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Abstract—When collecting information, local differential pri-
vacy (LDP) alleviates privacy concerns of users because their
private information is randomized before being sent to the central
aggregator. However, LDP results in loss of utility due to the
amount of noise that is added to each individual data item. To
address this issue, recent work introduced an intermediate server
with the assumption that this intermediate server did not collude
with the aggregator. Using this trust model, one can add less
noise to achieve the same privacy guarantee; thus improving the
utility.

In this paper, we investigate this multiple-party setting of
LDP. We first analyze the threat model and identify potential ad-
versaries. We then make observations about existing approaches
and propose new techniques that achieve a better privacy-utility
tradeoff than existing ones. Finally, we perform experiments to
compare different methods and demonstrate the benefits of using
our proposed method.

I. INTRODUCTION

To protect data privacy in the context of data publishing,
the concept of differential privacy (DP) has been proposed,
and has been widely adopted [8]. DP mechanisms add noise
to the aggregated result such that the difference between
whether or not an individual is included in the data is bounded.
Recently, local differential privacy (LDP) has been deployed
by industry. LDP differs from DP in that random noise is added
by each user before sending the data to the central server.
Thus, users do not need to rely on the trustworthiness of the
organization hosting the server. This desirable feature of LDP
has led to wider deployment by industry (e.g., by Google [10],
Apple [1], Microsoft [7], and Alibaba [11]). Meanwhile, DP
is still deployed in settings where the centralized server can
be trusted (e.g., the US Census Bureau deployed DP for the
2020 census [2]).

However, removing the trusted central party comes at the
cost of utility. Since every user adds some independently gen-
erated noise, the effect of noise adds up when aggregating the
result. While noise of scale (standard deviation) Θ(1) suffices
for DP, LDP has noise of scale Θ(

√
n) on the aggregated result

(n is the number of users). This gap is essential for eliminating
the trust in the centralized server, and cannot be removed by
algorithmic improvements [4].

Recently, researchers introduced settings where one can
achieve a middle ground between DP and LDP, in terms
of both privacy and utility. This is achieved by introducing
an additional party [5], [9], [3], [6]. One such setting is
called the shuffler model, which introduces another party called
the shuffler. Users perturb their information, and then send
encrypted version of the perturbed information to the shuffler,
who shuffles the users’ information, and then sends them to the

server. The server then decrypts the reports and aggregates the
information. The shuffler learns nothing about the reported data
(because of semantic-security of the encryption scheme), and
the server learns less about each individual’s report because it
cannot link a user to a report because the user inputs it received
are shuffled. However, if the shuffler and the server collude,
the user obtains privacy protection only from perturbation,
and there is no benefit from shuffling. In short, the role of
the shuffler is to break the linkage between the users and the
reports, thus providing some privacy boost. Due to the privacy
boost, users can add less noise, while achieving the same level
of privacy against the server. This boost, however, requires
trusting that the shuffler will not collude with the server. This
new model of LDP, which we call Multi-Party DP (MPDP),
offers a different trade-off between trust and utility than DP
and LDP.

Besides the shuffler-based approach, in the MPDP model,
there is also another interesting direction that uses homomor-
phic encryption [6]. In particular, each user homomorphically
encrypts his/her value using one-hot encoding. The additional
server then multiplies the ciphertexts in each location to get
the aggregated result (i.e., a histogram), and adds noise to the
histogram to provide DP guarantee. Finally, the results are
sent to the server. As homomorphic encryption requires one-
hot encoding, the communication cost for this approach is can
be large for big domains.

Since the MPDP model involves more parties, there could
be different patterns of interaction and collusion among the
parties. The possibilities of these colluding parties and the
consequences have not been systematically analyzed. For ex-
ample, existing work proves the privacy boost obtained by
shuffling under the assumption that the adversary observes
the shuffled reports and knows the input values of the users
(except the victim). However, if the other users collude with
the adversary, they could also provide their locally perturbed
reports, invalidating any privacy boost due to shuffling. For
another example, while the homomorphic encryption-based
approach provides privacy guaranteed when the adversary
consists of the server colluding with the users (except the
victim), there is no privacy when the server colluding with
the additional server. In this paper, we analyze the interaction
and potential threats of the MPDP models in more detail. We
present a unified view of privacy that generalizes DP and
LDP. Different parties and possible colluding scenarios are
then presented and analyzed.

Based on our observations, we propose MURS (stands for
Multi Uniform Random Shufflers). MURS adopts the shuffler-
based approach [5], [9], [3], as its communication cost is
small for large domains. But different from existing work,



MURS introduces multiple shufflers and have them add noise.
Moreover, we proposes a new mechanism that performs orders
of magnitude better than existing work.

More specifically, we show that the essence of the privacy
boosting [3] is a distribution from the LDP mechanism that is
independent of the input value. By revisiting the local hashing
idea, which was also considered in the LDP setting, we then
set the independent distribution using the hashing idea and
propose symmetric local hash (SLH). In SLH, each user reports
a randomly selected hash function, together with a perturbation
of the hashed result of their sensitive value.

Furthermore, from the observation of our systematic anal-
ysis of the MPDP model, we propose to have the additional
server also introduce noise. In particular, the additional server,
besides shuffling the received reports, adds some uniformly
random reports so that when all other users collude with the
server, there is still some privacy guarantee. We also suggest
having more additional servers, which mitigates the threat
when a single additional server colludes with the central server.
As long as not all of the additional servers collude with the
server, the boosted privacy guarantee still holds.

To summarize, the main contributions of this paper are:

• We provide a systematic analysis of the MPDP model
and a principled way for analyzing privacy guarantees under
various colluding scenarios. Several observations are made,
which leads to the proposal of MURS.

• We instantiate MURS with two protocols: MURSS via
onion encryption and MURSO via oblivious shuffling. MURS
comes from three components: (1) theoretical improvement;
(2) thorough analysis of MPDP; and (3) novel design of
existing ideas. Compared with existing work, both protocols
provide better trust guarantee and achieve better utility-privacy
trade-off.

• We provide implementation details and measure utility
and performance of MURSS and MURSO on real datasets.
Moreover, we will open source our implementation so that
other researchers can build on our results.
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Background
♠ Multi-Party Differential Privacy: Better trust than
DP and better utility than LDP
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Figure 1: Multi-Party Differential Privacy System Model

♠ Existing work either provides poor utility [5, 3, 2, 6]
or high communication overhead [1, 4].

♠ The system model in Figure 1 is weak.

System Analysis of MPDP
♠ The server colluding with all other users.

♠ The server with t ≥ 1 auxiliary servers.

♠ The auxiliary servers may poison the result.

SLH
♠ Utilizing the Local Hashing idea, we improve the
utility of existing work.

♠ Each user execute:

SLHε,d(x) = 〈H, GRRε,d′(H(x))〉
where d′ = eε/2 + 1, and

∀x,y∈D Pr [GRRε,d(x)=y]=

{
p= eε

eε+d−1, if y = x
q= 1

eε+d−1, if y 6= x

MURS
♠Utilizing Onion Encryption and Oblivious Shuffle,
we improve the threat model of existing work.
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Figure 2: System Model of MURSS: Sequential Shuffle.
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Figure 3: System Model of MURSO: Oblivious Shuffle.

Evaluation Results
♠ Reasonable communication and computation over-
head.

♠ Utility (mean absolute error) is orders of magni-
tudes better.

PPPPPPPPPPPPPPPPPPPPPPP
Metric

Method MURSS MURSO
r = 3 r = 7 r = 3 r = 7

User comp. (ms) 21 50 1.6 1.6
User comm. (Byte) 416 800 400 432
Aux. comp. (s) 213 214 0.2 0.7
Aux. comm. (MB) 224 416 429.8 3293.3
Server comp. (s) 213 213 65 65
Server comm. (MB) 128 128 392 408

Table 1: Computation and communication overhead of
MURSS and MURSO for each user, each auxiliary server,
and the server. We assume n = 106 and r = 3 or 7.
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Figure 4: Utility Comparison. SH is from [2], AUE is
from [1] (but communication cost is much larger), Base is
uniform guess, and Lap is centralized DP.
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