
Creating Human Readable 

Path Constraints from 

Symbolic Execution

Tod Amon (ttamon@sandia.gov)

Tim Loffredo (tjloffr@sandia.gov)

Sandia National Laboratories

2/23/2020

1

Sandia National Laboratories is a multimission laboratory managed and operated by National 

Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell 

International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration 

under contract DE-NA0003525.  SAND # 2020-2220 C  Unlimited Unrestricted Release

mailto:ttamon@sandia.gov
mailto:tjloffr@sandia.gov


Background
• Path Constraints:  

▪ An inherent component of symbolic execution;

▪ When execution is conditional upon symbolic variables, 
multiple states arise, with different path constraints

▪ Constraints stored in SMT solver

• Example: int abs(int x) {

if (x < 0) {

return -x;

}

return x;

}

When <Bool x[31:31] != 0>

Result is <BV32 0xffffffff * x>

When <Bool x[31:31] == 0>

Result is <BV32 x>

symbolic execution yields 

two states, with resulting  

path-constraints and  return values 

2

When x < 0 When x >= 0
Result is -x Result is x



Readability

• Human-tool cooperation is currently the fastest 

approach for thoroughly analyzing programs

• Some common questions when symbolically 

debugging and reverse engineering binaries:

▪ What does this function do?

▪ Did I set up my symbolic variables correctly?

▪ How do I get here?  or How did I get here?

• Simple questions should have simple answers

3



Contributions

• Our paper presents several examples that demonstrate the 

usefulness of path constraints and the need for them to be 

human readable

• We demonstrate the feasibility of transforming Boolean bit-

vector constraints into the integer domain 

• We present several novel ideas

▪ Including the use of logic synthesis tools to put constraints into specific forms.

▪ Including an alternative approach to type inferencing based simply on finding 

patterns in path-constraints.

4



Basics

• We are using “angr” for symbolic execution

• We are using Z3 

• We are using python

• Our artifacts are available here:

http://github.com/TodAmon/Bar2020

5



Example #1:  

• Help vulnerability researchers study functions.
▪ Access to both source code and binary

▪ Leverage SMT solvers to handle complex bit-vector issues

• Toy problem:  When does this function return y–2 ?

• Solution:  
▪ Two states are obtained from symbolic execution, one has the return value as

Claripy: <BV32 0xfffffffe + y_intle:32_13_32> 
Z3 sexpr:  (bvadd #xfffffffe |y_intle_32_13_32|)

▪ Print this state’s path-constraint to get the answer

int sub1or2(int y) 

{

int x = y;

x--;

if (x > 5)

x--;

return x;

}

400526: push rbp

400527: mov rbp,rsp

40052a: mov DWORD PTR [rbp-0x14],edi

40052d: mov eax,DWORD PTR [rbp-0x14]

400530: mov DWORD PTR [rbp-0x4],eax

400533: sub DWORD PTR [rbp-0x4],0x1

400537: cmp DWORD PTR [rbp-0x4],0x5

40053b: jle 400541 <sub1or2+0x1b>

40053d: sub DWORD PTR [rbp-0x4],0x1

400541: mov eax,DWORD PTR [rbp-0x4]

400544: pop rbp

400545: ret

6



Ugly Path Constraints

• Claripy:
▪ [<Bool (0xffffffff + y_intle:32_13_32 - 0x5[31:31] ^ 0xffffffff + 

y_intle:32_13_32[31:31] & (0xffffffff + y_intle:32_13_32[31:31] ^ 

0xffffffff + y_intle:32_13_32 - 0x5[31:31]) | (if 0xffffffff + 

y_intle:32_13_32 - 0x5 == 0x0 then 1 else 0)) == 0>]

• Z3 string (simplified using ctx-solver-simplify):
▪ And((Extract(31, 31, 4294967290 + y_intle:32) == 1) == 

Not(Or(Extract(31, 31, 4294967290 + y_intle:32) == 1, Extract(31, 

31, 4294967295 + y_intle:32) == 0)), Not(y_intle:32 == 6))

• Z3 sexpr:
▪ (let ((a!1 (bvxor ((_ extract 31 31) (bvadd #xffffffff y))

((_ extract 31 31) (bvsub (bvadd #xffffffff y) #x00000005))))

(a!3 (ite (= #x00000000 (bvsub (bvadd #xffffffff y) #x00000005)) #b1 

#b0)))(let ((a!2 (bvxor ((_ extract 31 31) (bvsub (bvadd #xffffffff y)

#x00000005))(bvand ((_ extract 31 31) (bvadd #xffffffff y)) a!1))))

(and (= #b0 (bvor a!2 a!3)))))

7



Why?

• Path constraints are added when evaluating a conditional 

branch in the intermediate representation used by symbolic 

execution.

8

40053b: jle 400541 <sub1or2+0x1b>

vex for 0x40053b: 

IRSB {

t0:Ity_I1 t1:Ity_I64 t2:Ity_I64 t3:Ity_I64 t4:Ity_I64 t5:Ity_I64 

t6:Ity_I64

00 | ------ IMark(0x40053b, 2, 0) ------

01 | t1 = GET:I64(cc_op)

02 | t2 = GET:I64(cc_dep1)

03 | t3 = GET:I64(cc_dep2)

04 | t4 = GET:I64(cc_ndep)

05 | t5 = amd64g_calculate_condition(0x000000000000000e,

t1,t2,t3,t4):Ity_I64

06 | t0 = 64to1(t5)

07 | if (t0) { PUT(rip) = 0x400541; Ijk_Boring }

NEXT: PUT(rip) = 0x000000000040053d; Ijk_Boring

}



Why?

• Path constraints are added when evaluating a conditional 

branch in the intermediate representation used by symbolic 

execution.

• Path constraints are simpler if vex is optimized

▪ Our tools typically execute a single instruction at a time, for blocks the constraints are simpler

9

ULong amd64g_calculate_condition (

...

return 1 & (inv ^ ((sf ^ of) | zf));

(let ((a!1 (bvxor ((_ extract 31 31) (bvadd #xffffffff y))

((_ extract 31 31) (bvsub (bvadd #xffffffff y) #x00000005))))

(a!3 (ite (= #x00000000 (bvsub (bvadd #xffffffff y) #x00000005))

#b1 #b0)))(let ((a!2 (bvxor

((_ extract 31 31) (bvsub (bvadd #xffffffff y) #x00000005)) 

(bvand ((_ extract 31 31) (bvadd #xffffffff y)) a!1)

)))(and (= #b0 (bvor a!2 a!3)))))

1

2

3

4

5

6

7



A Better Result

• Using type information and tools that transform 

patterns in bit-vector-domain to integer-domain

• Then use ctx-solver-simplify (or other approaches):

• We are nearly there! (Z3 avoids strict inequalities)

10

(let ((a!1 (or (and (not (<= 1 |y_intle:32|)) (not (<= 6 |y_intle:32|)))

(and (>= |y_intle:32| 1) (<= 6 |y_intle:32|))

(>= |y_intle:32| 1))))

(let ((a!2 (or (= |y_intle:32| 6)

(and (< (+ (- 6) |y_intle:32|) 0) a!1)

(and (>= (+ (- 6) |y_intle:32|) 0) (not a!1)))))

(not a!2)))

And(Not(y_intle:32 == 6), 6 <= y_intle:32)

No longer bvand, bvsub, bvadd, etc.



A Better Result

• A lot of work to discover that when y > 6
our function returns y–2

• The translation into the integer-domain may not be precise, 
due to overflow or other bit-vector effects
▪ E.g., if we switch x-- to x++ the result, that our function returns y+2 when y > 4 

is not precise in that there are some possible values of y that do not return y+2.

▪ See our code for methods to check equivalence of statements in the same domain,
or potentially cross domain, in the presence of constraints

11

And(Not(y_intle:32 == 6), 6 <= y_intle:32)

int sub1or2(int y) {

int x = y;

x--;

if (x > 5)

x--;

return x;

}



Example #2

• Tools to support network protocol extraction
▪ Identify paths from Source (e.g., read) to Sink (e.g., write)

▪ Configure Source as a symbolic byte array (network input)

▪ Sink deliver bytes to network

▪ How is what is written related to what is read?

• Add marshalling to previous example:

12

read(0, inbuf, 64)

…

int *ri = (int*)&inbuf[0];

int x = *ri;

x--;

if(x > 5) {

x--;

}

int *wi = (int*)&outbuf[0];

*wi = x;

write(1, outbuf, 4);

Configured as array of symbolic bytes:
[sym0, sym1, sym2, sym3, …]



Example #2
• Users and tools have only the binary (no source)

• Path constraint when we decrement twice:

• Path constraint suggests that our symbolic
byte sequence contains a 32 bit integer in little endian

• Substitute each symbolic byte with an expression showing 
it as a piece in a hypothesized type
▪ sym0 -> ((_ extract 31 24) |sym[0-3]-?_intle:32|)

sym1 -> ((_ extract 23 16) |sym[0-3]-?_intle:32|)
sym2 -> ((_ extract 15 8) |sym[0-3]-?_intle:32|)
sym3 -> ((_ extract 7 0) |sym[0-3]-?_intle:32|)

• Then apply domain conversion, and simplification to obtain:
▪ And(6 <= sym[0-3]-?_intle:32, Not(sym[0-3]-?_intle:32 == 6))

13

(let ((a!1 (= ((_ extract 31 31)(bvadd #xfffffffa (concat sym3 sym2 sym1 sym0) )) #b1))

(a!2 (= ((_ extract 31 31)(bvadd #xffffffff (concat sym3 sym2 sym1 sym0) )) #b0))

(a!3 (= ((_ extract 31 31)(bvadd #xffffffff (concat sym3 sym2 sym1 sym0) )) #b1)))

(let ((a!4 (or (= a!1 (or a!2 (= a!3 a!1)))

(and (= sym0 #x06) (= sym1 #x00) (= sym2 #x00) (= sym3 #x00))))) (not a!4)))



Methodology

• Convert from bit-vector domain to integer domain

▪ Use examples to discover constraint patterns such as:

- And-of-equality-on-extracts gets converted to actual value 

- If-then-else checks on a sign-bit gets converted to inequality

- Concat-with-zero/s gets converted to multiplication

▪ Examples that fail suggest more patterns to understand

▪ Preliminary results testing on constraints from toy problems that 

are simplified using different strategies was very promising

14



Example #3

• Use logic synthesis tools with gate-libraries created 
for human readability for tailored situations.
▪ Example – path constraints when symbolic bytes are not equal to a string

15

char inbuf[64];

num_bytes = read(0, inbuf, 64);

int authreq = (inbuf[0]==’A’ &&

inbuf[1]==’U’ &&

inbuf[2]==’T’ &&

inbuf[3]== ’H’);

int good_password = (inbuf[4]==’T’ &&

inbuf[5]==’O’ &&

inbuf[6]==’D’ &&

inbuf[7]==0);

if (authreq && !good_password) {

... // send authentication rejection

}

Or(

And(sym0==65, sym1==85, sym2==84, sym3==72,

Not(sym4==84)),

And(sym0==65, sym1==85, sym2==84, sym3==72,

sym4==84, Not(sym5==79)),

And(sym0==65, sym1==85, sym2==84, sym3==72,

sym4==84, sym5==79, Not(sym6==68)),

And(sym0==65, sym1==85, sym2==84, sym3==72,

sym4==84, sym5==79, sym6==68, Not(sym7==0)))

If we combine the constraints for the four 

paths that lead to authentication rejection:

We can use SIS on a gate library biased to 

avoid “Or” gates to obtain:

And(sym0==65, sym1==85, sym2==84, sym3==72,

Not(And(sym4==84,sym5==79,sym6==68,sym7==0)))

sym[0:3] == ”AUTH” and 

sym[4:7] != “TOD\0”)



Results
▪ Existing tools perform amazing analyses

but are insufficient with regards to human readability:

• Z3 __str__ and Z3.sexpr() are useful at times but often misleading / dense

• Claripy readability is an improvement over Z3 (and handles end-ness 

issues quite nicely) but the structure of the constraints are still unwieldy

• Constraint simplification algorithms exist primarily for efficiency

▪ There exist promising techniques:

• Pattern-matching when symbolic variables are annotated with type 

• Logic synthesis algorithms for simplifying and structuring 

▪ Claim: readability of path-constraints is a largely 

unexplored and important aspect of automated analysis

▪ See our paper and code / artifacts for more details

16



A Difficult Task

• “Don’t attempt to understand anything after 

you’ve given it to an SMT solver”

▪ Indeed, the problem does appear challenging

▪ So to is the problem of understanding a binary

(never meant for consumption by anything other than hardware)

• “Please don’t make me try and understand that”

▪ Humans need software to simplify things for their consumption

• “Use something other than symbolic execution”

▪ Yes!  But we do need multiple approaches, and humans can more 

easily leverage the power of symbolic execution and SMT solvers

17



Future Work

• Formalize the notion of human-readability

▪ Score answers so we can choose good ones

• Quantitative Evaluation of our ideas

• Analysis on real binaries

• Work further upstream?

• Extend ideas to more data-types

• Extend ideas to other domains

▪ E.g., strings

18



Thank You

19


