
Poster: Methodologies for Quantifying (Re-)
Randomization Security and Timing under JIT-ROP

Md Salman Ahmed*, Ya Xiao*, Gang Tan†, Kevin Snow‡, Fabian Monrose§, Danfeng (Daphne) Yao*

*Computer Science, Virginia Tech, †Computer Science and Engineering, Penn State University,
‡Zeropoint Dynamics, LLC, §Computer Science, UNC at Chapel Hill

{ahmedms, yax99, danfeng}@vt.edu, gtan@cse.psu.edu, kevin@zeropointdynamics.com, fabian@cs.unc.edu

Abstract—Just-in-time return-oriented programming (JIT-
ROP) technique allows one to dynamically discover instruction
pages and launch code reuse attacks, effectively bypassing most
fine-grained address space layout randomization (ASLR) protec-
tion. However, in-depth questions regarding the impact of code
(re-)randomization on code reuse attacks have not been studied.
For example, how would one compute the re-randomization interval

effectively by considering the speed of gadget convergence to defeat

JIT-ROP attacks?; how do starting pointers in JIT-ROP impact

gadget availability, time of gadget convergence, and the Turing-

complete (TC) expressive power of JIT-ROP payloads?; We conduct
a comprehensive measurement study and provide methodologies
to measure JIT-ROP gadget availability, quality, and their TC
expressiveness, as well as to empirically determine the up-
per bound of re-randomization intervals in re-randomization
schemes. Experiments show that the locations of leaked pointers
used in JIT-ROP attacks have no impacts on gadget availability,
but have an impact on the time for accumulating the TC gadget
set. The time ranges from around 0.89 to 5 seconds in our
tested applications. Our results also show that instruction-level
single-round code randomization thwarts current gadget finding
techniques under the JIT-ROP threat model.

Introduction. JIT-ROP [15] is a powerful attack that enables
one to reuse code even under fine-grained ASLR. JIT-ROP at-
tacks can discover new code pages dynamically, by leveraging
control-flow transfer instructions, such as call and jmp and
construct exploit payloads at runtime. Re-randomization tech-
niques [16], XoM [12]/XnR [2] style defenses, Code Pointer
Integrity (CPI) [11], and Control-Flow Integrity (CFI) [1]
have potential to defeat JIT-ROP attacks. However, from a
defense-in-depth perspective, it is important for a critical
system to deploy multiple complementary security defenses
in practice due to the potential failure of a single defense.
Thus, despite the strong security guarantees of CFI with the
latest advancement (e.g., MLTA [13]), our ASLR investigation
is still extremely necessary. It is also useful and necessary
to isolate various defense factors to better understand the
individual factor’s security impact. Otherwise, it might be too
complicated to interpret the experimental results. This is the
reason we chose to focus on ASLR defenses in this work and
omit other such as CFI, CPI, and XoM/XnR style defenses.

In this study, we report our experimental findings on
various aspects of code (re-)randomization that impact code
reuse attacks, e.g., in terms of interval choices, code pointer
leakage, gadget availability, gadget convergence, speed of
convergence, and gadget chain formation. We use the term
gadget convergence for a set gadgets to indicate that the set
of gadgets has met the criteria of the Turing-complete gadget
set. In ROP literature, the Turing-complete gadget set refers

to a set of gadgets that cover the Turing-complete operations
including memory, assignment, arithmetic, logic, control flow,
function call, and system call [14]. Our evaluation involves up
to 20 applications including 6 browsers, 1 browser engine, and
25 dynamic libraries.

Fig. 1. An illustration of the recursive code harvest process of JIT-ROP [15].

Measurement Methodologies. We designed a measurement
mechanism that allows us to perform JIT-ROP’s recursive code
page discovery (Figure 1) in a scalable fashion. We focus
on the native execution of JIT-ROP that allows us to evalu-
ate re-randomization timing and multiple fine-grained ASLR
conditions such as the function-level [5], block-level [10],
machine register-level [9], [6], and instruction-level [8] code
randomization. Since native execution is faster than We-
bAsm/JavaScript [7], our timing results measured using the
native execution is also conservatively applicable for the
scripting environments. We manually extracted 21 types of
gadgets including the Turing-complete gadget set from various
attacks [15], [4], [3]. We measure the occurrences of 15 se-
lected gadgets under fine-grained code randomization schemes.
We use ropper1, an offline gadget finder tool, under coarse-
grained ASLR. Under fine-grained ASLR, we write a tool
to recreate the native JIT-ROP exploitation process, including
code page discovery and gadget mining. We also measure the
upper bound2 for re-randomization intervals by determining
how much the code harvest process takes to find the Turing-
complete gadget set. To measure the quality of individual
gadgets, we perform a register corruption analysis for each
gadget. To determine the risk associated with a stack/heap/data
segment, we count the vulnerable library pointers in a stack,
heap or data segment. We aslo assess the effect of compiler
optimizations on the gadget availability.

Evaluation results. We implemented a JIT-ROP native code
module. All experiments are performed on a Linux machine

1https://github.com/sashs/Ropper
2We define that the upper bound of a re-randomization scheme is the

maximum amount of time between two consecutive randomization rounds
that prevent an attacker from obtaining the Turing-complete gadget set.

with Ubuntu 16.04 LTS 64-bit operating system. We write
several Python and bash scripts for automating our analysis
and measurement process.

Fig. 2. Gadget convergence with trajectory lines. Each N and represent a
re-randomization upper bound and re-randomization interval, respectively.

Re-randomization upper bound. Using our methodologies, we
measure the upper bounds of re-randomization intervals for
19 applications including 6 browsers and 1 browser engine.
Figure 2 shows the upper bound for the browsers along with
their trajectory lines of convergence. We observe that the
upper bound ranges from around 0.89 to 5 seconds. We call
the upper bound as the “best-case” re-randomization interval
from a defender’s perspective because the defender has to re-
randomize by the time of the interval, if not sooner.

Fig. 3. Min, max, and average time needed to harvest the TC gadget set.

Impact of the Location of Pointer Leakage. We measure the
impact of pointer locations on JIT-ROP attack capabilities,
by comparing the number of gadgets harvested and the time
of harvest under different starting pointer locations. For all
applications, we observe that the pointer’s location does not
have any impact on gadget availability. However, the times
needed to harvest the TC gadget set vary from one pointer to
another. Figure 3 shows the minimum, maximum, and average
time required for gadget convergence for different applications
and browsers. For some code pointers, the code harvest process
takes significantly shorter times than the average times due to
the fact that some code pages with diverse set of gadgets are
accessed sooner for those code pointers.

Other findings. Function, basic-block, or machine register-
level randomization preserves TC expressiveness, however,
instruction-level randomization does not. Our findings suggest
that current fine-grained randomization solutions do not im-
pose significant gadget corruption. In addition, a stack has a
higher risk of revealing dynamic libraries than a heap or data
segment due to the higher number of libc pointers, on average
more than 16 in stack than heaps or data segments.

Conclusion. We presented general methodologies for quanti-
tatively measuring ASLR security under the JIT-ROP threat
model and conducted a comprehensive measurement study.
One method is for experimentally determining the upper bound
of re-randomization intervals. Another method is for comput-
ing the number of various gadget types and their quality.

Acknowledgment. This work is supported by ONR Grant
N00014-17-1-2498 and DARPA/ONR N66001-17-C-4052.

REFERENCES

[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM conference on Computer
and communications security. ACM, 2005, pp. 340–353.

[2] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger, and J. Pewny,
“You can run but you can’t read: Preventing disclosure exploits in
executable code,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 2014, p. 1342.

[3] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh,
“Hacking blind,” in Security and Privacy (SP), 2014 IEEE Symposium
on. IEEE, 2014, pp. 227–242.

[4] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking modern
defenses.” in USENIX Security Symposium, 2014, pp. 385–399.

[5] M. Conti, S. Crane, T. Frassetto, A. Homescu, G. Koppen, P. Larsen,
C. Liebchen, M. Perry, and A.-R. Sadeghi, “Selfrando: Securing the tor
browser against de-anonymization exploits,” Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 4, pp. 454–469, 2016.

[6] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi,
S. Brunthaler, and M. Franz, “Readactor: Practical code randomization
resilient to memory disclosure,” in Security and Privacy (SP), 2015
IEEE Symposium on. IEEE, 2015, pp. 763–780.

[7] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web
up to speed with webassembly,” in ACM SIGPLAN Notices, vol. 52,
no. 6. ACM, 2017, pp. 185–200.

[8] W. H. Hawkins, J. D. Hiser, M. Co, A. Nguyen-Tuong, and J. W.
Davidson, “Zipr: Efficient static binary rewriting for security,” in
2017 47th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN). IEEE, 2017, pp. 559–566.

[9] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-guided automated software diversity,” in Proceedings of the
2013 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). IEEE Computer Society, 2013, pp. 1–11.

[10] H. Koo, Y. Chen, L. Lu, V. P. Kemerlis, and M. Polychronakis,
“Compiler-assisted code randomization,” in 2018 IEEE Symposium on
Security and Privacy (SP). IEEE, 2018, pp. 461–477.

[11] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity.” in OSDI, vol. 14, 2014, p. 00000.

[12] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell,
and M. Horowitz, “Architectural support for copy and tamper resistant
software,” Acm Sigplan Notices, vol. 35, no. 11, pp. 168–177, 2000.

[13] K. Lu and H. Hu, “Where does it go? refining indirect-call targets with
multi-layer type analysis,” in Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, 2019, pp.
1867–1881.

[14] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-oriented
programming: Systems, languages, and applications,” ACM Transac-
tions on Information and System Security (TISSEC), vol. 15, no. 1,
p. 2, 2012.

[15] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Security and Privacy
(SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 574–588.

[16] D. Williams-King, G. Gobieski, K. Williams-King, J. P. Blake, X. Yuan,
P. Colp, M. Zheng, V. P. Kemerlis, J. Yang, and W. Aiello, “Shuffler:
Fast and deployable continuous code re-randomization.” in OSDI, 2016,
pp. 367–382.

2

Figure 2 shows the re-
randomization upper
bounds and intervals
along with the
trajectory lines.

Yao Group on Cyber Security
http://yaogroup.cs.vt.edu/

Md Salman Ahmed1, Ya Xiao1, Gang Tan2, Kevin Snow3, Fabian Monrose4, Danfeng (Daphne) Yao1

1Computer Science, Virginia Tech, 2Computer Science & Eng., Penn State, 3Zeropoint Dynamics, LLC, 4Computer Science, UNC at Chapel Hill
{ahmedms, yax99, danfeng}@vt.edu, gtan@cse.psu.edu, kevin@zeropointdynamics.com, fabian@cs.unc.edu

Poster: Methodologies for Quantifying (Re-)Randomization Security
and Timing under JIT-ROP

This work is supported by ONR Grant N00014-17-1-2498 and DARPA/ONR N66001-17-C-4052.

3. Approach and Experimental Design

q We identify 21 JIT-ROP gadgets including the Turing-complete (TC) gadget set.
qWe measure gadgets and re-randomization timing with (re-)randomization schemes

enforced by 5 tools for 20 applications and 25 libraries utilizing a native JIT-ROP
implementation. Figure 1 shows JIT-ROP’s recursive code harvest process.

qTo measure the upper bound, we record the time for a JIT-ROP attacker to harvest
the TC gadget set.

qTo measure the impact of code pointer locations, we run code harvest process
starting from different code pointer locations and track gadget convergence and
convergence time.

qWe measure the impact of single-round randomization by comparing the number of
TC gadgets available in randomized and non-randomized versions of an application.

qWe measure the gadget quality using register corruption rate.

4. Evaluation Results

5. Conclusion
We presented multiple general methodologies for quantitatively measuring the ASLR security
under the JIT-ROP threat model and conducted a comprehensive measurement study. One
method is for computing the number of various gadget types and their quality. Another method
is for experimentally determining the upper bound of re-randomization intervals. The upper
bound helps guide re-randomization adopters to make more informed configuration decisions.

[1]. Abadi, Martín, et al. "Control-flow integrity principles, implementations, and applications." ACM Transactions on
Information and System Security (TISSEC) 13.1 (2009): 1-40.

[2]. Kuznetzov, Volodymyr, et al. "Code-pointer integrity." The Continuing Arms Race: Code-Reuse Attacks and Defenses.
2018. 81-116.

[3]. Lie, David, et al. "Architectural support for copy and tamper resistant software." Acm Sigplan Notices 35.11 (2000):
168-177.

[4]. Backes, Michael, et al. "You can run but you can't read: Preventing disclosure exploits in executable code."
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. 2014.

[5]. Snow, Kevin Z., et al. "Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization." 2013 IEEE Symposium on Security and Privacy. IEEE, 2013..

2020

1. Motivation

qFrom defense-in-depth perspective, deployment of multiple defenses is necessary.
qFeasibility analysis and quantitative evaluation of these defenses are also necessary.
qDespite the strong security of other defenses such CFI [1], CPI [2], XoM [3]/XnR[4]

style defenses, investigations on ASLR are extremely necessary.
qGeneral methodologies for measuring ASLR security and timing using various

metrics are necessary.
qASLR security and timing metrics can include the following:

2. Challenges

q How to quantify the impact of fine-grained ASLR or code randomization or re-
randomization schemes.

q How to quantify the quality of a gadget chain.

We report our experimental findings on various aspects of code (re-)randomization
that impact code reuse attacks: (i) upper bound for re-randomization interval choices,
(ii) code pointer locations, (iii) gadget availability, (iv) gadget convergence, (v)
speed of convergence, and (vi) gadget chain formation.

§ interval choices § code pointer leakage
§ gadget availability § gadget convergence
§ speed of convergence § gadget chain formation

Figure 1: An illustration of the recursive code harvest process of JIT-ROP

q We found that re-randomization upper bound varies from 0.89 to 5 seconds
in our test applications and browsers on our machine.

Figure 2: Gadget convergence with trajectory lines. Each ▲ and ● represent
a re-randomization upper bound and re-randomization interval, respectively.

q For all applications, we observe that the pointer’s location does not have any
impact on gadget availability. However, the times needed to harvest the TC
gadget set vary from one pointer to another (Figure 3).

Figure 2: Min, max, and average time needed to harvest the TC gadget set.

q Instruction-level randomization does not preserves TC expressiveness of JIT-
ROP payloads. Our findings suggest that current fine-grained randomization
solutions do not impose significant gadget corruption. In addition, a stack
has a higher risk of revealing dynamic libraries than a heap or data segment
due to the higher number of libc pointers, on average more than 16 in stack
than heaps or data segments.

