
Poster: Model checking RNNs with modal
µ-calculus

Tatsuhiro Aoshima, Toshinori Usui
NTT Secure Platform Laboratories

{tatsuhiro.aoshima.md, toshinori.usui.rt}@hco.ntt.co.jp

Abstract—Machine learning models have been applied to
many cyber-physical systems such as self-driving cars, robotics,
and factory automation. However, it would be difficult to adapt
them to more mission-critical systems, such as energy plants,
because there is no safety guarantee. This poster presents the
security of systems controlled using machine learning models,
especially, Recurrent Neural Networks (RNNs). We propose a
novel method for checking whether a given RNN satisfies a
given specification, as abstractly interpreting the model with the
constrained zonotopes. The specification is written in the modal µ-
calculus containing many classical temporal logics such as Linear
Temporal Logic and Computation Tree Logic.

I. INTRODUCTION

Machine learning models have been applied to many cyber-
physical systems such as self-driving cars, robotics, and factory
automation. However, there is no guarantee for them to act
safely, so it would be difficult to adapt them to more mission-
critical systems such as energy plants. Attacks against these
systems would seriously disrupt our society.

For example, if some control systems in a nuclear power
plant are taken over by an attacker, the attacker could damage
the plant and the neighbouring residents. Consider that a
control rod in the plant keeps the temperature in the plant
nearly constant and is controlled using an RNN. In this case,
the developers would try to ensure that, for example, if the
temperature xT is greater than or equal to α (the threshold at
which the control rod should start to work), then the position
of the control rod oP must be lower than or equal to γ (the
threshold at which the control rod works) at some point in the
future. This can be written formally in a modal µ-formula [2]
as follows:

νx.(xT ≥ α→ (µx.oP ≤ γ ∨�x)) ∧�x

The pattern νx.ψ ∧ �x means ψ is satisfied in any circum-
stance, and µx.ψ′∨�x means ψ′ will be satisfied at some point
in the future. This µ, ν operator directly corresponds to the
corresponding model checking algorithm. Unlike DeepMind’s
method [3], it can specify over a period of time.

In this case, a model checking algorithm takes an RNN as
a checked model and a modal µ-formula as a specification.
It checks and outputs whether the given model satisfies the
given specification. Then, if not so, it generates a counterex-
ample that is an input to the RNN causing it to violate the
specification.

We propose a novel method to make it possible to per-
form model checking of a given specification written in the
modal µ-calculus on a given RNN. First, the algorithm (A)

Initial state 𝒉𝟎 Input region 𝑿𝟏

Output region 𝑶𝟏

State region 𝑯𝟏 Input region 𝑿𝟐

Output region 𝑶𝟐

State region 𝑯𝟐 Input region 𝑿𝟑

Output region 𝑶𝟑

𝑶1 = 𝒈 𝑯1, 𝑿1

𝑯1 = 𝒇(𝒉0, 𝑿1)

𝑶2 = 𝒈 𝑯2, 𝑿2 𝑶3 = 𝒈 𝑯3, 𝑿3

𝑯2 = 𝒇(𝑯1, 𝑿2) 𝑯3 = 𝒇(𝑯2, 𝑿3)

Fig. 1: Approximation of calculation of RNN with constrained
zonotopes. Except for initial state h0, all input, state and
output vectors are abstractly represented as set expressed as
constrained zonotopes. Constrained zonotopes are closed under
forward and backward computation of RNN, so set of states
not satisfying given specification can be computed along with
computation of RNN.

calculates the set of states of the RNN not satisfying the
given specification (the semantic set) then (B) checks whether
the given initial state is in it. If not so, (C) the RNN is
concluded as satisfying the specification because, due to the
construction of the semantic set, the initial state satisfies the
specification. If so, the RNN is concluded as not satisfying the
specification, and the algorithm calculates a counterexample
with backpropagation using the calculation process of (A).

Technically, an RNN is expressed as a non-linear function
composed of linear mapping layers and activation functions.
Hence, to calculate the semantic set, our method interprets the
model abstractly with the constrained zonotopes (see Fig. 1).

II. TECHNICAL BACKGROUND

The safety of machine learning models is becoming an in-
creasing concern. OpenAI released Safety Gym [4] to provide
a framework for ensuring that machine learning models respect
safety constraints. It can be used only in training new models
and cannot be applied to trained models. Furthermore, it is not
guaranteed that a model can satisfy the given safety constraints
mathematically.

To mathematically guarantee safety, many model checking
algorithms have been proposed. These only supports Finite
State Machines (FSMs) [2] or PieceWise Affine (PWA) Con-
tinuous State Machines (CSMs) [1]. An RNN is a CSM



and is a complex non-linear function constructed of linear
mapping layers and activation functions. Hence, the current
model checking algorithms cannot be applied to RNNs.

For continuous models, an algorithm [1] using abstraction
maintains a set of disjoint regions in a continuous state
space. This is suitable for PWA CSMs but not for non-linear
CSMs because of complex state representations. Furthermore,
automaton-based algorithms are only suitable for FSM and
are not infeasible for CSM, because of the infinitely many
branches between states.

Modal µ-calculus is a generalization of Linear Temporal
Logic and Computation Tree Logic (CTL) and can represent a
specification such as a property should be satisfied only at the
cyclic positions. Model checking algorithms have a structure
similar to that for CTL. Hence, if a specification is easily
written in CTL, such an algorithm can check as efficiently
as that for CTL can.

III. PROPOSED METHOD

An RNN is a pair of functions (f , g) and generates an
infinite output vector with a given initial vector h0 and a given
infinite input vector (xt)

∞
t=1 as follows:

ot = g(ht,xt), ht = f(ht−1,xt), t > 0.

Our algorithm applies model checking for a given RNN
with a specification written in the modal µ-calculus. Refer
to the syntax and semantics of the modal µ-calculus in a
standard textbook such as [2]. To check whether the given
RNN (f , g) with the given initial vector h0 satisfies the given
specification written as a modal µ-calculus expression ϕ, we
use the semantic set [[ϕ]] of ϕ. [[ϕ]] is composed of the states
of the RNN (f , g) satisfying ϕ.

If the initial state h0 is not in [[¬ϕ]], then the algorithm
concludes that the model does not satisfy the specification,
otherwise does. Notice that the negation in ϕ can be removed
from elsewhere before atomic propositions, so there is no need
to compute the negation, as assuming that the semantic set of
the atomic propositions and those negations are given.

[[ϕ]] can be computed recursively on the structure of ϕ. For
example, the specification ϕ := νx.(ψ → (µx.ψ′ ∨ �x)) ∧
�x means that, for any path starting from the initial state, if
there exists a state satisfying ψ on the path, then there exists a
state satisfying ψ′ at a future point on any path starting from
the state. Hence, using the greatest (least) fixpoint operator
GFPX (·) ,LFPX (·), [[ϕ]] can be computed as follows:

[[νx.(ψ → (µx.ψ′ ∨�x)) ∧�x]]

= GFPX (([[¬ψ]] ∪ S1) ∩ [f ] (X)) .

Notice that P → Q is ¬P ∨Q, and,

S1 := [[µx.ψ′ ∨�x]] = LFPX ([[ψ′]] ∪ [f ] (X)) .

Here, S1 is the set of states from which satisfy ψ′ at a future
point on any path. Using S1, [[ϕ]] can be obtained by computing
the set of states from which satisfy ¬ψ or having a state in S1

as a successor on any path.

The termination of the calculation of any semantic set
is generally not guaranteed in a continuous state space. For

example, consider the case of monotonically increasing state
sets in computing fixpoint operators.

Hence, the constrained zonotopes [5] are used for an
approximate calculation (see Fig. 1). A constrained zono-
tope is the intersection of a polytope and the solution set
of a linear equation in a real Euclid space. It is closed
under addition, matrix application, solving a linear equation
in another constrained zonotope, intersection, and bounded
monotone element-wise activation functions. Thus, the image
and inverse image of any layer in RNNs can be expressed with
the contrained zonotopes, because RNNs are compositions of
linear transformations and bounded activation functions.

Our algorithm will produce a counterexample if the model
does not satisfy the given specification. Hence, in this poster,
we consider the specification not including the diamond op-
erator � because, if a counterexample exist, then the number
of the branches in the counterexample can be ensured to be
only one. To calculate a counterexample, backpropagation is
used on the input vectors (xt)

T
t=1 to satisfy that each state

at time t ht is in [[¬ϕ]](̂T−t) with the computation process
([[¬ϕ]](̂t))

T
t=1. For example, except for the given h0, a loss

function is designed such as taking 0 if each state at time t
satisfies ht ∈ [[¬ϕ]](̂T−t); otherwise, a positive number (such
as the distance from a set to a given point) is taken.

IV. FUTURE WORKS

We plan to implement our algorithm to demonstrate its
effectiveness. The most numerically cubersome step of the
implementation is reducing the generators and the constraints
of a constrained zonotope. However, an efficient algorithm for
solving this has already been proposed [5]. The constrained
zonotopes are not closed under the Hadamard product used
by the gates in RNNs, so we are going to develop another
mathematical tool closed under the Hadamard product also.
Notice that, a Convolutional Neural Network can be seen as a
single-step RNN; hence, our algorithm can be applied to them
trivially, but it would be difficult to express atomic propositions
with the constrained zonotopes (e.g. one representing the set
of all panda images).

We hope our algorithm will contribute to adaptation of
RNNs to more cyber-physical systems with proven safety.

ACKNOWLEDGMENT

The authors would like to thank members of our laboratory
for helpful discussion.

REFERENCES

[1] Belta, C., B. Yordanov, and E. A. Gol. 2017. Formal Methods for
Discrete-Time Dynamical Systems. Springer.

[2] Clarke, E. M., T. A. Henzinger, H. Veith, and R. Bloem. 2018. Handbook
of Model Checking. Springer.

[3] Dvijotham, K., R. Stanforth, S. Gowal, T. A. Mann, and P. Kohli. (2018).
A Dual Approach to Scalable Verification of Deep Networks. UAI, pp.
550–559.

[4] OpenAI. Safety Gym. Retrieved 2019/12/3 from https://openai.com/blog/
safety-gym/.

[5] Scott, J. K., D. M. Raimondo, G. R. Marseglia, and R. D. Braatz. (2016).
“Constrained zonotopes: A new tool for set-based estimation and fault
detection.” Automatica, vol. 69, pp. 126–136.

2



MRdel checkiQg RNNV ZiWh mRdal Ǎ-calculus
Tatsuhiro Aoshima, Toshinori Usui (NTT Secure Platform Laboratories)

Overview of proposed algorithm
START

(B) Is initial state contained in it?
NO

YES

(A) Calculate set of states of given RNN not
satisfying given specification written in modal 

И-calculus.

FINISH

(D) Conclude RNN does not satisfy specification.

(E) Calculate counterexample.

(C) Conclude
RNN satisfies specification.

Machine Learning models have 
been applied to cyber-physical 
systems such as self-driving cars, robotics, 
and factory automation.

However, there is no safety guarantee, 
so, attacks would seriously disrupt our society.

We consider the security of RNNs as
(A) abstractly interpreting an RNN,
(B),(C),(D) checking whether an RNN satisfies 
a specification written in PRdal И-calculus,
(E) generating a possible attack pattern if not so,

to check the safety mathematically.

MRdal Ǎ-calculus can be used to 
express many properties. For example,

(1) 𝜈𝑥. 𝜓 → 𝜇𝑥. 𝜓ᇱ ∨ □𝑥 ∧ □𝑥.
Each component represents:
� 𝜇𝑥. 𝜓ᇱ ∨ □𝑥 means 𝜓ᇱ is satisfied at a future point

on any path.
� 𝜈𝑥. 𝜓 → ⋯ ∧ □𝑥 means if 𝜓 is satisfied then 

⋯ is always satisfied on any path.

Hence, (1) means that, for any case, if 𝜓
is satisfied, then 𝜓ᇱ is satisfied 
sometime later.

NOTICE. Some properties canno宷 be e宻pressed in a s宸bse宷 of modal 廒-calculus known as 
CTL or LTL. However, our algorithm works as efficiently as that for CTL or LTL if the 
specification can be also written in CTL or LTL.

AQalRg\ Rf VSecificaWiRQ ZUiWWeQ iQ mRdal Ǎ-calculus

Each formula corresponds to a set of states:
� □𝑝 is a set of states satisfying 𝑝 at any next state.
� 𝑥 is a set variable in recursive formulae.
� 𝜇𝑥. 𝜓ᇱ ∨ □𝑥 ≡ 𝜓ᇱ ∨ □𝜓ᇱ ∨ □(𝜓ᇱ ∨ □𝜓ᇱ) ∨ ⋯

➡ set of states satisfying 𝜓ᇱ or at any next state, or recursively, at 
any next state, or ...

� 𝜈𝑥. 𝜓 → ⋯ ∧ □𝑥
≡ 𝜓 → ⋯ ∧ □ 𝜓 → ⋯ ∧ □ 𝜓 → ⋯ ∧ □ 𝜓 → ⋯ ∧⋯

➡ set of states satisfying 𝜓 → ⋯ and at any next state, and 
recursively, at any next state, and ...

Abstractly interpreting an RNN
is done by tracing all states with possible input 
vectors:
� Calculate the set of states not satisfying the 

specification.
� It is represented with a constrained zonotope

closed under addition, matrix application, solving 
a linear equation, intersection, and bounded 
monotone element-wise activation functions.

A counterexample is generated
with backpropagation: calculating each input vector 
to force each state vector to be contained in the set 
computed in step (A). Those inputs cause an RNN to 
not satisfy the specification; hence, it is a possible 
attack pattern.
NOTICE. Like an RNN having a continuous state space, it is impossible to enumerate any 
path as a counterexample if it exists, so only formulae not containing ◇ are handled.

Approximation of calculation of RNN
with constrained zonotopes

Initial state 𝒉𝟎 Input region 𝑿𝟏

Output region 𝑶𝟏

State region 𝑯𝟏 Input region 𝑿𝟐

Output region 𝑶𝟐

State region 𝑯𝟐 Input region 𝑿𝟑

Output region 𝑶𝟑

𝑶ଵ = 𝒈 𝑯ଵ,𝑿ଵ

𝑯ଵ = 𝒇(𝒉଴, 𝑿ଵ)

𝑶ଶ = 𝒈 𝑯ଶ,𝑿ଶ 𝑶ଷ = 𝒈 𝑯ଷ,𝑿ଷ

𝑯ଶ = 𝒇(𝑯ଵ, 𝑿ଶ) 𝑯ଷ = 𝒇(𝑯ଶ, 𝑿ଷ)


