A Heuristic Approach to Detect
Opaque Predicates that Disrupt
Static Disassembly

By: Yu-Jye Tung, lan G. Harris

Opaque Predicates

Definition; conditional branches that always evaluate to true or false. Thus,
one of their branches is unreachable at runtime (a.ka superfluous branch).

Invariant expression evaluates to True

"
unconditional branch superfluous branch Opaque

\ / Predicates"

I p—

unreachable
basic block

Opaque Predicates

The damage is what's inserted into the unreachable basic blocks
introduced by opaque predicates' superfluous branches.

Invariant expression evaluates to True

"Opaque
Predicates”

| [———

unreachable
basic block

Opaque Predicates’ Damage

e Code Bloat

* Disassembly Desynchronization

Invariant expression evaluates to True

"Opaque
Predicates”

| [———

unreachable
basic block

Other Approaches
fm BINSEC

Dynamic Symbolic

MaChIne Exe CUtl On P tt H Vector35 / OpaquePredicatePatcher
Learning attern
-7 Value-Set Matchin Does the conditional branch contain an
Statistical Analysis 8 invariant expression?
An alysis Ref: S. Bardin, R. David, and J.-Y. Marion, “Backward-bounded dse: targeting infeasibility questions on obfuscated codes,” in

2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017, pp. 633—-651.

Ref.: M. Dalla Preda, M. Madou, K. De Bosschere,and R. Giacobazzi, “Opaque predicates detection by abstract interpretation,” in
International Conference on Algebraic Methodology and Software Technology. Springer, 2006, pp. 81-95.

Ref.: P.LaFosse (2017) Automated opaque predicate removal. [Online]. Available: https:/binary.ninja/2017//10/01/automated
-opague-predicate-removal.htm.

Ref: R. Tofighi-Shirazi, . Asavoae, P. Elbaz-Vincent, and T.-H. Le, “Defeating opaque predicates statically through machine
learning and binary analysis,” in Proceedings of the 3rd ACM Workshop on Software Protection. ACM, 2019, pp. 15-26.

Ref.:]. Ming, D. Xu, L. Wang, and D. Wu, “Loop: Logic-oriented opaque predicate detection in obfuscated binary code,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security. ACM, 2015, pp. 7/57—768.

https://binary.ninja/2017/10/01/automated-opaque-predicate-removal.htm

Classification of Opague Predicates

v

* Invariant expression is constructed inside a basic block.

* Invariant expression is constructed throughout a function.

« Invariant expression is constructed across multiple functions.

* Invariant expression is constructed across multiple processes.

Ref.: C.Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating transformations,” Department of Computer
Science, The University of Auckland, New Zealand, Tech. Rep., 1997.

Qur Detection Method

VWe detect opaque predicates by identifying the superfluous branch whose
target basic block contains the damage. Currently, we focus on when the

damage is disassembly desynchronization.

Invariant expression evaluates to True

"Opaque
Predicates”

| [———

Junk Bytes

How Our Method |dentifies Damage

Our method can correctly identify the superfluous branch by analyzing
each conditional branch's outgoing basic blocks for illogical behaviors.

Authentic code Instructions

conditional instruction (with an opaque invariant expression)

—

Junk bytes parsed as code
instructions

Authentic code Instructions

Our Rules To |dentify lllogical Behaviors

nonexistence memory address

unreasonable memory offset

abrupt basic block end

unimplemented BNILs percentage

priviledge instruction usage

memory pointer constraints

— defined but unused

1

2
3
4.
5:
6.
7
8
9

10:

B+

set of basic blocks originating from a conditional branch
s rules < {
nonexistence_memory_address,
unreasonable_memory_offset,
abrupt_basic_block_end,
unimplemented_BNILs_percentage,
privileged_instruction_usage,
memory_pointer_constraints
defined_but_unused,

}

11:

12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

: for each b € B do
wllogical_basic_block < false
for each r € rules do
if 7(0) then
illogical_basic_block < true
break
end if
end for
if illogical_basic_block then
print ’b’s origin is an opaque predicate”
end if
end for

Nonexistence Memory Address

* Target address of a control-flow altering instruction must be in the
executable section of mapped address space.

* Memory location used to store written data must be in writable section
of mapped address space.

P804878c byte [Oxffffffffdblécdc3], al {Oxdbl6cdc3}

08048791

Unreasonable Memory Offset

* A memory offset should not be extremely large or small.

* A data structure in high-level programming languages (e.g., array,
structure) is accessed by an offset from the beginning of the data
structure when compiled to machine code.

08048c3b dword [Ox100409c], 0Oxb8
©08048c45 bl, ch

08048c47 eax, Oxb8

08048c4c byte [ebx+0x3365e47d], cl
08048c52 eax, 0Ox14

Abrupt Basic Block End

* Anincomplete basic block cannot be part of the disassembly.
* A basic block is an incomplete basic block if it does not have a unigue
exit point, with explicit outgoing edges or implicit outgoing edges.

bytes in hex

42
deafeb158b85
60
ff

corresponding disassembly

inc edx

shr byte [edi-Bx7a74eal15], Ox1
pushad

?7?

Unimplemented BNILs Percentage

* A basic block is illogical if it contains too many instructions that
BinaryNinja’s lifter cannot lift to BNILs.

180 @ 08048612 unimplemented {out dx, al}

181 @ 08048613 1if (flag:d) then 275 else 279

IILL”—H

Privileged Instruction Usage

* A user space program, cannot executes a privileged instruction, or any
instruction that can only be executed in the most privileged level.

08048612 dx, al
08048613 dword [edi], [esi] {0x0}

08048614 gword [ecx+0xf38eba2]
0804861a dh, 0x45
0804861c Ox804862d

"Copies the value from the second operand (source operand) to the /O port specified
with the destination operand (first operand).”

Memory Pointer Constraints

* A memory pointer should only be stored or accessed in a full-length
register and never a sub-register (e.g, AX instead of EAX in x86).

* A memory pointer is restricted from operation by x and =+ in the set of
primitive arithmetic operators {+, —, x, +}.
* A memory pointer should not store its own memory address to itself.

* |[f a memory pointer is a stack pointer, it cannot be directly assigned a
constant since a stack pointer keeps track of current stack frame.

Defined But Unused

* Every defined variable should have a subsequent instruction that uses it.

080486e9 test eax, 0x21d21cbf
080486ee xchg edx, eax

080486ef jmp Ox8048839

"None of the status flags that TEST affects (SF, ZF and PF) are used"

Main Limitation

Detecting opague predicates in the presence of the obfuscation technique
junk code insertion.

* Inserts carefully selected code into the instruction stream such that the
inserted code will not affect program functionalities.

mov eax, 1
mov eax, 3

Our dataflow rule, defined_but_unused, will erroneously identify a basic
block containing junk code as exhibiting illogical behaviors.

Fvaluation

We implement our method as a BinaryNinja plugin.

github.com/yellowbyte/opaque-predicates-detective

NO¥

* What is the performance of our tool on protected code (TP,
FN, F1)?

NOY

* What is the error rate of our tool on unprotected code!

Fvaluation: RQ?2

We use all 109 GNU core utilities' executable binaries compiled with
GCC at optimization level OO0, O1, O2, and O3 as ground truth.

Of the 436 combined GNU core utilities’ executable binaries across the
four optimization levels, our tool has 61 false positive identifications.

All 61 false positive identifications are found when analyzing executable
binaries compiled at optimization level OO0 since unoptimized binaries can

naturally contain junk code and the defined_but_unused rule causes false
identification in the presence of junk code.

Fvaluation: Dataset

We evaluate our tool by inserting trivial, weak, and strong opaque

predicates generated by Tigress into the obfuscation benchmark provided
b>/ Banescul tigress.wtf
github.com/tum-i22/obfuscation-benchmarks

Note: we discard source files in benchmark that are randomly generated
by Tigress since randomly generated programs are unrealistic examples.

Fvaluation: ROQ1

Tool Classification | Total Conditionals | TP/Total Opaque Predicates | Detection Percentage | FP | F1 Score
trivial 2465 221/297 74.41% 40 79.21%
Our Tool weak 4657 212/297 71.38% 33 78.22%
strong 757 26/33 78.78% 2 85.24%
total 7879 459/627 73.20% 75 79.06%

Accuracy of our tool on detecting trivial, weak, and strong opaque predicates.

Tool Classification | Total Conditionals | TP/Total Opaque Predicates | Detection Percentage | FP | F1 Score
trivial 2465 174/297 58.58% 31 69.32%
Our Tool weak 4657 155/297 52.18% 23 65.26%
strong 757 20/33 60.60% 2 72.772%

total 7879 349/627 55.66% 56 67.63%

Accuracy of our tool on detecting trivial, weak, and strong opaque predicates without defined but_unused rule.

Reason For FP Other Than Junk Code

If the inserted junk bytes create multiple unreachable basic blocks and our
rules detect illogical behaviors in an unreachable basic block that does not
contain the start of the junk bytes sequence.

Basic Block A
2f das
"2f a0 29 ab 61 4b /72" a029ab614b mov al, byte [@x4b61ab29]

72eb jb 0x8048752

Basic Block B

Pa837d90v10f or al, byte [ebx+0xf01907d]

8ed7 mov ss, di

9100 add dword [eax], eax

008b459099c1 add byte [ebx-0x3e666fbb], cl
Ea1f01d683e001 jmp far 0x83d0B11f, Ox1e0

Summary

An invariant expression in a conditional branch is not the only identifier for
an opaque predicate; it can also be identified through its superfluous
branch.

Here we present the first approach to detect opague predicates by

identifying corresponding superfluous branches.
github.com/yellowbyte/opaque-predicates-detective

This novel approach allows us to detect opaque predicates that disrupt
disassembly regardless of how the invariant expression is constructed.

