
Poster: Automatic Detection and Prevention of
Fake Key Attacks in Signal

Tarun Kumar Yadav
Brigham Young University

Devashish Gosain
IIIT Delhi

Daniel Zappala
Brigham Young University

Kent Seamons
Brigham Young University

Abstract—The Signal protocol provides end-to-end encryption
for billions of users in popular instant messaging applications
such as WhatsApp. The protocol relies on an application-specific
key server to distribute public keys and relay encrypted messages
between the users. As a result, Signal prevents passive attacks but
is vulnerable to some active attacks. A malicious or hacked key
server can distribute fake keys to users to perform man-in-the-
middle or impersonation attacks. While typical secure messaging
applications provide a manual method for users to detect these
attacks, this places an undue burden on users and studies show
it is ineffective in practice.

In this poster, we design several defenses for fake key attacks
and use a threat analysis to identify which attacks each defense
can automatically detect or prevent. We implement the attacks
to demonstrate they are possible, and we use an implementation
of two of the defenses to confirm that they work as designed and
are feasible.

I. INTRODUCTION

The Signal protocol is an end-to-end encryption protocol
that provides forward secrecy and was designed specifically
for messaging applications. It is used by billions of users in
popular instant messenger applications like WhatsApp, Signal
Private Messenger and Facebook Messenger’s “secret chat”
feature, etc.

Currently, messaging applications that use the Signal protocol
rely on a trusted key server for distributing identity keys among
the communicating clients. A malicious (or hacked) key server
(MKS) can launch a MITM attack against Alice and Bob, by
providing them with fake keys. To defend against this attack,
presently users have to manually compare keys with their
contact when they start communication or when their contact
update their keys. Most of the key updates are legitimate due to
app reinstall by users, which leads to ignore these key update
warnings by users. Hence there is a pressing need to somehow
distinguish between benign key updates due to application
re-installation and fake key attacks.

Recent user studies [1]–[3] have found that users are
generally oblivious to the need to verify identity keys and
are unable to authenticate when attacked.

The aim of our research is to automate the detection and
prevention of fake key attacks in Signal to ease the burden of
users having to manually verify keys. We are designing three
approaches and analyzing which kinds of attacks they can
prevent or detect. Automated defenses against fake key attacks
can serve as a deterrent to the key server to act maliciously
(e.g., by responding to a government subpoena).

A. Threat Model

We consider an impersonation attack where an attacker
gives a fake key for Alice to Bob to impersonate Alice to Bob,
and a MitM attack where an attacker gives a fake key for
Alice to Bob and a fake key for Bob to Alice. The attacker
impersonates both Alice to Bob and Bob to Alice. The possible
attack scenarios in which an attacker could launch a MitM or
impersonation attacks are:

• Attacks on a new communication session setup
– Attack on Alice/Bob conversations (pair targeted)
– Attack on all of Alice’s conversations (client targeted)

• Attacks on established communication sessions
– Attack on Alice/Bob conversations (pair targeted)
– Attack on all of Alice’s conversations (client targeted)

II. DEFENSES

A. Key Transparency

We started with extending Signal to support CONIKS [4].
CONIKS uses Key Transparency and auditing to ensure that
identity providers cannot equivocate about the public keys they
advertise on behalf of users.

In general, the CONIKS architecture assumes there are mul-
tiple non-colluding identity providers. However, in messaging
apps like WhatsApp and Signal there is only one key server
that can act as a provider, and there is no existing consortium
that provides non-colluding distributed entities that could act
as identity providers. To integrate CONIKS with Signal, we
analysed both 1) multiple provider hypothetical scenario and
2) single provider scenario.

B. Trust Network

In Trust Network, clients verifies the authenticity of the key
from her trusted contacts. Trusted contacts are those contacts
whose keys Alice has previously verified with this method. To
initialize this set, Alice can perform manual key verification
with several contacts. The basic idea of this defense is that
Alice uses her trusted contacts to verify whether they have the
same key for Bob that the key server gave her.

There are two mechanisms the Trust Network uses to verify
keys—one uses mutual contacts and the other uses random
contacts as relays.

TABLE I
TAXONOMY OF FAKE KEY ATTACKS AND ANALYSIS OF DEFENSES

MITM Impersonation
Pair Targeted Client Targeted Pair Targeted Client Targeted

Defense New Existing New Existing New Existing New Existing

Key Transparency (multiple-provider) # # # # # # # #

Key Transparency (single-provider) # # # # # #

Trust Network (mutual contact)

Trust Network (contact relay) # # # # # I

Anonymous Key Retrieval (basic) # # # # # # # #

Anonymous Key Retrieval (advanced) G#

Mass key update monitoring (naive)

Mass key update monitoring (stealthy) # #†

Isolation monitoring #‡

Key history monitoring I I I I I I I I

 prevents the attack, # detects the attack, G# sometimes prevents the attack, I sometimes detects the attack, (blank) susceptible
† impersonating to Alice, ‡ impersonating as Alice

1) Mutual Contact: Whenever Alice starts communicating
with a user, her client asks the new client to send all of its
contacts’ verification bundles. This gives Alice the hash of
the identifier and identity key of all of her two-hop contacts
(her contacts’ contacts). The use of a hash function in the
verification bundle protects the privacy of contacts, since Alice
will not know the identity of two-hop contacts that she is not
already herself contacts with.

2) Contact Relay: If Alice does not have a mutual contact
with Bob, her client randomly selects any one of her contacts,
eg. Carol, to act as a proxy for her. Alice asks Carol to obtain
Bob’s key bundle from the key server on her behalf. Carol may
relay this request to additional random contacts. Once Alice
receives a key from a relay, Alice compares this key with the
one provided directly by the key server. On successful match,
Alice trusts the key, otherwise an attack is detected.

C. Anonymous Key retrieval

Anonymous Key Retrieval defends against fake key attacks
by anonymously requesting keys, thus making it more dif-
ficult for the server to distribute fake keys without being
detected. Clients requesting keys do not include any uniquely
identifiable information in their requests. Our design assumes
an anonymization service such as Tor [5] that has a robust
architecture to provide anonymity to its users.

We propose two levels of defense, basic and advanced.
1) Basic defense: As a basic defense, all Signal clients

regularly perform two types of anonymous key monitoring: (1)
Alice randomly monitors her own key at regular intervals to
remain confident the key server is consistently distributing her
key, and (2) Alice randomly monitors new connections and
recent key updates at regular intervals until she has confidence
that the key she received is correct. In both cases, Alice’s client
requests the key (her own or that of a contact) using Tor, so
that the key server does not know who is requesting the key.
server to attack new connections. This approach has a usability

2) Advanced Defense: The advanced defense prevents fake
key attacks using two strategies. (1) The first time Alice
communicates with Bob, she requests his key anonymously
from the key server using Tor to make it difficult for the key

cost due to a potential delay while Alice waits to communicate
with Bob while she obtains Bob’s key via Tor. (2) When Alice
receives a key update message from the server for Bob, she
communicates directly with Bob through a third-party channel
to automatically confirm that the key change is legitimate. This
prevents fake key attacks on existing connections with Alice.

D. Monitoring Heuristics

These heuristics are used in combination with the above
defenses to strengthen weaknesses in those defenses.

1) Mass key update monitoring: Mass key update monitoring
looks for multiple key updates within a short period of time
with an existing contact.

2) Isolation monitoring: If Alice is unable to connect to
any of her existing contacts during the monitoring interval, it’s
possible a client-targeted impersonation attack is in progress.

3) Key history monitoring: To detect a rapid fake-key attack,
we propose that Alice maintain a key update history for Bob
and send it to him for validation after each key-update message
she receives for him.

III. CONCLUSION

Our proposed defenses may deter an MKS from launching
a fake key attack. They increase security without requiring
any user interaction. Security-conscious users can still choose
to perform manual key verification for additional guarantees
against fake key attacks.

REFERENCES

[1] Schröder S, Huber M, Wind D, Rottermanner C. When signal hits the fan:
on the usability and security of state-of-the-art secure mobile messaging.
InEuropean Workshop on Usable Security. IEEE 2016 Jul.

[2] Herzberg A, Leibowitz H. Can Johnny finally encrypt?: evaluating E2E-
encryption in popular IM applications. InACM Workshop on Socio-
Technical Aspects in Security and Trust (STAST) 2016 Dec 5.

[3] Vaziripour E, Wu J, O’Neill M, Whitehead J, Heidbrink S, Seamons K,
Zappala D. Is that you, Alice? a usability study of the authentication
ceremony of secure messaging applications. InThirteenth Symposium on
Usable Privacy and Security (SOUPS 2017) 2017 (pp. 29-47).

[4] Melara MS, Blankstein A, Bonneau J, Felten EW, Freedman MJ. CONIKS:
Bringing Key Transparency to End Users. In24th USENIX Security
Symposium (USENIX Security 15) 2015 (pp. 383-398).

[5] Tor, “Tor project,” https://www.torproject.org/.

2

S

v

• Two-party protocol for exchanging authenticated and E2E
encrypted messages with forward secrecy

• Used by billions of users

Problems
• Trusted centralized server may distribute fake keys

• Authentication ceremony is not usable, almost no one does it

Automating the Authentication Ceremony in Signal

Signal Protocol

Tarun Kumar Yadav, Devashish Gosain, Daniel, Zappala, Kent Seamons
Computer Science Department, Brigham Young University

• Retrieve contacts’ keys anonymously

• Monitor own key anonymously

• 3rd Party Channel (TOR service) to verify key update

To avoid an active attacker, users should
manually compare keys with their contacts

when they start communicating and
whenever an identity key changes

Authentication ceremony

Approach 2: Anonymous Key Retrieval Approach 3: An Auditable Key Directory

• CONIKS is a key management system that uses a
auditable key directory

• Integrate CONIKS into Signal protocol
• Multi-provider scenario offers better detection
• Since Signal uses single provider, Signal clients audit

blockchain
• Client compares the signed tree root (STR) from

the CONIKS provider to their contact’s STR
• Client audits STR when the new key is retrieved

from the key server or key update happens
• Client monitors their own keys every epoch

Conclusion

Analysis

• Authentication ceremony is critical in the Signal
protocol

• Prior research shows users don’t verify keys manually
• Designed three automated key verification solutions
• Used threat analysis to compare how well they detect

or prevent fake key attacks
• Potential to release the manual burden from billions of

users

Automating the Authentication Ceremony − Approach 1: Trust Network

Using existing contacts to verify existing
contact’s key updateUsing mutual friends

Using existing contacts to verify new contact’s
identity key

This work is supported by the NSF under Grant No. CNS- 1816929

