
Poster: A Machine Learning Model Performance
Improvement Approach to Detection of Obfuscated

JavaScript-based Attacks
Samuel Ndichu

Graduate School of Engineering
Kobe University, Japan

Sangwook Kim
Graduate School of Engineering

Kobe University, Japan

Seiichi Ozawa
Center for Mathematical and Data Sciences

Kobe University, Japan

Abstract—Obfuscation is rampant in both benign and mali-
cious JavaScript (JS) codes. A JS code obfuscation generates
a code that is obscure to the human eyes and undetectable to
scanners, thereby hindering comprehension and analysis. This
transformation significantly affects the performance of network
and information security tools, such as Intrusion Detection Sys-
tem (IDS) and anti-virus software. Therefore, accurate detection
of JS codes that masquerade as innocuous scripts is vital. The
existing deobfuscation methods assume that a specific tool can
recover an original JS code entirely. For a multi-layer JS code
obfuscation, general tools realize a readable and formatted JS
code, but some sections remain encoded. For the detection of such
obfuscated codes, this study performs Deobfuscation, Unpacking,
and Decoding (DUD-preprocessing) by function redefinition using
a JS code formatter, a Virtual Machine (VM), a JS code editor,
and a python int to str() function to facilitate feature learning
by the FastText model, a machine learning model. The learned
feature vectors are passed to SVM, a classifier model that
judges the maliciousness of an obfuscated JS code. The proposed
approach is envisioned to provide improved performance in ob-
fuscated malicious JS codes detection. The detection performance
improvement is evaluated using the Hynek Petrak’s dataset for
obfuscated malicious JS codes, the SRILAB, and the Majestic
Million service top 10,000 websites dataset for obfuscated benign
JS codes. We then compare the performance of the FastText
model to Paragraph Vector models on the detection of DUD-
preprocessed obfuscated malicious JS codes. Our experimental
results show that the proposed DUD-preprocessing for obfuscated
JS codes enhances feature learning and provides improved
accuracy in the detection of obfuscated malicious JS codes
compared to feature learning on regular obfuscated JS codes.

Index terms— Deobfuscation, Unpacking, Decoding,
Obfuscated JavaScript, Multi-layer JavaScript Obfuscation,
JavaScript-based Attacks, FastText, Machine Learning

ACKNOWLEDGMENT

This research was achieved by the Ministry of Education,
Science, Sports, and Culture, Grant-in-Aid for Scientific Re-
search (B) 16H02874 and the Commissioned Research of

National Institute of Information and Communications Tech-
nology (NICT), Japan.

REFERENCES

[1] S. Kaplan, B. Livshits, B. Zorn, C. Siefert and C. Cursinger, “NOFUS:
Automatically Detecting” + String.fromCharCode(32) + “ObFuSCateD
“.toLowerCase() + “JavaScript Code”, Microsoft Research Technical
Report, MSR-TR-2011, 57, 2011, Pp.1-11.

[2] W. Xu, F. Zhang and S. Zhu, The power of obfuscation techniques
in malicious JavaScript code: A measurement study, 7th International
Conference on Malicious and Unwanted Software (MALWARE), IEEE,
2012, Pp.9-16.

[3] S. Schrittwieser, S. Katzenbeisser, J. Kinder, G. Merzdovnik and
E. Weippl, Protecting Software through obfuscation: Can it keep pace
with progress in code analysis, ACM Computing Surveys (CSUR), 49,
1, 2016, Pp.1-40.

[4] S. Sebastian, S. Malgaonkar, P. Shah, M. Kapoor and T. Parekhji, A
study and review on code obfuscation, World conference on futuristic
trends in research and innovation for social welfare (WCFTR’16), 2016,
Pp.1-6.

[5] P. Skolka, C. Staicu and M. Pradel, Anything to hide? Studying minified
and obfuscated code in the web, In the Proceedings of the WWW, San
Francisco, CA, USA, ACM, 4, 2019, Pp.1-11.

[6] H. Petrak, Javascript Malware Collection - A collection
of almost 40.000 Javascript malware samples, In:
https://github.com/HynekPetrak/javascript-malwarecollection, Accessed
on August 2019.

[7] V. Raychev, P. Bielik, M. Vechev and A. Krause, Learning Programs
from Noisy Data, In Proceedings of the 43nd Annual ACM SIGPLAN-
SIGACT Symposium on POPL, New York, NY, USA, ACM, 2016,
Pp.761—774.

[8] The and Majestic and Million, The million domains we find with the
most referring subnets, In: https://majestic.com/reports/majestic-million,
Accessed on August 2019.

[9] P. Bojanowski, E. Grave, A. Joulin and T. Mikolov, Enriching word
vectors with subword information, TACL, arXiv:1607.04606, 5, 2017,
Pp.135-146.

[10] A. Joulin, E. Grave, P. Bojanowski and T. Mikolov, Bag of Tricks for
Efficient Text Classification, In Proceedings of the 15th Conference of
the EACL, Short Papers. Valencia, Spain, 2017, Pp.427-431.

[11] B. Wang, A. Wang, F. Chen, Y. Wang and C. C. J. Kuo, Evaluating
Word Embedding Models: Methods and Experimental Results, APSIPA
Transactions on Signal and Information Processing, arXiv:1901.09785,
E19, 2019, Pp.1-13.

[12] T. Serafim and T. Kachalov, JavaScript Obfuscator Tool, A
free and efficient obfuscator for JavaScript (including ES2017), In:
https://obfuscator.io/, Accessed on August 2019.

[13] E. Lielmanis and L. Newman, Online JavaScript Beautifier
(v1.10.2), JavaScript and HTML, make JSON/JSONP readable, In:
https://beautifier.io/, Accessed on November 2019.

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.23xxx
www.ndss-symposium.org

True positive and false positive rate

Abstract

Performance Evaluation

Method ※ Objective – Performance improvement for detection of obfuscated malicious JS codes using FastText.

JS code obfuscation

function hello(name){

console.log("Hello, " + name);

}

hello("New user");

var

_0x74f5=["\x48\x65\x6C\x6C\x6F\x2

C\x20","\x6C\x6F\x67","\x4E\x65\x77

\x20\x75\x73\x65\x72"];function

hello(_0xe170x2){console[_0x74f5[1]]

(_0x74f5[0]+

_0xe170x2)}hello(_0x74f5[2])

Original JS code Obfuscated JS code

JS code deobfuscation

A packed JS code from the MWS-D3M dataset Using a JS code beautifier or formatter

A hard-to-deobfuscate JS code example

A Machine Learning Model Performance Improvement Approach to Detection of
Obfuscated JavaScript-based Attacks

Samuel Ndichu, Sangwook Kim, Seiichi Ozawa
Kobe University

Model Precision Recall F1-score

Obfuscated JS code Dataset

FastText 94.27% 95.11% 94.59%

PV-DBoW 94.12% 92.83% 93.31%

PV-DM 93.13% 93.51% 92.89%

Deobfuscated JS code Dataset

FastText 99.48% 99.31% 98.73%

PV-DBoW 98.39% 98.41% 98.01%

PV-DM 98.37% 98.02% 98.19%

Beautified / Formatted JS code

Unpacked JS code

1. Deobfuscate an obfuscated JS code – using a JS code beautifier, formatter:

These tools make JS code look pretty, readable, easier to edit and analyze.

2. Unpack a packed JS code – using a Virtual Machine (VM) and a JS code editor:

• Strip the script tags; JS_code = '''eval(function(p,a,c,k,e,d)...obfuscated_JS_code…)'''

• Replace the eval() function with console.log().

• Parse the packed JS code; Unpacked_ JS_code = eval('unpack' + JS_code[JS_code.find('}(')+1:-1])

3. Decode an encoded JS code – using an Int_to_str() function in python:

• Implement Int_to_str() function in python.

• Parse to extract the function arguments – using a VM and a JS code editor.

Plain JS code

Obfuscated JS code

An example using hexadecimal to implement encoding.

The string “New User” in hello(“New

User”) from the original JS code below is

replaced to “var _0x74f5”, a call function

that retrieves its value at runtime, in the

obfuscated JS code.

• JS-based attacks frequently use obfuscation to:

 Camouflage their malicious intentions.

 Preserve the overall code behavior.

 Evade detection.

• The FastText model learns better and reliable

vector representations for DUD-preprocessed

obfuscated malicious JS codes.

• Obfuscated JS code analysis and formatting to make it readable

again and uncover its true functionality.

• Tools to analyze obfuscated JS code: such as, Dirty Markup, Online

JS code beautifier, Dan’s Tools JS code formatter, and JSNice.

• JS code obfuscation advantages:

 Proprietary code protection.

 Curbing reverse engineering.

 Performance optimization.

 Code compression.

The eval() function in the original JS code attempts to run the packed JS code.

Steps to deobfuscate, unpack and decode an obfuscated JS code

Deobfuscated JS codeOriginal JS code

eval(function(p,a,c,k,e,d){e=function(c){return

c};if(!''.replace(/^/,String)){while(c--

){d[c]=k[c]||c}k=[function(e){return

d[e]}];e=function(){return'\\w+'};c=1};while(c--

){if(k[c]){p=p.replace(new

RegExp('\\b'+e(c)+'\\b','g'),k[c])}}return p}('3

0(1){2.4("5, "+1)}0("7

6");',8,8,'hello|name|console|function|log|Hello|user|

New'.split('|'),0,{}))

'use strict';

/**

* @param {string} name

* @return {undefined}

*/

function hello(name) {

console.log("Hello, " + name);

}

hello("New user");

JS code deobfuscation, unpacking and decoding

Feature Learning and Classification

Train FastText model on deobfuscated, unpacked and decoded JS codes

Deobfuscated,

Unpacked /

Decoded AST-JS

SVM

Classifier

Training

Feature Learning

Using FastText

Model

Obfuscated

JS Codes

JS code

Parser /

Syntactic

Analyzer

Deobfuscated

JS Codes

Plain JS

Codes

JS code

Formatter /

Beautifier

JS code

Unpack /

Decode

JS – JavaScript

ASTs – Abstract Syntax Trees

AST-JS – AST form of JS code

Benign JS

code

Malicious JS

code

FastText PV-DBoW PV-DM

• Obfuscation generates a JS code that is obscure to the human eyes and undetectable to scanners. JS code obfuscation aims to hinder comprehension and

analysis. This transformation significantly affects the performance of network and information security tools, such as Intrusion Detection System (IDS) and anti-

virus software. Therefore, accurate detection of JS codes that masquerade as innocuous scripts is vital.

• The existing deobfuscation methods for obfuscated malicious JS codes assume that a specific tool can recover an original JS code entirely. General tools realize

a readable and formatted JS code, but some sections remain encoded. For detection of such obfuscated codes, this study performs Deobfuscation,

Unpacking, and Decoding (DUD-preprocessing) by function redefinition using a JS code formatter, a Virtual Machine (VM), a JS code editor, and a python

int_to_str() function to facilitate feature learning by the FastText model. SVM, a classifier model, judges the maliciousness of an obfuscated JS code. The

proposed approach is envisioned to provide improved performance in the detection of obfuscated malicious JS codes.

The FastText model:

• Character n-gram vectors represents each word 𝑥.

• Scoring function 𝑓 takes into account a word

internal structure.

• Character n-gram for 𝑒𝑛𝑐𝑜𝑑𝑒 with n=3:

< en; enc; nco; cod; ode; de > and < encode >.

• For a dictionary of size 𝐺 n-gram vectors, 𝐺𝑋 ⊂ 1,… , 𝐺 gives the set of ngram vectors in 𝑥. The scoring function f is given by,

𝑓 𝑥, 𝑐 =

𝑔∈𝐺𝑥

𝒁𝑔
⊤ 𝑿𝑐

• Where 𝒁𝑔 is the vector representation for each n-gram 𝑔 and 𝑿𝑐 is the context.

model_JS:wv:most_similar("𝑒𝑛𝑐𝑜𝑑𝑒") – ’𝑒𝑛𝑐𝑜𝑑𝑒𝑢𝑟𝑙’; 0:91, ‘𝑒𝑛𝑐𝑜𝑑𝑒𝑢𝑟𝑖’; 0:89, ‘ℎ𝑡𝑚𝑙𝑒𝑛𝑐𝑜𝑑𝑒’; 0:89, ‘𝑒𝑛𝑐_𝑠𝑡𝑟’; 0:87, ‘𝑑𝑒𝑐𝑜𝑑𝑒𝑢𝑟𝑖’; 0:83.

