
A Heuristic Approach to Detect Opaque Predicates
that Disrupt Static Disassembly

Yu-Jye Tung
University of California, Irvine

yujyet@uci.edu

Ian G. Harris
University of California, Irvine

harris@ics.uci.edu

Abstract—Opaque predicates are used to perform code ob-
fuscation by injecting superfluous branches into the program.
Superfluous branches are the gateways for junk bytes or un-
reachable code to inconspicuously mingle with authentic code
instructions. In this paper, we focus on the case where opaque
predicates introduce junk bytes, thus causing damage to the
static disassembly process when junk bytes are also treated as
code. Although introduced two decades ago, detecting opaque
predicates is still an unsolved problem due to the flexibility in
their constructions. Past works on detecting opaque predicates
only detect opaque predicates with specific constructions. We
propose a novel approach to opaque predicates detection that
allows us to generically detect opaque predicates when the
damage is the inserted junk bytes. Our proposed approach
is the first to detect opaque predicates by identifying their
corresponding superfluous branches through the damage caused
by the obfuscation. Preliminary experiments show the potential
of this novel approach by detecting opaque predicates of varied
constructions.

I. INTRODUCTION

A. Context

Code obfuscation is a software protection mechanism that
transforms a program into a more complex yet semantically-
equivalent program [36]. Although code obfuscation does not
provide strong mathematical guarantees on the protection it
offers, it is still widely used in scenarios where cryptographi-
cally secured methods cannot be practically realized. Such is
the case for executable binaries that need to run on an end-
user’s machine, where the user has the privilege to scrutinize
an executable binary in any way he or she wants. While
code obfuscation is used to protect proprietary software’s
algorithmic intellectual property, it is also used by malware
authors to harden their malware against reverse engineering
attempts [26], [42], [45], [30] since reverse engineering is an
effective method to uncover behaviors the malware can exhibit
during program runtime.

B. Problem

Code obfuscation can harden an executable binary from
reverse engineering by complicating the retrieval of accurate

and complete disassembly from it. Inaccurate disassembly con-
tains instructions that will never be executed during program
runtime, whereas incomplete disassembly fails to include in-
structions that are executed during program runtime. Accurate
and complete disassembly is a fundamental requirement for
reverse engineering before any code reasoning can be done.
Accurate and complete disassembly is vital for manual reverse
engineering since the majority of the work consists of reading,
manipulating, and commenting on the disassembly to under-
stand program behaviors. Manual reverse engineering still
accounts for the majority of a reverse engineer’s workflow [39],
[28], [27], [41], [4], [34]. Accurate and complete disassembly
is even more vital for automated reverse engineering as it is
the basis that binary analysis platforms [35], [5], [12], [33],
[17] rely on.

Opaque predicates can result in both inaccurate and in-
complete disassembly. They are also popular because stealthy,
cheap, and resilient opaque predicates can be generated at scale
[36]. In fact, many real-world obfuscation tools have support
for them [9], [24], [18], [8].

Fundamentally, opaque predicates inject superfluous
branches (a.k.a dead branches), or branches that are never
taken during program runtime, into the disassembly. An
opaque predicate injects a superfluous branch by syntactically
disguising an unconditional branch as a conditional branch.
This disguise is enabled by an invariant expression that
always evaluates to true or false. The eventual disguised
conditional branch is composed of an unconditional branch
and a superfluous branch. A simple opaque predicate in x86
assembly is demonstrated below:

xor eax, eax
jz always_jump

The disguised JZ instruction will always jump to the
label ”always jump” because prior to the jump the zero flag
is always set by the XOR instruction. Here, the invariant
expression evaluates to true. The disguised JZ instruction is
composed of a unconditional branch whose target address
is the ”always jump” label (true branch) and a superfluous
branch whose target address is the location immediately fol-
lowing the JZ instruction (false branch).

There are two types of damage that can result from opaque
predicates: code bloat [10] or disassembly desynchronization
[22], [13]. Code bloat complexifies reverse engineering by
inserting unreachable code, or code that will never be executed,
into the instruction stream. On the other hand, disassem-
bly desynchronization complexifies reverse engineering by

Workshop on Binary Analysis Research (BAR) 2020
23 February 2020, San Diego, CA, USA
ISBN 1-891562-62-2
https://dx.doi.org/10.14722/bar.2020.23004
www.ndss-symposium.org

Fig. 1: An opaque predicate with an invariant expression
that evaluates to false.

inserting junk bytes, or data bytes that are not meant to be
parsed as code instructions, into the instruction stream. When
the damage is disassembly desynchronization, junk bytes are
inserted into superfluous branches’ target basic blocks as they
are unreachable during program runtime. This complicates the
retrieval of accurate and complete disassembly since disassem-
blers that cannot identify the opaque predicate will parse the
junk bytes as code instructions; note that junk bytes have high
statistical chance of having corresponding legal instructions
on compact instruction set architecture (ISA) such as x86 and
ARM Thumb.

Our current method focuses on detecting opaque pred-
icates when the damage is disassembly desynchronization.
Disassembly desynchronization results in both inaccurate and
incomplete disassembly.

Inaccurate disassembly leads to unintended red-herrings
that increase overall reverse engineering time. Figure 1 shows
the damage done by an opaque predicate with an invariant
expression that evaluates to false. The bolded JZ instruction
will never jump but modern disassemblers like IDA Pro
[16] cannot statically determine that property, leading to IDA
Pro parsing the junk bytes at JZ instruction’s jump target
(0x8049396) as instructions, resulting in inaccurate disassem-
bly since instructions that will never be executed are also
part of the disassembly. The ”X” in Figure 1 implies program
execution will never reach there.

On the other hand, incomplete disassembly, like a jigsaw
puzzle without all the pieces, increases overall reverse engi-
neering time since the whole picture to reason about program
interactions is not present. Figure 2 shows the damage done by
an opaque predicate with an invariant expression that evaluates
to true. The bolded JNZ instruction will always jump but
since the subsequent instructions overlap the instructions at
JNZ’s jump target, IDA Pro cannot display both disassembly
sequences. Here IDA Pro makes the choice to only disassemble
the subsequent instructions following JNZ, but the subsequent
instructions are the injected junk bytes. The ”?” at Figure 2’s
jump target implies authentic instructions are not disassembled
because of the mis-disassembled junk bytes. The havoc caused
by this particular opaque predicate results in both incomplete
and inaccurate disassembly.

Fig. 2: An opaque predicate with an invariant expression
that evaluates to true.

C. Contributions

In this paper, we propose a novel approach to detect
opaque predicates that cause disassembly desynchronization;
from hereon forward, we will call this type of opaque pred-
icates desynchronizing opaque predicates. Our approach
generically detects an opaque predicate without identifying
its invariant expression by identifying its superfluous branch
instead. An opaque predicate’s superfluous branch exists in
a disguised conditional branch. We analyze the disassembly
of each basic block originating from a conditional branch for
illogical behaviors to identify superfluous branches since junk
bytes exist in the target basic block of a desynchronizing
opaque predicate’s superfluous branch. In Section IV, we
define a simple set of non-exhaustive heuristic-based rules that
model illogical behaviors. In Section V, we show that our
simple set of heuristic-based rules produce promising results in
generically detecting desynchronizing opaque predicates. Our
approach is the first to detect opaque predicates by identifying
superfluous branches instead of invariant expressions.

Previous works that detect opaque predicates strictly with
pattern matching [14], [40] avoid the need to determine opaque
predicates’ invariant expressions, but are restricted to detecting
a small and specific subset of possible opaque predicates. In
recent years, dynamic symbolic execution-based approaches
to detection [25], [32], [3] have shown to be effective in
detecting opaque predicates whose invariant expressions can be
determined at the basic block level. For example, Backward-
Bounded DSE [3] can detect 100% of the opaque predicates
inserted by the OLLVM obfuscator [18]. However, dynamic
symbolic execution-based approaches’ detection accuracy de-
creases when encountering opaque predicates of varied con-
structions [37]. This is because their detection approaches
are based on determining if a conditional branch contains an
invariant expression. Depending on how the opaque predicate
is constructed, it can be non-trivial or even undecidable to iden-
tify the invariant expression. Tofighi-Shirazi et al. [37] recently
introduce a detection approach using machine learning based
on a decision-tree classification model. Although it can detect
opaque predicates of varied constructions, the performance of
Tofighi-Shirazi’s approach suffers when detecting an opaque
predicate whose construction is not previously encountered in
its training data.

We propose an approach that can generically detect desyn-
chronizing opaque predicates across varied constructions. Our
approach can also detect new or never-seen-before opaque
predicate constructions since our detection approach identifies
the damage done by an opaque predicate, which is independent
of the specific construction.

The key contributions we present in this paper are the

2

following:

• We propose a novel approach to desynchronizing
opaque predicates detection that is effective in detect-
ing opaque predicates of any construction.

• We implement our approach as a BinaryNinja [1]
plugin and release it on GitHub1 to facilitate further
research in this area.

• We present a preliminary experimental evaluation as-
sessing the potential of our method.

Our current limitation in detecting desynchronizing opaque
predicates is when the junk code insertion obfuscation tech-
nique is also present. Junk code insertion inserts carefully
selected, but useless, code instructions into the instruction
stream such that primary program functionalities will not be
affected even if the junk code is executed. As explained in
Section VI-A, our dataflow-based rule will detect junk code
as code instructions manifested from junk bytes. Section VI-A
also provides possible mitigation we will explore in the future
to eliminate false positive identifications in the presence of
junk code. In future work, we will also work on detecting
opaque predicates when the damage is code bloat. Section V-D
and VI-B discuss how our current method will perform when
the damage is code bloat.

II. BACKGROUND

A. Opaque Predicates

Collberg et al. introduce opaque predicates in 1997 [10]. A
predicate is a conditional statement that evaluates to a boolean
value, true or false. A predicate P is opaque at location p in
the program if its boolean value is known during obfucation
but with greater difficulty determined post-obfuscation. There
are two main types of opaque predicates: PF

p if P always
evaluates to false at p and PT

p if P always evaluates to true at
p. The unique property of PF

p and PT
p is enabled by invariant

expressions. An invariant expression allows an unconditional
branch to syntactically acquire a conditional branch disguise.
This disguise composes of an unconditional branch and a
superfluous branch.

When Collberg introduces opaque predicates, he suggests
the use of opaque predicates to increase program complexity.
Linn [22] is the first to suggest using opaque predicates to
damage the disassembly by inserting junk bytes into superflu-
ous branches’ unreachable basic blocks.

B. Disassembly Desynchronization

Desynchronizing opaque predicates fall under an obfus-
cation class called disassembly desynchronization [13]. The
characterization of opaque predicates into disassembly desyn-
chronization is not universally accepted, as the term is only
used in The IDA Pro Book [13], but is useful for our purpose
since all the obfuscation techniques that fall under it degrade
quality of the disassembly. The following are all part of disas-
sembly desynchronization: branch function [22], call conver-
sion [22], [13], opaque predicates [10], [22], [13], jump table
spoofing [22], and overlapping instructions [7], [13]. Of all the

1https://github.com/yellowbyte/opaque-predicates-detective

obfuscation techniques under disassembly desynchronization,
the technique representing opaque predicates is of the utmost
importance due to opaque predicates’ prevalence in-the-wild
and flexibility in their constructions.

Beside overlapping instructions, the obfuscation techniques
listed above can all degrade retrieved disassembly’s quality
through the insertion of junk bytes into the instruction stream.

Branch function and call conversion place junk bytes after
x86’s CALL instruction; the function in the CALL operand,
or callee, will alter its return address so at callee’s function
completion it will not return to the instruction following x86’s
CALL instruction, allowing the insertion of junk bytes instead.
Branch function and call conversion exploit the traditional
assumption made by disassemblers that the callee will return
to the instruction following its invocation to mislead disassem-
blers to parse junk bytes following x86’s CALL as instructions.

There has been research in deobfuscating transformations
made by disassembly desynchronization, including Kruegel
et al. [20]. Kruegel introduces disassembly strategies to han-
dle disassembly desynchronization, particularly handling junk
bytes added after x86’s CALL instruction. Kruegel’s work
demonstrates high accuracy in eliminating the disassembly
degradation effects caused by branch function and call con-
version.

Overlapping instructions, jump table spoofing, and opaque
predicates are not handled by Kruegel’s disassembly strategies
as he argues that they are impractical. Overlapping instruc-
tions’ disassembly degradation effects are shown to be minimal
and there are very few candidates satisfying the criteria for it
[22]. Jump table spoofing is essentially a variant of opaque
predicates specific to creating artificial jump tables. Kruegel
argues that opaque predicates not easily recognizable by a
disassembler are non-trivial to create [20]. However, time
has shown that detecting opaque predicates is a pressing
issue as most real-world obfuscation tools now have support
for inserting opaque predicates [9], [18], [23], but modern
disassemblers like IDA Pro struggle to identify them (Figure
1 and Figure 2).

C. Classification of Opaque Predicates

Collberg classifies opaque predicates based on their re-
siliency against automatic detection [10]. In order of increasing
resiliency, the classification is: trivial, weak, strong, and full.
A reason for opaque predicates’ prevalence is in the flexibility
of their constructions, which allows for the creation of opaque
predicates with varying resiliency.

Trivial A trivial opaque predicate is constructed inside
a basic block so its invariant expression can be
identified at a basic block level.

Weak A weak opaque predicate is constructed
throughout a function so it requires intra-
procedural analysis to identify its invariant
expression.

Strong A strong opaque predicate is constructed across
multiple functions so it requires inter-procedural
analysis to identify its invariant expression.

3

Full A full opaque predicate is constructed across mul-
tiple processes so it requires inter-process analysis
to identify its invariant expression.

By Collberg’s classification, trivial opaque predicates are
most prone to successful detection. An algebraic-based opaque
predicate relies on a mathematical identity that will always
evaluate to the same boolean value; it will fall in the category
of trivial opaque predicates if not specially constructed since
a mathematical identity’s corresponding machine instructions
are executed in sequence when directly translated, resulting
in its entirety ending up in a single basic block. This is the
case for the algebraic-based opaque predicates generated by the
publicly available obfuscator OLLVM2 [18]. The mathematical
identity used by OLLVM’s algebraic-based opaque predicates
is the following:

∀x, y ∈ Z : y < 10 ‖ (x× (x− 1)) mod 2 == 0

Algebraic-based opaque predicates can also be classified as
weak opaque predicates if the dependencies for the mathemat-
ical identity they rely on are constructed across multiple basic
blocks in the same function.

D. Opaque Predicates Detection

Dynamic symbolic execution-based approaches [25], [32],
[3] have mainly shown to effectively detect trivial opaque
predicates. For example, beside effectively detecting trivial
opaque predicates, Backward-Bounded DSE has also shown
to detect weak opaque predicates found in the X-TUNNEL
malware — although with more difficulties [3]. Yadegari et
al. [44] propose a generic and semantic-preserving approach to
deobfuscating any obfuscation technique. Theoretically, Yade-
gari’s approach has the potential to detect across opaque predi-
cates of different resiliency. Tofighi-Shirazi et al. [37] recently
show that decision-tree based machine learning is effective
in detecting opaque predicates of varied constructions, but
Tofighi-Shirazi’s approach can only detect opaque predicates
whose constructions fall under trivial or weak resiliency since
the training data for their machine learning model is generated
using intra-procedural symbolic execution.

We are not aware of any previous work that evaluated
against strong or full opaque predicates. We will be the first to
evaluate against strong opaque predicates, but not full opaque
predicates since an automatic method to construct them is yet
to be implemented. Nevertheless, our approach should detect
full opaque predicates as explained in Section III. Full opaque
predicates cannot be ignored since they can still be constructed
manually on an ad hoc basis. In Section V, we evaluate against
trivial, weak and strong opaque predicates generated by the
Tigress C Diversifier/Obfuscator [8].

III. OUR APPROACH

Our approach to opaque predicates detection can detect
desynchronizing opaque predicates across the whole classifica-
tion spectrum. An opaque predicate is classified based on how
an opaque predicate’s invariant expression is constructed, but
our approach does not have to identify the invariant expression
to perform detection. Instead of detecting opaque predicates by

2https://github.com/obfuscator-llvm/obfuscator/wiki/Bogus-Control-Flow.

identifying invariant expressions, we detect opaque predicates
by reasoning on the disassembly of each basic block originat-
ing from a conditional branch as it is the site where junk bytes
exist if the originating branch is a desynchronizing opaque
predicate’s superfluous branch. If the basic block’s disassembly
exhibits illogical behaviors either by itself or w.r.t. the other
basic blocks in the same function, the conditional branch it
originates from is a superfluous branch and its sibling basic
block will always execute at program runtime. In Section V, we
show that a simple, non-exhaustive set of heuristic-based rules
defined in Section IV produce promising results in generically
detecting desynchronizing opaque predicates.

IV. ALGORITHMS

Our heuristic-based rules identify illogical behaviors, or
code behaviors that should not happen during program runtime.
We analyze each basic block that is a target destination for
a conditional branch. If basic block’s disassembly is illogical
based on our heuristic-based rules, we conclude the conditional
branch the basic block originates from is an opaque predicate’s
superfluous branch.

To statically reason on the disassembly of native machine
instructions, we use BinaryNinja [1] to lift the native machine
instructions to BinaryNinja’s family of intermediate languages
(BNILs). BNILs encode the behaviors of native machine
instructions explicitly in their representations, allowing for a
complete code analysis statically. Note that it is now customary
for binary-level analysis to rely on intermediate representations
(IRs) such as BNILs [33], [5], [12]. Algorithm 1 explains the
overall opaque predicates detection process.

Algorithm 1 Detecting Opaque Predicates

1: B ←
set of basic blocks originating from a conditional branch

2: rules← {
3: nonexistence memory address,
4: unreasonable memory offset,
5: abrupt basic block end,
6: unimplemented BNILs percentage,
7: privileged instruction usage,
8: memory pointer constraints
9: defined but unused,

10: }
11:
12: for each b ∈ B do
13: illogical basic block ← false
14: for each r ∈ rules do
15: if r(b) then
16: illogical basic block ← true
17: break
18: end if
19: end for
20: if illogical basic block then
21: print ”b’s origin is an opaque predicate”
22: end if
23: end for

Lines 1 - 10 define two sets; the first set denotes all basic
blocks where junk bytes can be inserted as a result of an

4

opaque predicate and the second set contains each heuristic-
based rule. On line 12, we iterate through each basic block in
the first set and on line 14 we iterate through each heuristic-
based rule to pass each basic block as function argument to
each heuristic-based rule (line 15). Each heuristic-based rule
will have access to the basic block that is passed to it and the
basic block’s enclosing function. If any one of the heuristic-
based rule identifies illogical behaviors based on the basic
block itself or its interaction with the rest of the code in
the same function, we set the ”illogical basic block” variable
to true (line 16). On line 20, we check the status of the
”illogical basic block” variable after checking behaviors of
the basic block with each heuristic-based rule. If the variable
is set to true, we conclude the basic block originates from an
opaque predicate’s superfluous branch. The rest of this section
describes the heuristic-based rules.

A. Heuristic-Based Rules.

a) nonexistence memory address (R1): The target ad-
dress of a control-flow altering instruction must be in the
executable section of mapped address space. Likewise, the
memory location used to store written data must be in the
writable section of mapped address space.

Formally, assume the mapped address space’s range is a
set represented by M , the executable section range is a set
represented by E, and the writable section range is a set
represented by W , then E ⊆ M ∧ W ⊆ M . If a control-
flow altering instruction’s target address A can be determined,
this property must hold: A ∈ E. If A is an address that has
data written to it during program runtime, this property must
hold: A ∈W .

b) unreasonable memory offset (R2): A memory offset
should not be extremely large or small. A data structure in
high-level programming languages (e.g., array, structure) is
accessed by an offset from the beginning of the data structure
when compiled down to native machine code. Typically a data
structure is reasonably-sized so program complexity can be
controlled in a maintainable manner. However, this is only
considered to be a good coding practice as it is not always the
case. We empirically determine the reasonable bound, with
account for the extreme case, for a memory offset O to be the
following: −0x100000 < O < 0x100000.

c) abrupt basic block end (R3): An incomplete basic
block cannot be part of the disassembly. A basic block is
an incomplete basic block if it does not have a unique exit
point, with explicit outgoing edges or implicit outgoing edges
(e.g., an indirect control-flow altering instruction such as RET).
Definition 1 defines an incomplete basic block.

Definition 1: A vector of bytes S contains an incomplete
basic block if and only if an invalid instruction encoding byte
exists at index i1 in S and if a valid instruction encoding
byte that decodes to a control-flow altering instruction exists
at index i2 in S, then this must hold: i1 < i2.

Figure 3 is an example of an incomplete basic block
caused by the junk bytes sequence: ‘0x42 0xd0 0xaf‘. Only
the encoding of the first instruction, inc edx, is completely
made up of bytes from the junk bytes sequence. The encoding
of the next instruction is made up of the rest of the junk bytes

in the sequence and arbitrary bytes that happen to neighbor it.
Eventually, a byte not part of an instruction encoding, ‘0xff‘,
is encountered, leading to an incomplete basic block. Junk
bytes will not introduce an incomplete basic block if a control-
flow altering instruction is disassembled before encountering
an invalid instruction encoding byte, thus still forming a valid
basic block (Figure 4). In Figure 4, although the byte ‘0xff‘ in
the junk bytes sequence, ‘0x31 0xc0 0xeb 0x08 0xff‘, is not
part of a valid x86 instruction encoding, it does not result in
an incomplete basic block because the 2 bytes prior to ‘0xff‘
disassembled to a JMP instruction.

d) unimplemented BNILs percentage (R4): A basic
block is illogical if it contains too many instructions that
BinaryNinja’s lifter cannot lift to its family of intermediate
languages, BNILs. Binary lifting is not a straightforward task
to perform since the documentations for native instruction set
architectures (ISAs) such as x86 and ARM are enormous and
continue to increase in size [19]. Furthermore, the operational
semantics for native ISA’s instructions are informally defined
or even completely left out in official documentations. As
a result it is not surprising that BinaryNinja cannot lift all
instructions in a native ISA to BNILs, but a copious amount
of unliftable instructions concentrated in a single basic block
is noteworthy. Therefore, this rule considers the numbers of
unliftable instructions in a single basic block. Empirically, we
identify illogical basic block based on the ratio of instructions
in a single basic block B that intersects with the set of all

unliftable instructions U in respective ISA:
|B ∩ U |
|B|

> 0.2

e) privileged instruction usage (R5): A user space
program, a program that has the least privilege, cannot executes
a privileged instruction, or any instruction that can only be
executed in the most privileged level. Note that this rule
assumes the analysis target is an executable binary that is
intended to execute in user space, which encompasses most
programs, as only the operating system, device drivers, and
hypervisors execute in a different privilege level.

In a computing system with a multitasking operating sys-
tem, certain resources need to be restricted from direct access
by any program to provide harmonious co-existence for all
the programs that are running concurrently. This restriction
is enforced by dividing instructions in an ISA into different
privilege levels and assigning a specific privilege level to each
program. In x86, there are 2 main privilege levels — ring 0
(most privilege) and ring 3 (least privilege). In ARM, there are
8 privilege levels with USR being the least privilege and SVC
being the most privilege. In MIPS, the 2 main levels are User
Mode and Kernel Mode. Other ISAs also have this concept of
privilege isolation. A formal definition for this rule follows.

Definition 2: Let E represent the set of instructions found
in the user space executable binary. Given that privileged
instructions P is a subset of its corresponding ISA’s complete
set of instructions and a privileged instruction cannot execute
in non-privileged mode, the following property must hold to
avoid premature program termination: |E ∩ P | = 0.

f) memory pointer constraints (R6): While a register
contains a memory pointer, all subsequent usages of the
register will exhibit distinctively restrictive behaviors. First, we
identify registers containing memory pointers by the semantics

5

Fig. 3: Junk bytes that result in an incomplete basic block.

Fig. 4: Junk bytes that do not result in an incomplete basic
block.

of how a register is used. If a register is used to load data from
memory or store data to memory, we identify it as containing
a memory pointer. After identifying a register that contains a
memory pointer, we place behavioral constraints that model
behaviors an authentic memory pointer should not exhibit
on all usages of the register while it contains the memory
pointer. Identifying usages of a register while it is containing
a particular value from all other usages of same register when
its content could be different is made possible by representing
the register in single static assignment (SSA) form. In SSA
form, every variable is defined only once, meaning that if the
same register is assigned multiple times that register will be
represented by multiple variables in SSA form. The behavioral
constraints for a memory pointer are the following:

• A memory pointer should only be stored or accessed
in a full-length register and never a sub-register (e.g.,
AX instead of EAX in x86) since memory address size
is the size of a full-length register.

• A memory pointer is restricted from operation by ×
and ÷ in the set of primitive arithmetic operators
{+,−,×,÷}.

• A memory pointer should not store its own memory
address to itself.

• If a memory pointer is a stack pointer, it cannot be
directly assigned a constant since a stack pointer keeps
track of current stack frame.

Algorithm 2 contains the pseudocode used to describe the
algorithm for this rule. The following helper functions are used
in the pseudocode:

• SIZE OF(x, i): calculates the storage size, in bytes,
for storage location x used in instruction i. x can be on
the stack, heap, data section, bss section, or a register.

• VALUE OF(x, i): retrieves the data stored at storage
location x in instruction i.

• LEN(x): calculates the length, or number of bytes,
used to represent x.

• REGISTER TYPE(x, i): retrieves the machine regis-
ter x refers to in instruction i, assuming x is a register
in SSA form.

• ASSIGN TO(x, y, i): return true if y is stored to
storage location x in instruction i, else return false.

• OPERATED BY(x, y, i): return true if operation y is
applied on value in storage location x in instruction i,
else return false.

Algorithm 2 memory pointer constraints rule

Require: Beside sp, all other mentions of registers are in
SSA form.

Require: elements in M exist in the same basic block
sp← stack pointer register
n← arbitrary element in the set of integers Z
a← arbitrary element in the mapped address range
M ← set of registers containing a pointer
Lr ← set of instructions that accesses register r ∈M
for each r ∈M do

for each i ∈ Lr do
if SIZE OF(r, i) 6=LEN(a) then

return true
end if
if OPERATED BY(r, ×, i) then

return true
end if
if OPERATED BY(r, ÷, i) then

return true
end if
address = VALUE OF(r, i)
if ASSIGN TO(address, address, i) then

return true
end if
if REGISTER TYPE(r, i) == sp then

if ASSIGN TO(r, n, i) then
return true

end if
end if

end for
end for
return false

Algorithm 3 defined but unused rule

dead return value seen← false
for each v ∈ V do

if v 6∈ A then
if IS RETURN VALUE VARIABLE(v) then

if dead return value seen then
return true

else
dead return value seen← true

end if
else

return true
end if

end if
end for
return false

g) defined but unused (R7): Every defined variable
should have a subsequent instruction that uses it. Here, variable
is an abstract entity that can represent registers, stack locations,

6

or status flags. For status flags, we only account for instructions
that exclusively affect status flags, such as TEST and CMP in
x86. Since we do not perform inter-procedural analysis and
analyze the disassembly up to the function containing the
variable, an exception to the rule is the variable that stores
the return value since return value is assigned in the function
but used in parent function. It is acceptable for the return value
variable to have no subsequent usage in the function unless in
addition to no subsequent usage the return value variable is
also reassigned, indicating that the value previously assigned
to the variable is discarded without use. Algorithm 3 presents
the pseudocode that enforces this rule and the following are
the definitions used in the algorithm:

• dead return value seen: a boolean value that is set
to true if it encounters a return value variable whose
assigned value has no subsequent usage, otherwise it
is set to false.

• V : set of variables in SSA form in a basic block. By
representing the variable in SSA form, it is implied
that the variable is defined once.

• A: subset of V where each variable is accessed in
another instruction in the same function.

• IS RETURN VALUE VARIABLE(x): assume x is a
variable in SSA form, return true if x is the return
value variable. Otherwise, return false.

V. EVALUATION

For our evaluation, we are interested in answering the
following research questions:

RQ1 What is the performance of our tool on protected
code (TP, FN, F1)?

RQ2 What is the error rate of our tool on unprotected
code?

A. Inserting Opaque Predicates

We evaluate our tool by inserting opaque predicates of
different resiliency into a set of programs and measure the
accuracy of our tool on detecting the inserted opaque predi-
cates using the performance metric, F1 score. We choose F1
score as our performance metric because this metric takes
into account of both correct and incorrect identifications. We
evaluate against trivial, weak and strong opaque predicates
generated by Tigress [8] used to insert junk bytes into opaque
predicates’ unreachable basic blocks.

Tigress can insert other types of bogus computation into
the unreachable basic blocks and our current method’s effec-
tiveness in detecting them is discussed in Section V-D and
VI-B. The main limitation with our approach in detecting
desynchronizing opaque predicates is when the obfuscation
technique junk code insertion is also present. In Section VI-A,
we propose an approach that we will explore to mitigate false
positive identifications in the presence of junk code.

B. Benchmark Programs

We use the obfuscation benchmark provided by Banescu
[2] as our benchmark programs. A subset of the benchmark
contains source code files that are randomly generated by Ti-
gress. Randomly generated programs are unrealistic examples,
so we do not present results for those programs.

Excluding the source code files that are randomly gener-
ated, Banescu’s benchmark contains 99 total source code files.
Each source code file is injected with 3 opaque predicates
of the same resiliency, which gives us a total of 297 opaque
predicates to evaluate against for each resiliency. However,
the subset of Banescu’s benchmark that contains multiple
functions sums up to 11 source code files, so we only have 33
strong opaque predicates since their constructions require the
traversal of multiple functions. For trivial and weak opaque
predicates, we have 297 opaque predicates each. Of the com-
bined 627 trivial, weak, and strong opaque predicates, there
are 597 unique junk bytes sequences randomly generated by
Tigress.

We use all 109 GNU core utilities’ executable binaries
compiled with GCC at optimization level O0, O1, O2, and
O3 for our ground truth to accurately assess our tool’s false
positive identifications (RQ2). We choose version 8.31 of
the GNU core utilities since it is the most recent version
at the time of our evaluation. Of the 436 combined GNU
core utilities’ executable binaries across the four optimization
levels, our tool has 61 false positive identifications. All 61
false positive identifications are found analyzing executable
binaries compiled at optimization level O0. This is because
unoptimized executable binaries, such as those generated by
GCC at optimization level O0, can naturally contain junk code.
Section VI-A explains why junk code causes false positive
identifications and how we plan to mitigate the problem in the
future.

C. Evaluator’s Setup

Tigress works by a source-to-source transformation. Here
are the relevant command options we use to generate the
obfuscated source:

• InitOpaque Transform adds the initialization code to
generate opaque predicates to specified function.

• AddOpaque Transform adds opaque predicates to
specified function.

• InitOpaqueStructs select how the invariant expression
is generated. For consistency, we set this to env so the
invariant expression is generated from entropy; this
also means that the InitEntropy Transform needs to
be specified.

• UpdateEntropy Transform updates the entropy vari-
able the invariant expression relies on in the specified
function.

• AddOpaqueKinds specifies what to add to the un-
reachable basic blocks. To insert junk bytes, we set
AddOpaqueKinds to junk. The other options beside
junk are call, fake, true, bug, and question. Details on
the other options are explained in Section V-D.

7

• AddOpaqueCount controls the numbers of opaque
predicates to add. We set this to 3.

• Seed is the randomization seed.

To generate trivial opaque predicates, we set the function
for InitOpaque Transform, AddOpaque Transform, and InitEn-
tropy Transform to ”main.” We do not set the UpdateEntropy
Transform.

To generate weak opaque predicates, we have the same
setup as generating trivial opaque predicates with the addition
of setting the function for UpdateEntropy Transform to ”main.”

To generate strong opaque predicates, we have the same
setup as generating weak opaque predicates with the exception
that the function for AddOpaque Transform is set to a function
other than ”main.”

We sets the command option AddOpaqueKinds to junk so
Tigress will insert junk bytes into the unreachable basic blocks.
By specifying junk it does not indicate that each inserted junk
bytes sequence will be different. The exact junk bytes sequence
inserted by the junk option is directly correlated to the value
the randomization seed is set to (Seed option). We attempt
to set the randomization seed to a different value each time
we invoke Tigress by setting the randomization seed to Bash’s
internal pseudo-random number generator, accessed through
the magic variable ”RANDOM.”

D. Other Types of Bogus Computation

Although placing junk bytes in opaque predicates’ unreach-
able basic blocks to cause disassembly desynchronization has
been popular since its introduction by Linn et al. [22], other
bogus computations that lead to code bloat can be placed in the
unreachable basic blocks instead. For example, beside inserting
junk bytes, Tigress can also insert the following types of bogus
computation:

• Call: places a function call to a random function
existing in executable binary in the unreachable basic
block.

• Fake: places a function call to a non-existing function
in the unreachable basic block.

• Bug: places buggified version of its sibling authentic
basic block in the unreachable basic block.

• Question: places copy of sibling authentic basic block
in the unreachable basic block.

Our detection approach is focused on detecting opaque
predicates when a junk bytes sequence is inserted into the
unreachable basic block. Out of all the other types of bogus
computation that can be inserted instead, inserting junk bytes
does the most damage to the disassembly since only it can
result in both incomplete and inaccurate disassembly. Future
work will address detecting other types of bogus computation.
Our current performance on detecting opaque predicates that
introduced other types of bogus computation is discussed in
Section VI-B.

R1 R2 R3 R4 R5 R6 R7

5

10

15

20

25

30

35

8.45

15.31
13.7112.75

8.29

22.16

32.37

Pe
rc

en
t

of
C

or
re

ct
Id

en
tifi

ca
tio

ns

Fig. 5: Detection contribution of each heuristic-based rule
on combined trivial, weak, and strong benchmark.

Fig. 6: Junk bytes creating multiple unreachable basic
blocks.

E. Results

To answer RQ1, we show the performance of our heuristic-
based rules on detecting trivial, weak and strong opaque
predicates in Table I. In Figure 5, we show the effectiveness
of each rule in correctly identifying opaque predicates. The
percentage for each rule is obtained by dividing the numbers
of correctly identified opaque predicates in respective rule
over the total numbers of opaque predicates across the 3
classifications (297+297+33). Note that the percentage is not
supposed to add up to 100 percent because multiple rules can
detect the same opaque predicate. Also, since rule R7 (IV-A0g)
will erroneously identify a basic block containing junk code
as damage done by an opaque predicate, Table II displays our
performance without rule R7 (IV-A0g).

A symbolic-based detection tool expects to detect 100%
of trivial opaque predicates. Although our approach did not
achieve detecting 100% of trivial opaque predicates, our ap-
proach shows promising and consistent results in detecting

8

Tool Classification Total Conditionals TP/Total Opaque Predicates Detection Percentage FP F1 Score

Our Tool
trivial 2465 221/297 74.41% 40 79.21%
weak 4657 212/297 71.38% 33 78.22%
strong 757 26/33 78.78% 2 85.24%
total 7879 459/627 73.20% 75 79.06%

TABLE I: Accuracy of our tool on detecting trivial, weak, and strong opaque predicates.

Tool Classification Total Conditionals TP/Total Opaque Predicates Detection Percentage FP F1 Score

Our Tool
trivial 2465 174/297 58.58% 31 69.32%
weak 4657 155/297 52.18% 23 65.26%
strong 757 20/33 60.60% 2 72.72%
total 7879 349/627 55.66% 56 67.63%

TABLE II: Accuracy of our tool on detecting trivial, weak, and strong opaque predicates without rule R7 (IV-A0g).

desynchronizing opaque predicates across different levels of
resiliency as seen in Table I and II. An immediate improvement
on our approach will be to identify a method to determine
the basic block containing the start of a junk bytes sequence
in the scenario that the junk bytes sequence creates multiple
unreachable basic blocks; this will allow us to reduce our
numbers of false positive identifications.

From Table I and II, we see that our rules produce non-
negligible false positive identifications; this is because the
inserted junk bytes can create multiple unreachable basic
blocks and our rules detect junk bytes in an unreachable
basic block that does not contain the start of the junk bytes
sequence. For example, the inserted junk bytes sequence in
Figure 6 is ‘0x2f 0xa0 0x29 0xab 0x61 0x4b 0x72‘ and it
results in 2 unreachable basic blocks because the byte ‘0x72‘
happens to be the opcode for the conditional jump instruction
JB, which leads BinaryNinja to create another unreachable
basic block at JB’s destination (”Basic Block B”). Our rules
detect ”Basic Block B” as containing junk bytes, but it does
not know that the branch ”Basic Block B” originates from
belongs to another unreachable basic block (”Basic Block A”)
and not the offending opaque predicate. The offending opaque
predicate’s superfluous branch is the branch that ”Basic Block
A” originates from.

VI. DISCUSSION

A. Junk Code Insertion

Junk code insertion is an obfuscation technique that inserts
carefully selected code into the instruction stream such that
the inserted code will not affect program functionalities. Junk
code insertion’s primary purpose is to bloat the disassembly
to complicate manual reverse engineering. A simple example
is demonstrated below:

mov eax, 1
mov eax, 3

Here, the first instruction is junk code since register EAX is
subsequently overwritten. One of our heuristic-based rules, rule
R7 (IV-A0g), will erroneously identify a basic block containing
junk code as the unreachable basic block resulting from an
opaque predicate. For example, in the above code the first
MOV instruction will trigger rule R7 (IV-A0g) since the value
assigned to register EAX is discarded without usage.

In future works, we plan to identify approaches that can
differentiate between junk code inserted by junk code insertion
and the junk code that is introduced from an opaque predicate’s
superfluous branch. One approach we will experiment with is
to take into account of other instructions that exist in the basic
block containing the junk code rule R7 (IV-A0g) identified. If
we can confidently determine that the other instructions in the
same basic block as the junk code are authentic, we conclude
that the basic block is not introduced by an opaque predicate’s
superfluous branch.

B. Our Performance on Other Types of Bogus Computation

Of the different types of code bloat-related bogus compu-
tation discussed in Section V-D, we should be able to detect
bogus computation of type fake with rule R1 (IV-A0a). Theo-
retically, we also should be able to detect bogus computation of
type call with rule R7 (IV-A0g) because the return value from
the function call chosen by call is unlikely to be used by any
subsequent authentic basic block. However, generally function
that returns a value, as identified from its disassembly, does
not always have its return value used in the caller function.
As a result, we do not analyze the dataflow of a function’s
return value. Although our current approach will not be able
to detect bogus computation of type bug or question since
the bogus computation generated from those two types do not
exhibit illogical behaviors, we can detect them by extending
our approach with the approach taken by DoSE [38]. DoSE
detects basic block clones in two-way opaque predicates (P ?

p
where predicate P at point p in the code can be evaluated
to either true or false) by verifying sibling basic blocks’
equivalence with a constraint solver. We can extend DoSE’s
approach to also detect invariant opaque predicates where the
injected instructions sequence in the unreachable basic block is
semantically equivalent to the authentic instructions sequence
in its sibling basic block.

VII. PREVIOUS WORKS

Current approaches to identifying opaque predicates in-
cludes fuzzing [23], statistical analysis [10], abstract interpreta-
tion [11], value-set analysis [21], heuristic-based analysis [14],
[40], machine learning [37], and dynamic symbolic execution
[25], [32], [3] or other theorem proving-based approaches
[31], [15], but none of the current approaches is sufficient in
identifying all opaque predicate constructions effectively [36],
[10], [6], [43], [18].

9

IDA Pro’s approach pattern match against desynchronizing
opaque predicate’s damage where basic blocks originating
from the same conditional branch overlap, but IDA Pro as-
sumes junk bytes to always be inserted at false branch’s target
basic block. This assumption by IDA Pro has shown to have
detrimental effect as it can be used against IDA Pro to instead
create stealthy and incomplete disassembly [40]. Gabriel’s
approach [14] pattern match against algebraic-based opaque
predicates utilized in OLLVM [18]; this tool-specific approach
does not scale as it can only deobfuscate OLLVM-protected
code.

Previous works also attempt to generically detect opaque
predicates. Madou’s [23] and Collberg’s [10] methods of
dynamically determining invariant expressions in conditional
branches err on the side of high false negative rate [33], but
statically determining invariant expressions in the general case
is undecidable. As a result, previous fully static approaches
to opaque predicate detection have to sacrifice completeness
for practicality, resulting in those approaches to detecting a
specific subset of opaque predicates instead. For example,
Preda’s implementation of abstract interpretation [11] only
detects trivial algebraic-based opaque predicates. OpaquePred-
icatePatcher, a Binary Ninja plugin, uses BinaryNinja’s value-
set analysis to detect opaque predicates by identifying if a
register used to determine a conditional expression contains
constant value, but BinaryNinja’s value-set analysis does not
perform analysis on loops, writable segments, unmodeled data
source (e.g. system call’s return value), and unlifted instruc-
tions [21]. Therefore, OpaquePredicatePatcher will not detect
an opaque predicate whose construction involves BinaryNinja’s
limitations. Yadegari et al. [44] propose a generic approach
to deobfuscating any obfuscation technique. Theoretically,
Yadegari’s approach has the potential to generically detect
opaque predicates.

In the past few years, it has been shown that dynamic sym-
bolic execution-based approaches [25], [32], [3] are effective in
detecting opaque predicates, but their performances decrease
when detecting opaque predicates of different constructions
[37]. Moreover, bi-opaque predicates [43], whose constructions
exploit dynamic symbolic execution’s limitation as their core
constructs, are introduced recently to specifically weaken the
performance of dynamic symbolic execution-based deobfusca-
tors. Ultimately, all theorem proving-based approaches [25],
[32], [3], [31], [15], whether the approach utilizes dynamic
symbolic execution or not, are bottlenecked by current limita-
tions of automated theorem proving [29].

Recently, Tofighi-Shirazi et al. show that a decision-tree
classification model for machine learning performs effectively
to detect opaque predicates across multiple constructions [37].
However, Tofighi-Shirazi’s approach will only perform opti-
mally when it is detecting opaque predicates constructed in
the same manners as the opaque predicates previously seen
in its training data. Any new opaque predicate construction
will degrade the detection accuracy. Furthermore, the train-
ing data for Tofighi-Shirazi’s approach is generated using
intra-procedural symbolic execution. In other words, Tofighi-
Shirazi’s approach will not detect any opaque predicate whose
construction crosses multiple functions’ boundaries. By the
classification discussed in Section II-C, it will not detect
opaque predicates of strong or full resiliency.

VIII. CONCLUSION

By observing that an invariant expression in a conditional
branch is not the only identifier for a desynchronizing opaque
predicate and that its superfluous branch can also be used, we
propose a detection approach based on identifying a desyn-
chronizing opaque predicate’s superfluous branch. Superfluous
branches are identified by analyzing the disassembly of each
conditional branch’s target basic blocks for illogical behaviors
as they are the sites where desynchronizing opaque predicates
introduce junk bytes. This novel approach allows us to effec-
tively detect opaque predicates that disrupt static disassembly
regardless of how they are constructed — from constructions at
the basic block level to constructions at the inter-process level
— since determining invariant expressions is not required for
our approach. We build an implementation of our approach as a
plugin to the BinaryNinja disassembler. Finally, we provide an
encouraging preliminary results by displaying promising and
consistent detection accuracy across desynchronizing opaque
predicates of varied resiliency.

ACKNOWLEDGMENT

This research was supported by a generous gift from the
Herman P. & Sophia Taubman Foundation.

REFERENCES

[1] V. 35, “Binaryninja,” https://binary.ninja/.
[2] S. Banescu, M. Ochoa, and A. Pretschner, “A framework for measuring

software obfuscation resilience against automated attacks,” in Proceed-
ings of the 1st International Workshop on Software Protection. IEEE
Press, 2015, pp. 45–51.

[3] S. Bardin, R. David, and J.-Y. Marion, “Backward-bounded dse: tar-
geting infeasibility questions on obfuscated codes,” in 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 2017, pp. 633–651.

[4] B. Bellay and H. Gall, “A comparison of four reverse engineering
tools,” in Proceedings of the Fourth Working Conference on Reverse
Engineering. IEEE, 1997, pp. 2–11.

[5] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “Bap: A binary
analysis platform,” in International Conference on Computer Aided
Verification. Springer, 2011, pp. 463–469.

[6] C.-F. Chen, T. Petsios, M. Pomonis, and A. Tang, “Confuse: Llvm-based
code obfuscation,” 2013.

[7] F. B. Cohen, “Operating system protection through program evolution.”
Computers & Security, vol. 12, no. 6, pp. 565–584, 1993.

[8] C. Collberg, “The tigress c diversifier/obfuscator,” Retrieved August,
vol. 14, p. 2015, 2015.

[9] C. Collberg, G. Myles, and A. Huntwork, “Sandmark-a tool for software
protection research,” IEEE security & privacy, vol. 1, no. 4, pp. 40–49,
2003.

[10] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

[11] M. Dalla Preda, M. Madou, K. De Bosschere, and R. Giacobazzi,
“Opaque predicates detection by abstract interpretation,” in Interna-
tional Conference on Algebraic Methodology and Software Technology.
Springer, 2006, pp. 81–95.

[12] A. Djoudi and S. Bardin, “Binsec: Binary code analysis with low-level
regions,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2015, pp. 212–217.

[13] C. Eagle, The IDA pro book. No Starch Press, 2011.
[14] F. Gabriel, “Deobfuscation: recovering an ollvm-protected program,”

QuarkLabs, vol. 4, p. 12, 2014.
[15] P. Garba and M. Favaro, “Saturn-software deobfuscation framework

based on llvm,” in Proceedings of the 3rd ACM Workshop on Software
Protection. ACM, 2019, pp. 27–38.

10

[16] Hex-Rays, “Ida pro,” https://www.hex-rays.com/products/ida/.
[17] M. Jung, S. Kim, H. Han, J. Choi, and S. K. Cha, “B2r2: Building

an efficient front-end for binary analysis,” in The NDSS Workshop on
Binary Analysis Research. Internet Society, 2019.

[18] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-llvm–
software protection for the masses,” in 2015 IEEE/ACM 1st Interna-
tional Workshop on Software Protection. IEEE, 2015, pp. 3–9.

[19] S. Kim, M. Faerevaag, M. Jung, S. Jung, D. Oh, J. Lee, and S. K. Cha,
“Testing intermediate representations for binary analysis,” in Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering. IEEE Press, 2017, pp. 353–364.

[20] C. Kruegel, W. Robertson, F. Valeur, and G. Vigna, “Static disassembly
of obfuscated binaries,” in USENIX security Symposium, vol. 13, 2004,
pp. 18–18.

[21] P. LaFosse. (2017) Automated opaque predicate re-
moval. [Online]. Available: https://binary.ninja/2017/10/01/
automated-opaque-predicate-removal.html

[22] C. Linn and S. Debray, “Obfuscation of executable code to improve
resistance to static disassembly,” in Proceedings of the 10th ACM
conference on Computer and communications security. ACM, 2003,
pp. 290–299.

[23] M. Madou, “Application security through program obfuscation,” 2006.
[24] M. Madou, L. Van Put, and K. De Bosschere, “Loco: An interactive

code (de) obfuscation tool,” in Proceedings of the 2006 ACM SIGPLAN
symposium on Partial evaluation and semantics-based program manip-
ulation. ACM, 2006, pp. 140–144.

[25] J. Ming, D. Xu, L. Wang, and D. Wu, “Loop: Logic-oriented opaque
predicate detection in obfuscated binary code,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2015, pp. 757–768.

[26] A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for
malware detection,” in Twenty-Third Annual Computer Security Appli-
cations Conference (ACSAC 2007). IEEE, 2007, pp. 421–430.

[27] H. A. Müller, J. H. Jahnke, D. B. Smith, M.-A. Storey, S. R. Tilley,
and K. Wong, “Reverse engineering: a roadmap,” in Proceedings of the
Conference on the Future of Software Engineering. ACM, 2000, pp.
47–60.

[28] H. A. Müller and H. M. Kienle, “A small primer on software reverse
engineering,” University of Victoria, Tech. Rep, 2009.

[29] R. Nieuwenhuis, A. Oliveras, E. Rodrı́guez-Carbonell, and A. Rubio,
“Challenges in satisfiability modulo theories,” in International Confer-
ence on Rewriting Techniques and Applications. Springer, 2007, pp.
2–18.

[30] P. OKane, S. Sezer, and K. McLaughlin, “Obfuscation: The hidden
malware,” IEEE Security & Privacy, vol. 9, no. 5, pp. 41–47, 2011.

[31] R. K. R. Prakash, P. Amritha, and M. Sethumadhavan, “Opaque predi-
cate detection by static analysis of binary executables,” in International
Symposium on Security in Computing and Communication. Springer,
2017, pp. 250–258.

[32] T. Rinsma, “Seeing through obfuscation: interactive detection and
removal of opaque predicates,” Ph.D. dissertation, Radboud University,
2017.

[33] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “Sok:(state
of) the art of war: Offensive techniques in binary analysis,” in 2016
IEEE Symposium on Security and Privacy (SP). IEEE, 2016, pp. 138–
157.

[34] R. Singh, “A review of reverse engineering theories and tools,” Inter-
national Journal of Engineering Science Invention, vol. 2, no. 1, pp.
35–38, 2013.

[35] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang,
Z. Liang, J. Newsome, P. Poosankam, and P. Saxena, “Bitblaze: A new
approach to computer security via binary analysis,” in International
Conference on Information Systems Security. Springer, 2008, pp. 1–
25.

[36] C. Thomborson, C. Collberg, and D. Low, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” in Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM, 1998, pp. 184–196.

[37] R. Tofighi-Shirazi, I. Asăvoae, P. Elbaz-Vincent, and T.-H. Le, “Defeat-
ing opaque predicates statically through machine learning and binary
analysis,” in Proceedings of the 3rd ACM Workshop on Software
Protection. ACM, 2019, pp. 15–26.

[38] R. Tofighi-Shirazi, M. Christofi, P. Elbaz-Vincent, and T.-H. Le, “Dose:
Deobfuscation based on semantic equivalence,” in Proceedings of the
8th Software Security, Protection, and Reverse Engineering Workshop.
ACM, 2018, p. 1.

[39] C. Treude, F. Figueira Filho, M.-A. Storey, and M. Salois, “An ex-
ploratory study of software reverse engineering in a security context,”
in 2011 18th Working Conference on Reverse Engineering. IEEE,
2011, pp. 184–188.

[40] Y.-J. Tung. (2018) The return of dis-
assembly desynchronization. [Online]. Available:
https://github.com/yellowbyte/analysis-of-anti-analysis/blob/
develop/research/the-return-of-disassembly-desynchronization/
the-return-of-disassembly-desynchronization.md

[41] A. von Mayrhauser and A. M. Vans, “From code understanding needs
to reverse engineering tool capabilities,” in Proceedings of 6th Inter-
national Workshop on Computer-Aided Software Engineering. IEEE,
1993, pp. 230–239.

[42] B. Wanswett and H. K. Kalita, “The threat of obfuscated zero day
polymorphic malwares: An analysis,” in 2015 International Conference
on Computational Intelligence and Communication Networks (CICN).
IEEE, 2015, pp. 1188–1193.

[43] H. Xu, Y. Zhou, Y. Kang, F. Tu, and M. Lyu, “Manufacturing resilient
bi-opaque predicates against symbolic execution,” in 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN). IEEE, 2018, pp. 666–677.

[44] B. Yadegari, B. Johannesmeyer, B. Whitely, and S. Debray, “A generic
approach to automatic deobfuscation of executable code,” in 2015 IEEE
Symposium on Security and Privacy. IEEE, 2015, pp. 674–691.

[45] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”
in 2010 International conference on broadband, wireless computing,
communication and applications. IEEE, 2010, pp. 297–300.

11

