, register() initializes
the app by opening a file for recording the bytecode (Line
3). handleBytecode() (Line 6) will be invoked by the thread
running apps whenever a smart contract is deployed, and then
it writes the address and the bytecode of each smart contract
into a file (Line 7). Finally, handleBytecode() returns 0 (Line
8) indicating that no anomaly is detected.

1 func register() map[string]string{
2 registerInfo := map[string]string{”bytecode”:”handleBytecode”}
3 fd := os.OpenFile(...)
4 return registerInfo
5 }
6 func handleBytecode(info ∗collector.CollectorDataT) (byte){
7 io.WriteString(fd, info.addr+”:”+info.bytecode+”\n”})
8 return 0x0
9 }

Listing 1. An example app to record the bytecode of deployed smart contracts

B. P1: Re-entrancy

EOA

Attacking SC

fun()

fallback()

splitDAO() withdrawRewardFor()

DAO

call.value() payOut()

Child SC

1 2 3

4

5

6

7

Attacker Victim

Fig. 3. A practical attack to steal the DAO contract
Problem Description. A re-entrancy occurs if a smart con-
tract is called again before the previous call to the smart
contract returns. Re-entrancy can cause severe financial loss.
For example, an attacker stole 3.6 million ETH worthy of
70 million USD by re-entering the DAO contract [4]. Fig. 3
shows a practical attack process. The attacker controls an EOA
to create and invoke an attacking smart contract, which calls
the function splitDAO() in the DAO contract. SplitDAO() calls
withdrawRewardFor() where the function payOut() of a smart
contract created by the DAO is invoked. After that, payOut()
calls call.value() to send ETH to the attacking smart contract
belonging to the attacker. Since call.value() will invoke the
fallback function in the callee contract [49], the attacking smart
contract can call splitDAO() again. Consequently, the attacking
smart contract can withdraw more ETH than the proper amount
by repeatedly executing the steps 3 – 7 as shown in Fig. 3.
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App. To detect a malicious re-entrancy aiming at stealing ETH,
P1 exploits two invariants: execution cycles and ETH transfer,
because the attacker will let the cycle (e.g., steps 3 – 7, Fig.
3) execute repeatedly and force ETH transfer from a victim
smart contract to the attacker when the victim is re-entered to
make a profit. Note that a loop can also form the repeatedly
executed cycle. For example, a smart contract A has a loop and
in each iteration, A invokes another smart contract B which
calls back to A. If the loop body executes multiple times, the
cycle will be executed repeatedly. P1 removes irrelevant cycles
by introducing a counter which increases when an internal
transaction begins and decreases when it ends. If the cycle is
caused by re-entrancy, the counter will increase when the cycle
iterates because the caller will wait for the callee to finish [8].
On the contrary, the counter will be reset when the loop starts
a new iteration, because all internal transactions produced in
a loop end their executions before a new loop iteration.

P1 needs the transaction information, especially the ad-
dresses of the transaction sender and the transaction receiver,
the ETH to send, when the transaction starts and ends. Unlike
Sereum, P1 focuses on the re-entrancy that transfers ETH
from the victim, and it does not consider a re-entrancy as
malicious if the victim sends ETH only during its first in-
vocation. Sereum considers a re-entrancy as malicious if two
requirements are satisfied: (1) a storage variable is used for
control-flow decisions when a smart contract is re-entered;
(2) such storage variable is updated after the re-entrancy
returns [30]. Therefore, Sereum does not limit to detect re-
entrancy attack for stealing ETH (§VI). P1 can detect all four
re-entrancy patterns mentioned in the Sereum paper [30] if they
steal ETH during re-entrancy, because all these patterns form
cycles. Appendix B discusses the extension of P1 to detect
malicious re-entrancy for stealing tokens.

C. P2: Unexpected Function Invocation

Problem Description. The bytecode of a smart contract con-
tains a dispatch routine which reads the function id from the
input data of a transaction and then determines the function to
be invoked by matching such function id with the function
ids encoded in the dispatch routine [55]. If no match is
found, the fallback function will be invoked [49]. We call such
function invocation as unexpected function invocation, because
the fallback function is not the expected one. Unexpected
function invocation can incur severe consequences, as shown
in Listing 7 that an unexpected function invocation detected
by P2 can steal tokens.

1 CALLDATALOAD
2 PUSH29 0x01...
3 SWAP1
4 DIV
5 PUSH4 0xffffffff
6 AND
7 DUP1

8 PUSH4 0x06fdde03
9 EQ

10 PUSH2 0x00e2
11 JUMPI
12 ......

Listing 2. The dispatch routine of
a practical smart contract

App. P2 obtains 2 kinds of information from the IAL, includ-
ing contract bytecode and contract invocation, and detects an
unexpected function invocation through four steps. In the first
step, for each invoked smart contract, P2 locates its dispatch
routine and obtains all function ids. Then, P2 uses a dictionary
to record the address of each executed smart contract and
its function ids. Listing 2 presents the dispatch routine of a
practical smart contract. Line 1 reads the first 32 bytes from the
input data, and Line 2 – Line 6 extract the first 4 bytes of the

32 bytes. Therefore, the stack top is the function id supplied
in the input data. Line 7 – Line 9 compare the function id
with 0x06fdde03. If they are equal, the EVM jumps to the
instruction located at 0x00e2 from the start of the bytecode.
0x06fdde03 is a function id encoded in the dispatch routine
and 0x00e2 is the start of a function whose id is 0x06fdde03.
P2 searches the contract bytecode for the instruction sequence:
PUSH4 x; EQ; PUSH2 y; JUMPI. If an instruction sequence is
found, we obtain an encoded function id, x.

In the second step, P2 extracts the function id which is
the first 4 bytes of the input data, indicating the expected
function to invoke [55]. In the third step, for each function
invocation, P2 checks whether the extracted function id exists
in the dispatch routine of the invoked smart contract by looking
for the dictionary. If not, the function invocation may be an
unexpected one. The fourth step removes false positives from
the results of the third step if users attempt to invoke the
fallback function. The input data of a function invocation to
the fallback function can be non-empty in two cases. First, the
fallback function can take in parameters by explicitly reading
them from the input data, although its parameter list is empty.
Second, a transaction can send customized information (e.g.,
who and why to send this transaction) to the fallback function.
In the two cases, the third step will generate false positives,
because the first 4 bytes of the input data are not a function id.
P2 considers an unexpected function invocation discovered by
the third step as a false positive, if the length of the input data
is not 32x+4, x ≥ 0, which is the length of the input data of
an invocation to a non-fallback function, because a function id
is 4 bytes and each parameter is a multiple of 32 bytes [48].

D. P3: Invalid Input Data

Problem Description. CALLDATALOAD reads 32 bytes from the
input data, and it adds zero-value bytes if the input data does
not have enough data [39]. Such design can be exploited by
attackers to steal tokens through the short address attack [56].
We use a practical attack detected by P3 (shown in Fig. 6)
to explain it. The attacker sends a 31-byte address and a 32-
byte integer value which denotes the amount of tokens, to the
victim. The victim constructs a transaction based on the short
address and the value and sends it to transfer tokens of the
value amount to the attacker. The EVM handles the transaction
by complementing the short address with the highest byte
of the second parameter, and then complementing the lowest
byte of the second parameter with one byte of 0. Hence,
the amount of tokens is amplified by 256. Consequently, the
attacker collects more tokens from the victim.

App. P3 monitors the invocation of two functions, trans-
fer() and transferFrom(), which are standard functions for
transferring tokens in ERC-20 [51]. More functions can be
easily included. P3 detects an invalid input data by two steps.
First, P3 obtains the function id from the information of
contract invocation, and checks whether the invoked function
is transfer() or transferFrom(). Since the two functions are
standard [51], their function ids are known. If so, in the second
step, P3 checks whether the length of arguments is shorter
than it should be. If so, a short address attack may occur.
Specifically, the correct lengths of arguments to transfer() and
transferFrom() are 64 and 96 bytes, respectively, because the
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2 functions take in 2 and 3 parameters, respectively, and each
parameter is 32 bytes [51].

E. P4: Incorrect Check for Authorization

Problem Description. A smart contract needs to check permis-
sions before performing sensitive operations, such as sending
ETH. Some smart contracts check whether tx.orgin, which is
the account who initializes the external transaction, is the ex-
pected account. Unfortunately, such smart contracts are at risk
of phishing attacks [57]. A more secure programming practice
is to check whether the sender of the current external/internal
transaction, msg.sender, is from the expected account [57]. Fig.
8 shows that a phishing attack detected by P4 can tamper the
core data structure of a vulnerable smart contract by bypassing
the insecure permission check.

App. P4 detects an incorrect check for authorization in four
steps. First, P4 records the address of the account from the
information of ORIGIN. Then, it checks whether the sender is
involved in the execution of EQ. If so, P4 checks whether the
two operands of EQ are equal. If that is the case, the check
for authorization is passed. Then, P4 checks whether tx.origin
is equal to msg.sender which is supplied in the information
of contract invocation. If not, P4 detects the problem, because
the incorrect check using tx.origin is passed, but the correct
check using msg.sender cannot be passed.

F. P5: No Check after Contract Invocation

Problem Description. When a smart contract calls another
one, the return value should be checked because the exception
raised in the callee will not propagate to the caller [8]. Without
checking the return value, the failure of the callee may cause
unexpected issues to the caller because the caller does not
know whether the callee executes successfully.

App. After obtaining contract bytecode from the IAL, P5 scans
the bytecode to find a check after each contract invocation. If
no check is found, P5 detects a problematic smart contract.
Since a smart contract can be invoked by one of the four
instructions, including CALL, CALLCODE, DELEGATECALL, and
STATICCALL [39], we look for the instructions for checking
return values right after these 4 instructions. However, it is non-
trivial to determine which instructions can be used to check
the return value. To address this issue, we reverse engineering
the bytecode of the source code for checking the return value,
and summarize 7 instruction patterns, as shown in Listing 3.

1 CALL∗; ISZERO
2 CALL∗; SWAPn; POP; ...; POP; ISZERO
3 CALL∗; SWAPn; POP; ...; POP; PUSH1 0x0/0x1; EQ
4 CALL∗; SWAPn; POP; ...; POP; SWAP1; POP; DUP1; ISZERO
5 CALL∗; SWAPn; POP; ...; POP; xxx; SWAP2; POP; DUP2; ISZERO
6 CALL∗; xxx; PUSH1 0x0; DUP2; EQ
7 CALL∗; xxx; DUP1; ISZERO

Listing 3. Seven instruction patterns to check the return value
CALL* represents CALL, CALLCODE, DELEGATECALL, and

STATICCALL. The stack top is the return value after contract in-
vocation and ISZERO checks whether the stack top is zero [39],
so pattern 1 checks whether the return value is false. Two
consecutive ISZEROs are needed to check whether the return
value is true, but we just need to look for one ISZERO because
we are interested in whether there is a check rather than how
to check. SWAPn, 1 ≤ n ≤ 16, exchanges the stack top with
the (n+1)th stack item [39]. “POP, ..., POP” are n consecutive

POPs which pop n items from the stack. Therefore, P2 checks
the return value because after executing “SWAPn; POP, ...,
POP”, the stack top is the return value. PUSH1 0x0/0x1 means
pushing a 0 or a 1 on the stack. EQ compares the top two
stack items which are the return value and the pushed value
(i.e., 0 or 1). Hence, pattern 3 can check the return value.
DUPn, 1 ≤ n ≤ 16 duplicates the nth stack item [39], so
pattern 4 checks the return value which is a duplication by
executing “SWAP1; POP; DUP1”. “xxx” stands for an instruction
sequence, after executing, the stack does not change. Since
before executing “xxx”, the stack top is the return value,
after executing “SWAP2; POP; DUP2;”, “PUSH1 0x0; DUP2;” and
DUP1 respectively, the return value is duplicated. Therefore,
patterns 5, 6, 7 check the duplication of the return value. A
problematic smart contract is found if it contains a contract
invocation but does not match any pattern in Listing 3. During
pattern matching, P5 skips the instruction sequence “xxx” by
stack simulation. According to the information of contract
invocation from the IAL, P5 can detect the transactions which
lead to the failure of the contract invocation without checking
its return value. For such transactions, the caller smart contract
may perform abnormally because it is not aware of the failure.

G. P6: Missing the Transfer Event

Problem Description. The implementation of a token should
follow any token standard which defines standard functions and
standard events. Otherwise, third-party tools cannot interact
with the token properly, because they observe token behaviors
(e.g., token transfer) typically by monitoring the invocation of
standard functions and the emission of standard events [53].
ERC-20, the most popular token standard, requires a token to
emit the standard event, Transfer, if either of the two standard
functions, transfer() and transferFrom() is invoked [51]. If the
Transfer event is not emitted, third-party tools may not observe
token transfers. The “fake deposit” attack [58] exploits the
missing of the Transfer event to cheat exchange markets.

App. After obtaining the information of contract invocation
and events from the IAL, P6 first checks whether the invoked
function is transfer() or transferFrom(). If so, P6 checks
whether the invoked function emits the Transfer event. If not,
P6 finds that the Transfer event is not emitted. Since transfer(),
transferFrom() and Transfer are well defined in ERC-20 [51],
P6 can recognize them from the received information easily.

H. P7: Strict Check for Balance

Problem Description. A smart contract can check whether
its balance is equal to a specified amount, and execute some
sensitive operations (e.g., sending ETH) after the comparison.
However, such check is insecure because the balance can be
manipulated by others. For example, when a smart contract
self-destructs, all ETH in it can be sent to a specified ac-
count [49], and thus an attacker can execute self-destruction
in its smart contract to affect the comparison result.

App. P7 needs the information of BALANCE, which gets the
balance of the executing smart contract, and EQ from the
info collector. P7 first records the balance from the runtime
information of BALANCE, and then checks whether the balance
is involved in EQ. If so, P7 discovers a strict check for balance.
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I. P8: Timestamp Dependency & Block Number Dependency

Problem Description. Timestamp dependency means that a
comparison in a smart contract depends on the timestamp
[8]. Similarly, if a comparison depends on the block number,
the contract has the problem of block number dependency
[8]. Dependency may incur security risks because miners can
control block numbers and timestamps [12], and therefore
miners can affect the execution of the smart contract.

App. P8 detects timestamp dependency and block number
dependency in two steps. First, it records the timestamp and
the block number from the information of TIMESTAMP and
NUMBER provided by the info collector. Second, it checks
whether the timestamp or the block number is involved in any
comparison operation which is provided by the IAL. If so, P8
detects a dependency problem.

V. EVALUATION OF SODA

A. Research Questions

We conduct extensive experiments to answer six research
questions. RQ1: Can SODA be easily integrated into any
EVM-compatible blockchains? RQ2: Can SODA facilitate the
development of detection apps? RQ3: What is the overhead of
SODA? RQ4: Can on-demand information retrieval reduce the
overhead of SODA? RQ5: What is the detection latency? RQ6:
Can SODA easily integrate third-party tools?

B. Integrating SODA into Blockchains

Although there are many EVMs developed in different
languages, SODA can be integrated into any EVM as long
as it follows the same protocol [39]. In this paper, we first
implement SODA in about 2,200 lines of Go based on the
EVM in Geth v1.9.0, because Ethereum is the most popular
EVM-compatible blockchain. Then we migrate SODA into
Expanse v1.8.23 and Wanchain v1.1.1. We find that Expanse
and Wanchain customize the EVM of Ethereum slightly, so
we modify the original SODA in 27 and 164 lines of Go
respectively to make it work on them. More precisely, since
Expanse and Wanchain change the paths of some packages
which are necessary for the EVM, we provide the correct
paths of packages. Besides, Expanse and Wanchain slightly
customize the interpretation handlers of some EVM instruc-
tions, and therefore we modify these handlers. For example,
the interpretation handler of Expanse for executing ADDRESS
returns the address of the executed smart contract as a big
integer. However, the same handler of Ethereum returns the
address as a byte sequence.

Answer to RQ1: SODA can be easily integrated into EVM-
compatible blockchains, such as Expanse and Wanchain.
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C. Amount of Code of Detection Apps

Fig. 4 shows the code amount of 8 detection apps, ranging
from 53 to 201 lines of Go, which are much fewer than the
code amount of the framework. Moreover, the implementations
of 8 apps are the same for 3 blockchains.

Answer to RQ2: SODA can facilitate the development of
detection apps.

D. Overhead of SODA

We define the overhead of SODA and the detection apps as
(Tt − Tb)/Tb, where Tt is the running time of the blockchain
with SODA and 0 or more apps, Tb is the running time of the
blockchain without SODA. All experiments are conducted on
a desktop equipped with an Intel Xeon CPU E5-2640, 8GB
main memory and 1TB hard disk. Note that Tb for processing
historical transactions is different from that for processing new
transactions, because historical transactions had been added to
the blockchain while it takes time for new transactions to be
included in new blocks through mining.

Processing historical transactions. We let Geth download
the first 1 million blocks, and the results are shown in the
overall bars of Fig. 5. SODA without any apps introduces 0.4%
overhead, and the overhead of SODA with one detection app
ranges from 1.2% to 7.7%. The overhead of SODA with all
8 apps is 25.5%, that is acceptable for retrospective analysis,
e.g., attack forensics. Fig. 5 also presents the overheads of three
parts of SODA, collecting runtime information, enveloping and
transmitting information from SODA to apps, and data analysis
by apps. The overhead of each part is defined as Tp/Tb,
where Tp is the time consumption of that part. Unsurprisingly,
data collection is more time-consuming than the other two
parts, because the info collector has to access various fields of
core data structures (e.g., an external transaction) of Ethereum
and parse the raw data (e.g., extract the bytecode of a smart
contract from the input data). Moreover, the overhead of the
data analysis by apps does not contribute much to the overall
overhead, because apps run asynchronously in a different
thread from EVM.

Processing new transactions. To evaluate the overhead of
SODA when processing new transactions, we first let pure
Geth download all historical blocks. After that, we copy
Geth to get two identical instances. We equip the first Geth
instance with SODA as well as 8 detection apps. Then, we
run the two instances at the same time to download new
transactions. Experiments last about two weeks and the two
instances download the same number of new blocks, 90,000.
The overhead is almost unnoticeable, about 0.00003%, because
the average time for mining a block is about 14 seconds [59],
which are much longer than the time needed by SODA with 8
apps to process transactions. Our observation is accordant with
a recent work that block mining is the primary performance
bottleneck of existing blockchain systems [32].

Answer to RQ3: The overhead of SODA with 8 detection
apps is low when processing historical transactions, and the
overhead is negligible when processing new transactions.

E. Effectiveness of On-demand Information Retrieval

To evaluate the effectiveness of on-demand information
retrieval, we implement a tracer which takes in all information
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that can be provided by the framework, and returns immedi-
ately. Therefore, the tracer disables the on-demand information
retrieval. The overhead of SODA equipped with the tracer is
shown in the TR bar of Fig. 5, which is about 1.3x larger than
the overhead of SODA equipped with 8 apps.

Answer to RQ4: On-demand information retrieval is effective
in reducing the overhead of SODA.

F. Detection Latency

SODA obtains the detection result of a transaction after
its termination because EVM continues the processing of the
subsequent transactions when apps analyze the data from
the current transaction in asynchronous mode. We define
the detection latency of a transaction as the time difference
between when apps complete the analysis of the transaction
and when the transaction terminates. We insert code into the
EVM to record the two corresponding timestamps. The latency
depends on the data analysis of apps, because apps run after
receiving the runtime information in a different thread from
the thread running the EVM while the runtime information
is collected, enveloped, and transmitted during the processing
of transactions by the EVM. Note that the detection latency
of a transaction will be 0 if the app needs not to process the
transaction. For example, the latency incurred by P7 is 0 for
a transaction if it does not lead to the execution of BALANCE
and EQ, because P7 will not run if SODA does not collect the
information of BALANCE and EQ. Table I shows that the latency
per transaction is negligible, ranging from 1 to 35 µs.

TABLE I. DETECTION LATENCY PER TRANSACTION (×µS)

type address report 

P1 

0xbb9bc244d798123fde783f

cc1c72d3bb8c189413 
https://www.fengli.com/news/23153208.html 

0xd654bdd32fc99471455e86

c2e7f7d7b6437e9179 
Sereum paper 

0xf01fe1a15673a5209c9412

1c45e2121fe2903416 

https://www.palkeo.com/en/projets/ethereum/stole

n_ether.html 

0x59752433dbe28f5aa59b47

9958689d353b3dee08 

https://www.palkeo.com/en/projets/ethereum/stole

n_ether.html 

0xf91546835f756da0c10cfa0

cda95b15577b84aa7 

https://medium.com/spankchain/we-got-spanked-

what-we-know-so-far-d5ed3a0f38fe 

P5 
0xb336a86e2Feb1E87a328F

Cb7DD4D04dE3DF254D0 
https://www.kingoftheether.com/postmortem.html 

P1 P2 P3 P4 P5 P6 P7 P8 P1-P8 

10 5 2 4 1 2 6 8 35 

Answer to RQ5: The detection latency is negligible.

G. Integrating With Third-party Tools

We integrate SODA with three third-party tools, Mad-
max [17] for discovering gas-focused vulnerabilities, EVM
Bytecode Decompiler (EBD) [22] for decompiling EVM byte-
code and Osiris [15] for discovering integer overflow vulner-
abilities using the same amount of code, i.e., 75 lines of Go.
Detailed description is presented in Appendix C.

Answer to RQ6: SODA can be easily extended by integrating
third-party tools with it.

VI. RESULTS OF DETECTION APPS

We run SODA with 8 detection apps on Ethereum, Expanse
and Wanchain public chains to detect attacks and problematic
smart contracts. Table II lists the results. Row 2 shows the
number of blocks downloaded by their full nodes, and the days
when the last downloaded blocks were mined. Row 3 gives the
number of external transactions contained in the downloaded
blocks. Row 4 presents the number of smart contracts created
by the download blocks. The remaining rows show the results
of detection apps.

Results of P1. P1 detects 31 smart contracts whose ETH
are stolen by re-entrancy attacks on Ethereum. No re-entrancy
attacks are found in Expanse and Wanchain. 24 out of them
are open-source, including the DAO. The number after “|”

TABLE II. RESULTS OF DETECTION APPS ON 3 BLOCKCHAINS

1 blockchains Ethereum Expanse Wanchain 

2 # blocks 
8.18M 

(Jul. 19, 2019) 

2.17M 

(Jul. 20, 2019) 

3.75M 

(Jul. 19, 2019) 

3 # external trans 501,676,297 5,919,098 145,497 

4 # created contracts 16,958,741 1,601 2,333 

5 
P1 

# contracts 31|24 0 0 

6 # trans 1,976 / / 

7 

P2 

# contracts 1,264,335|9,014 23 5 

8 # trans 9,208,836 350 9 

9 # function ids 41,999 10 5 

10 
P3 

# contracts 726|358 0 0 

11 # trans 6,599 / / 

12 
P4 

# contracts 30,278|58 0 0 

13 # trans 442,762 / / 

14 
P5 

# contracts 1,106|105 18 0 

15 # trans 609,313 46 0 

16 
P6 

# contracts 20,608|2,175 1,202 1 

17 # trans 1,637,002 3,403 1 

18 
P7 

# contracts 14,592|133 0 0 

19 # trans 40,389 / / 

20 
P8 

# contracts 135,949|13,527 63 19 

21 # trans 48,033,077 22,324 7,095 

indicates the number of open-source smart contracts detected
by apps. Besides, P1 detects 1,976 external transactions which
exploit the re-entrancy vulnerability of the 31 smart contracts
to steal ETH. Appendix D lists the addresses of all detected
smart contracts and the number of attacking transactions. We
also present detailed results of P1 including the addresses
of the detected smart contracts and the transaction hashes of
the detected transactions on https://github.com/pandabox-dev/
SODA. Then, we manually check the false positives of P1.
For 24 open-source smart contracts, we inspect their source
code manually, and for 7 closed-source smart contracts, we
first decompile them by Online Solidity Decompiler [60] and
then inspect the decompiled code. Manual audit shows that P1
produces 5 false positives, and therefore the false positive rate
of P1 is 16%.

1 function doWithdraw(address from, address to, uint256 amount) internal{
2 require(amount <= MAX WITHDRAWAL);
3 require(balances[from] >= amount);
4 require(withdrawalCount[from] < 3);
5 balancs[from] = balances[from].sub(amount);
6 to.call.value(amount)();
7 withdrawalCount[from] = withdrawalCount[from].add(1);
8 }

Listing 4. A false positive of P1
1 function sell(bytes32 hash, uint amount) public{
2 ......
3 ERC20(info.token).safeTransferFrom(msg.sender, this, tradeAmount);
4 uint total = info.eth.mul(tradeAmount).div(info.amount);
5 msg.sender.transfer(total);
6 ......
7 }

Listing 5. Another two false positives of P1

Two false positives are due to the same reason. Listing 4
presents one which uses a mapping balances[] to records the
amount of ETH that a user can withdraw. Therefore, attackers
cannot steal ETH by re-entrancy because balances[] reduces
the amount before transferring ETH (Line 5). Two another
false positives have the same bytecode, and their source code
is shown in Listing 5. Users can invoke sell() to trade their
tokens with the ETH of this smart contract. More specifically,
msg.sender sends tokens to the smart contract (Line 3), and
this smart contract sends ETH back to msg.sender (Line 5).
Therefore, attackers cannot steal ETH, because they must pay
for the ETH. The reason for the last false positive is that the
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receiver sends ETH back to the detected smart contract imme-
diately after it receives ETH, so the detected smart contract
does not lose ETH. We plan to eliminate the false positives
of P1 automatically in our future work by checking whether
attackers withdraw more ETH than the amount belonging to
them and taking token transfers into consideration.

We thank the authors of Sereum for providing their results
so that we can make a comparison. Sereum detects 284 smart
contracts which are re-entered before 8.18 million blocks. By
manual analysis, we find that 29 out of them send ETH when
they are re-entered, and these 29 smart contracts are also
detected by P1. Since P1 and Sereum use different criteria
and techniques to detect malicious re-entrancies, they have
different sets of false positives. One one hand, 3 out of 5 false
positives of P1 are also detected by Sereum. The remaining
2 false positive of P1 are not flagged by Sereum because
the detected smart contracts do not update storage after re-
entrancy which is a necessary requirement of Sereum to detect
re-entrancy attacks. On the other hand, P1 does not suffer from
the false positives reported in the paper about Sereum [30],
because P1 does not need to track the accessing of storage
variables which is challenging.

Listing. 6 presents the decompiled code of a detected smart
contract. Line 3 sends ETH to msg.sender, and the amount of
ETH is recorded in the storage. After sending ETH, Line 5
resets the storage slot for recording the amount of ETH. This
smart contract is susceptible to re-entrancy attacks because
the storage slot is reset after sending ETH. More precisely,
if msg.sender is the hacker, Line 3 will invoke the fallback
function of the hacker’s smart contract. If the fallback function
calls back to the function 01CB(), the vulnerable smart contract
will send ETH to the hacker again. Consequently, the hacker
can receive ETH repeatedly before resetting the storage slot
by exploiting the vulnerability.

1 function 01CB(){
2 ......
3 memory[...] = address(msg.sender).call.gas(...).value(storage[keccak256(memory[0

x00:0x40])])...
4 ......
5 storage[keccak256(memory[0x00:0x40])] = 0x00;
6 }

Listing 6. A smart contract detected by P1
Results of P2. P2 detects 1,264,335, 23, and 5 smart contracts
with the issue of unexpected function invocation on Ethereum,
Expanse, and Wanchain, respectively. It also detects 9,208,836,
350, and 9 external transactions that call the unexpected func-
tion (i.e., the fallback function) on 3 blockchains, respectively.
For each detected external transaction, we extract the function
id of the expected function from its input data , and we obtain
41,999, 10, and 5 function ids on 3 blockchains, respectively.

Please recall that P2 requires the length of the input data
to be 32x + 4, x ≥ 0. But, it will produce a false positive
if a transaction attempts to invoke the fallback function with
the length of its input data being 32x + 4, x ≥ 0 by chance.
Unfortunately, it is difficult to accurately identify the false
positives of P2 because we do not know the real intention
of transaction senders. We propose to consider an external
transaction detected by P2 as a true positive, if the function
id extracted from the input data is a valid function id which
is computed from a function signature. We check whether an
extracted function id is valid by leveraging a function signature
database which records valid function ids [61]. After searching

the database, we find 8,390,172 transactions with valid func-
tion ids. Therefore, the false positive rate of P2 should not
be higher than 9% (1 − 8, 390, 172/(9, 208, 836 + 350 + 9)),
because the database may be incomplete.

Fig. 7 presents a detected smart contract, whose fallback
function is invoked unexpectedly. The caller is an exchange
market EtherDelta, which invokes depositToken() to deposit
some amount of a specific token into EtherDelta, by invoking
the standard function, transferFrom() of the token (Line 3).
However, P2 finds that an attacker invokes depositToken() of
EtherDelta to deposit a token whose transferFrom() is not
implemented and thus the fallback function of the token is
invoked. Consequently, the attacker does not deposit tokens
into EtherDelta. However, EtherDelta records that tokens are
successfully deposited at Line 4. Once the hacker invokes
withdrawToken() of EtherDelta (Line 7), the hacker can steal
tokens from EtherDelta because the token implements another
standard function transfer() (Line 11).

1 function depositToken(address token, uint amount){
2 if (msg.value>0 || token==0) throw;
3 if (!Token(token).transferFrom(msg.sender, this, amount)) throw;
4 tokens[token][msg.sender] = safeAdd(tokens[token][msg.sender], amount);
5 Deposit(token, msg.sender, amount, tokens[token][msg.sender]);
6 }
7 function withdrawToken(address token, uint amount){
8 if (msg.value>0 || token==0) throw;
9 if (tokens[token][msg.sender] < amount) throw;

10 tokens[token][msg.sender] = safeSub(tokens[token][msg.sender], amount);
11 if (!Token(token).transfer(msg.sender, amount)) throw;
12 Withdraw(token, msg.sender, amount, tokens[token][msg.sender]);
13 }

Listing 7. A smart contract detected by P2

Results of P3. P3 detects 6,599 external transactions that in-
voke 726 smart contracts with invalid input data on Ethereum,
and no such transactions on Expanse and Wanchain. Then, we
investigate whether the detected transactions are false positives
by leveraging Etherscan [62], which can recognize arguments
of the invocation to a known function but cannot recognize
arguments to unknown functions or from invalid input data.
Please recall that P3 detects the invocations to transfer()
and transferFrom() defined in ERC-20, which are known by
Ethereum. We find that, for all detected transactions, Etherscan
cannot recognize arguments. That is, Etherscan confirms that
P3 does not produce false positives.

Fig. 6 presents the screenshot of a detected transaction
from Etherscan, which is a short address attack happened
in practice. The subfigure above presents the input data of
the attacking transaction. We can see that Etherscan cannot
recognize arguments because the input data is shorter than a
valid input data. After manual interpretation of the input data,
we find that 0xa9059cbb is the function id of transfer(), to
is a 31-byte short address, and value is 0xd744761bc. The
subfigure below presents the Transfer event which reflects the
token behavior incurred by the attack. Obviously, the missing
byte of to is complemented by the highest byte of value, and
the lowest byte of value is appended with one byte of zeros by
EVM. Consequently, 0xd744761bc00 tokens are transferred,
which is 256 times larger than the intended amount.

Results of P4. P4 detects 30,278 smart contracts on Ethereum,
each of which uses the result of ORIGIN to check permissions,
and no problematic smart contracts on Expanse and Wanchain.
P4 also detects 442,762 external transactions, each of which
passes the vulnerable permission check and tx.origin is not the
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due to invalid input data.

function id

31-byte address, _to

0xd744761bc tokens 

want to transfer.

EVM complements the lowest byte of 

_to by the highest byte of _value. 

EVM complements the lowest byte of _value 

with 0, amplifying _value by 256 times.

Fig. 6. Screenshot of a short address attack
same account with msg.sender. 58 out of 30,278 detected smart
contracts are open-source. To study the false positives of P4,
we manually inspect all 58 open-source smart contracts and
200 randomly selected closed-source smart contracts detected
by P4. By checking these 258 smart contracts and correspond-
ing transactions, we found that P4 produces no false positives.

Listing 8 presents a detected smart contract, which belongs
to a decentralized application providing a reputation score to
an address [63]. The function add() adds a score to a given
address provided by the transaction sender (i.e., msg.sender),
and thus only privileged accounts can invoke add(). Line 9
checks whether an account is a privileged account. However,
this contract is susceptible to phishing attacks because tx.origin
is used to check permissions. P4 detects an external transaction
whose tx.origin is the privileged account, manager, and thus
the transaction passes the permission check and adds a score
to an address specified by msg.sender. Interestingly, we find
that the detected external transaction invokes another smart
contract, which invokes add(). Therefore, msg.sender is not
equal to tx.origin in this transaction. If this external transaction
comes from a phishing attack, the attacker can add an arbitrary
score to an arbitrary address.

1 function add(address target, int wScore) external restricted{
2 if (!scores[target].exists) {
3 scores[target] = Score(true, 0, 0);
4 }
5 scores[target].cumulativeScore += wScore;
6 scores[target].totalRatings += 1;
7 }
8 modifier restricted() {
9 require(msg.sender == manager || tx.origin == manager || msg.sender ==

controller);
10 ;
11 }

Listing 8. A smart contract detected by P4
Results of P5. P5 detects 1,106 and 18 problematic smart
contracts on Ethereum and Expanse, respectively, and no prob-
lematic smart contracts on Wanchain. P5 identifies 609,313
and 46 external transactions on Ethereum and Expanse, re-
spectively, each of which leads to the failure of the contract
invocation without checking its return value. 105 out of 1,124
detected smart contracts are open-source. To study the false
positive rate of P5, we manually examine all 105 open-source
smart contracts and 200 randomly-selected closed-source smart
contracts, and find that P5 produces no false positives.

Listing 9 presents a detected smart contract. Line 2 sends
m txs[ h].value ETH to the account m txs[ h].to without
checking the return value. P5 also detects external transactions
which lead to the failure of ETH transfer at Line 2. These
transactions may result in severe consequences to third-party
tools and the executed smart contract itself. Line 3 emits
an event, MultiTransact to notify third-party tools that ETH

has been transferred. However, the notification will mislead
third-party tools, because ETH transfer fails. m txs[] is the
core data structure to record the account which should receive
ETH. Line 4 deletes the account h from m txs[] because the
smart contract considers that h has already received ETH,
which is contrary to the fact. Consequently, the smart contract
will execute incorrectly if subsequent execution needs to read
m txs[ h] which was mistakenly removed.

1 if(m txs[ h].to != 0) {
2 m txs[ h].to.call.value(m txs[ h].value)(m txs[ h].data);
3 MultiTransact(msg.sender, h, m txs[ h].value, m txs[ h].to, m txs[ h].data);
4 delete m txs[ h];
5 return true;
6 }

Listing 9. A smart contract detected by P5
Results of P6. P6 detects 20,608, 1,202, and 1 smart con-
tracts whose transfer() or transferFrom() can be executed
without emitting the Transfer event on Ethereum, Expanse
and Wanchain, respectively. 2,175 out of them are open-
source. Besides, P6 detects 1,637,002, 3,403 and 1 external
transactions which execute transfer() or transferFrom() and
no Transfer is emitted. To estimate the false positive rate
of P6, we randomly select 1,000 open-source smart contracts
and 200 closed-source smart contracts detected by P6. After
checking these 1,200 smart contracts and the corresponding
transactions, we find that 26 smart contracts do not implement
transfer() or/and transferFrom(), and 125 transactions attempt
to invoke the missing functions. However, the fallback function
is invoked instead [49]. For these 125 transactions, P6 produces
false positives because the fallback function is not required to
emit the Transfer event [51]. Hence, the false positive rate of
P6 is 0.03% (125/368, 619).

1 function transfer(address to, uint256, value) returns(bool success) {
2 if(balances[msg.sender] >= value && value > 0) {
3 balances[msg.sender] = substractSafely(balances[msg.sender, value]);
4 balances[ to] = addSafely(balances[ to], value);
5 Transfer(msg.sender, to, value);
6 }
7 else{
8 success = false;
9 }

10 return success;
11 }

Listing 10. A smart contract detected by P6
Listing 10 presents a detected smart contract. If the trans-

action sender has sufficient tokens and the amount of tokens
to be sent is larger than 0 (Line 2), tokens will be sent (Lines
3, 4) and a Transfer event will be emitted (Line 5). However,
if the requirements at Line 2 are not satisfied, tokens will not
be sent and the Transfer event will not be emitted (Lines 7 –
9). By executing Lines 7 – 9, hackers can launch fake deposit
attacks to cheat the exchange markets which observe token
transfers by parsing the arguments of transfer(), because no
tokens are transferred in practice.
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Results of P7. P7 detects 14,592 smart contracts on Ethereum,
each of which checks whether the result of BALANCE is strictly
equal to a specific value, and no problematic smart contracts
on Expanse and Wanchain. Besides, P7 detects 40,389 exter-
nal transactions on Ethereum triggering the strict check for
balance. To evaluate the false positive rate of P7, we manually
inspect all 133 open-source smart contracts and 200 randomly
selected closed-source smart contracts detected by P7. 14,019
transactions are involved in these 333 smart contracts. We
found that 101 transactions are false positives, and hence the
false positive rate of P7 is 0.7% (101/14, 019). The reason is
that P7 does not use precise data-flow tracking; instead, P7
checks whether one operand of EQ is equal to the result of
BALANCE. We find that, for all false positives, the result of
BALANCE is 0 and one operand of an irrelevant EQ is also 0.

Listing 11 presents a detected smart contract. The fallback
function stops receiving ETH, if a flag, isPreIco is false (Line
2). isPreIco is set to false (Line 5), if the balance of this
smart contract is strictly equal to maxAmountSupply (Line 4).
However, this smart contract is vulnerable to attacks. More
specifically, when the balance of this smart contract is close
to maxAmountSupply, a hacker can make the balance surpass
maxAmountSupply by self-destruction, and therefore isPreIco
cannot be set to false. Such attack can break the functionality
of this smart contract to stop receiving ETH, because we find
that the smart contract does not have a function to decrease
the amount of ETH from the hacker.

1 function() payable{
2 if(isPreIco == false) throw;
3 ......
4 if(this.balance == maxAmountSupply){
5 isPreIco = false;
6 }
7 }

Listing 11. A smart contract detected by P7
1 function CancelMyInvestment() external noEther {
2 ......
3 if(investers[InvestorID].timestamp > now && ContractEnabled){throw;}
4 ......
5 }

Listing 12. A smart contract detected by P8
Results of P8. P8 detects 135,949, 63 and 19 smart contracts
on Ethereum, Expanse and Wanchain, respectively, each of
which contains a comparison depending on the block number
or the timestamp. Moreover, P8 detects 48,033,077, 22,324,
and 7,095 external transactions on three blockchains, each of
which triggers the execution of such comparison. 13,527 out
of all detected smart contracts are open-source. To estimate
the false positive rate of P8, we randomly select 1,000 open-
source smart contracts and 200 closed-source smart contracts.
Manual investigation of these 1,200 smart contracts and the
corresponding transactions shows that P8 does not produce
false positives. The reason why P8 is accurate without precise
data-flow tracking is that the values of timestamps and block
numbers are specific, so it is very unlikely that the operands
of unrelated comparisons are equal to timestamps or block
numbers by chance. Listing 12 shows a detected smart con-
tract. Line 3 compares the timestamp (i.e., now) with a specific
value. Since the timestamp is set by the miner, the execution
of the smart contract may be terminated (i.e., throw, Line 3)
by a malicious miner.

False Negative Analysis. Lacking the ground truth of all
problematic smart contracts, we cannot conduct a comprehen-
sive analysis on false negatives. Instead, we try our best to

search the Internet for vulnerable smart contracts mentioned
in articles, reports, and papers. Eventually, we found 5 smart
contracts exploited by re-entrancy attacks and 1 smart con-
tract containing a call without checking its return value. The
addresses and the sources of these reported smart contracts are
presented in Appendix E. Our apps can detect all of them.

In summary, our 8 detection apps can detect problematic
smart contracts and the corresponding transactions with high
accuracy, though their implementations are simple.

VII. DISCUSSION

Precise data-flow tracking. Currently, SODA does not support
precise data-flow tracking and thus apps may produce false
positives (e.g., §VI, results of P7) and false negatives. We will
develop a data-flow tracking module for SODA and expose
APIs to apps, allowing them to check data dependency.

Implementation of detection apps. We present 8 apps just for
demonstrating how to quickly develop useful apps on SODA
with a few lines of code. Therefore, these apps are not fully
optimized and could be further improved. Moreover, more
detection apps can be developed on SODA. By releasing the
source code of our framework and the apps later, we will
encourage others to develop apps for the framework in addition
to implementing more apps by ourselves in future work.

Applications of SODA. Besides security applications, SODA
can be used in any scenarios requiring the runtime information
of blocks, transactions, or smart contracts. For example, it can
be used to profile the behaviors of ETH/token transfer and
measure the performance of blockchains, e.g., the evolving of
the difficulty and the time needed to mine blocks.

Extension to online protection. To protect smart contracts
from attacks, SODA should be modified from several aspects.
First, apps should be run synchronously so that SODA can stop
the execution of problematic smart contracts. Second, the code
of apps should be audited by trusted parties to eliminate flawed
or malicious apps. Third, we need a mechanism to deploy
SODA and apps on blockchain nodes, because two nodes may
not achieve consensus if only one is equipped with SODA or
they install different apps.

VIII. RELATED WORK

A. Online Approaches

Sereum protects smart contracts with re-entrancy vulnera-
bilities from being exploited by leveraging taint analysis [30].
There are four major differences between SODA with Sereum.
First, SODA is a framework, on which various apps can be
developed, whereas Sereum focuses on re-entrancy attacks.
Second, Sereum does not limit to detect re-entrancy attacks for
stealing ETH. Third, SODA can be easily integrated into any
EVM-compatible blockchains, and we conduct experiments on
Ethereum, Expanse and Wanchain. Sereum, however, focuses
on Ethereum. Fourth, P1 and Sereum have different sets of
false positives because they apply different techniques [30].
EVM∗ inserts protection code into EVM to prevent integer
overflow bugs and timestamp bugs from being exploited [35].
However, the extension of EVM∗ to support other attacks
is not easy because EVM should be modified by inserting
new protection code, which is technically challenging. Besides,

12



EVM∗ lacks comprehensive evaluations about its effectiveness
and efficiency; instead, EVM∗ is tested by just 10 selected
smart contracts [35].

ÆGIS proposes an extensible framework based on a smart
contract for maintaining patterns [34]. However, ÆGIS does
not disclose its design, implementations and evaluation [34].
DappGuard aims at preventing various attacks by integrating
OYENTE, an anomaly detection engine and a rule-based
detection engine [36]. But, its companion paper does not
present technical details and evaluation results [36]. FSFC is an
extensible framework which implements filter smart contracts
to prevent bad inputs [37]. However, FSFC will consume
considerable computing resources to deploy filter contracts,
because a filter contract can protect only one smart contract,
given the huge number of smart contracts in Ethereum. More-
over, some attacks cannot be detected by simply checking their
inputs. For example, to detect a re-entrancy attack, we need
to monitor the execution of the victim smart contract, but its
input (e.g., the address, the amount of ETH) is insufficient to
distinguish attacks from normal transactions.

ContractLarva inserts protection code into the source code
of smart contracts so that the corresponding EVM bytecode can
prevent attacks [29]. Solythesis inserts user-supplied invariants
into the source code of smart contracts [32]. The instrumented
smart contracts will reject all transactions that violate the
invariants [32]. ContractGuard inserts runtime checks into
the bytecode of smart contracts, and the instrumented smart
contracts will reject all transactions that hijack the control
flow of smart contracts [31]. Ayoade et al.’s work inserts
protection code into the bytecode of smart contracts to pre-
vent integer overflow/underflow attacks [33]. However, the
protection abilities of these approaches [29], [31]–[33] are
restricted by the blockchain architecture for two reasons. First,
complicated runtime checks may not be inserted into smart
contracts, because the bytecode of a smart contract must not
exceed 24KB [38]. Second, large smart contracts always cost
high execute fee, which may be a disincentive to a big-size
smart contract with runtime checks.

B. Offline Approaches

There are already many offline analysis studies on smart
contracts, such as vulnerability discovery [8]–[17], [64]–[67],
correctness verification [18]–[21], [53], [68], [69], reverse
engineering [22]–[26], [70], detection of malicious smart con-
tracts [27], [28], identification of gas-inefficient patterns [71],
[72], to name a few. OYENTE applies symbolic execution (SE)
to interpret the bytecode of smart contracts, and it can discover
four kinds of vulnerabilities [8]. Manticore [9], MAIAN [11]
and MythX [10] also leverages SE to discover vulnerabilities
with different implementations and focus on different kinds
of vulnerabilities. ETHRACER applies SE and partial-order
reduction to discover event-ordering bugs arising from the
unexpected ordering of events [16]. SMARTSCOPY not only
discovers vulnerabilities, but also synthesizes adversarial smart
contracts to exploit vulnerable smart contracts [64]. teEther
leverages SE to discover vulnerabilities and generate transac-
tions which can attack vulnerable smart contracts [65]. sCom-
pile ranks the program paths according to their criticalness,
and applies SE to discover vulnerabilities by exploring the top-
ranked critical paths [14]. ContractFuzzer leverages fuzzing to

reveal vulnerabilities [12]. MadMax conducts static analysis
to detect gas-focused vulnerabilities [17]. Osiris combines
taint analysis and SE to discover integer overflow vulnera-
bilities [15]. ReGuard applies fuzzing to detect re-entrancy
bugs [66]. SmartCheck discovers 21 kinds of problems from
the source code of smart contracts [13].

SOLAR leverages SE to check whether the implementation
of a token violates any token standard [68]. TokenScope au-
tomatically checks inconsistent token behaviors by comparing
real token transfer behaviors with those behaviors suggested
by standard functions and standard events [53]. Given a smart
contract, Vultron checks whether the mismatch between the
actual transferred amount and the amount reflected on the
contract’s internal bookkeeping will happen [69]. ZEUS [19],
K framework [20], [21], and Securify [18] check the correct-
ness of smart contracts through formal verification. EBD [22],
Vandal [23], Porosity [24], Erays [25] and Gigahorse [26] are
decompilers which convert the bytecode of smart contracts into
human-readable representations. ETHIR extends OYENTE by
translating the control flow graph into a rule-based repre-
sentation [70]. HONEYBADGER applies SE to detect the
honeypot smart contracts, which lure their victims into traps
by deploying seemingly vulnerable smart contracts that contain
hidden traps [27]. Chen et al. apply machine learning to detect
the smart contracts implementing Ponzi schemes [28].

However, after being processed by offline analysis, smart
contracts may still contain vulnerabilities, and thus still be sus-
ceptible to attacks for two reasons. The first is lacking runtime
information. For example, OYENTE fails to find 3 kinds of
re-entrancy bugs due to the lack of runtime information [30].
The inherent limitations of the selected techniques is another
reason. For instance, symbolic-execution-based tools, such
as OYENTE [8], Manticore [9], MythX [10], MAIAN [11],
Osiris [15] may not discover all vulnerabilities due to path
explosion. As another example, ContractFuzzer [12] is unlikely
to reveal all vulnerabilities due to the low code coverage of
black-box fuzzing. Therefore, online approaches can comple-
ment offline approaches.

IX. CONCLUSION

We propose and develop SODA, a novel generic online
detection framework for detecting various attacks. SODA is
superior to existing online approaches due to its capability,
efficiency, and compatibility. With SODA, users can quickly
develop detection apps to detect new attacks. For demonstra-
tion, we develop 8 apps with new detection methods to detect
attacks exploiting major vulnerabilities in smart contracts.
Moreover, we integrate SODA into three popular blockchains
supporting EVM. By conducting extensive experiments to
evaluate SODA, we observe that it along with the detection
apps can effectively detect many attacks with low overhead.
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APPENDIX

A. Detailed Description of IAL

(1) Contract bytecode. IAL obtains the bytecode of a smart
contract and its address when the smart contract is created.
Many detection apps need the bytecode of smart contracts.
For example, from the bytecode, P2 extracts all encoded
function ids (§IV-C) and P5 looks for a check after a contract
invocation (§IV-F). To obtain the bytecode of smart contracts,
IAL abstracts the information of external transactions and
the instruction CREATE from the info collector, because they
can create smart contracts [39]. Technically, the bytecode is
extracted from the input data of external transactions and
internal transactions which are triggered by executing CREATE.
The address of a smart contract is returned after the smart
contract is successfully deployed. Hence, IAL obtains the
address from the return values of evm.create() which is the
internal function of the EVM to create smart contracts.

(2) Contract invocation. IAL collects the information of con-
tract invocation, including how to invoke the contract (e.g., by
executing CALL or CALLCODE), the addresses of the caller and
the callee, the function id and arguments, the amount of ETH
sent along with contract invocation, whether the invocation
is successful or failed. Such information is useful for attack
detection. For instance, P2 needs to know the function id of the
function to be invoked (§IV-C). To construct the information of
contract invocation, IAL abstracts the information of external

transactions and 4 EVM instructions, CALL, CALLCODE, DEL-
EGATECALL, and STATICCALL from the info collector, because
they can call smart contracts [39].

(3) Stack access. IAL obtains the information of stack access
whenever a smart contract accesses it, including the executed
EVM instruction, the stack items popped from the stack and
the stack items pushed on the stack. EVM is a stack-based
virtual machine, and hence all EVM instructions except STOP,
JUMPDEST and INVALID will access the stack.

(4) Memory access. IAL obtains the information of memory
access whenever a smart contract accesses the memory, in-
cluding the executed EVM instruction, the memory location
to be read/written, the value being read/written, and the new
value that will be written in the memory. Such information
is useful, because the memory stores the parameters and
the return values of smart contracts, the bytecode of smart
contracts, etc. To construct such information, IAL aggregates
the information of 13 EVM instructions, SHA3, CALLDATACOPY,
CODECOPY, RETURNDATACOPY, MLAOD, MSTORE, MSTORE8,
CREATE, CALL, CALLCODE, DELEGATECALL, STATICCALL, RE-
TURN, because they can access the memory [39].

(5) Storage access. IAL gets the information of storage access
whenever a smart contract accesses the storage, including the
executed EVM instruction, the storage slot being read/written,
the value being read/written, the new value that will be written
in the storage slot. Such information is useful, because attack-
ers often attempt to access the important data in the storage.
To construct the information of storage, IAL abstracts the
information of 2 EVM instructions, SLOAD, SSTORE, because
they read and write the storage, respectively [39].

(6) ETH transfer. IAL obtains the information of ETH trans-
fer whenever ETH is transferred, including how to transfer
ETH (e.g., by an external transaction or executing CALL), the
addresses of the ETH sender and the ETH receiver, and the
amount of ETH. The information of ETH transfer is crucial
for many apps because ETH is a major target of hackers. For
example, P1 needs to know ETH transfer to detect re-entrancy
attacks (§IV-B). To construct the information of ETH transfer,
IAL abstracts the information of external transactions, 4 EVM
instructions, CREATE, CALL, CALLCODE and SELFDESTRUCT,
because they can transfer ETH [39].

(7) Balance change. IAL obtains the information of bal-
ance change whenever the balance of an account changes,
including the account address, the original balance and the
new balance. The information of balance change is useful
because many attacks will cause balance change (e.g., ETH
steal). To construct the information of balance change, IAL
abstracts the information of which accounts receive mining
reward, which transactions send ETH, and 4 EVM instructions,
CREATE, CALL, CALLCODE, and SELFDESTRUCT, because they
can change balances [39].

(8) Control flow transfer. IAL obtains the information of
control flow transfer whenever the control flow of the executed
smart contract transfers, including the executed EVM instruc-
tion, the current program counter and the program counter of
the next executed instruction. With such information, control-
flow hijacking can be detected [31]. To construct the informa-
tion of control flow transfer, IAL abstracts the information of
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2 EVM instructions, JUMP and JUMPI, because the control flow
can be transferred after executing these instructions [39].

(9) Comparison. IAL obtains the information of comparison
whenever a smart contract executes comparison instructions,
including the executed instruction, the operands being com-
pared and the comparison result. The information of compar-
ison is useful for many apps because the comparison result
can affect the subsequent execution. For example, Sereum
detects whether re-entrancy attacks bypass validity checks,
which are comparisons in bytecode [30]. As another example,
P8 needs the information of comparison to check whether the
comparison depends on the timestamp or the block number
(§IV-I). To construct the information of comparison, IAL
abstracts the information of 6 EVM instructions, LT, GT, SLT,
SGT, EQ, ISZERO, because they are used for comparison [39].

(10) Arithmetic operation. IAL obtains the information of
arithmetic operations whenever a smart contract executes arith-
metic instructions, including the executed arithmetic instruc-
tion, the operands and the result. Such information is useful
to detect integer overflows where the results are outside of the
range that can be represented with a given number of dig-
its [15]. To construct the information of arithmetic operations,
IAL abstracts the information of 10 EVM instructions, ADD,
MUL, SUB, DIV, SDIV, MOD, SMOD, ADDMOD, MULMOD and EXP,
which are arithmetic instructions supported by EVM [39].

(11) Event. IAL obtains the information of an event whenever
a smart contract emits it, including the executed instruction, the
topics and the data of the event. Event is a mechanism designed
for the interaction between a smart contract and the outside
world [47]. That is, third-party tools can know what happens
in a smart contract by listening to the events emitted by the
smart contract. Therefore, the information of events is useful.
For example, P6 checks whether a standard function transfer()
or transferFrom() of a token emits a standard Transfer event.
To construct the information of events, IAL abstracts the
information of 5 EVM instructions, LOG0, LOG1, LOG2, LOG3
and LOG4, because these 5 instructions are used to emit
events [39].

B. Extending P1 to Detect Re-entrancy Attacks for Stealing
Tokens

To detect malicious re-entrancies for stealing tokens, P1
checks whether tokens are transferred when a token contract
is re-entered. Therefore, the extension is straightforward if
we know the addresses of token contracts and token transfer
behaviors. To do so, we reuse the results of TokenScope, our
automated tool for detecting inconsistent token behaviors [53].
TokenScope has analyzed all transactions before 6 million
blocks, and for every analyzed transaction, TokenScope checks
whether it triggers token transfer behaviors. If so, it outputs
the address of the token contract and token transfer behaviors.
With the results of TokenScope, P1 analyzes all transactions
in the first 6 million blocks and it detects token steal due
to re-entrancy from 3 smart contracts, as shown in Table III.
By comparing with the results of Sereum, We find that such
3 smart contracts are also detected by Sereum, and Sereum
detects no more smart contracts whose tokens are transferred
when they are re-entered in the first 6 million blocks.

TABLE III. RE-ENTRANCY ATTACKS TO STEAL TOKENS

vulnerable smart contract # trans 

0xbb9bc244d798123fde783fcc1c72d3bb8c189413 (DAO) 1,847 

0xd654bdd32fc99471455e86c2e7f7d7b6437e9179 8 

0xf01fe1a15673a5209c94121c45e2121fe2903416 1 

0x59752433dbe28f5aa59b479958689d353b3dee08 1 

0xbf78025535c98f4c605fbe9eaf672999abf19dc1 7 

0x26b8af052895080148dabbc1007b3045f023916e 1 

vulnerable smart contract # trans 

0xbb9bc244d798123fde783fcc1c72d3bb8c189413 (DAO) 1,847 

0xd654bdd32fc99471455e86c2e7f7d7b6437e9179 8 

0xf01fe1a15673a5209c94121c45e2121fe2903416 1 

0x59752433dbe28f5aa59b479958689d353b3dee08 1 

0xbf78025535c98f4c605fbe9eaf672999abf19dc1 7 

0x26b8af052895080148dabbc1007b3045f023916e 1 

vulnerable smart contract # trans 

0xbb9bc244d798123fde783fcc1c72d3bb8c189413 (DAO) 2,105 

0xd654bdd32fc99471455e86c2e7f7d7b6437e9179 8 

0x304a554a310c7e546dfe434669c62820b7d83490 174 

C. Detailed Description of Integrating SODA with Third-party
Tools

There are lots of third-party tools for discovering vul-
nerabilities, checking the correctness or reverse engineering
of smart contracts. If SODA can easily integrate third-party
tools, the application sceneries of SODA can be largely ex-
tended. Moreover, by integrating third-party tools, repeated
development can be avoided. In this section, we describe how
SODA integrates 3 third-party tools. Madmax is an offline
tool for discovering vulnerabilities in the bytecode of smart
contracts [17]. EVM Bytecode Decompiler (EBD) [22] is a
decompiler of EVM bytecode, which has many functionali-
ties, such as decompiling bytecode into readable Solidity-like
pseudocode, parsing functions and events, getting the locations
of all jump targets etc. Osiris [15] leverages taint analysis and
symbolic execution to discover integer overflow vulnerabilities
from the bytecode of smart contracts.

We integrate the 3 tools by implementing 3 detection apps
for each tool. The code of the 3 apps is almost the same
because both of them need the bytecode of smart contracts
provided by the IAL. After receiving the bytecode, the 3
apps invoke Madmax, EBD and Osiris fed with the bytecode,
respectively. Moreover, the 3 apps cache the results to avoid
repeated analysis of the same bytecode. The code amount of
the 3 detection apps is the same: 75 lines of Go. On the
contrary, Madmax, EBD and Osiris themselves have 3,773
lines of Python, 4,004 lines of TypeScript, and 14,568 lines of
Python respectively, which are far more than the code amount
of the 3 apps. Therefore, by integrating Madmax, EBD and
Osiris into SODA, we obtain their capabilities without repeated
development. We then present the experimental results of
SODA integrated with Osiris in more detail.

We run SODA with Osiris to discover integer overflow
vulnerabilities in 222,493 unique bytecode of all smart con-
tracts deployed in the first 8.18 million blocks, and it finds
52,660 vulnerable smart contracts, accounting for 23.7%
(52, 660/222, 493). DogeToken is a vulnerable smart contract
flagged by SODA integrated with Osiris, whose flawed code is
shown in Listing 13. To protect fund safety, Lines 5 – 8 attempt
to check whether from is allowed to transfer value tokens to
to. However, an implementation bug makes such protection

useless. Consequently, integer overflows will happen at Lines
9 and 10 by providing a huge value. We can fix the bug by
replacing the comparisons at Lines 5 –7 with “≥”, “≥”, and
“<”, respectively.

1 function transferFrom(address from, address to, uint256 value)...{
2 ......
3 uint256 fromBalance = balances[ from];
4 uint256 allowance = allowed[ from][msg.sender];
5 bool sufficientFunds = fromBalance <= value;
6 bool sufficientAllowance = allowance <= value;
7 bool overflowed = balances[ to] + value > balances[ to];
8 if(suffcientFunds && sufficientAllowance && !overflowed){
9 balances[ to] += value;

10 balances[ from] + value;
11 ......
12 }

16



13 }

Listing 13. A smart contract with an integer overflow vulnerability

D. Re-entrancy Attacks Detected by P1
TABLE IV. RE-ENTRANCY ATTACKS DETECTED BY P1

*: false positives 

vulnerable smart contract # trans 

0xbb9bc244d798123fde783fcc1c72d3bb8c189413 (DAO) 1,915 

0xd654bdd32fc99471455e86c2e7f7d7b6437e9179 8 

0xf01fe1a15673a5209c94121c45e2121fe2903416 1 

0x59752433dbe28f5aa59b479958689d353b3dee08 1 

0xbf78025535c98f4c605fbe9eaf672999abf19dc1 10 

0x26b8af052895080148dabbc1007b3045f023916e 1 

0xbabfe0ae175b847543724c386700065137d30e3b 1 

0x463f235748bc7862deaa04d85b4b16ac8fafef39 1 

0xb93430ce38ac4a6bb47fb1fc085ea669353fd89e 1 

0x23a91059fdc9579a9fbd0edc5f2ea0bfdb70deb4 1 

0xb4c05e6e4cdb07c15095300d96a5735046eef999 1 

0x95d34980095380851902ccd9a1fb4c813c2cb639 1 

0xd116d1349c1382b0b302086a4e4219ae4f8634ff 1 

0xa5d6accc5695327f65cbf38da29198df53efdcf0 1 

0xe610af01f92f19679327715b426c35849c47c657 1 

0x903643251af408a3c5269c836b9a2a4a1f04d1cf 1 

0x4a8d3a662e0fd6a8bd39ed0f91e4c1b729c81a38* 5 

0xb7c5c5aa4d42967efe906e1b66cb8df9cebf04f7 1 

0xfe1b613f17f984e27239b0b2dccfb1778888dfae 5 

0xaae1f51cf3339f18b6d3f3bdc75a5facd744b0b8 1 

0xd4cd7c881f5ceece4917d856ce73f510d7d0769e* 1 

0x72f60eca0db6811274215694129661151f97982e* 1 

0xc6b330df38d6ef288c953f1f2835723531073ce2* 1 

0xf91546835f756da0c10cfa0cda95b15577b84aa7 8 

0x0eb68f34efa0086e4136bca51fc4d0696580643e 1 

0xcb6fe98097fe7d6e00415bb6623d5fc3effa4e83 1 

0xdf4b83a451ef20b925ce39f4da2a021722688370 1 

0xcead721ef5b11f1a7b530171aab69b16c5e66b6e 1 

0xa4e1cbf64c3b5db2a6e6f23cb5286b97d80b86e3 1 

0xe752b7d837a6969a5986467b0109bdf052e45bdb* 1 

0x59abb8006b30d7357869760d21b4965475198d9d 1 

Table IV presents the addresses of vulnerable smart con-
tracts and the number of external transactions exploiting the
re-entrancy bugs detected by P1. Comparing Table III to
Table IV, 2,105 transactions steals tokens from the DAO and
1,915 transactions steals ETH from the DAO. After manual
investigation, we find that 1,915 transactions steal both ETH
and tokens, and 190 (2, 105 − 1, 915) transactions just steal
tokens. We then decompile the bytecode of the attacking smart
contracts, and we find that the attacker re-enters two different
functions in the DAO using different attacking smart contracts.
As shown in Fig. 3, the attacker re-enters splitDAO(), and
the decompiled code of the attacking smart contract is shown
in Listing 14. If the if branch is taken (Line 2) during the
first call to the fallback function, tokens will be transferred
by invoking the transfer() function in the DAO (Line 4) and
then the transaction completes. In this case, only tokens are
stolen. If the else branch is taken (Line 7) during the first call
to the fallback function, the DAO is re-entered by invoking its
splitDAO() function. In this case, the if branch will be taken
during the final call to fallback function, and therefore both
ETH and tokens will be stolen.

Moreover, the attacker steals ETH by re-entering another
function, getMyReward() in the DAO. Our observation is

consistent with a recent study that getMyReward() is re-
entered by attackers [73]. The attacking smart contract is
similar with the one re-entering splitDAO() except that it re-
enters getMyReward() rather than splitDAO(). Therefore, this
attacking smart contract also has two paths, one steals tokens
only and the other steals both ETH and tokens.

1 def fallback() payable:
2 if stor4 <= 0:
3 ......
4 call addr(stor1).transfer(address to, uint256 value) with:
5 gas gas remaining − 25050 wei
6 args addr(stor2), ext call.return data[0]
7 else:
8 stor4−−
9 call addr(stor1).splitDAO(uint256 proposalID, address newCurator) with:

10 gas gas remaining − 25050 wei
11 args stor3, addr(stor5)
12 require ext call.success
13 return 1

Listing 14. The smart contract attacks the DAO

E. Reported Problematic Smart Contracts

TABLE V. REPORTED PROBLEMATIC SMART CONTRACTS

type address report 

P1 

0xbb9bc244d798123fde783f

cc1c72d3bb8c189413 

http://hackingdistributed.com/2016/06/18/analysis-

of-the-dao-exploit/ 

0xd654bdd32fc99471455e86

c2e7f7d7b6437e9179 
Sereum paper 

0xf01fe1a15673a5209c9412

1c45e2121fe2903416 

https://www.palkeo.com/en/projets/ethereum/stole

n_ether.html 

0x59752433dbe28f5aa59b47

9958689d353b3dee08 
https://github.com/b9lab/ing-hack-challenge 

0xf91546835f756da0c10cfa0

cda95b15577b84aa7 

https://medium.com/spankchain/we-got-spanked-

what-we-know-so-far-d5ed3a0f38fe 

P5 
0xb336a86e2Feb1E87a328F

Cb7DD4D04dE3DF254D0 
https://www.kingoftheether.com/postmortem.html 

P1 P2 P3 P4 P5 P6 P7 P8 P1-P8 

10 5 2 4 1 2 6 8 35 
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