Creating Human Readable
Path Constraints from
Symbolic Execution

Tod Amon ()
Tim Loffredo ()
Sandia National Laboratories
2/23/2020 ST, U.S. DEPARTMENT OF
23:
Sandia National Laboratories is a multimission laboratory managed and operated by National National Nuclear Security Administr, af fon

Sandia
National
Laboratories

International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. SAND # 2020-2220 C Unlimited Unrestricted Release

1

Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell @

mailto:ttamon@sandia.gov
mailto:tjloffr@sandia.gov

Backgrouna

. Path Constraints:

« An inherent component of symbolic execution;

= \When execution is conditional upon symbolic variables,
multiple states arise, with different path constraints

= (Constraints stored in SMT solver

. Example: int abs(int x) {
if (x < 0) {
return -x; symbolic execution yields
} two states, with resulting

path-constraints and return values
return x;

When x < 0 When x >=0

Result is -x Result is x

When <Bool x[31:31] != 0> When <Bool x[31:31] == 0>
Result i1s <BV32 Oxffffffff * x> Result 1s <BV32 x>

2

Readabnlility

- Human-tool cooperation is currently the fastest
approach for thoroughly analyzing programs

- Some common guestions when symbolically
debugging and reverse engineering binaries:

What does this function do?
Did | set up my symbolic variables correctly?

How do | get here? or How did | get here?

- Simple questions should have simple answers

Contributions

- Our paper presents several examples that demonstrate the
usefulness of path constraints and the need for them to be
human readable

- We demonstrate the feasibility of transforming Boolean bit-
vector constraints into the integer domain

- We present several novel ideas
Including the use of logic synthesis tools to put constraints into specific forms.

Including an alternative approach to type inferencing based simply on finding
patterns in path-constraints.

BasICcS

- We are using “angr” for symbolic execution
- We are using Z3
- We are using python

. Qur artifacts are available here:

http://github.com/TodAmon/Bar2020

Example ;

7

- Help vulnerability researchers study functions.

« Access to both source code and binary
» Leverage SMT solvers to handle complex bit-vector issues

- Toy problem: When does this function return y-2 ?

int sublor2(int y)

{
int x = y;
X-=;
if (x > 5)

)
Solution:

X-=;
return x;

400526
400527 :
40052a:
40052d:
400530:
400533:
400537 :
40053b:
40053d:
400541 :
400544 :
400545:

push rbp

mov
mov
mov
mov
sub
cmp
Jle
sub
mov
pop
ret

rbp, rsp

DWORD PTR [rbp-0x14],edi
eax, DWORD PTR [rbp-0x14]
DWORD PTR [rbp-0x4],eax
DWORD PTR [rbp-0x4],0x1
DWORD PTR [rbp-0x4],0x5
400541 <sublor2+0xl1lb>
DWORD PTR [rbp-0x4],0x1
eax, DWORD PTR [rbp-0x4]
rbp

Two states are obtained from symbolic execution, one has the return value as

Claripy: <BV32 Oxfffffffe + y intle:32 13 32>
/3 sexpr: (bvadd #xfffffffe |y intle 32 13 32])

= Print this state’s path-constraint to get the answer

Ugly Path Constraints

. Claripy:

» [<Bool (Oxffffffff + y intle:32 13 32 - O0x5[31:31] ~ Oxffffffff +
y intle:32 13 32[31:31] & (Oxffffffff + y intle:32 13 32[31:31] *
Oxffffffff + y intle:32 13 32 - O0x5[31:31]) | (1f Oxffffffff +
y intle:32 13 32 - 0x5 == 0x0 then 1 else 0)) == 0>]

. /3 string (simplified using ctx-solver-simplify):

= And((Extract (31, 31, 4294967290 + y intle:32) == 1) ==
Not (Or (Extract (31, 31, 4294967290 + y intle:32) == 1, Extract (31,
31, 4294967295 + y intle:32) == 0)), Not(y intle:32 == 6))

.+ /3 sexpr:

extract 31 31) (bvsub (bvadd #xffffffff y) #x00000005))))
al!3 (ite (= #x00000000 (bvsub (bvadd #xffffffff y) #x00000005)) #bl
#00))) (let ((a!2 (bvxor ((extract 31 31) (bvsub (bvadd #xffffffff vy)
#x00000005)) (bvand ((extract 31 31) (bvadd #xffffffff y)) a'l))))
(and (= #b0 (bvor a'!2 a!3)))))

(let ((a'!l (bvxor ((extract 31 31) (bvadd #xffffffff vy))
((
(

Why?

- Path constraints are added when evaluating a conditional
branch in the intermediate representation used by symbolic
execution.

40053b: jle 400541 <sublor2+0xl1lb>

vex for 0x40053b:
IRSB {

to:

tO:Ity I1 tl:Tty I64 t2:Ity Tod t3:Ity I64 td:Ity I64 td5:Ity TIo64
Tty 164

00 | —-=————- IMark (0x40053b, 2, 0) —-—-———-
| tl = GET:I64 (cc op)
| t2 = GET:I64 (cc depl)
03 | t3 = GET:I64 (cc dep2)
|
|

04 t4 = GET:I64 (cc ndep)

05 t5 = amdodg calculate condition (0x000000000000000e,
t1,t2,t3,t4): Ity 164

06 | t0 = 64tol(th)

07 | 1£ (t0) { PUT(rip) = 0x400541; Ijk Boring }

NEXT: PUT (rip) = 0x000000000040053d; Ijk Boring

Why?

- Path constraints are added when evaluating a conditional
branch in the intermediate representation used by symbolic
execution.

ULong amdo4g calculate condition (

return 1 & (inv ~ ((sf ~ of) | zf));

1 (let ((a!l (bvxor ((extract 31 31) (bvadd #xffffffff y))

% ((_ extract 31 31) (bvsub (bvadd #xffffffff y) #x00000005))))

3 (a!3 (ite (= #x00000000 (bvsub (bvadd #xffffffff y) #x00000005))
4 #bl #b0))) (let ((a!2 (bvxor

5 ((_ extract 31 31) (bvsub (bvadd #xffffffff y) #x00000005))

6 (bvand ((extract 31 31) (bvadd #xffffffff y)) a!l)

7))) (and (= #b0 (bvor a'!2 al!3)))))

- Path constraints are simpler if vex is optimized

Our tools typically execute a single instruction at a time, for blocks the constraints are simpler

A Better Result

Using type information and tools that transform
patterns in bit-vector-domain to integer-domain

(let ((al!l (or (and (not (<=1 |y intle:32])) (not (<= 6 |y intle:32])))
(and (>= |y intle:32| 1) (<= 6 |y intle:32]))
(>= |y intle:32] 1))))
(let ((a!2 (or (= |y intle:32| 6)
(and (< (+ (- 6) |y intle:32]) 0) all)
(and (>= (+ (- 6) |y intle:32]) 0) (not all)))))
(not a'!2))) \\\

No longer bvand, bvsub, bvadd, etc.

Then use CtX—Solver—SimpIify (or other approaches).

And (Not (y 1ntle:32 == 6), 6 <=y 1intle:32)

- We are nearly there! (Z3 avoids strict inequalities)

10

A Better Result

- Aot of work to discover that when vy > 6
our function returns y—2

int sublor2(int vy) {
int x = y;

And (Not (y intle:32 == 6), 6 <= y intle:32)

return x;

}

- The translation into the integer-domain may not be precise,
due to overflow or other bit-vector effects

E.g., if we switch x—- to x++ the result, that our function returns y+2 wheny > 4
IS not precise in that there are some possible values of y that do not return y+2.

See our code for methods to check equivalence of statements in the same domain,
or potentially cross domain, in the presence of constraints

11

Example #2

- Tools to support network protocol extraction
ldentify paths from Source (e.g., read) to Sink (e.g., write)
Configure Source as a symbolic byte array (network input)
Sink deliver bytes to network
How is what is written related to what is read?

. Add marshalling to previous example:

read (0, inbuyf, 64)

int *ri

int x =

X==;

if(x > 5 Configured as array of symbolic bytes:
X—=; [symO, syml, sym2, sym3, ..]

}

int *wi = (int*) &outbuf[0];

AWl = X3
write (1, outbuf, 4);

12

Example #2

- Users and tools have only the binary (no source)
- Path constraint when we decrement twice:

((a!l (= ((extract 31 31) (bvadd #xfffffffa (concat sym3 sym2 syml sym0O))) #bl))
(= ((extract 31 31) (bvadd #xffffffff (concat sym3 sym2 syml symO))) #b0))

(= ((extract 31 31) (bvadd #xffffffff (concat sym3 sym2 syml sym0))) #bl)))
((a'4 (or (= al!l (or a'2 (= al!3 all)))

(= symO #x06) (= syml #x00) (= sym2 #x00) (= sym3 #x00))))) (not a'4d)))

- Path constraint suggests that our symbolic
byte sequence contains a 32 bit integer In little endian

. Substitute each symbolic byte with an expression showing
it as a piece In a hypothesized type

symO -> (extract 31 24) |sym[0-3]-? 1intle:32])

(
syml -> ((extract 23 16) |sym[0-3]-? intle:32])
sym2 —-> ((extract 15 8) |[|sym[0-3]-? intle:32])
sym3 —-> ((extract 7 0) |[sym[0-3]-? intle:32])
- Then apply domain conversion, and simplification to obtain:
And(6 <= sym[0-3]-? intle:32, Not (sym[0-3]-? intle:32 == 0))

13

Methodology

. Convert from bit-vector domain to integer domain

Use examples to discover constraint patterns such as:

- And-of-equality-on-extracts gets converted to actual value

- [f-then-else checks on a sign-bit gets converted to inequality
- Concat-with-zero/s gets converted to multiplication

Examples that fail suggest more patterns to understand

Preliminary results testing on constraints from toy problems that
are simplified using different strategies was very promising

14

Example ;

.- Use logic synthesis tools with gate-libraries created
for human readability for tailored situations.

« Example — path constraints when symbolic bytes are not equal to a string

char inbuf[64];

r?urg_by;els - reaéﬁrfigbquAMH If we combine the constraints for the four
int authreq = (inbu =="A" && : : : :
B (inbuf{liz,u, o paths that lead to authentication rejection:
inbuf[2]=="T' §&&
inbuf[3]== "H");
int good password = (inbuf[4]=="T' && Or (
- inbuf [5]=="0" & And (sym0==6>,
inbuf[6]=='D’ &s& Not (symd==84)),
inbuf [7]==0); And (sym0O==65,
1f (authreq && !good password) { sym4==84,
. // send authentication rejection And (sym0==65,
J sym4==84,
And (sym0O==65,
symé4==84,

We can use SIS on a gate library biased to
avoid “Or” gates to obtain:

And (sym0O==65, syml==85, sym2==84, sym3==72,
Not (And (sym4==84, sym5==79, sym6==68, sym7==0)))

15

=)

13

symb==79,
syml==85,

symb==79, sym6==68,

syml==85, sym2==84, sym3==72,

syml==85, sym2==84, sym3==72,
Not (symb==79)),
sym2==84,
Not (symb==68)),
sym3==72,

Not (sym7==0)))

syml==85, sym3==72,

sym2==84,

—_ //AUTH/I
|= “TOD\0")

sym[0O:3]
syml[4:

Results

« Existing tools perform amazing analyses
but are insufficient with regards to human readability:

/3 __str__and Z3.sexpr() are useful at times but often misleading / dense

Claripy readability is an improvement over Z3 (and handles end-ness
Issues quite nicely) but the structure of the constraints are still unwieldy

Constraint simplification algorithms exist primarily for efficiency

= There exist promising technigues:

Pattern-matching when symbolic variables are annotated with type

Logic synthesis algorithms for simplifying and structuring

« Claim: readability of path-constraints is a largely
unexplored and important aspect of automated analysis

» See our paper and code / artifacts for more details

16

A Difficult Task

.+ "Don’t attempt to understand anything after
you've given it to an SMT solver”

Indeed, the problem does appe

ar challenging

S0 to is the problem of understanding a binary
(never meant for consumption by anything other than hardware)

- "Please don't make me

ry and understand that”

Humans need software to simp

ify things for their consumption

. "Use something other than symbolic execution”

Yes! But we do need multiple approaches, and humans can more
easily leverage the power of symbolic execution and SMT solvers

17

Future Work

.- Formalize the notion of human-readability

» Score answers so we can choose good ones

- Quantitative Evaluation of our ideas
. Analysis on real binaries

. Work further upstream?

. Extend ideas to more data-types

. Extend ideas to other domains
= E.g., strings

18

Thank You

