
Strong Authentication without Tamper-Resistant
Hardware and Application to Federated Identities

Zhenfeng Zhang1,2,3,Yuchen Wang1,2and Kang Yang4
1TCA Lab of State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences

2University of Chinese Academy of Sciences
3The Joint Academy of Blockchain Innovation

4State Key Laboratory of Cryptology
zhenfeng@iscas.ac.cn, wangyuchen@tca.iscas.ac.cn, yangk@sklc.org

Abstract—Shared credential is currently the most widespread
form of end user authentication with its convenience, but it
is also criticized for being vulnerable to credential database
theft and phishing attacks. While several alternative mechanisms
are proposed to offer strong authentication with cryptographic
challenge-response protocols, they are cumbersome to use due to
the need of tamper-resistant hardware modules at user end.

In this paper, we propose the first strong authentication
mechanism without the reliance on tamper-resistant hardware at
user end. A user authenticates with a password-based credential
via generating designated-verifiable authentication tokens. Our
scheme is resistant to offline dictionary attacks in spite that the
attacker can steal the password-protected credentials, and thus
can be implemented on general-purpose devices.

More specifically, we first introduce and formalize the notion
of Password-Based Credential (PBC), which models the resistance
of offline attacks and the unforageability of authentication tokens
even if attackers can see authentication tokens and capture
password-wrapped credentials of honest users. We then present
a highly-efficient construction of PBC using a “randomize-then-
prove” approach, and prove its security. The construction does
not involve bilinear-pairings, and can be implemented with
common cryptographic libraries for many platforms. We also
present a technique to transform the PBC scheme to be publicly-
verifiable, and present an application of PBC in federated
identity systems to provide holder-of-key assertion mechanisms.
Compared with current certificate-based approaches, it is more
convenient and user-friendly, and can be used with the federation
systems that employ privacy-preserving measures (e.g., Sign-in
with Apple).

We also implement the PBC scheme and evaluate its perfor-
mance for different applications over various network environ-
ment. When PBC is used as a strong authentication mechanism
for end users, it saves 26%-36% of time than the approach based
on ECDSA with a tamper-resistant hardware module. As for its
application in federation, it could even save more time when the
user proves its possession of key to a Relying Party.

I. INTRODUCTION

Passwords, or shared credentials, have dominated the realm
of authentication for several decades, but they have also been

regarded as the weakest points of modern computer systems.
Traditional shared credential authentication mechanisms re-
quire the credentials of users to be stored in centralized reposi-
tories at servers, and to be explicitly transferred, which creates
notable targets for attackers. They can either be stolen in
batches from breached centralized repositories, or be captured
while being transferred (i.e., through phishing attacks).

To eliminate the security risks raised by shared credentials,
the techniques of strong authentication [38] have been widely
adopted by the industry and standardization communities
as alternative approaches. In particular, strong authentication
schemes are the cryptographic challenge-response identifica-
tion protocols that one entity (i.e., the claimant) “proves” its
identity to another entity (i.e., the verifier) by demonstrating
the knowledge of a secret known to be associated with that
entity. During authentication, the secret is neither revealed to
the verifier nor transferred over the channel. Such mechanisms
can be built with symmetric-key or public-key cryptographic
primitives. For mechanisms based on symmetric-key crypto,
the two entities share a symmetric-key, and the claimant
corroborates its identity by demonstrating the knowledge of
the shared key by encrypting a challenge, or by generating
a MAC (message authentication code) value for the chal-
lenge. For mechanisms based on public-key crypto, a claimant
demonstrates knowledge of its private key in a way of digitally
signing a challenge, or decrypting a challenge encrypted under
its public key. As concrete examples, the FIDO Alliance
adopts strong authentication with public-key techniques in
the Universal Authentication Framework (UAF) [45], and the
Web Authentication specification of W3C [60] also defines an
API enabling the use of public key-based credentials by web
applications for the purpose of strong authentication.

However, conventional strong authentication mechanisms
involve the problem of secure storage of secrets, i.e., secret-
keys in symmetric-key cases and private-keys in public-key
cases. A common approach is encrypting the secret with a
password. This protection is vulnerable to off-line attacks when
the attacker can steal the password-protected credential [cre]pw
and capture the authentication token σ from honest users (e.g.,
through phishing). It can guess a password pw′ and determine
its correctness with off-line manners:

• If σ can be verified with the knowledge of cre (in the case
of symmetric crypto), off-line attacks cannot be avoided
since one can guess a pw′ and decrypt [cre]pw to obtain

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.24462
www.ndss-symposium.org

[cre]pw

m

σ

cre ′ ← Dec(pw ′, [cre]pw), check MAC(cre ′,m) = σ

Fig. 1: Off-line attack for strong authentication with symmetric
crypto, where cre is a symmetric key and user authenticates
through MAC values (i.e., σ ← MAC(cre,m)).

m

(σ, cert)

[cre]pw

cre ′ ← Dec(pw ′, [cre]pw), pk ← cert,
check VerifyKey(pk , cre ′) = 1

Fig. 2: Off-line attack for strong authentication with asymmet-
ric crypto, where cre is a private key and the user authenticates
with digital signatures (i.e., σ ← Sign(cre,m)), and cert is a
certificate w.r.t., the user’s public key pk and private key cre .

cre ′, and then determine the correctness of guess by using
cre ′ to check the validity of σ (See Fig. 1).

• If σ can be verified publicly (in the case of asymmetric
crypto), then off-line attacks are also feasible. One can
determine the correctness of pw′, via extracting the public
key pk from cert which is contained in the authentication
tokens, and then checking whether (pk , cre ′) is a valid
public-private key pair (See Fig. 2).

In practice, these secrets are commonly stored with tamper-
resistant hardware modules at user end. Both the FIDO UAF
protocol [10], [29], [44] and W3C’s specification [60] highly
recommend using tamper-resistant hardware modules (e.g.,
SIM card and Trusted Platform Module (TPM)) for user end
implementation (i.e., FIDO authenticator) to protect the private
keys and perform cryptographic operations.

The employment of tamper-resistant hardware module de-
creases the usability of strong authentication schemes as end
user authentication mechanisms, which is also seen as one
of the major drawbacks of currently deployed strong authen-
tication mechanisms [17], [47], [43]. The module (i.e., the
device it residents) becomes another thing to be remembered
to carry, and the secret keys stored by such a module would
be permanently lost once the module is broken or lost.

For federated identity systems, assertions convey authen-
tication and attribute information of users from Identity

Providers (IdPs) to separately-administered Relying Parties
(RPs). They can be presented directly to the RP, or be
forwarded through the user. Upon receiving an assertion, the
RP uses the information contained to identify the user and to
make authorization decisions about its accesses to resources
controlled by the RP. A bearer assertion can be presented by
any party as proof of the bearer’s identity, and may lead to
impersonation attacks if it is captured by attackers.

To enhance the security guarantees provided by assertions,
the notion of holder-of-key assertion is introduced for many
federation approaches (e.g., SAML2 [39] and OAuth2.0 [36]).
It prevents assertions from being abused by malicious RPs,
and guarantees that the user cannot repudiate for an assertion
sent by him. This technique has been adopted for commercial
products such as Microsoft’s XBOX [37] and IBM’s Web-
Sphere [6], and also utilized by the digital identity guidelines
published by NIST [31] as a requirement for the highest level
of federation assurance. Particularly, a holder-of-key assertion
contains a reference to the key held by the user (e.g., public
key). To verify such an assertion, the RP requires the user
to cryptographically prove possession of the key (e.g., private
key) that corresponds to the key reference presented in the
assertion.

Currently, the holder-of-key assertion mechanisms are
mainly implemented via certificates [39], [48], where the user
must send its X.509 certificate and prove possession of the
key referred in the certificate. However, such mechanisms are
inconvenient for end users due to the requirement of certifi-
cate, and also require tamper-resistant hardware to protect the
private keys. Moreover, for federated identity systems which
employ RP-specific pseudonyms to protect the privacy of users
(e.g., Sign-in with Apple [8]), RPs can collude and link the
same user through the key used in holder-of-key assertions,
which breaks the un-linkability brought by pseudonyms. With
current technologies, an IdP cannot both preserve the privacy
of users and support holder-of-key assertions simultaneously.

A. Our Contributions

The main contribution of this paper is the first strong
authentication scheme which does not require tamper-resistant
hardware modules to protect secrets at user end. We further-
more present its application with federated identity systems
to solve the issues of user’s privacy and reliance on tamper-
resistant hardware in the current holder-of-key assertion mech-
anisms. Our scheme wraps (a.k.a., protects) credentials of users
by passwords, and can be implemented on different devices
(e.g., mobile phones and desktop computers) to support cross-
terminal authentication, but is resistant to phishing attacks and
offline dictionary attacks even in the case that the attacker
can both obtain the password-wrapped credentials and see the
authentication tokens that the user sends to the server.

Our contributions can be summarized as follows:

• We formalize the syntax of a new primitive called Password-
Based Credential (PBC). Informally, the PBC scheme re-
quires a user with identifier uid to register to a server and
obtain a credential cre which is wrapped (i.e., encrypted)
with a password pw . The password-wrapped credential
[cre]pw can be stored in a general-purpose device or a

2

cloud server. For authentication, the user uses its password
pw and the password-wrapped credential [cre]pw to create
an authentication token σ on a challenge message m. The
server authenticates the user with its secret key by checking
whether σ is valid on m w.r.t., uid .
We establish the necessary security requirement of Exis-
tential UnForgeability under Chosen Message and chosen
Verification queries Attacks (EUF-CMVA) for PBC. Our
security model covers a wide-range of practical threats,
where the attacker can corrupt users adaptively, obtain
the password-wrapped credentials of honest users, and see
authentication tokens generated by honest users.

• We propose a highly efficient construction of PBC, denoted
by ΠPBC, and prove its security under the cryptographic q-
SDH and q-DDHI assumptions in the random oracle model.
ΠPBC is resistant to off-line attacks in the aforementioned
security model since authentication tokens generated by
honest users can only be verified by a designated server. This
construction does not rely on bilinear-pairings, and thus can
be implemented easily by common cryptographic libraries
on many platforms.

• We propose a technique to transform the designated-
verifiability of ΠPBC to public-verifiability. With this tech-
nique, we present an application of PBC in federated identity
systems to implement the holder-of-key assertion mecha-
nism, which can be integrated into standardized federation
protocols such as SAML2 and OpenID Connect. It enables
a user to provide a key reference to the IdP, and prove
possession of the corresponding key to the RP using a PBC
authenticator. Our approach furthermore provides an option
that enables the holder-of-key assertions to be verified while
hiding the user’s identity, which can be used in federation
systems that have applied privacy-preserving measures such
as Sign-in with Apple.

• We evaluate the performances of our schemes over Local
Area Network (LAN) and Wide Area Network (WAN) under
different latencies, and compare them with the approaches
using ECDSA with tamper-resistant hardware modules. For
strong authentication, PBC (denoted by AUTH-PBC) saves
26%-36% time than the ECDSA-based strong authentica-
tion. For its application as holder-of-key assertion mecha-
nism, PBC speeds the process by 41%-55% compared with
the approaches based on ECDSA.

B. Technical Overview

Here, we present the challenges we met and the techniques
leveraged to tackle them.

Avoid offline attacks. The major challenge of using passwords
to protect credentials is avoiding offline dictionary attacks. The
credential should not have any structure character, otherwise
off-line attacks are feasible as one can guess a pw′, decrypt
[cre]pw with pw′, and check the character structure of cre .
The authentication token σ should not be verified with cre or
publicly-verifiable. Our solution tackle this challenge via two
techniques:

• The credentials of our schemes are indistinguishable from
random group elements, and thus do not have any structure
character for off-line attacks. Furthermore, we apply the
password-based encryption proposed by [14] to wrap the

credentials with passwords, where the decryptions from any
passwords obtain group elements with the same structure
characters. With this approach, the attacker can only obtain
group elements which are indistinguishable from the real
credential when guessing the password.

• The authentication tokens are generated with a “randomize-
then-prove” paradigm, and can only be verified by a des-
ignated verifier who has the corresponding secret key. The
authentication token can neither be verified with cre nor by
the attacker who does not know the secret key. In particular,
the “randomize-then-prove” paradigm firstly randomizes a
credential and then presents it with zero-knowledge proofs,
and has been used for anonymous credential protocols [24],
[11], [19]. It does not reveal the knowledge of credential
and thus resists offline attacks.

Transform PBC to publicly-verifiable. Holder-of-key asser-
tion mechanisms require the user to prove its possession of
a secret to any RP, which is not a problem for asymmetric
primitives such as digital signature schemes since they are
publicly-verifiable. However, this seems to contradict the pro-
posed scheme, which is designated-verifiable. We solve this
dilemma as follows:

• We use the IdP (i.e., designated verifier) as a “converter” that
transforms our scheme to be publicly-verifiable. It provides
RPs with information that is necessary for verifying the
authentication tokens generated by users. To prevent this
technique from being abused to perform off-line attacks, we
require that the IdP must authenticate the user first, and limit
the effect of a transformation within one session.

We also consider a scenario that the user authenticates to
RPs using IdP-managed unrelated pseudonyms, for preventing
the user’s activities from tracking or profiling when these RPs
collude. However, the privacy goal is hard to be achieved when
holder-of-key assertions are adopted, since RPs can associate
the same user with the references of keys.

• We provide an option to convert the scheme to be public-
verifiable while preserving the privacy of users, which
enables the user to prove the possession of the credential to
the RP without revealing its identity. Any RP can verify the
holder-of-key assertions without knowing the references to
original credentials (i.e., user identifiers), which avoids the
user from being linked across multiple RPs through holder-
of-key assertions.

C. Related Work

A series of schemes have been proposed to address
the problem of large-scale credential leakage in centralized
storage of shared credentials. Several password hardening
schemes [27], [52], [42] have been proposed to strengthen the
username-password authentication for web service providers,
where an external crypto server is adopted to carry out cer-
tain cryptographic operations. Furthermore, hardware security
modules (e.g., Intel SGX) have also been utilized at server
side to harden the storage of credentials by protecting the salt
values or secret keys [41], [18].

To prevent phishing attacks, many Multi-Factor Authenti-
cation (MFA) mechanisms have been designed [59], [40], [35],

3

and deployed in practice (e.g., The FIDO Universal 2nd Factor
(U2F) Protocol [57]). These schemes use dedicated devices
such as mobile phones and FIDO U2F keys to perform the
2nd factor authentication, and their security and usability thus
rely on these devices. The 2nd authentication factor will lose
once the device is broken or lost, and may also be occupied
by the attacker once the device is stolen or breached.

Password hardening and MFA techniques improve the
username-password authentication, but do not change the
authentication mechanism itself (e.g., the credentials are still
transferred explicitly from claimer to verifier) which makes
them different from the approaches for strong authentication.

Moreover, Pass2Sign [20] enables the user to sign mes-
sages with the help of a server using its password. A Pass2Sign
server stores salted hashed values of users’ passwords, and
the corresponding salt values are stored at user end devices.
For authentication, the user calculates the hash value of its
password, the salt and a global query identifier, encrypts the
hashed value with the server’s public key and sends it to
the server. However, Pass2Sign does not consider the threat
scenario that attackers could get authentication tokens (e.g.,
through phishing attacks). That is, an attacker could first
capture the hashed values calculated by the users by disguising
as the server via providing the user with the public key of its
own, and then steal the salt value stored at user end device.
After that, it could obtain the password via offline attacks.

II. PRELIMINARIES

Notation. Throughout this paper, we use λ to denote the
security parameter, and [n] to denote the set {1, . . . , n}. The
notation x $← S denotes that x is sampled uniformly at random
from a set S. For an algorithm A, y ← A(x) denotes the
process that runs A on input x and obtains y as output. We say
that a function f : N→ [0, 1] is negligible if for any positive c,
we have f(λ) < 1/λc for sufficient large λ. For simplicity, we
use negl to denote an unspecified negligible function. Let G be
a group of prime order p generated by g, and G∗ denote G\{1}
where 1 is the identity element of G. Finally, [M]pw denotes
the ciphertext on a message M encrypted with a password pw.

A. Cryptographic Assumptions

We recall two intractability assumptions in G.

Definition 1: (q-SDH) [15] We say that the q-Strong
Diffie-Hellman (q-SDH) assumption holds in group G, if for
all Probabilistic Polynomial Time (PPT) adversaries A such
that

AdvSDH
G

def
= Pr[x

$← Z∗p : A(g, gx, ..., gx
q

) = (c, g1/(x+c))]

< negl(λ),where c ∈ Zp\{−x}.

We write AdvSDH
G (t, q) = maxA{AdvSDH

G (A)}, where the
maximum is taken over all adversaries of time complexity at
most t and obtaining q + 1 group elements.

Definition 2: (q-DDHI) [16] We say that the q-Decisional
Diffie-Hellman Inversion (q-DDHI) assumption holds in group

G, if for all PPT adversaries such that

AdvDDHI
G

def
=

∣∣∣Pr[x
$← Z∗p : A(g, gx, ..., gx

q

, g1/x) = 1]−

Pr[x
$← Z∗p, U

$← G∗ : A(g, gx, ..., gx
q

, U) = 1]
∣∣∣

< negl(λ)

We write AdvDDHI
G (t, q) = maxA{AdvDDHI

G (A)} where the
maximum is taken over all adversaries of time complexity at
most t and obtaining q + 2 group elements.

B. Non-Interactive Zero-Knowledge Proofs

Non-Interactive Zero-Knowledge Proofs (NIZKs) enable a
prover to prove that a statement x is in a given NP language
L in a zero-knowledge way, where L is defined by an NP
relation R, i.e., L = {x | ∃w s.t. R(x,w) = 1} and w is
called a witness for x.

Signature proofs of knowledge (SPKs) [23] are NIZK
proofs constructed by using the Fiat-Shamir heuristic [28] to
transform Sigma protocols in the random oracle model [13].
When referring to the SPKs on proving knowledge of discrete
logarithms and statements about them, we will follow the nota-
tion introduced by Camenisch et al. [21] to abstract the SPKs.
For example, π ← SPK{(a) : ga = u}(m) denotes a signature
proof of knowledge on proving knowledge of a witness a
such that u = ga, which signs a message m and outputs a
proof π on statement x = (g, u). Let VerifySPK((g, u),m, π)
denote the verification algorithm of SPK, which outputs 1 if
π is valid on m w.r.t. a statement (g, u) and 0 otherwise. The
signature proofs of knowledge are zero-knowledge, sound and
knowledge extractable in the random oracle model [49].

Security Definitions for NIZK. Informally, an NIZK system
Π is said to be unbounded zero-knowledge if there exists
a simulator Sim without knowing any witness can simulate
the proofs on unbounded number of statements such that no
adversary can distinguish the simulated proofs from the real
ones created with witnesses. In particular, the adversary has
access to an oracle Ozk which returns either the real proofs
produced by the prover having witnesses or the simulated
proofs generated by Sim. We use AdvuzkΠ (t, qzk) to denote the
maximum advantage of all adversaries against the unbounded
zero-knowledge of Π who run in time t and make at most qzk
queries to Ozk . The soundness of an NIZK system Π assures
that no adversary can prove a false statement (i.e., outside
L), where AdvsoundΠ (t) denotes the maximum advantage of
all adversaries who run in time t. We say that an NIZK
system Π satisfies the knowledge extractability if there exists
an extractor Ext which can extract a witness from the proof cre-
ated by the adversary, where AdvextΠ (t) denotes the maximum
advantage of all adversaries who run in time t. Simulation-
sound extractability of an NIZK system Π guarantees that
the extractor Ext still works for the proof produced by the
adversary even if the adversary sees many simulated proofs
from a simulator oracle Osim and the extracted results on the
proofs created by itself from an extractor oracle Oext . We
denote by Advss-ext

Π (t, qsim , qext) the maximum advantage of
all adversaries against the simulation-sound extractability of
Π who run in time t and make at most qsim and qext queries
to Osim and Oext respectively. We refer the reader to [32], [9]
for the formal definitions of the above security properties.

4

III. PASSWORD-BASED CREDENTIAL

In this section, we propose a new cryptographic primitive
called Password-Based Credential (PBC), which protects a
user’s credential issued by a server with a password and
uses both the password-protected credential and password to
generate authentication tokens to authenticate to the server
with a challenge-response procedure, and formalize its security
considering practical threats. Our model is game-based, and
inspired by the security model for PAKE protocols [12].

We define a security notion of Existential UnForgeability
under Chosen Message and chosen Verification queries At-
tack (EUF-CMVA) for PBC schemes. Informally, EUF-CMVA
guarantees that no adversary can forge valid authentication
token on a fresh message for an honest user. A PBC scheme is
EUF-CMVA secure means that this scheme is secure as long as
at least one of the password-wrapped credential and password
of the user has not been revealed by the adversary, and even
if the password-wrapped credential is leaked, the attacker can
only guess the password by querying the server online. Note
that this notion implies unforgeability of credentials, as a valid
credential can always be used to create authentication tokens.

A. Syntax of PBC

Let U and D denote the spaces of usernames and passwords
respectively, and Reg be a set of usernames that have been
registered, the syntax of PBC scheme is defined as follows:

Definition 3 (Password-Based Credential): A password-
based credential scheme PBC = (Setup,KeyGen, Issue,Sign,
Verify) with message space M is defined as follows:

• Setup(1λ): On input a security parameter λ (in unary), the
setup algorithm outputs a set of public parameters pp, which
is an implicit input to the following algorithms except for
being explicitly described.

• KeyGen(pp): On input pp, a server runs the key generation
algorithm to create a secret key sk and a set of issuer
parameters isp associated with sk. Then the server initializes
Reg as empty. We also consider that isp is an implicit input
to the following algorithms unless explicitly describing.

• Issue(sk,Reg)
 (uid, pw) is an interactive registration
protocol executed between a user and the server over a
secure channel (e.g., established by TLS). The user runs the
protocol by inputting its username-password (uid, pw) ∈
U × D, and interacts with the server who takes inputs its
secret key sk and a set of registered usernames Reg . If either
party aborts, the protocol outputs ⊥. Otherwise, the server
issues a credential cre to the user and updates Reg to include
uid, and the user outputs a password-wrapped credential
[cre]pw which can be stored on a general-purpose device.

• Sign(uid, pw, [cre]pw ,m): On input a username uid, a
password pw , a password-based credential [cre]pw and a
message m ∈M, a user runs this algorithm to generate an
authentication token σ on message m.

• Verify(sk, uid ,m, σ): On input a secret key sk, a username
uid ∈ U , a message m and a token σ, the server runs the
algorithm to check the validity of σ. This algorithm outputs
1 if σ is valid on uid and m under sk and 0 otherwise.

B. Security Definition of PBC

Next, we give the formal definition on the security of PBC,
which is the EUF-CMVA security. Our model is comprehen-
sive enough to cover a broad range of threat scenarios. We
provide an adversary with a series of oracles to capture its
attack abilities, which correspond to the abilities of real-world
attackers. In the following, we will first describe these oracles
and the motivations behind them, then describe the goal of
adversary, and finally present the formal definition.

Oracles. All oracles and the experiment of EUF-CMVA main-
tain the following global sets: RUpw is the set of users whose
passwords were revealed; RUcred is the set of users whose
password-wrapped credentials were revealed; Q is the set of
queries made by the adversary to the SIGN oracle. Let n be
the number of users, the oracles are defined as follows:

• REVEALCRED(i): If i ∈ [n], this oracle outputs the
password-wrapped credential [crei]pwi of user i and adds
i to RUcred .
• REVEALPW(i): If i ∈ [n], this oracle outputs the password
pwi of user i and adds i to RUpw .
• SIGN(i,m): If i ∈ [n] and i /∈ RUpw ∩RUcred , this oracle

returns σ ← Sign(uidi , pwi , [crei]pwi
,m) and adds (i,m)

to the set Q.
• VERIFY(uid,m, σ): this oracle returns the verification result

on an authentication token σ and challenge message m by
running Verify(sk, uid,m, σ).

Each oracle represents a threat scenario that may occur in
practice. In the following, we describe the motivations behind
oracles, which also include the abilities and assumptions we
adopted for real-life attackers.

• REVEALCRED: We allow the adversary to obtain the
password-wrapped credentials of its chosen users via mak-
ing queries to the REVEALCRED oracle. In this oracle,
we model the case that the password-wrapped credentials
are stored as a file on a general purpose device, and may
be stolen by malwares [3], through the lost or stolen of
the device [4], or even via the automatical backup service
performed by a breached cloud server [2].

• REVEALPW: The adversary could also reveal the passwords
of users on its choices by having access to the REVEALPW
oracle. This corresponds to the case that the user encrypts
its credential with a password that has already leaked.

• SIGN: When a PBC scheme is adopted for end user authen-
tication, the adversary may see many authentication tokens.
This ability is modeled by the SIGN oracle, which allows
the adversary to obtain authentication tokens of its chosen
messages and users. We model this oracle since attackers in
practice can capture the authentication tokens when they are
transferred from the end users to servers (e.g., via phishing
attacks).

• VERIFY: Furthermore, the adversary can get the verification
result of an authentication token σ and a message m via
impersonating a user to interact with the server. We model
this attack ability with the VERIFY oracle, which allows
the adversary to obtain the decision result on any query
(username, message, token) made by it. In this oracle, we
model real-world attacker’s ability of communicating with
the server. We do not assume that the attacker can break

5

Experiment ExpEUF-CMVA
PBC (A)

pp← Setup(1λ); (sk, isp)← KeyGen(pp).
RUpw ,RUcred , Q← ∅.
For each i ∈ [n], pwi

$← D, and
[crei]pwi

← Issue(sk,Reg)
 (uid i, pwi).
(uid∗,m∗, σ∗)← A(pp, isp, {uid i}ni=1, SIGN,VERIFY,

REVEALPW,REVEALCRED).
If Verify(sk, uid∗,m∗, σ∗) = 0, return 0.
If uid∗ /∈ Reg , return 1.
If uid∗ = uid i∗ ∈ Reg , then
• If (i∗,m∗) ∈ Q, return 0.
• If i∗ ∈ RUpw ∩ RUcred , return 0.
• If i∗ /∈ RUcred , return 1.
• If i∗ ∈ RUcred ∧ i∗ /∈ RUpw , return 2.

Fig. 3: Experiment for the EUF-CMVA security of PBC

into a server and capture the private keys for cryptographic
protocols, as they can be protected by tamper-resistant
modules (e.g., [58]) at server side.

The Goal of Adversary. The goal of adversary is to forge a
valid authentication token on a fresh message that has never
been queried to the SIGN oracle for an honest user, which
means that it can pretend as the honest user by authenticating
to the server. To define the adversary’s goal formally, we need
to eliminate some trivial cases and to bound the advantage of
the adversary as follows:

In the game of EUF-CMVA security, the adversary attempts
to generate an authentication token on an username uid∗

(corresponding to an unregistered user or honest user i∗) and
a fresh message m∗. The adversary is not allowed to trivially
reveal both the password-wrapped credential and password of
user i∗, or answers with a (i∗,m∗, σ∗) where σ∗ is obtained by
querying SIGN(i∗,m∗). We consider two cases when bounding
the advantage of the adversary.

1) In the first case that either uid∗ has not been registered or
the password-wrapped credential of user i∗ is not revealed,
the adversary’s advantage should be negligible. That is to
say, it is impossible for an attacker to impersonate as an
honest user when it can not access to the password-wrapped
credential.

2) In the second case that the password-wrapped credential
[crei∗]pwi∗ of user i∗ has been revealed, the adversary can
mount online dictionary attacks with the following steps:
a) Guess a password pw ′ and use (uid∗, pw ′, [crei∗]pwi∗)

to generate a token σ′ on an arbitrary message m′
b) Make a query with (uid∗,m ′, σ′) as the input to the

VERIFY oracle.
In this case, the adversary’s advantage is bounded by
the standard advantage of password-based authentication
protocols, which means that the attacker cannot do any
better than guessing the password online.

Definition 4 (EUF-CMVA): We say that a PBC scheme
PBC is EUF-CMVA secure, if for all PPT adversaries A,

any polynomial-size integer n, any n different usernames
{uidi}ni=1 ∈ U such that the following holds:

AdvEUF-CMVA
PBC,case-1(A)

def
= Pr[ExpEUF-CMVA

PBC (A) = 1] ≤ negl(λ),

AdvEUF-CMVA
PBC,case-2(A)

def
= Pr[ExpEUF-CMVA

PBC (A) = 2] ≤ qv
|D|

+ negl(λ),

where ExpEUF-CMVA
PBC (A) is defined in Fig. 3; and qv is the

number of queries made by A to the VERIFY oracle.

Similar to the security notion of digital signatures [30],
a stronger variant of the EUF-CMVA security is strongly
Existential UnForgeability under Chosen Message and chosen
Verification queries Attack (sEUF-CMVA), meaning that a
forgery (m∗, σ∗) is considered as valid if (m∗, σ∗) is not from
the SIGN oracle. The security definition of sEUF-CMVA is
easy to be obtained by slightly modifying the definition of
EUF-CMVA, i.e., Q now additionally includes the authentica-
tion tokens created by the SIGN oracle and ExpSEUF-CMVA

PBC (A)
returns 0 if (i∗,m∗, σ∗) ∈ Q. The adversary’s advantage
AdvSEUF-CMVA

PBC,case-i (A) for ∀i ∈ {1, 2} is defined in the same way
as in Definition 4.

IV. A PRACTICAL CONSTRUCTION OF PBC

We propose a practical PBC scheme denoted by ΠPBC,
which satisfies the security definition of sEUF-CMVA under
the q-SDH and q-DDHI assumptions. It is efficient enough to
be deployed in practice, and can be implemented by common
cryptographic libraries in many programming languages (e.g.,
OpenSSL in C/C++ and Bouncy Castle in Java) with stan-
dardized elliptic curves. In this section, we will first give the
basic ideas underlying the construction of ΠPBC, then present
the detailed protocol as well as prove its security under the
security model described in Section III, and finally present the
application of PBC as a strong authentication mechanism for
end user authentication.

A. High Level Description

In our concrete construction, the server creates a tag on uid
with its secret key as the user’s credential cre , which is then
encrypted by the user with its password pw . In the process
of authentication, the user proves its possession of cre with
respect to uid , and sends σ and uid to the server. To avoid off-
line attacks when the attacker could see many authentication
tokens and password-wrapped credentials, the techniques that
we adopted are explained as follows:

• We use g1/(γ+uid) as the credential of user, where γ is
the secret key held by server. This is inspired by [16]. The
credential is indistinguishable from random group elements
without the knowledge of γ. We encrypt the credential cre
with pw by [cre]pw ← cre ·HG(pw), where the correspond-
ing decryption algorithm is cre ← [cre]pw ·HG(pw)-1 and
HG : D → G is a cryptographic hash function. An attacker
who captures [cre]pw can guess the password with pw ′

and only obtain [cre]pw ·HG(pw ′). However, it is an group
element that is indistinguishable from the real credential cre ,
which can not be used by the attacker to decide whether pw ′
is the correct password.
• We leverage the “randomize-then-prove” paradigm when the

user proves its possession of a credential w.r.t. uid . The user

6

randomizes its credential cre as T with a randomness a (i.e.,
T = crea). It then proves the validity of the randomized
credential T using a signature proof of knowledge πT =
SPK{(a) : ga = PK}(m) for an implicit public-key PK .

• To verify an authentication token σ = (T, πT), the server
first computes PK = T γ+uid , and then checks the validity
of πT . If valid, the server is assured that the claimer holds
the secret a such that ga = T γ+uid , and then believes that
it is the legitimate user who has been issued the credential
w.r.t. uid, since T−a has exactly the form g1/(γ+uid).

• The point here is that σ only could be verified by the server
who issued the credential (i.e., holding γ), since only the
server can obtain the complete statement (T ,PK) to be
proved in the signature proof of knowledge. Furthermore, it
is also infeasible for an attacker to check the validity of πT
with cre , since PK can not be derived from T and cre .

With these approaches, we eliminate the possibility of off-
line attacks even if an attacker has the ability to steal the
password-wrapped credentials. The attacker can neither verify
the correctness of its guesses on the password through the
decryption results directly, nor by checking the correctness of
the authentication token generated by it as in the conventional
strong authentication mechanisms.

We note that a PBC scheme can not be constructed with un-
deniable signatures [25] or designated verifier signatures [34],
[50] directly. These schemes guarantee that only designated
verifier could convince the validity of the signature, but could
not prevent the attackers from guessing the passwords for
encrypting the credential (i.e., private key) by verifying the
correctness of signature. Furthermore, ΠPBC is also not a simple
application of the Designated-Verifier Non-Interactive Zero-
Knowledge proof (DV-NIZK) [22], and could be instantiated
with standard Fait-Shamir transformation [28] over common
elliptic curves [1]. Our scheme only leverage the idea that, it
is infeasible for the attackers to check the proof when they do
not know the complete statement to be proved.

B. The Detailed Construction

Let HG : D → G be a random oracle. Our scheme ΠPBC is
constructed as follows:

• Setup(1λ): Given a security parameter λ, the setup algo-
rithm chooses a set of group parameters (G, p, g) such that
p is an at least 2λ-bit prime, and then outputs pp = (G, p, g).

• KeyGen(pp): Given the public parameters pp, a server runs
the key generation algorithm which picks γ

$← Z∗p and
computes w ← gγ . The server sets sk ← γ and publishes
isp← w, and then initializes Reg as empty.

• Issue(γ,Reg)
 (uid , pw) is executed over a secure chan-
nel. The channel could be established following standard
approaches, such as the TLS protocol.

1) A user sends its username uid to the server.
2) The server aborts if uid ∈ Reg . Otherwise it computes

A ← g1/(γ+uid) and adds uid to Reg . Then it sends
cre ← A to the user.

3) The user encrypts its credential cre = A by computing
[A]pw ← A ·HG(pw), and then stores [A]pw .

• Sign(uid , pw, [A]pw ,m): this algorithm decrypts [A]pw by
computing A← [A]pw/HG(pw). Then, it chooses a $← Z∗p

and randomizes A as T ← Aa (i.e., T = ga/(γ+uid)), and
generates a signature proof of knowledge w.r.t T as

πT ← SPK
{

(a) : ga = T γ+uid
}

(m).

Finally, it outputs an authentication token σ ← (T, πT).
• Verify(γ, uid ,m, σ): the verification algorithm parses σ as

(T, πT). If T = 1, it outputs 0. Otherwise, it outputs 1 if
VerifySPK ((g, T, uid , γ),m, πT) = 1 and 0 otherwise.

For practical usage where the user may want to register and
authenticate with the username on its own choice, uid could
be generated via a cryptographic hash function Hp : {0, 1}? →
Zp with the chosen username as input.

Instantiation of SPK. Below, we give efficient instantiation for
the signature proofs of knowledge SPK. Let H : {0, 1}∗ → Zp
be a random oracle, SPK could be efficiently instantiated as
follows:

Prove: Pick r
$← Zp and compute R ← gr. Then, compute

c ← H(g, T, uid , R,m). Next, compute s ← r + c · a
mod p. Finally, output a proof π ← (c, s).

Verify: Given a tuple (g, T, uid , γ), a message m and a proof
π = (c, s), compute R′ ← gs · T−(γ+uid)·c mod p, and
then calculate c′ ← H(g, T, uid , R′,m). Output 1 if c′ =
c and 0 otherwise.

One could easily observe that the instantiation of SPK is
an application of the Schnorr signature scheme [54], where
the public key T uid+γ could only be computed by the server
who has γ. Furthermore, the Sign and Verify algorithms could
also be constructed by other standardized signature algorithms
(e.g., ISO/IEC 14888-3 [5]) in the same way. For the sake
of simplicity, we only present the approach based on Schnorr
proof, which obtains optimized efficiency and could be im-
plemented by commonly adopted cryptographic libraries with
standard curves.

C. Security Proof

In this section, we prove that our scheme ΠPBC is sEUF-
CMVA secure, provided that the q-SDH and q-DDHI as-
sumptions hold in G, HG is a random oracle, and SPK is
unbounded zero-knowledge and simulation-sound extractable.
Furthermore, SPK is zero-knowledge by programming the
random oracle [49], and is simulation-sound extractable in
the random oracle model [13] and generic group model [55]
following along the lines of [53], [56], [24], [61].

Theorem 1: Let A be an adversary against the sEUF-
CMVA security of PBC scheme ΠPBC who runs in time t, and
makes qs queries to the SIGN oracle and qv queries to the
VERIFY oracle. Then, we have:

AdvsEUF-CMVA
ΠPBC,case-1 (A) ≤ AdvSPK(t′, qs, qv)+

(qv + 1)(AdvSDH
G (t′′, n+ 1) + nAdvSDH

G (t′′, n)),

AdvsEUF-CMVA
ΠPBC,case-2 (A) ≤ qv

|D|
+ AdvSPK(t′, qs, qv)+

(qv + 1)AdvSDH
G (t′′, n+ 1) + nAdvDDHI

G (t′′, n),

where AdvSPK(t′, qs, qv) = O(AdvuzkSPK(t′, qs) + Advss−extSPK (t′,
qs, qv)), t′ = t+O((qs + qv)texp), t′′ = O(t′ + n2texp), and
texp denotes the time for one exponentiation.

7

Proof: This proof will proceed via a sequence of games.
We will bound the decrease of A’s advantages between
two successive games, and denote A’s advantage in Gi by
Advi(A).

Game 0. This is the real game. The adversary A is given
pp, isp and a set of usernames {uid i}ni=1, and has accesses
to four oracles SIGN,VERIFY,REVEALPW,REVEALCRED.
Finally, A outputs a valid forgery (uid∗,m∗, σ∗). Let
{(uid i, Ai)}ni=1 be a set including the username and credential
pairs of n users created in this game. Without loss of generality,
we assume that the output of the adversary (uid∗,m∗, σ∗) has
been queried to the VERIFY oracle. We have

AdvSEUF-CMVA
ΠPBC,case-i (A) = Adv0(A) for ∀i ∈ {1, 2}.

Game 1. This game is the same as Game 0, except the
following differences:
• Use a zero-knowledge simulator Sim to generate the proofs

of SPK for the answers of the SIGN oracle.
• In every VERIFY(uid ,m, σ) query such that σ = (T, πT),

execute as follows:
◦ If (m,σ) is from the SIGN oracle, return 1.
◦ If T = 1 or πT is not the correct form, return 0.
◦ Otherwise, use a knowledge extractor Ext for SPK to

extract a witness a from proof πT . If Ext fails, return
0. Otherwise, compute A ← T 1/a and return 1 if
and only if Aγ+uid = g. Note that a 6= 0 unless
uid + γ = 0 mod p which clearly breaks the discrete-
logarithm assumption implied by the assumptions in
Theorem 1.

Game 1 behaves exactly like Game 0, except for the
simulation of SPK and failing for the extraction of SPK.
From the unbounded zero-knowledge and simulation-sound
extractability of SPK, we have

Adv0(A) ≤Adv1(A) +O(AdvuzkSPK(t′, qs) + Advss-ext
SPK (t′, qs, qv)).

Game 2. This game is the same as Game 1, except that for
every SIGN(?, ?) query, pick u $← Z∗p, compute T ← gu. Then,
compute V ← wu · T uid , use Sim to generate a proof πT on
a statement (g, T, V), and respond with σ ← (T, πT).
The element T in Game 2 has the same distribution as the one
in Game 1. So, we have Adv1(A) = Adv2(A).

Game 3. This game is the same as Game 2, except that for
each VERIFY(uid ′,m, σ) query with uid ′ = uid ∈ U , when
an element A is computed with either a witness a extracted
by Ext for uid ′ = uid , changing the verification manner of σ
as: Return 0 if (uid , A) /∈ {(uid i, Ai)}ni=1 and 1 otherwise.
We can bound the difference between Game 3 and Game
2 using a reduction B from the q-SDH assumption. For the
reduction, we use the following lemma.

Lemma 1: For all adversaries B running in time t′, B aims
to win in the experiment as described in Fig. 4 (i.e., Exp1(B)
outputs 1). Then, B’s advantage Adv1(t′, n) is bounded by
(qv+1)AdvSDH

G (O(t′+n2texp), n+1), where qv is the number
of queries to the Check(γ, ·, ·) oracle.

Proof for Lemma 1. If there exists an adversary B that makes
qv queries to Check and makes Exp1 output 1 with probability
ε, then we can construct an algorithm BSDH that breaks the

Experiment Exp1(B)

(m1, . . . ,mn, state)← B(1λ).

γ
$← Z∗p, w ← gγ ; For each i ∈ [n], Ai ← g1/(γ+mi).

(m∗, A∗)← BCheck(γ,·,·)(state, g, w, {Ai}ni=1)

If A∗ = g1/(γ+m∗) and (m∗, A∗) /∈ {(mi, Ai)}ni=1,
then return 1. Otherwise, return 0.
Check(γ,m,A): return 1 if A = g1/(γ+m) and 0 otherwise.

Fig. 4: Experiment for Lemma 1

q-SDH assumption with probability ε/(qv + 1) by interacting
with B as follows:
Given a q-SDH instance (g, gγ , ..., gγ

n

) ∈ (G∗)n+1 for some
unknown γ ∈ Z∗p, BSDH aims to output a (m∗, g1/(γ+m∗))
for some m∗ ∈ Zp\{−γ}. First, BSDH picks i∗ from [qv + 1]
uniformly at random, and:
• If 1 ≤ i∗ ≤ qv , BSDH takes i∗ as the guess for the first time

that a fresh and valid (m∗, A∗) pair appears for Check.
• Otherwise (i.e., i∗ = qv + 1), BSDH considers the first fresh

and valid pair appears in the output of B.
Given {mi}ni=1, we define f(x) = Πn

j=1(x+mj) = Σnj=0αjx
j

and fi(x) = f(x)/(x + mi) = Πn
j=1,j 6=i(x + mj) =

Πn−1
j=0 βi,jx

j for each i ∈ [n]. Then, using techniques by [16],
BSDH can compute g′ = Πn

j=0(gγ
j

)αj = gf(γ), w =

Πn+1
j=1 (gγ

j

)αj−1 = gγf(γ) = (g′)γ and Ai = Πn−1
j=0 (gγ

j

)βi,j =

gfi(γ) = gf(γ)/(γ+mi) = (g′)1/(γ+mi) for each i ∈ [n].
Next, BSDH returns g′, w and {Ai}ni=1 to B and responds the
i-th Check(γ,m′i, A

′
i) query for B as follows:

• If i = i∗, BSDH sets (m,A) = (m′i, A
′
i) and aborts.

• Otherwise, BSDH returns 1 if (m ′i ,A
′
i) = (mj , Aj) for some

1 ≤ j ≤ n and 0 otherwise.
If BSDH does not abort, B outputs (m∗, A∗) and BSDH sets
(m,A) = (m∗, A∗).
If BSDH guesses correctly with probability 1/(qv + 1), its
simulation is perfect, and the tuple (m,A) is fresh and
valid. Thus, we have m /∈ {mi}ni=1 since for any valid pair
(m̂, Â) under g′ and γ, Â is uniquely determined by m̂. Let
f(x) = f ′(x)(x + m) + θ for some θ ∈ Z∗p, which is also
written as f ′(x) = Σn−1

j=0 δjx
j , we have:

A = (g′)1/(γ+m) = gf(γ)/(γ+m) = gf
′(γ)+θ/(γ+m)

Finally, BSDH computes g1/(γ+m) = (A/gf
′(γ))1/θ with

gf
′(γ) = Πn−1

j=0 (gγ
j

)δj , and outputs (m, g1/(γ+m)) as a solu-
tion for the q-SDH problem.
By Lemma 1, we can straightforwardly bound the difference
between Game 3 and Game 2 using a reduction B1 against the
experiment in Fig. 4. Specifically, B1 executes just as in Game
2 and interacts with A, with the following exceptions:
• B1 outputs (uid1, . . . , uidn) in the experiment in Fig. 4, and

then receives w and {(uid i, Ai)}ni=1. B1 sets w as isp and
sets Ai as the credential of user i.
• For each VERIFY(uid ′,m, σ) query, if uid ′ = uid , when A

is computed with a witness a extracted by Ext, algorithm
B1 returns 1 if Check(γ, uid , A) = 1.
• When B1 finds a username-credential pair (uid∗, A∗)

such that Check(γ, uid∗, A∗) = 1 but (uid∗, A∗) /∈

8

{(uid i, Ai)}ni=1, B1 outputs (uid∗, A∗) as its forgery.
If the difference between Game 3 and Game 2 is not negli-
gible, B1 can output a forgery (uid∗, A∗) with non-negligible
probability. Thus, we have

Adv2(A) = Adv3(A)+(qv+1)AdvSDH
G (O(t′+n2texp), n+1).

Complete the proof for Case 1. If A did not reveal the
password-wrapped credential of the target user with username
uid∗ ∈ U , we can bound the advantage of A in Game 3 using
a reduction B2 against the experiment in Fig. 4. Specifically,
B2 executes just as in Game 3 and interacts with A, with the
following exceptions:

• B2 picks i∗ $← [n] as the guess that uid∗ = uidi∗ where
uid∗ is output by A in its forgery.
• B2 outputs {uid i}i∈[n],i6=i∗ in the experiment in Fig. 4,

and then receives {(uid i, Ai)}i∈[n],i6=i∗ and sets Ai as the
credential of user i for each i ∈ [n] ∧ i 6= i∗.
• For each VERIFY(uid ′,m, σ) query, when an element A is

computed with a witness a extracted by Ext for uid ′ = uid ,
B2 returns 1 if and only if Check(γ, uid , A) = 1.
• When B2 finds a username-credential pair (uid∗, A∗) such

that Check(γ, uid∗, A∗) = 1 and uid∗ = uid i∗ in some
VERIFY query, B2 outputs (uid∗, A∗) as its forgery.

If B2 guesses correctly with probability 1/n, B2 needs not to
simulate the password-wrapped credential of user i∗, and the
simulation of B2 is perfect. Thus, we have:

Adv3(A) ≤ n(qv + 1)AdvSDH
G (O(t′ + n2texp), n).

Continue the proof for Case 2. If A has revealed the
password-wrapped credential of the target user i∗ with user-
name uid∗ ∈ U , we continue the proof as follows:

Game 4. This game is the same as Game 3, except for
replacing the credential Ai of user i with a random element
Ri in G∗ for each i ∈ [n]; setting [Ri]pwi

as the user
i’s password-wrapped credential instead of [Ai]pwi

; and for
each VERIFY(uid i,m, σ) query, when A is computed with a
witness a extracted by Ext, return 1 if and only if A = Ri.
We can bound the difference between Game 4 and Game 3
using a reduction from the q-DDHI assumption. The reduction
is done by a standard hybrid argument. For every j ∈ [n],
let Game (3, j) be the same as Game 3 except that setting
a random Ri in G∗ as the credential of user i for each i ∈
[j] and using Ri to validate the authentication tokens in all
VERIFY(uid i, ?, ?) queries with uid i ∈ U . It is easy to see
that Game (3, 0) is the same as Game 3 and Game (3, n) is the
same as Game 4. If adversary A behaves differently between
Game (3, j − 1) and Game (3, j) for some j ∈ [n], we can
construct an algorithm B3 breaking the q-DDHI assumption.
For the reduction, we use the following lemma.

Lemma 2: For all adversaries B running in time t′, B aims
to win in the experiment as described in Fig. 5 (i.e., Exp2(B)
outputs 1). Then, the B’s advantage Adv2(t′, n) is bounded by
AdvDDHI

G (O(t′ + n2texp), n+ 1).

Proof for Lemma 2. If there exists an adversary B that makes
Exp2 return 1 with probability ε, we can construct an algorithm
BDDHI that breaks the q-DDHI assumption with probability
ε− n/p by interacting with B as follows:
Given a q-DDHI instance (g, gα, ..., gα

n

, T) ∈ (G∗)n+2 for
some unknown α ∈ Z∗p, BDDHI aims to distinguish T = g1/α

Experiment Exp2(B)

(m1, . . . ,mn,m
∗, state)← B(1λ).

γ
$← Z∗p, w ← gγ ; For each i ∈ [n], Ai ← g1/(γ+mi).

A∗0
$← G∗; A∗1 ← g1/(γ+m∗).

b′ ← B(state, g, w, {Ai}ni=1, A
∗
b).

If b = b′ and m∗ /∈ {mi}ni=1, then return 1.
Otherwise, return 0.

Fig. 5: Experiment for Lemma 2

with a random T ∈ G. Given {m1, ...,mn,m
∗}, BDDHI first

computes the tuple (g, gγ , ..., gγ
q

) by the Binomial Theorem
where γ = α−m∗. Then, it computes g′ = gf(γ), w = (g′)γ

and Ai = (g′)1/(γ+mi) for each i ∈ [n] as in the proof for
Lemma 1, and returns g′, w and {Ai}ni=1 to B. Next:
• If m∗ is equal to one of {mi}ni=1, BDDHI aborts. We also

denote this event as abort.
• Otherwise, BDDHI computes gq(γ) = Πn−1

j=0 (gγ
j

)δj , and
returns σ = gq(γ)T θ to B as the challenge A∗b , where f(x) =
q(x)(x+m) + θ for some θ 6= 0 and q(x) = Σn−1

j=0 δjx
j .

Finally, BDDHI returns the output of B as the solution of q-
DDHI problem.
If T = g1/(α), then σ = gγgθ/(γ+m) = gf(γ)/(γ+m) =
(g′)1/(γ+m). Otherwise, T is uniformly distributed in G∗ and
so is σ. If BDDHI does not abort, it succeeds if Exp2 returns
1. The probability of abortion is Pr[abort] ≤ n/p. Thus, we
have the bound claimed by Lemma 2.
By Lemma 2, we can straightforwardly bound the difference
between Game 4 and Game 3 using a reduction B3 against
the experiment in Fig. 5. In particular, B3 executes just as in
Game 3 and interacts with A, with the following exceptions:
• B3 outputs {uid i}i∈[n]\[j] and the challenge message uid j

before the setup phase, and receives {(uid i, Ai)}i∈[n]\[j] and
sets Ai as the credential of user i for i ∈ [n]\[j]. B3 also
receives a challenge credential X on message uid j . Besides,
B3 receives w and sets w as isp.
• B3 sets X as the credential of user j and uses X to

validate the tokens in all VERIFY(uid j , ?, ?) queries with
the extracted uid j .
• B3 picks Ri

$← G∗ and sets Ri as the credential of user i
for each i ∈ [j − 1]. B3 uses Ri to validate the tokens in
all VERIFY (uidi, ?, ?) queries with the extracted uid i for
i ∈ [j − 1].

If X is an authentication tag on message uidj , B3 behaves
exactly as in Game (3, j − 1). If X is a random element in
G∗, B3 behaves exactly as in Game (3, j). Thus, we have

Adv3(A) = Adv4(A) + nAdvDDHI
G (O(t′ + n2texp), n).

In Game 4, the credentials of all users are uniformly random
in G∗. Since HG is a random oracle, [Ri]pwi = Ri ·HG(pwi)
is random in group G for every i ∈ [n]. Thus, the only way for
getting a credential Ri is to mount online dictionary attacks
via VERIFY for each i ∈ [n] when the password of user i is not
revealed. From the simulation-sound extractability of SPK, we
know that A must recover Ri from [Ri]pwi

in order to forge
an authentication token on (extracted) username uid∗ = uidi
for any i ∈ [n]. Therefore, we obtain Adv4(A) ≤ qv/|D|.

9

In the final game, we bound the adversary’s advantage by
qv/|D|. This completes the proof.

D. Strong Authentication with PBC

Similar to digital signature schemes, πPBC (as well as
other PBC schemes) can be used as a strong authentication
mechanism as follows:

1) The server chooses a challenge message m at random,
and sends it to the user.

2) The user generates an authentication token σ ←
Sign(uid , pw , [cre]pw ,m), and sends (uid , σ) to the server.

3) Upon receiving (uid , σ), the server verifies the user by
checking whether Verify(γ, uid ,m, σ) = 1.

A PBC authenticator can be implemented entirely with
software. The user authenticates to server through “some-
thing possessed” (i.e., the PBC authenticator) and “something
known” (i.e., the password). It provides superior security guar-
antees than the other software authenticators in the setting that
the authenticator is leaked by device stolen/broken, as the latter
are vulnerable to off-line attacks. However in the setting where
the attacker installs malware (e.g. key-logger) on the user’s
device and obtains both the password and the credentials, it
might not protect the user and additional mitigation is needed
to prevent such key-logger attacks. One possible mitigation
is to use an anti-malware software such as IBM’s Trusteer
Rapport [7], which is available with PC, android and IOS.

In practice, PBC authenticators can be implemented by
the operating system or browser via providing APIs which
can be called by applications, or also be implemented by
mobile applications or browser extensions using common
cryptographic libraries alone.

Compared with traditional authenticator for strong authen-
tication, PBC authenticator does not become another thing to
be remembered to carry, as it can be implemented across
different devices (e.g., mobile phones and desktop computers)
simultaneously to perform strong authentication. Moreover,
the PBC authenticator can be stored on a cloud server for
backup, which enables the user to fetch it on a new device
for authentication in the case that the old device carrying
the authenticator is compromised or lost. By contrast, losing
an authenticator for hardware-based mechanisms [45], [57],
[60] means losing all credentials bound to it. The W3C’s web
authentication specification [60] suggests to register multiple
credentials for the same user as backup for authenticator lost.

In PBC, a user encrypts and decrypts its credentials with
passwords locally, which means that it can change passwords
in an off-line manner, by decrypting the wrapped credentials
with old passwords and then encrypting them with new ones.
Note that the server does not store a password-related file as
usual, the system also provides security against offline attacks
in the event of server compromise (assuming that the attacker
does not also compromise the password-wrapped credentials).

For practical security, we suggest that the server should
protect γ with a secure hardware, and should implement the
Issue algorithm with a protection from being utilized as an
oracle which enables an attacker to query credentials belonging
to honest users. Such protection can be implemented with

User

IdP

RP

(a
s
s
e
r
t
i
o
n
,π

P
K

)

User Authentication with PBC

n
R(uid , π

R)

Fig. 6: The application of PBC for holder-of-key assertion.

some common measures such as out-of-band devices. To avoid
online attacks, both the rate-limiting mechanisms in [31] that
effectively limits the number of failed authentication attempts
that can be made on the user’s account, and the related
techniques [31] reducing the likelihood that an attacker locks
legitimate users out by abusing the mechanism, are applicable
to PBC-based authentication systems.

V. APPLICATION OF PBC IN FEDERATED IDENTITY

In this section, we show the applications of PBC schemes
in federated identity systems, where ΠPBC is taken as an
example. We first present a trivial application of using PBC
for the authentication between user and IdP, and then describe
how PBC can be applied for holder-of-key assertions with
a privacy-preserving option. In the second application, we
provide a technique to transform the designated-verifiability of
PBC scheme to publicly-verifiability with the help of an IdP,
such that the user can prove the possession of its credential
to any RP. Furthermore, to meet the requirement of privacy-
preserving scenarios, such as the user login at RPs with
pseudonyms allocated by the IdP, our application also supports
an option that the user prove the possession of key for the
holder-of-key assertion in a privacy-preserving way.

For simplicity, our description only presents the details that
are related to the application of PBC, and can be adopted by
various federation systems implementing either modes, such as
OpenID Connect [51], OAuth 2.0 [33], [36] and SAML2 [46],
[39]. Based on a PBC scheme PBC = (Setup,KeyGen, Issue,
Sign,Verify), the applications are described as follows:

A. Application for user-IdP authentication

Setup. The IdP chooses the public parameters pp from a
publicly-trusted source such as a standard, generates the secret
key γ and public parameter w via executing KeyGen. Then it
publishes pp and w.

10

Registration. The user interacts with IdP via executing the
interactive protocol Issue(sk,Reg)
 (uid, pw), and stores the
password-wrapped credential [cre]pw to a preferred storage.

Authentication. In common federated identity systems, the
user first visits RP, and is then redirected to the IdP for
authentication.

1) The IdP generates a challenge nI
$← {0, 1}λ, and sends nI

to the user as a challenge.
2) Upon receiving nI , the user generates the authentication

token σI = (T, πT) via Sign(uid , pw , [cre]pw ,nI), and
sends (uid , σI) to the IdP.

3) The IdP verifies the user’s authentication token σI by
checking Verify(γ, uid ,nI , σI) = 1, and continues the
protocol flow of identity federation if the check passes.

B. Application for holder-of-key assertion

The authentication token σ = (T, πT) of ΠPBC presented in
section IV-B is a signature proof of knowledge:

πT ← SPK {(a) : ga = PK} (m) for PK = T γ+uid ,

which can only be checked by the designated verifier (i.e., IdP)
with the knowledge of γ. For a verifier who does not hold γ
(e.g., RP), it needs the value of PK and the knowledge that
PK is generated correctly in the form T γ+uid for an unknown
γ. Thus, we let IdP to provide PK with a proof of knowledge
that proves the validity of PK .

In this application, the Setup and Registration phases are
the same as in the application presented in Section V-A. We
present the Authentication phase as follows (Also see Fig. 6):

1) The user authenticates to the IdP first, where an ephemeral
private-key a

$← Z∗p is chosen and used in the Sign
algorithm. a is kept for further usage.

2) If IdP authenticates the user successfully with an authen-
tication token σI = (T, πT), it generates a holder-of-key
assertion assertion. In this step, we provide two options as
follows:
a) (The privacy-preserving option.) When the privacy

of user is required to be protected, the IdP calcu-
lates P̃K = T γ , puts (T , P̃K) in assertion, and signs
assertion with a proof of knowledge that logT (P̃K) is
equal to that of γ:

π ˜PK = SPK′{(γ) : w = gγ ∧ P̃K = T γ}(·).

b) Otherwise, the IdP calculates PK = T γ+uid , and puts
(T,PK) in assertion. Then, it signs assertion with a
signature proof of knowledge that the discrete logarithm
of logT (T−uid · PK) is equal to γ:

πPK = SPK′
{

(γ) : w = gγ ∧ T−uid · PK = T γ
}

(·).

Next, assertion and πPK (or πP̃K) are presented to the
RP via either the front-channel or back-channel modes. In
the front channel mode, assertion and πPK (or πP̃K) are
transferred to the RP via the user. As for the back-channel
mode, only a reference to assertion (e.g., an authorization
code) is transmitted to the RP via user. Then, the RP
redeems assertion and πPK by sending the reference to the

IdP. Upon receiving the reference and checks its validity,
the IdP responds with assertion and πPK (or πP̃K).

3) Upon receiving assertion and πPK (or πP̃K), the RP
requests the user to prove the possession of key corre-
sponding to PK (or P̃K) by sending a random challenge
nR

$← {0, 1}λ.
4) The user generates a proof-of-possession of the ephemeral

private-key a w.r.t to the ephemeral public-key PK , which
also includes two options:
a) (The privacy-preserving option.) For this option, it

calculates a privacy-preserving authentication token:
πR ← SPK′′{(a, uid) : T−uid · ga = P̃K}(nR), and
sends πR to the RP.

b) Otherwise, it calculates: πR ← SPK{(a) : ga =
PK}(nR), and sends (uid , πR) to the RP.

5) The RP checks the validity of assertion as well as the user’s
proof-of-possession of key as follows:
a) (The privacy-preserving option.) For this option, the

RP first checks the validity of πP̃K with w, T and
P̃K , then checks πR with T and P̃K , and accepts if
all checks pass.

b) Otherwise, the RP checks πPK , and use PK and uid
to verify πR.

Instantiation of SPK′. Here, based on the Chaum-Pedersen
protocol [26] and Fiat-Shamir heuristic [28], SPK′ can be
instantiated as follows for a cryptographic hash function
H ′ : {0, 1}∗ → Zp:

Prove: The algorithm picks r $← Zp and computes R1 ← T r

and R2 ← gr. Then, it computes s ← r + c · γ mod p,
where c ← H ′

(
g, T, w, T−uid · PK , R1, R2

)
. Finally, it

outputs a proof πPK ← (c, s).
Verify: Given a tuple (g, T, w, PK), a proof πPK = (c, s),

compute R′1 ← T s · (T−uid ·PK)−c and R′2 ← gs · w−c,
and then calculate c′ ← H ′(g, T, w, T−uid ·PK , R′1, R′2).
Output 1 if c′ = c and 0 otherwise.

Instantiation of SPK′′. SPK′′ can also be instantiated with
a cryptographic hash function H ′′ : {0, 1}∗ → Zp as:

Prove: Pick r1, r2
$← Zp and compute R ← T−r1 · gr2 .

Then, compute c← H ′′(g, T,R,m), s1 ← r1 + c · uid
mod p and s2 ← r2 + c · a mod p. Finally, output π′T ←
(c, s1, s2).

Verify: Given a tuple (g, T, γ) and proof π′T = (c, s1, s2),
compute R′ ← T−(s1+c·γ) mod p · gs2 and calculate
c′ ← H ′′(g, T,R′,m). Finally, output 1 if c′ = c and 0
otherwise.

As we stated in Section IV-B, SPK could be instantiated
with standardized signature algorithms (e.g., ISO/IEC 14888-
3 [5]), where a is used as the private key and PK is used
as the public key, which means that the user could prove
its possession of the key a with RP in various manners.
Furthermore, the application of PBC in federated identity
systems does not require the user to store a, since each a
is only used in one session.

We note that this application does not impact the security
of PBC against offline attack, even if the authentication tokens

11

have been converted to be publicly-verifiable. Each time when
the user tries to perform the transform for an authentication
token σ, it must authenticate to the IdP. Thus, the request from
attacker can be detected and blocked.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performances of the primi-
tive proposed in Section IV-B as a strong authentication mech-
anism, as well as its application for holder-of-key assertions,
as described in Section V-B. Our implementations take place
at the security level of 128-bits, where the secp256r1 [1]
curve is adopted as the underlying public parameter pp. The
hash algorithms (i.e., H , H ′, H ′′, and HG) are instantiated by
SHA-256 with different prefixes.

A. Implementations

Strong Authentication Mechanism. To simulate the practical
scenario where PBC is adopted for strong authentication over
the Internet, we implement ΠPBC in a multi-platform manner.
In particular, we develop the Sign algorithm in JavaScript as
an implementation of PBC software authenticator, where sjcl
1.0.2 is used as the underlying cryptographic library. This
corresponds to a wide range of application scenarios where
the user authenticates to the server through web and mobile
platforms. The Verify algorithm is developed in Java, which
corresponds to the practical scenario that the server serves its
clients via the Java-based website frameworks (e.g., the Spring
Framework), and uses Bouncy Castle 1.60 as the underlying
library of cryptographic primitives.

To be more specific, the implementation of Sign algorithm
is encapsulated in a browser extension for Chrome, and the
Verify algorithm is integrated into a demo website. We note
that this is not the only way to deploy the PBC based strong
authentication mechanism in practice. The Sign algorithm
could also be implemented as application for mobile platform
or be integrated into the operation systems and browsers as
a compliant authenticator, and the Verify algorithm could
be implemented in various programming languages such as
Python and Go, and employed by servers of different architec-
tures. In a concrete authentication process, the user first visits
the demo server with its browser, and receives a challenge
message embedded in a HTTP page. Then, it uses the browser
extension to read the challenge from the page, and calculates
the authentication token by providing its username, password
and password-wrapped credential to the extension. Next, the
extension writes the authentication token as an element at the
page, which triggers the webpage to send the token and the
user’s username back to the server. Finally, the server verifies
the token via the Verify algorithm.

Holder-of-Key Assertion Mechanism. The application of
PBC in federated identity systems (see Section V) could be
divided into three parts including:

1) The user authenticates to the IdP
2) The IdP issues a holder-of-key assertion and signs it with

SPK′, and the RP verifies the signature over assertion by
executing VerifySPK′ . We denote this part as HoKA.

3) The user proves its possession of secret key a to the RP.
We denote this part as PoPK.

Since the implementation of the first part have been developed
as a strong authentication mechanism, the implementation of
holder-of-key assertion mechanism consists of two parts:

HoKA Part. We develop an “RP” and an “IdP” as two Java
applications which could interact with each other. During the
interaction, the “IdP” calculates PK for a given T , issues
an assertion including PK and T with the format defined
in SAML2 [46], signs it with SPK′, and sends the assertion
and signature to the “RP”. Upon receiving the assertion and
signature, the “RP” obtains PK and T , and verifies the
signature with VerifySPK′ .
PoPK Part. The user end operation is also performed with a
JavaScript implementation as in the case of strong authentica-
tion, and interacts with a prototype of “RP” which performs
the verification.

B. Performance Evaluation and Comparison with ECDSA

The performances of the PBC based schemes are shown
in Table I, where AUTH denotes the strong authentication
mechanism, HoKA denotes the process of signing and ver-
ifying of Holder-of-Key Assertions, and PoPK denotes the
Proof-of-Possession of Key between the user and RP. We
also use PoPK-PBC′ and HoKA-PBC′ to refer to the privacy-
preserving option for the holder-of-key assertion mechanism.
For comparison, we also develop the strong authentica-
tion mechanism and holder-of-key assertion mechanism with
ECDSA. To be more specific, we implement the user end
computation of strong authentication and proof-of-possession
of key with ECDSA by employing a tamper-resistant hard-
ware module embedded in a USB device, that is, the Atmel
AT88CK590 evaluation kit. The kit is equipped with an
Atmel ECC508A chip which could perform ECDSA signing
operations and protect the private keys. We write a Chrome
application in JavaScript to interact with the device. For the
holder-of-key assertion mechanism with ECDSA, we imple-
ment the corresponding “IdP” and “RP” in the same way as
PBC, where the “IdP” signs an assertion with ECDSA and the
“RP” verifies the signature. We do not employ the hardware
module in the latter implementation since it does not include
user end operation.

Column 1 and 2 show the time breakdown by token/asser-
tion generation and token/assertion verification.

• For AUTH-PBC/ECDSA, token generation refers to the
calculation of authentication token, and token verification
refers to checking of an authentication token.
• For HoKA-PBC/PBC′/ECDSA, assertion generation refers

to the process of calculating PK and signing the assertion,
and assertion verification refer to the validation of the
signature over assertion.
• For PoPK-PBC/PBC′/ECDSA, token generation refers to

the signing of nR with the ephemeral private key a, and
token verification refers to the verification of the signature
with PK .

The results for AUTH-PBC/PBC′/ECDSA are measured with
the Chrome developer tool and Java nanotime function, and
are the average of 100 runs. The comparison result shows
that the time cost for verifying PBC tokens is almost the
same as verifying ECDSA signatures, but the generation of

12

token/assertion token/assertion
LAN

WAN
generation verification 30ms 60ms 90ms 120ms

AUTH-ECDSA 272.4†∗ 1.1 300.1†∗ (4.15) 342.4†∗ (2.43) 376.2†∗ (3.87) 390.1†∗ (5.89) 432.3†∗ (5.42)

AUTH-PBC 187.5† 1.0 192.4† (2.81) 224.9† (4.23) 250.6† (4.17) 284.3† (3.72) 319.5† (5.93)

PoPK-ECDSA 271.1†∗ 1.1 305.4†∗ (5.54) 334.3†∗ (4.30) 370.8†∗ (2.78) 400.6†∗ (1.64) 425.3†∗ (4.78)

PoPK-PBC 100.6† 1.0 125.0† (4.69) 149.7† (4.04) 188.8† (5.29) 219.0† (4.94) 250.2† (5.59)

PoPK-PBC′
167.3† 1.0 190.5† (3.46) 223.7† (5.70) 245.2† (3.41) 281.1† (5.17) 314.2† (4.92)

HoKA-ECDSA 0.7 1.0 3.3 (0.24) 34.7 (1.33) 65.2 (1.62) 93.9 (1.82) 124.5 (1.90)

HoKA-PBC 2.1 2.4 5.1 (0.59) 38.3 (0.97) 69.4 (1.02) 98.7 (1.45) 129.0 (1.43)

HoKA-PBC′ 2.0 1.9 5.0 (0.98) 37.2 0.63 68.8 (1.75) 98.4 (1.67) 127.1 (1.23)

TABLE I: The comparison between the runtimes (in milliseconds) of PBC and ECDSA when being used as strong authentication
mechanisms or applied in federated identity systems for LAN and WAN. In the cases where the results are calculated with the
average of several runs, their standard derivations are presented in brackets. † denotes that the algorithm or user end computation
is implemented by JavaScript. * denotes that this implementation employs a tamper-resistant hardware module at user end. By
PoPK-PBC′ and HoKA-PBC′, we refer to the privacy-preserving option of PBC-based holder-of-key mechanism.

PBC token is faster than signing with ECDSA for about
100ms. The result for HoKA-PBC/PBC′/ECDSA are also
measured with the average of 100 runs, which shows that the
PBC based mechanism is slightly slower than the mechanism
with ECDSA, with difference limited in 2ms. For PoPK-
PBC/PBC′/ECDSA, the advantage of PBC based scheme is
more obvious, since the user end implementation only signs
the challenge with a and does not have to repeat the process
of decryption and randomizing the credential.

Column 3-7 of Table I present the average time costs when
being tested over Local Area Network (LAN) and Wide Area
Network (WAN), where each result takes the average of 10
runs. In the LAN setting, the implementations are connected
via an 1Gbps network with ping time less than 1 ms. In
the WAN setting for AUTH/PoPK-PBC/PBC′/ECDSA, we
employ several VPN servers to “fix” the latency between the
implementations, where all the network latencies are measured
with the ping command. We note that, due to the instability
of Internet, the latency can not be truly fixed to a constant
value. In our experiment, each result is measured with rela-
tively stable latency within ± 5ms. In the WAN setting for
HoKA-PBC/PBC′/ECDSA, we adopt Liunx tc command to
control the network latency. The results for AUTH/PoPK-
PBC/PBC′/ECDSA are measured via Chrome developer tool
from when the user begins to calculate the token, to when
the browser receives the authentication success response from
server or “RP”. It shows that the strong authentication (resp.,
proof-of-possession of key) with PBC obtains better efficiency
than with ECDSA while being used on web by saving 26%-
36% (resp., 41%-55%) time, since the user end calculation
could be performed by software. When the privacy-preserving
option is used, the proof-of-possession of key process saves
30%-38% time. The results for HoKA-PBC/PBC′/ECDSA are
measured from when the “IdP” begins to issue the assertion
(i.e., calculates PK), to when it receives a response from the
“RP”, which means the check has completed. In this scenario,
the PBC based scheme is a bit slower than ECDSA. However,
it is still acceptable since it only takes more time from 1.03x
to 1.10x, and the slowdown is relatively small compared to the
latency raised by network and user end computation.

Experiment Environment. The results in Table I are obtained
with a workstation and a desktop computer. For AUTH/PoPK-

ECDSA/PBC, the user end implementation is run on a desktop
computer, which has an Intel Core i5-3470 processor with 4
cores running at 3.2 Ghz each. The underlying OS is Windows
10 Enterprise Edition. The implementation of server (or “RP”)
is run by a Lenovo X3650 workstation, which has an Intel
Xeon E5-2640 v3 processor with 8 cores running at 2.60 Ghz
each, and runs the operating system of CentOS 7. For HoKA-
ECDSA/PBC, both “IdP” and “RP” are run by the workstation
as applications which are run by different cores.

VII. CONCLUSION

In this paper, we propose a strong authentication mecha-
nism which does not rely on tamper-resistant hardware mod-
ules at user end, from a new primitive called Password-Based
Credential (PBC), and show its application in federated identity
systems. We also present ΠPBC as an efficient construction of
PBC, and evaluates its performances. The evaluation result
shows that the schemes with PBC also obtain better efficiency
than the traditional strong authentication mechanisms with
tamper-resistant hardware modules. As future work, we plan
to develop our PBC based schemes in real-world application
scenarios. It can be expected that our schemes help organiza-
tions and enterprises to provide their users with friendly and
strong authentication experiences in the future.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
of NDSS 2020, and Jeremiah Blocki for their helpful com-
ments and suggestions. This work is supported by the Na-
tional Key Research and Development Program of China (No.
2017YFB0802500, 2017YFB0802000) and the National Nat-
ural Science Foundation of China (No. 61728208, U1536205,
61802376 and 61802021).

REFERENCES

[1] “SEC 2: Recommended Elliptic Curve Domain Parameters version 2.0,”
Certicom Research, Standards for Efficient Cryptography, July 2010.

[2] “iCloud Data Breach: Hacking And Celebrity Photos,”
https://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-br
each-hacking-and-nude-celebrity-photos/, September 2014.

[3] “Look What I Found: Pony is After Your Coins!”
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/
look-what-i-found-pony-is-after-your-coins/, February 2014.

13

https://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
https://www.forbes.com/sites/davelewis/2014/09/02/icloud-data-breach-hacking-and-nude-celebrity-photos/
https://www. trustwave.com/en-us/resources/blogs/spiderlabs-blog/look-what-i-found-pony-is-after-your-coins/
https://www. trustwave.com/en-us/resources/blogs/spiderlabs-blog/look-what-i-found-pony-is-after-your-coins/

[4] “Lost electronic devices can lead to data breaches,”
https://www.azcentral.com/story/money/business/tech/2015/09/30/l
ost-electronic-devices-data-breaches/73058138/, September 2015.

[5] “ISO/IEC 14888-3: 2018, IT Security techniques – Digital signatures
with appendix – Part 3: Discrete logarithm based mechanisms,” ISO/IEC
International Standards, November 2018.

[6] “Creating a SAML holder-of-key token using the API,” https:
//www.ibm.com/support/knowledgecenter/en/SSAW57 8.5.5/com.ibm
.websphere.nd.multiplatform.doc/ae/twbs createholderofkeytoken.html,
March 2019.

[7] “BM Trusteer Rapport - Helps financial institutions detect and prevent
malware infections and phishing attacks, maximizing protection for their
customers.” https://www.ibm.com/us-en/marketplace/phishing-and-mal
ware-protection, December 2019.

[8] “Sign in with Apple - the fast, easy way to sign in to apps and websites,”
https://developer.apple.com/sign-in-with-apple/, August 2019.

[9] M. Abdalla, F. Benhamouda, and P. MacKenzie, “Security of the J-
PAKE password-authenticated key exchange protocol,” in 2015 IEEE
Symposium on Security and Privacy, SP 2015, San Jose, CA, USA, May
17-21, 2015, pp. 571–587.

[10] D. Baghdasaryan, R. Sasson, B. Hill, J. Hodges, and K. Yang, “FIDO
UAF Authenticator Comands,” FIDO Alliance, 2017.

[11] A. Barki, S. Brunet, N. Desmoulins, and J. Traoré, “Improved alge-
braic macs and practical keyed-verification anonymous credentials,” in
Selected Areas in Cryptography - SAC 2016, 2016, pp. 360–380.

[12] M. Bellare, D. Pointcheval, and P. Rogaway, “Authenticated key ex-
change secure against dictionary attacks,” in Advances in Cryptology
- EUROCRYPT 2000, International Conference on the Theory and
Application of Cryptographic Techniques, Bruges Belgium, May 14-18,
2000, Proceedings, pp. 139–155.

[13] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proceedings of the 1st ACM Con-
ference on Computer and Communications Security, CCS’93, Fairfax,
Virginia, USA, November 3-5, 1993., pp. 62–73.

[14] ——, “The AuthA Protocol for PasswordBased Authenticated Key
Exchange,” Contribution to IEEE P1363, 2000.

[15] D. Boneh and X. Boyen, “Secure identity based encryption without ran-
dom oracles,” in Advances in Cryptology - CRYPTO 2004, 24th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 2004, Proceedings, pp. 443–459.

[16] ——, “Short signatures without random oracles,” in Advances in Cryp-
tology - EUROCRYPT 2004, International Conference on the Theory
and Applications of Cryptographic Techniques, Interlaken, Switzerland,
May 2-6, 2004, Proceedings, pp. 56–73.

[17] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano, “The quest
to replace passwords: A framework for comparative evaluation of web
authentication schemes,” in IEEE Symposium on Security and Privacy,
S&P 2012, 21-23 May 2012, San Francisco, California, USA, pp. 553–
567.

[18] H. Brekalo, R. Strackx, and F. Piessens, “Mitigating password database
breaches with intel SGX,” in Proceedings of the 1st Workshop on System
Software for Trusted Execution, SysTEX@Middleware 2016, Trento,
Italy, December 12, 2016, pp. 1:1–1:6.

[19] J. Camenisch, M. Drijvers, and M. Dubovitskaya, “Practical uc-
secure delegatable credentials with attributes and their application to
blockchain,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, 2017, pp. 683–699.

[20] J. Camenisch, A. Lehmann, G. Neven, and K. Samelin, “Virtual smart
cards: How to sign with a password and a server,” in Security and
Cryptography for Networks - 10th International Conference, SCN 2016,
2016, pp. 353–371.

[21] J. Camenisch and M. Stadler, “Efficient group signature schemes for
large groups (extended abstract),” in Advances in Cryptology - CRYPTO
’97, 17th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 1997, Proceedings, pp. 410–424.

[22] P. Chaidos and G. Couteau, “Efficient designated-verifier non-interactive
zero-knowledge proofs of knowledge,” in Advances in Cryptology -
EUROCRYPT 2018 - 37th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tel Aviv, Israel,
2018, pp. 193–221.

[23] M. Chase and A. Lysyanskaya, “On signatures of knowledge,” in
Advances in Cryptology - CRYPTO 2006, 26th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 20-
24, 2006, Proceedings, pp. 78–96.

[24] M. Chase, S. Meiklejohn, and G. Zaverucha, “Algebraic macs and
keyed-verification anonymous credentials,” in Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
CCS 2014, Scottsdale, AZ, USA, November 3-7, 2014, pp. 1205–1216.

[25] D. Chaum and H. V. Antwerpen, “Undeniable signatures,” in Advances
in Cryptology - CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 20-24, 1989,
Proceedings, pp. 212–216.

[26] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in
Advances in Cryptology - CRYPTO ’92, 12th Annual International
Cryptology Conference, Santa Barbara, California, USA August 16-20,
1992 Proceedings, pp. 89–105.

[27] A. Everspaugh, R. Chatterjee, S. Scott, A. Juels, and T. Ristenpart, “The
pythia PRF service,” in 24th USENIX Security Symposium, USENIX
Security 2015, Washington, D.C., USA, August 12-14, 2015., pp. 547–
562.

[28] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, pp.
186–194.

[29] V. Galindo, R. Lindemann, U. Martini, C. Edwards, and J. Hodges,
“FIDO UAF APDU,” FIDO Alliance, 2017.

[30] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM J. Comput.,
vol. 17, no. 2, pp. 281–308, 1988.

[31] P. Grassi, M. Garcia, and J. Fenton, “NIST Special Publication 800-
63-3 Digital Identity Guidelines,” National Institute of Standards and
Technology, 2017.

[32] J. Groth, “Simulation-sound NIZK proofs for a practical language
and constant size group signatures,” in Advances in Cryptology -
ASIACRYPT 2006, 12th International Conference on the Theory and
Application of Cryptology and Information Security, Shanghai, China,
December 3-7, 2006, Proceedings, pp. 444–459.

[33] D. Hardt, “The OAuth 2.0 Authorization Framework,” RFC 6749, 2012.

[34] M. Jakobsson, K. Sako, and R. Impagliazzo, “Designated verifier proofs
and their applications,” in Advances in Cryptology - EUROCRYPT ’96,
International Conference on the Theory and Application of Crypto-
graphic Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding,
pp. 143–154.

[35] S. Jarecki, H. Krawczyk, M. Shirvanian, and N. Saxena, “Two-factor
authentication with end-to-end password security,” in Public-Key Cryp-
tography - PKC 2018 - 21st IACR International Conference on Practice
and Theory of Public-Key Cryptography, Rio de Janeiro, Brazil, March
25-29, 2018, Proceedings, Part II, pp. 431–461.

[36] M. Jones, J. Bradley, and H. Tschofenig, “Proof-of-Possession Key
Semantics for JSON Web Tokens (JWTs),” RFC 7800, 2016.

[37] M. Jones, “The Increasing Importance of Proof-of-Possession to the
Web,” https://www.w3.org/2012/webcrypto/webcrypto-next-workshop/
papers/webcrypto2014 submission 8.pdf, Tech. Rep., 2014.

[38] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of
applied cryptography. CRC press.

[39] N. Klingenstein and S. Tom, “SAML V2.0 Holder-of-Key Web Browser
SSO Profile Version 1.0,” 2010.

[40] D. Kogan, N. Manohar, and D. Boneh, “T/key: Second-factor authen-
tication from secure hash chains,” in Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2017, Dallas, TX, USA, October 30 - November 03, 2017, pp. 983–999.

[41] K. Krawiecka, A. Paverd, and N. Asokan, “Protecting password
databases using trusted hardware,” in Proceedings of the 1st Workshop
on System Software for Trusted Execution, SysTEX@Middleware 2016,
Trento, Italy, December 12, 2016, pp. 9:1–9:6.

[42] R. W. F. Lai, C. Egger, D. Schröder, and S. S. M. Chow, “Phoenix: Re-
birth of a cryptographic password-hardening service,” in 26th USENIX
Security Symposium, USENIX Security 2017, Vancouver, BC, Canada,
August 16-18, 2017., pp. 899–916.

14

https://www.azcentral.com/story/money/business/tech/2015/09/30/lost-electronic-devices-data-breaches/73058138/
https://www.azcentral.com/story/money/business/tech/2015/09/30/lost-electronic-devices-data-breaches/73058138/
https://www.ibm.com/support/knowledgecenter/en/ SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/twbs_create holderofkeytoken.html
https://www.ibm.com/support/knowledgecenter/en/ SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/twbs_create holderofkeytoken.html
https://www.ibm.com/support/knowledgecenter/en/ SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/twbs_create holderofkeytoken.html
https://www.ibm.com/us-en/marketplace/phishing-and -malware-protection
https://www.ibm.com/us-en/marketplace/phishing-and -malware-protection
https://developer.apple.com/sign-in-with-apple/
https://www.w3.org/2012/webcrypto/webcrypto-next-workshop/papers/webcrypto2014_submission_8.pdf
https://www.w3.org/2012/webcrypto/webcrypto-next-workshop/papers/webcrypto2014_submission_8.pdf

[43] N. Leoutsarakos, “What’s wrong with FIDO?” https://web.archive.org/
web/20180816202011/http://www.zeropasswords.com/pdfs/WHATisW
RONG FIDO.pdf, May 2015.

[44] R. Lindemann and J. Kemp, “FIDO UAF Authenticator-Specific Module
API,” FIDO Alliance, 2017.

[45] R. Lindemann and E. Tiffany, “FIDO UAF Protocol Specification,”
FIDO Alliance, 2017.

[46] H. Lockhart and C. Brian, “Security Assertion Markup Language
(SAML) v2.0 Technical Overview,” OASIS, 2008.

[47] S. Mare, M. Baker, and J. Gummeson, “A study of authentication in
daily life,” in Twelfth Symposium on Usable Privacy and Security,
SOUPS 2016, 2016, pp. 189–206.

[48] A. Mayer, V. Mladenov, and J. Schwenk, “On the security of holder-
of-key single sign-on,” in Sicherheit 2014: Sicherheit, Schutz und Zu-
verlässigkeit, Beiträge der 7. Jahrestagung des Fachbereichs Sicherheit
der Gesellschaft für Informatik e.V. (GI), 2014, pp. 65–77.

[49] D. Pointcheval and J. Stern, “Security arguments for digital signatures
and blind signatures,” J. Cryptology, vol. 13, no. 3, pp. 361–396, 2000.

[50] S. Saeednia, S. Kremer, and O. Markowitch, “An efficient strong
designated verifier signature scheme,” in Information Security and
Cryptology - ICISC 2003, 6th International Conference, Seoul, Korea,
November 27-28, 2003, Revised Papers, pp. 40–54.

[51] N. Sakimura, J. Bradley, M. B. Jones, B. de Medeiros, and C. Mor-
timore, “OpenID Connect Core 1.0 incorporating errata set 1,” The
OpenID Foundation, 2017.

[52] J. Schneider, N. Fleischhacker, D. Schröder, and M. Backes, “Efficient
cryptographic password hardening services from partially oblivious
commitments,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and ommunications Security, CCS 2016, Vienna, Austria,
October 24-28, 2016, pp. 1192–1203.

[53] C. Schnorr, “Security of blind discrete log signatures against interactive
attacks,” in Information and Communications Security, Third Interna-
tional Conference, ICICS 2001, Xian, China, November 13-16, 2001,
pp. 1–12.

[54] ——, “Efficient signature generation by smart cards,” J. Cryptology,
vol. 4, no. 3, pp. 161–174, 1991.

[55] V. Shoup, “Lower bounds for discrete logarithms and related problems,”
in Advances in Cryptology - EUROCRYPT ’97, International Con-
ference on the Theory and Application of Cryptographic Techniques,
Konstanz, Germany, May 11-15, 1997, Proceeding, pp. 256–266.

[56] N. P. Smart, “The exact security of ECIES in the generic group
model,” in Cryptography and Coding, 8th IMA International Confer-
ence, Cirencester, UK, December 17-19, 2001, Proceedings, pp. 73–84.

[57] S. Srinivas, D. Balfanz, E. Tiffany, and A. Czeskis, “Universal 2nd
Factor(U2F) Overview,” FIDO Alliance, 2017.

[58] “TPM 2.0 Library Specification,” https://trustedcomputinggroup.org/re
source/tpm-library-specification/, Trusted Computing Group, 2013.

[59] M. View, J. Rydell, M. Pei, and S. Machani, “TOTP: Time-Based One-
Time Password Algorithm,” RFC 6238, 2011.

[60] W3C Web Authentication Working Group, “Web Authentication: An
API for accessing Public Key Credentials - Level 1,” March 2018.

[61] Z. Zhang, K. Yang, X. Hu, and Y. Wang, “Practical anonymous pass-
word authentication and TLS with anonymous client authentication,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2016, Vienna, Austria, October 24-28,
2016, pp. 1179–1191.

15

https://web.archive.org/web/20180816202011/http://www.zeropasswords.com/pdfs/WHATisWRONG_FIDO.pdf
https://web.archive.org/web/20180816202011/http://www.zeropasswords.com/pdfs/WHATisWRONG_FIDO.pdf
https://web.archive.org/web/20180816202011/http://www.zeropasswords.com/pdfs/WHATisWRONG_FIDO.pdf
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/

	Introduction
	Our Contributions
	Technical Overview
	Related Work

	Preliminaries
	Cryptographic Assumptions
	Non-Interactive Zero-Knowledge Proofs

	Password-Based Credential
	Syntax of PBC
	Security Definition of PBC

	A Practical Construction of PBC
	High Level Description
	The Detailed Construction
	Security Proof
	Strong Authentication with PBC

	Application of PBC in Federated Identity
	Application for user-IdP authentication
	Application for holder-of-key assertion

	Performance Evaluation
	Implementations
	Performance Evaluation and Comparison with ECDSA

	Conclusion
	References

