
Poster: DBB-DSE : Dynamic Backward-Bound
Dynamic Symbolic Execution

Jonghwan Yang
Chungnam National Univ.

South Korea
jhy7185@o.cnu.ac.kr

Seokwoo Choi
The Affiliated Institute of ETRI

South Korea
seogu.choi@gmail.com

Eun-Sun Cho
Chungnam National Univ.

South Korea
eschough@cnu.ac.kr

Abstract—In order to help deobfuscation of malware, this
poster focuses on detecting on opaque predicates, a special kind of
conditional expressions that always represent true or always false,
which are essential for obfuscators to increase the complexity
of analyses. We propose a dynamic opaque predicate detection
method, focusing on data dependency aware selection of the
portion of instructions to be symbolically analyzed. We adopt the
backward bound dynamic symbolic execution (BB-DSE) scheme
presented in [2], but our method enables handling loops in better
ways; experimental results with real-world obfuscators such as
Code Virtualizer [3] show that our proposed one performs slightly
better than the previous one.

I. INTRODUCTION AND RELATED WORK

Code Obfuscation is done to intentionally transform a
code so as to make it hard to recognize the behavior of
the original code. It is very useful for protecting programs
from illegal modification and distribution by third parties. One
common obfuscation technique is to add control movements
and meaningless operations to the original program. As more
practically-qualified obfuscation tools become widely avail-
able, an increasing number of malware attacks are obfus-
cated to avoid diagnoses of malware analysts. On the other
hand, difficulties in deobfuscating malware due to the lack
of sophisticated analysis tool is one of the major obstacles
in malware analyses. To overcome this problem, we worked
on a helper to deobfuscate malware, focusing on detecting
“opaque predicates,”. Opaque predicate is a special kind of
conditional expression that represent always true or always
false. Its behavior is like nothing but a skip operation, but still
complicates the code without serious runtime cost.

As with existing deobfuscation methods, our tool extracts
execution traces to feed a dynamic symbolic execution engine,
since static binary analyses do not seem effective due to the
various dynamic properties of obfuscated binary programs.
The set of conditions collected from the symbolic execution is
used for the SMT solver [6] to identify opaque predicates by
means of logical verification. Note that a conservative analysis
is necessary for opaque predicate detection, because to lower
the complexity of analysis it entails the removal of the code
blocks led by probable opaque predicates. That is, we might
lose code when eliminating code blocks led by non-opaque
predicates.

BB-DSE (Backward Bound Dynamic Symbolic Execution)
[2] is a conservative opaque predicate detector, aiming to over-
come the coverage problem of dynamic symbolic execution.
With this tool, symbolic execution on a small number (N)

of instructions prior to a given predicate is enough to detect
opaque predicates conservatively; thus, it is safe to get rid of
the code block led by the predicate. Since a predicate is opaque
if one of the branches never occur, they conduct a feasibility
test on the branch not shown in the trace to see if that branch
never occurs (that is, it is infeasible.)

However, what they claimed might not always be applied
well to other situations because they stick to the fixed number
(N) of instructions to be symbolically analyzed beforehand,
derived from the experimental results and heuristics; thus,
when N is too small, it will get false positive errors in the
feasibility test due to the lack of information, meaning that
it missed opaque predicates in the detection. When N is too
big, (for an extreme example, N covers the size of the entire
program,) it will get false negative errors in the feasibility
test, like symbolic execution on a single concrete execution
trace, and evaluate conditional branches with concrete values
in many cases; thus, normal predicates may be mistaken for
opaque predicates. Therefore, finding the proper number N
is critical to the quality of the analysis, and moreover it
might vary from program to program, getting trickier with
loop structures. This poster proposes DBB-DSE (Dynamic
Backward Bound Dynamic Symbolic Execution), which adopts
BB-DSE, but considers only the set of relevant instructions for
symbolic execution, to improve the quality of opaque predicate
detection.

II. DBB-DSE: THE PROPOSED TOOL

Figure 1 depicts the sequence of processes when DBB-
DSE detects opaque predicates. First, it extracts an execution
trace from obfuscated malware using trace logging tools.
DBB-DSE then scans the traces and refines them into useful
information. A trace address (TA) is the sequence number of
an instruction in a trace, while an in-program address (PA)
is similar to the program counter (PC). With PA and TA,
DBB-DSE can dissimilate multiple executions from normal
executions, as well as light-weight loop detection. Second, it
scans the execution trace to spot jump instructions, which are
closely related to possible opaque predicates.

Third, it conducts backward slicing based on data depen-
dency from the possible opaque predicates. DBB-DSE uses
Relevant number of Instructions (RI) to determine the range
N, while the BB-DSE just uses the Number of Instructions
(NI). This property is inherently from the result of considering
data dependency, and provides flexibility according to the
various properties of the obfuscated programs. DBB-DSE skips

Fig. 1. Entire process of DBB-DSE

repetitive instructions in counting RI, which allows a flexible
length for the list of instructions for symbolic execution. This
is important because it enables us to handle even a long trace
with repetitive instructions like loops, typically inserted by
obfuscation tools, which is not possible with BB-DSE.

Fourth, it conducts dynamic symbolic execution on the
proper portion of the trace. The portion is determined from
the result of the previous step; the more sparsely the preceding
instructions relevant to the predicates are located over the path,
the longer the list of preceding instructions is needed to be
symbolically executed. For symbolic execution, DBB-DSE first
disassembles the trace of the obfuscated code into a low-level
intermediate form. From the obfuscated code trace in Miasm
Intermediate representation (IR), we are able to build basic
blocks from the trace on the fly as well as conduct symbolic
execution on the blocks in turns. Fifth, it determines if a given
branch instruction depends on an opaque predicate by means
of an SMT solver and the set of target addresses encoded
with expressions of symbols. Note that if the encoded target
is a constant instead of an expression the predicate the branch
instruction is based on should be an opaque predicate, and thus
it skips the symbolic expression solving step in this case.

III. EXPERIMENT AND CONCLUSION

We build DBB-DSE with latest version of Miasm [5],
Ubuntu 18.04.1, Z3 solver 4.8.5(64 bit)[6], and Python 2.7.15.
Experiments are conducted on (1) real-world malware, ob-
fuscated with Code Virtualizer with no input, (2) simple C
programs with some opaque predicate complied with gcc and
(3) obfuscated C programs with O-LLVM.

The range of proper RI values, reflecting data dependency,
is narrower than that of NI regardless of sizes and number
of blocks of the target We found that both NI 39 and RI
15 provide the best set of instructions to analyze for opaque

Fig. 2. False negative errors with the same bound N

TABLE I. SUMMARY OF THE BEST DETECTION ENVIRONMENTS,
COMPARING BB-DSE AND DBB-DSE

BB-DSE DBB-DSE
] of preceding instr. NI=39 RI=15

] of true pos. 119 120
] of true neg. NI=38 RI=38
] of false pos. 0 0
] of false neg. 7 6

f-measure 0.971 0.976

predicates without any false positive error. However, note that
the range of 12 to 24, which the authors of BB-DSE suggested
as the best NI values for opaque predicate detection for O-
LLVM-based obfuscation, does not work well in this case;
NI 39 is beyond the range of 12 to 24. Figure 2 shows the
number of false negative errors as N grows, which bounds NI
in BB-DSE and RI in DBB-DSE. Table I is a summary of the
best results from BB-DSE (with NI=39) and DBB-DSE (with
RI=15). At their best BB-DSE detects one less opaque pred-
icate (that is, 119) than DBB-DSE (that is, 120) because with
data dependency information, BB-DSE is not robust enough
against the repetition of opaque predicates, especially when a
preceding instruction relevant to the suspicious predicate is not
repeating with it.

The contribution of DBB-DSE is that it introduces data
dependency-aware backward bounds for dynamic symbolic
execution (1) to allow an even bound (near 15) for the number
of instructions preceding suspicious predicates, regardless of
the various properties of obfuscated codes, so useful in practice
and (2) to enable more detection of opaque predicates than
previous work, despite loops and repetitions. We are currently
working on further experiments, and planning to combine
logical reasoning with our DBB-DSE.

REFERENCES

[1] A Dynamic Backward Bound Dynamic Symbolic Executor for Opaque
Predicate Detection https://github.com/PLASLaboratory/op-eliminator

[2] S. Bardin at.al, Backward-Bounded DSE: Targeting Infeasibility Ques-
tions on Obfuscated Codes, IEEE Symposium on Security and
Privacy(IEEE S&P), 2017.

[3] Code Virtualizer, https://www.oreans.com/CodeVirtualizer.php
[4] Obfuscator-LLVM, https://github.com/obfuscator-llvm/obfuscator/wiki
[5] Miasm, https://github.com/cea-sec/miasm
[6] Z3 solver, https://github.com/Z3Prover/z3

2

DBB-DSE : Dynamic Backward-Bound
Dynamic Symbolic Execution

Due to the lack of sophisticated analysis tools, difficulties in
deobfuscating malware is one of the major obstacles in
malware analyses.

We concentrate on opaque predicate detection, and propose
DBB-DSE, a conservative opaque predicate detection with
dynamic symbolic execution.

Motivation

Overall Process of the Proposed Method

Conclusions
The contribution of DBB-DSE is as follows :

(1) We introduces data dependency-aware backward bounds for dynamic symbolic execution to allow an even bound
(near 15) for the number of instructions preceding suspicious predicates, flexible to cope with various situations.

(2) Our tool is more useful in practice and to enable more detection of opaque predicates
than previous work, despite loops and repetitions.

What is an Opaque Predicate?

Jonghwan Yang
Chungnam National Univ.

South Korea
jhy7185@o.cnu.ac.kr

Seokwoo Choi
The Affiliated Institute of ETRI

South Korea
seogu.choi@gmail.com

Eun-Sun Cho
Chungnam National Univ.

South Korea
eschough@cnu.ac.kr

Experiments

A predicate that represent always false or always true.
Its behavior is like nothing but a skip operation, but still complicates

the code without serious runtime cost.
So, opaque predicate is essential for obfuscators to increase the

complexity of analysis.

�� ≥ 0

false

true

“ unreachable code ”

“ always be executed ”

Our DBB-DSE adopts the backward bound dynamic symbolic execution scheme presented in BB-DSE[1], where suggested that dynamic
symbolic execution on a small number (N) of instructions prior to a given predicate is enough to detect opaque predicates
conservatively

Different from the previous tool, we consider data dependency in the subtrace extraction, to improve the quality of detection including in
loop-structured programs; by extracting only the set of relevant instructions using program slicing

[1] S. Bardin at.al, Backward-Bounded DSE: Targeting Infeasibility Questions on Obfuscated Codes, IEEE Symposium on Security and Privacy(IEEE S&P), 2017

We used Intel Pin tool for logging execution trace, Miasm for symbolic execution and disassemble, Z3 4.8.5 as a constraint solver and
Python 2.7.15 in developing the customized program slicer

Experiments are conducted on (1) plain programs including opaque predicate , (2) obfuscated programs with Code Virtualizer and (3)
obfuscated programs with Obfuscator-LLVM,

the no. of Instruction (NI) 39 and no. of Relevant Instruction (RI) 15 provide the best set of instructions to analyze for opaque predicates
without any false positive error

False negative errors with the same bound N
Summary of the best detection environments

comparing BB-DSE and DBB-DSE

	poster2
	NDSS_POSTER(upd)

