
Poster: Securing IoT services using DLTs and
Verifiable Credentials

Nikos Fotiou, Iakovos Pittaras, Vasilios A. Siris, Spyros Voulgaris, George C. Polyzos
Mobile Multimedia Laboratory,

Department of Informatics School of Information Sciences and Technology
Athens University of Economics and Business, Greece

{fotiou,pittaras,vsiris,voulgaris,polyzos}@aueb.gr

Abstract—Verifiable Credentials (VCs) and blockchain-based
tokens have some intriguing properties when it comes to user
authentication and authorization. For instance, VCs can encode
an access control policy and provide privacy, whereas blockchain-
based tokens enable auditability and accountability, facilitate
revocation, and create potential for novel token exchange meth-
ods. Here, we present our recent progress in integrating these
technologies into the OAuth 2.0 authorization protocol. Our
efforts focus on push and pull Internet of Things (IoT) services,
accessed through IoT gateways. We present design trade-offs, we
provide preliminary results related to the communication and
computation overhead, and we discuss future directions.

I. INTRODUCTION

Securing IoT services requires proper user authentication
and authorization. However, implementing these operations
directly in the IoT devices creates security risks and manage-
ment issues. For this reason, most IoT systems delegate user
authentication and authorization to a third party using solutions
such as the OAuth 2.0 authorization framework [1]. Using
OAuth 2.0, a resource owner can generate an authorization
grant, which a client can use with an authorization server
in order to receive an access token. Then, the access token
can be used for accessing a protected resource, stored in a
resource server. However, OAuth 2.0 specification does not
define any particular grant or token format, instead this is left
as a design choice for the system developers. In this work, we
explore the potentials of using Verifiable Credentials (VCs) as
authorization grants, and blockchain-backed access tokens.

VCs [2] allow an issuer to assert one or more claims
about a subject. A VC includes a set of claims, metadata that
describe properties of the credential, as well as a digital proof.
A VC is issued to a holder. In most cases, a subject and a
holder are the same entity. A holder, can prove the possession
of one or more VCs to a verifier by generating a verifiable
presentation. A verifiable presentation includes data from one
or more verifiable credentials, and is packaged in such a
way that the authorship of the data is verifiable [2]. When it
comes to authorization, VCs have two significant advantages:
(i) they support improved privacy, since they disclose minimal
information about the holder, and (ii) they can be used to
indicate what a holder is allowed to do, i.e., an issuer can
encode a simple access control policy in a VC.

Blockchains, and more generally Distributed Ledger Tech-
nologies (DLTs) can be a regarded as an immutable, distributed
ledger. Some blockchain systems, such as Ethereum [3], are
capable of running (distributed) applications, often referred to

as smart contracts. Blockchains have great availability and
robustness, hence they are a promising solution for recording
auxiliary information about access tokens, which can be used
for accountability, auditability, as well as for token verification.
Furthermore, smart contracts can be used for verifying access
tokens, as well as for implementing novel token management
mechanisms, e.g., exchanging tokens for money.

We summarize here our efforts (undertaken in the context
of the H2020-SOFIE project1) for realizing a system that can
be used for accessing protected IoT resources. Our system
is standards-compliant and it leverages OAuth 2.0, VCs, and
blockchain-backed access tokens.

II. SYSTEM OVERVIEW

A. Entities and interactions

Our system is a typical OAuth 2.0 architecture realization,
hence it is composed of the following entities. A resource
server that hosts a protected resource owned by a resource
owner, a client wishing to access that resource, and an au-
thorization server responsible for generating access tokens.
These entities interact with each other as follows. A client first
requests an authorization grant from the resource owner. This
grant verifies that the “resource owner authorizes the client to
access the resource.” Then, the client uses the grant to obtain an
access token from the authorization server. Finally, the client
accesses the protected resource by proving the access token
ownership.

B. VC-based authorization grants

VCs can play the role of the authorization grant. This
design choice is compatible with OAuth 2.0 RFC which
specifies that “client credentials (or other forms of client
authentication) can be used as an authorization grant” (section
1.3.4 of [1]). In our system, a resource owner generates VCs
for the clients authorized to access a resource. VC generation
is performed independently of the authorization server. Then, a
client can request an access token from an authorization server
by presenting a VC: the authorization server issues a VC proof
request and the client generates the appropriate proof. If the
latter proof is valid, the authorization server proceeds with the
token generation process. The whole process requires no inter-
action with the resource owner. Furthermore, the authorization
server learns no information about the client, apart from the

1https://www.sofie-iot.eu/

fact that it is authorized to access a resource: even if the same
client tries to generate a new token, for the same resource,
the authorization server will not be able to tell if this is the
same client or not. Finally, authorization servers can be pre-
configured with the appropriate proof request parameters: in
that case, the only operation an authorization server has to
perform is the verification of the correctness of a proof.

C. Blockchain-backed token life cycle management

1) Token generation: Our system uses JSON Web Tokens
(JWTs) [4] for encoding access tokens. The generated token
includes a proof of possession key which is either a client
owned public key, or a client owned Ethereum address. This
key is used by the client to prove access token ownership, when
accessing a resource. Furthermore, the authorization server
creates a new ERC-7212 Ethereum token, i.e., a unique, non-
tangible token, that includes in its metadata field the access
token. ERC-721 tokens are used in our system for auditing and
accountability purposes, and optionally for providing auxiliary
information to IoT resources during access token verification.

2) Token delivery: Our system considers two approaches
for delivering access tokens from authorization servers to
clients: direct delivery, and conditional delivery. In the former
case, access tokens are sent directly to the client (over a
secured channel). Moreover, if the proof of possession key
included in the access token is client’s Ethereum address, then
the corresponding ERC-721 token is transferred to the client’s
address. With conditional delivery, a smart contract assures
that an access token is usable only if certain conditions are
met (e.g., the client has paid a pre-agreed amount of money).
The smart contract guarantees the atomicity of the process; the
means achieving that depend on the token verification method:
it can be done by encrypting the access tokens and by revealing
the decryption key once the conditions have been met, using
“hash-locks” and “escrows” [5], or by transferring the ERC-
721 token to the client’s address only once the payment has
been made.

3) Token verification: Depending on whether the client
interacts with the resource server directly, or through the
Ethereum blockchain (e.g., for triggering pull-based services
using Ethereum “events” [6]) token verification can be per-
formed either by a smart contract or the resource server itself.
In the latter case, the verification method depends on whether
the resource server can read from the blockchain or not (e.g.,
due to limited computational power, connectivity restrictions,
or other constrains). If the resource server has read access
to the blockchain, then access token verification involves the
retrieval of the ERC-721 token and the comparison of its
metadata with the access token presented by the client. Using
this verification method, tokens can be easily revoked by the
authorization server (by modifying the corresponding ERC-
721 token), and they can be easily and securely delegated
to other users [7]. If the resource server cannot access the
blockchain, then the standard JWT token verification process
is followed.

2https://eips.ethereum.org/EIPS/eip-721

III. PRELIMINARY RESULTS

Parts of our system have been implemented and various
performance measurements have been made. For this purpose
we have extended OAuth 2.0 php server3 and we have used
Mozilla’s WebThings gateway4, running on a Raspberry Pi,
as a resource server. For generating and managing VCs,
Hyperledger Indy [8] has been used. A VC proof is generated
in 101ms using a PC equipped with an Intel-i7 7700 CPU
and 4GB RAM and it can be verified in 58ms in a PC with
the same specifications. The creation of an ERC-721 token
that contains in its metadate a JWT access token “consumes”
254141 Ethereum ‘gas’ units, which in the public Ethereum
network is translated to approximately $0.04 and requires, in
average, 13 seconds. Similarly, exchanging a token with ‘ETH
coins,’ i.e., the Ethereum-specific cryptocurrency, consumes
102476 ‘gas’ units, which in the public Ethereum network cost
approximately $0.016.

IV. CONCLUDING REMARKS AND FUTURE PLANS

We presented a preliminary system that incorporates Ver-
ifiable Credentials and blockchain-backed tokens into the
OAuth 2.0 framework. Our design is compatible with the
OAuth 2.0 protocol, therefore existing systems can be easily
extended to include our approach. Furthermore, our design is
composed of several stand-alone “pluggable modules,” hence
an integrator may choose those that fit his/her requirements.
We have verified the feasibility of each module, and have
performed some preliminary performance evaluation investiga-
tions. It is in our immediate plans to continue the development
of these modules and to provide them as, open source, re-
usable “framework components.”

ACKNOWLEDGMENT

This research was supported by the EU funded Horizon
2020 project SOFIE (Secure Open Federation for Internet
Everywhere), under grant agreement No. 779984.

REFERENCES

[1] D. Hardt (ed.), “The OAuth 2.0 authorization framework,” IETF, RFC
6749, 2012.

[2] Manu Sporny et al. (2019) Verifiable credentials data model 1.0. [Online].
Available: https://www.w3.org/TR/verifiable-claims-data-model/

[3] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[4] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” IETF,
RFC 7519, 2015.

[5] V. A. Siris, D. Dimopoulos, N. Fotiou, S. Voulgaris, and G. C. Polyzos,
“OAuth 2.0 meets blockchain for authorization in constrained IoT
environments,” in 2019 IEEE 5th World Forum on Internet of Things
(WF-IoT), April 2019, pp. 364–367.

[6] N. Fotiou, I. Pittaras, V. A. Siris, S. Voulgaris, and G. C. Polyzos, “Secure
iot access at scale using blockchains and smart contracts,” in 2019 IEEE
20th International Symposium on ”A World of Wireless, Mobile and
Multimedia Networks” (WoWMoM), June 2019, pp. 1–6.

[7] N. Fotiou, I. Pittaras, V. A. Siris, S. Voulgaris, and G. C. Polyzos,
“OAuth 2.0 authorization using blockchain-based tokens,” in Workshop
on Decentralized IoT Systems and Security (DISS 2020), in conjunction
with the NDSS Symposium 2020, San Diego, CA, USA, 2020.

[8] The Linux foundation. (2019) Hyperledger indy home page. [Online].
Available: https://www.hyperledger.org/projects/hyperledger-indy

3https://github.com/bshaffer/oauth2-server-php
4https://iot.mozilla.org/

2

Nikos Fotiou, Iakovos Pittaras, Vasilios A. Siris, Spyros Voulgaris, George C. Polyzos
Mobile Multimedia Laboratory

Department of Informatics, School of Information Sciences and Technology
Athens University of Economics and Business, Greece

{fotiou,pittaras,vsiris,voulgaris,polyzos}@aueb.gr

Abstract: Verifiable Credentials (VCs) and blockchain-based tokens have some intriguing properties when it comes to user authentication and authorization. For instance, VCs
can encode an access control policy and provide privacy, whereas blockchain-based tokens enable auditability and accountability, facilitate revocation, and create potential for
novel token exchange methods. Here, we present our recent progress in integrating these technologies into the OAuth 2.0 authorization protocol. Our efforts focus on push and
pull Internet of Things (IoT) services, accessed through IoT gateways. We present design trade-offs, we provide preliminary results related to the communication and
computation overhead, and we discuss future directions.

Contributions in a nutshell

NDSS Symposium 2020
Find out more about our research at https://mm.aueb.gr

Find our more about H2020 SOFIE at https://www.sofie-iot.eu

Verifiable credentials

Advantages

Securing IoT services using DLTs and Verifiable Credentials

OAuth 2.0

❑ We use Verifiable Credentials as OAuth 2.0 authorization grants

❑ We propose blockchain-based access token lifecycle management

❑ Auxiliary information can be recorded in the blockchain

❑ Tokens can be transferred through the blockchain

❑ Tokens can be exchanged with tangible assets

❑ Tokens can be delegated

❑ We consider both powerful and constrained IoT gateways

❑ OAuth 2.0 compatible implementation

❑ Incorporated with a Web of Things gateway

❑ Authorization server implementation is simpler, since access control policies
can be incorporated into VCs

❑ VCs enhance end-users’ privacy

❑ Tokens can be revoked prior their expiration time

❑ Without requiring communication between authorization servers and
resource servers

❑ Auditing and accountability mechanisms are facilitated

❑ Clients do not need to store tokens or secrets corresponding to them

Resource owner

Hyperledger Indy

Client

Token metadata are
recorded in the

blockchain

Tokens are
exchanged using a

smart contract

Legacy token
verification

Token verification
using blockchain

metadata

Smart contract based
token verification

System overview

P
o

lic
y

D
e

ci
si

o
n

P
o

lic
y

En
fo

rc
e

m
en

t

