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Abstract—Trusted Execution Environments (TEEs) constitute
a major building block for modern mobile devices’ security
architectures. Yet, the analysis tools available to researchers
seeking to examine these critical components are rudimentary
compared to the vast range of sophisticated tools available for
other execution contexts (i.e., Linux or Windows userland). We
see the primary reason for the lack of tools is originating from the
closed-source nature of TEEs. Specifically, the analysis of Trusted
Applications (i.e., userland applications executed in a TEE) is
of vital importance, since they account for the largest attack
surface. However, hardware primitives (i.e., ARM TrustZone)
prevent access to this high-privileged context and thwart any
form of dynamic analysis.

In this paper, we present our approach to investigate 1-day
vulnerabilities using selective symbolic execution of real-world
Trusted Applications (TAs). Our system, SimTA, is based on
angr and emulates the TA’s execution environment. We build
SimTA based on insights gained from manual static analysis of
a commercially and widely deployed closed-source TEE by using
an exploit on a physical device. In our evaluation, we elaborate on
how SimTA facilitates the binary-diff-guided analysis by replicat-
ing the analysis of a known critical vulnerability. Additionally, we
reveal two further issues, an authentication bypass and a heap-
based buffer overflow, that have quietly been introduced by the
vendor.

I. INTRODUCTION

In 2016, at an event called “GeekPwn”, Stephens [22]
presented a chain of exploits that ultimately led to an arbi-
trary code execution within the TEE of Huawei [25]. Using
these exploits, he could unlock the targeted device using the
fingerprint sensor with a finger of any person or even a nose.
His privilege escalation into the TEE is connected to CVE-
2016-8764, which is an input validation vulnerability that an
attacker can leverage to execute arbitrary shellcode within the
TEE context.

A common way to investigate vulnerabilities similar to
this is binary-diffing in combination with meticulous manual
analysis. To extract the patch for the vulnerability in question,
we refer to CVE-2016-8764’s summary [19] and identify
the latest affected version to compare it with its succeeding

version. One problem that can arise while extracting the patch
is that not only the vulnerable sequence of instructions appears
in the binary-diff, but many others. For example, new features
could have been introduced, or compiler flags might have
changed, resulting in irrelevant sequences. In this case, indica-
tors such as additional code accessing attacker-provided input,
could be used to identify relevant sequences. Unfortunately,
it is not possible to use dynamic analysis inside of the TEE
to investigate the patches handling attacker-controlled input,
because access is usually locked down by vendors. After
finding a vulnerability, an analyst needs many parameters from
the address space to replicate the exploit. However, the layout
of the address space (i.e., the location where code and data
are mapped to), which is necessary for the replication, is not
publicly disclosed.

In this work, we present our insights and techniques to face
these challenges. We studied CVE-2016-8764 using manual
analysis guided by binary-diffing and performed a dynamic
analysis on the device, treating the TEE as a black-box. We
were successful in replicating Stephens’ exploit and gained
insights into Huawei’s TEE, Trusted Core (TC). Using this
exploit, we acquired the address space layout of the targeted
TA. Next, leveraging the runtime parameters observed from
the device, we implemented an angr-based [21] prototype,
SimTA, capable of emulating the execution environment.
SimTA achieves a runtime behavior that is close to the normal
execution of the TA on the device.

In addition to having an execution environment for the tar-
geted TA, SimTA allows us to annotate the attacker-controlled
input, thus, permitting us to filter patches dealing with attacker-
controlled input from the binary-diff. Furthermore, we can
even selectively introduce symbolic inputs to better understand
the constraints introduced by a patch. As a result, we found
a previously unknown 1-day heap-overflow vulnerability, an
authentication bypass, and the already known type-confusion
vulnerability underlying CVE-2016-8764. We elaborate on the
analyses that led to these findings in our evaluation.

In summary, our contributions are the following:

• We share our insights for the interfaces, the abstraction
layers, and the address space layout of one TA for
the TC TEE. In order to get access to TEE internals
and examine the runtime parameters of the TA, we
implement and use an exploit for CVE-2016-8764 to
collect the information from a real device.
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Fig. 1: Architecture and communication channels of modern
TZ-based TEEs. The logical channel of a CA–TA interaction
(dashed line) is carried out by both OSes that, cooperatively,
forward and dispatch requests (solid lines).

• Based on these insights, we implement SimTA, an
analysis tool capable of executing the target TA with
selectively chosen symbolic inputs. We have open-
sourced SimTA to foster TEE-related research.

• We use SimTA to present a methodology to inves-
tigate binary-diff-guided analyses of security-critical
patches. The effectiveness of our methodology is
shown by replicating the analysis of CVE-2016-8764
and revealing two yet unknown critical issues affecting
the same version.

Closed systems (i.e., TEEs) pose a significant obstacle for
security research, because access is limited and information is
scarce. With this research, we present an approach to enable
the replication of CVEs and security fixes quietly introduced
by vendors. By making our prototype publicly accessible, we
hope to advance security research on TEEs. Our code and
instructions on how to get the binaries used in our evaluation
can be found on https://github.com/teesec/simta.

II. BACKGROUND

ARM TrustZone (TZ) [1] is commonly found on modern
mobile devices. It allows partitioning of the System-on-Chip
(SoC) into two execution contexts – the Secure World (SW)
and the Normal World (NW) – where code and data from
the SW cannot be accessed by the NW. The idea is to run
a feature-rich operating system and its userland in the NW
and only execute trusted code in the SW. Recent TZ-based
TEEs split the SW into a kernel, the Trusted Operating System
(Trusted OS), and a userland, which hosts TAs.

For data exchange, a logical communication channel exists
between a CA and a TA (dashed line in Figure 1). Using this
channel, CAs can request services from TAs. For example,
requesting the generation of an asymmetric key pair, where
the private key resides in the TEE, and the CA can use the
public key [9]. In addition to the key generation, the TA would
also provide an API to perform cryptographic operations using
the safely stored private key (e.g., sign or decrypt messages).

Technically, the CA cannot call a TA directly. It needs
to send its request to the Rich Operating System (Rich OS)
that takes care of using a NW-SW shared memory region
for the provided request data and initiates the world switch
using a privileged instruction (e.g., smc). Then, the Trusted OS
dispatches the request to the addressed TA. When the TA has
processed the request, it writes its output to the shared memory
region used for this session, returns to the Trusted OS, which,
in turn, initiates the world switch back to the NW. Finally,
the Rich OS returns execution to the CA. Figure 1 depicts this
communication channel with solid lines.

Vendors of TEEs have an interest in providing a common
interface for TAs in order to execute third-party TAs on their
platforms. One set of standards that gains popularity in this
regard is specified by GlobalPlatform (GP). GP is a non-
profit industry association that strives to enable collaborative
and open ecosystems by developing specifications, especially
regarding trusted computing technologies and particularly for
TEEs. The specification relevant for our work is the GP TEE
Internal Core API [7], which defines a common interface that
can be used by TAs (depicted in Figure 1).

Studying vulnerabilities in TAs is especially important
because TAs directly expose a large attack surface of the
trusted computing base to the attacker-controlled NW. Our
observation is that the number and complexity of pre-installed
TAs are increasing. For example, in the case of the Huawei
device we have in scope (i.e., the Huawei P9 Lite from 2016),
we found 17 TAs. In contrast, we found 32 TAs on a recent
model by Samsung (i.e., the Samsung Galaxy S9). SimTA’s
approach is a proposal to investigate security-critical bugs
in TAs and, therefore, provides an option to learn from the
mistakes made in the past.

III. CHALLENGES

In this work, we are interested in dynamically analyzing
patches introduced into TAs. In contrast to software executed
in the NW, an analyst faces some challenges when trying to
analyze TAs.

On modern Android devices, the trusted code (e.g., all code
that runs in SW) is proprietary, meaning there is no source code
available. Furthermore, this code is executed in the SW, and,
due to the TZ-provided isolation, we cannot make use of com-
mon tools utilized to study the runtime behavior of programs
(e.g., debuggers). Also, we cannot modify a TA’s code (e.g.,
binary instrumentation) because all code executed within the
TEE is signed and gets verified before execution. Given these
constraints, it seems unfeasible to perform advanced analyses
to study patches of TAs on the device.

In order to study TAs during runtime, there are two
apparent approaches. The first approach consists of taking the
entire SW software stack in binary format (e.g., Trusted OS,
and TAs) and execute it in a system emulator like QEMU.
One of the problems with this approach is that SoCs used in
production are usually not supported by full system emulators
because their datasheets are not publicly available. An option
to make this approach feasible is to reverse engineer the
interaction between the Trusted OS and the hardware in order
to implement a proper emulation. The interested reader may
be referred to Harrison et al. [11] who studied this approach.
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The second approach focuses on the execution of individ-
ual TAs without the Trusted OS. This approach requires the
knowledge of the virtual address space structure of the TA,
the emulation of entries into and exits from the TA, as well
as input and output mechanisms. For SimTA, we went with
this approach and implemented a prototype for one of the TAs
found on Huawei Android devices.

IV. RELATED WORK

Vulnerability research on TEEs, so far, primarily happens
using manual static analysis, and there are only a few cases
known where researchers shared their insights.

Our work stands on the shoulders of Stephens’ re-
search [22], [23], who presented a chain of exploits targeting
Huawei’s TEE implementation, TC. Using this exploit chain,
he could elevate his privileges from an Android application
(the CA in this case) to the Trusted OS. From this work,
particularly CVE-2016-8764 [19] is relevant for our research.
Prior work on TC was carried out by Shen [20], who presented
an escalation to the Trusted OS at BlackHat US 2015.

Further research targeting the Qualcomm Secure Execution
Environment (QSEE) was conducted by Beniamini [3]–[6].
Beniamini, besides other issues, also elaborates on a chain
of exploits leading to Trusted OS code execution. In addition,
Quarkslab [10] conducted research on an OTP TA running on
QSEE and shared their insights.

Besides TC and QSEE, Samsung devices used to ship with
a TEE, which was first called MobiCore and later Kinibi.
Atamali-Reihneh et al. [2] analyzed Samsung KNOX and its
usage of the MobiCore TEE on a rather conceptual level.
Later, Kinibi has been researched by Komaromy [13]–[15],
and Beniamini [6] as well, where both analyses provide many
details with technical depths.

As far as we know, all of the research mentioned above
was carried out using manual static analysis and trial-and-error
testing against a black-box on the phone as the only option
for dynamic analysis. From our own work, we can tell that
especially the last stage of exploit development (i.e., getting
the exploit stable without the target crashing) targeting a TEE
is laborious.

Recently, more attempts to emulate or re-host TEE compo-
nents surfaced. For instance, CheckPoint Security [17] describe
their work on a QEMU-based prototype capable of executing
QSEE TAs. Their prototype forwards the syscalls of TAs to a
manipulated TA inside of the TEE that acts as a proxy. The
modifications of the proxy-TA are carried out using the flaws
documented by Beniamini [4], [5]. Unfortunately, no source
code of this prototype is publicly available yet.

An approach not requiring a physical device targeting
TEEGris is pursued by Tarasikov [24]. TEEGris is a TEE
implementation recently introduced on Samsung phones that
presumably replaced Kinibi. Tarasikov is working on a QEMU-
usermode implementation to execute TEEGris TAs.

A re-hosting solution capable of performing full-system
emulation of TEEs named PartEmu will be presented at
Usenix 2020 by Harrison et al. [11]. TC, the TEE in scope for
our research, is not part of PartEmu’s evaluation.

Lastly, Hua et al. [12] proposed a system called vTZ capa-
ble of virtualizing TEEs in ARM TZ. This work does not have
the execution of closed source TEEs in scope, and extending
its scope would require significant reverse-engineering effort
in order to support the hardware requirements of different
proprietary TEEs available on the market.

In our approach, we build on top of the gained vulnerability
research and connect our insights with an angr-based approach
to execute TAs for TC.

V. UNDERSTANDING TRUSTED APPLICATIONS FOR
TRUSTEDCORE

In this section, we elaborate on the structure of TC-based
TAs and share insights gained from an exploit on a physical
device. The insights from this section will later allow us
to implement SimTA, an angr-based prototype capable of
emulating the execution environment of the target TA. We
limit our scope to one TA (storageTA) that can be found
on Huawei devices, although many insights apply generically
to TC TAs (i.e., they all use GP standards and, presumably,
the same program loader).

A. TA Lifecycle

Our first observation by looking at storageTA is that it
makes use of the GP TEE Internal Core API specification [7].
This API defines the lifecycle of TAs. A simplified version of
TC’s implementation of this lifecycle is given in Listing 1.
The MsgRcv() and MsgSend() functions represent the
integration of the TA with the dispatcher (see Figure 1). The
lifecycle functions have the following purpose:

• TA_CreateEntryPoint. Constructor, called once
during initialization of TA.

• TA_OpenSessionEntryPoint. Opens client ses-
sion, the provided session object is used to maintain
state for the session.

• TA_InvokeCommandEntryPoint. Invocation of
trusted application commands.

• TA_CloseSessionEntryPoint. Closes client
session, frees space for the session object.

• TA_DestroyEntryPoint. Destructor, called once
during tear down of TA.

The most interesting data structures processed by this
API are passed to TA_OpenSessionEntryPoint and
TA_InvokeCommandEntryPoint. The arguments cm-
dId, paramTypes, and params originate from a CA in
the NW and, therefore, are user controlled.

B. TA Commands

Inside of the TA_InvokeCommandEntryPoint life-
cycle call, the actual interface of the TA is exposed. As
depicted in Listing 2 (a simplified version of storageTA),
the TA-specific command is chosen via the cmdId argument.
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1 while ( 1 ) {
2 LifecycleData* data = MsgRcv();
3

4 switch ( data->lifecycle_cmd ) {
5 case OPEN_SESSION:
6 void* sessCtx = NULL;
7 // constructor
8 if (data->init) {
9 TA_CreateEntryPoint();

10 }
11 TA_OpenSessionEntryPoint(data->paramTypes,
12 data->params, &sessCtx);
13 data->sessCtx = sessCtx;
14 break;
15 case INVOKE_CMD:
16 TA_InvokeCommandEntryPoint(data->sessCtx,
17 data->cmdId, data->paramTypes, data->params);
18 break;
19 case CLOSE_SESSION:
20 TA_CloseSessionEntryPoint(
21 data->sessCtx);
22 // destructor
23 if (data->deinit) {
24 TA_DestroyEntryPoint();
25 }
26 break;
27 default:
28 break;
29 }
30 MsgSnd(data);
31 }

Listing 1: TC TAs follow the lifecycle specified in the GP
Internal Core API.

From this listing, we can see that params is either a
memory reference or a value. The corresponding union def-
inition is given in Listing 3. The params argument of TA_-
InvokeCommandEntryPoint contains up to four pointers
to a struct like this.

Now it also becomes clear that the paramTypes argument
is necessary for the TA to get to know if the CA sent a
buffer or values. For each command, the TA has to check the
paramTypes to prevent wrong assumptions about how the
provided data can be interpreted.

From Listing 2, we can also see that the TA itself can have
a stateful API. The state for storageTA is stored within the
sessCtx argument so that subsequent calls from the same CA
can operate on this state (e.g., read from a previously opened
file handle).

Looking at the functions used inside the different com-
mands (e.g., TEE_OpenPersistentObject()), we can
see that most of them map to the GP Internal Core API [7].
Apparently, storageTA itself is just a thin layer of code that
connects the TEE lifecycle with the storage API defined in the
GP Internal Core API.

C. TA Address Space Layout

From the previous two sections, we can learn about the
integration of the TA into the TEE (e.g., how the dispatcher
provides data) and how the GP Internal Core API encapsulates
most of the functions used by a TA. In order to emulate the
execution environment on the device, however, we need the
TA’s address space layout. This layout will later be used as an
input for SimTA.

To retrieve these runtime parameters, we build on the
research of Stephens [22]. He found a type-confusion bug

1 TA_InvokeCommandEntryPoint(sessCtx, cmdId,
2 paramTypes, params) {
3 switch ( cmdId ) {
4 case FOPEN:
5 if (paramTypes != FOPEN_PTYPES)
6 goto ptype_error;
7

8 char* path; size_t pathsz;
9 uint32_t flags;

10 TEE_ObjectHandle obj;
11

12 path = params[0]->memref.buffer;
13 pathsz = params[0]->memref.size;
14 flags = params[1]->value.a;
15

16 TEE_OpenPersistentObject(TEE_STORAGE_PRIVATE,
17 path, pathsz, flags, &obj);
18 ...
19 break;
20 case FCLOSE:
21 if (paramTypes != FCLOSE_PTYPES)
22 goto error;
23 ...
24 TEE_CloseObject(...);
25 break
26 case FREAD:
27 if (paramTypes != FREAD_PTYPES)
28 goto error;
29 ...
30 TEE_ReadObjectData(...);
31 break;
32 case FWRITE:
33 if (paramTypes != FWRITE_PTYPES)
34 goto error;
35 ...
36 TEE_WriteObjectData(...);
37 break;
38 ...
39 }
40 return;
41 ptype_error:
42 log("bad param types");
43 return;
44 }

Listing 2: Each TC TA has a cmdId-handler that implements
different commands. This is a simplified handler of stor-
ageTA.

1 typedef union {
2 struct {
3 unsigned int buffer;
4 unsigned int size;
5 } memref;
6 struct {
7 unsigned int a;
8 unsigned int b;
9 } value;

10 } TC_NS_Parameter;

Listing 3: An array of four TC_NS_Parameter unions is
the primary data structure for input and output for TC TAs.

in storageTA that he could use to gain code execution
in this TA’s execution context. Since no proof of concept
was available for this exploit, we needed to replicate his
research and develop the exploit ourselves. Stephen’s slides
were invaluable for this process. Using the exploit, we were
able to leak arbitrary memory from storageTA’s execution
context and reconstruct its address space. The reconstructed
address space is depicted in Figure 2.

The first element mapped is globaltask which is a
binary without ELF header that can also be extracted from
the device’s firmware image. Fortunately, we found a string
table and a symbol table at the end of the binary. Using
symbols like TEE_TEXT_START, TEE_BSS_START, and
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Fig. 2: Virtual address space of storageTA as extracted from
a real device using an exploit based on CVE-2016-8764.

TEE_GOT_START, we were able to reconstruct global-
task’s sections. globaltask’s code and data sections are
mapped according to the assigned virtual addresses from the
ELF section headers. Directly above globaltask, we can
find the storageTA binary itself. globaltask turns out
to contain the implementation of all GP Internal Core API
functions that are called by storageTA and it is the only
mapped library. Consequently, globaltask should only be
dependent on the syscalls of the Trusted OS. By leaking
the content of storageTA’s .bss segment that contained
references to the heap, we were able to locate the heap. Using
a leaked stack pointer (r13) we could also reveal the stack
location. Additionally, a shared memory region is mapped into
the address space which is used for data exchange between SW
and NW.

D. Generalizing SimTA

The insights gathered regarding TC TAs are based on the
static and dynamic analysis of one TA (e.g., storageTA).
However, the firmware we investigated contains multiple TAs,
namely1:

• task_keyboard

• task_storage

• task_gate-
keeper

• task_keymas-
ter

• task_reet

• task_secboot

By looking at these TAs, we could verify that all of them
make use of the TA lifecycle and TA command processing, as
described above. Since we do not have an exploit to study the
address spaces of these TAs, we were not able to verify if our

1The names are taken from header fields within the firmware image.
task_storage corresponds to storageTA.

gained insights from storageTA’s address space also hold
for these TAs. A reasonable assumption is, however, that the
same loader loads all TAs.

Besides the TAs found in the firmware image, we identified
encrypted TAs that reside in the Android filesystem (e.g., all
/vendor/bin/*.sec files). Since we could not analyze
these TAs statically nor dynamically, we cannot verify our
gained insights for these TAs as well.

In order to get an idea of our insights’ general applicability,
we looked into OP-TEE [16] TAs. OP-TEE is an open-source
reference implementation for ARM TZ-based TEEs main-
tained by Linaro. We found that OP-TEE TAs use the same
lifecycle functions as TC (see Section V-A). One of the major
differences is the lifecycle’s integration with the dispatcher.
Instead of the while(1)-loop structure communicating
with the dispatcher using MsgRcv() and MsgSnd() (as
described in Listing 1), OP-TEE uses two functions called
utee_entry and utee_exit to enter and exit TAs. The
cmdId-handler of OP-TEE TAs is similar to the one used
by TC TAs. Apart from this, since OP-TEE’s TA loader
and libraries used by TA’s are open source, it should be
straightforward to adapt SimTA for OP-TEE TAs.

Other platforms potentially in scope for SimTA are Sam-
sung’s TEEGris, Trustonic’s Kinibi, and Qualcomm’s QSEE.
An indicator of GP standards usage for these TEEs can be
found in the publicly available list of GP members [8]. Besides
Huawei, also Samsung, Trustonic, and Qualcomm are full
members of GP and, according to GP’s website, share a com-
mon goal of developing GP’s specifications. Additionally, we
could verify that concepts from the GP specification are being
introduced into the Linux kernel for Qualcomm chipsets2.

In summary, a broader technical study is necessary to
evaluate if a system like SimTA can be extended to other
TEEs used in production. But, it seems that the ecosystem is
converging towards a common specification, which is a good
sign for the reusability of SimTA’s components.

VI. IMPLEMENTATION

We were able to extract the storageTA ELF directly
from the target device’s firmware image. Since TC on the
ARM-based target device runs in 32-bit mode, all TAs on this
platform are 32-bit binaries too. In this version, TC does not
make use of program headers and uses the virtual address of
a section provided in the ELF file to load it into memory.

Our SimTA prototype is implemented based on angr ver-
sion 8.19.4.5 and Python 3.6.7. As mentioned in Section V-A,
TAs follow a lifecycle that is usually implemented using
a while(1)-loop which, at its start, receives data from
the execution environment, and, at its end, returns data to
the execution environment. Since we want to emulate this
environment using SimTA, we hook the functions interact-
ing with it using angr’s SimProcedures. We chose the first
instruction of the lifecycle-loop to be the entry point into the
binary. Before execution begins, we initialize the state angr is
working on using the address space parameters derived from
our analysis described in Section V-C. This address space

2https://android.googlesource.com/kernel/msm/+/refs/heads/android-msm-
marlin-3.18-pie/drivers/misc/qseecom.c
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information includes loading storageTA and globaltask as
well as initializing the stack, the heap, and the shared memory
region. Regarding registers, we observed that only two registers
needed to be initialized with references to the current stack
frame. These two references could easily be identified from
the disassembly by looking at framepointer-relative address
assignments to those registers.

Moreover, we implemented a subset of the GP TEE Internal
Core API as angr SimProcedures. This subset is chosen in
order to support the execution of storageTA. Additionally,
we implemented a simple heap implementation to support
TEE_Malloc and TEE_Free. From reading the GP Internal
Core API, we know what a particular function is supposed to
do, and for all functions used by storageTA, we were able
to implement SimProcedures that keep the TA in a useful state
for the binary-diff analysis.

SimTA allows us to pass data consumed by the lifecycle
functions from the MsgRcv()-function (Listing 1) into the
storageTA process. This way, we can pass data into the
process from the perspective of a CA. By setting input data
to symbolic values, we are able to perform advanced analyses,
as we will elaborate on in the next section.

VII. EVALUATION

In this section, we evaluate SimTA in regard to its perfor-
mance and effectiveness.

A. Performance

When executing a binary in an emulated environment, a
performance impact is natural. Regarding SimTA, which is
based on angr, the target TA’s ARM instructions are first lifted
to VEX IR (i.e., Valgrind’s intermediate representation [18])
and then evaluated by a component called SimEngineVEX. To
estimate the slow down of the emulation compared to the
original execution environment (i.e., the device), we perform
the following sequence of actions in both environments 100
times:

1) load the storageTA
2) open a session
3) create and open a secure file
4) write to the secure file
5) seek to the beginning of the secure file
6) read from the secure file
7) close the secure file
8) close the session
9) unload the storageTA

On average, the execution of this sequence on the device
takes 36 milliseconds and 39202 milliseconds using SimTA,
which results in a slow down factor of approximately 1089x.
Note, that this significant slow down is a conservative mea-
surement since we did not optimize SimTA for performance.

Overall, SimTA trades performance for control, but, from
our experience, this performance impact is acceptable for the
analyses conducted with SimTA.
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Fig. 3: This figure shows an extract of storageTA’s control
flow graph – unpatched version left and patched version right.
The red, green, and black arrows indicate conditional and
unconditional control flow transitions. Unchanged, changed,
and new basic blocks are color-coded in green, yellow, and
blue, respectively.

B. Effectiveness

In order to evaluate the effectiveness of SimTA, we gener-
ate a binary-diff of storageTA from firmware version VNS-
L21C432B130 to version VNS-L21C432B160 and analyze
the diff. For ease of reference, we refer to the earlier version
as sta and the later version as sta’.

First, we manually generate a binary-diff using Zy-
namic’s BinDiff and filter for relevant patches. From BinDiff’s
“Matched functions” view, we can identify matched functions
containing changes. Using the flow graphs feature, we can view
a color-coded control flow graph of both versions of a matched
function side-by-side, as depicted in Figure 3. As a heuristic
to filter relevant patches, we concentrate on blue-colored basic
blocks that access attacker-controlled input. These basic blocks
represent new basic blocks in the patched version (e.g., sta’).
In order to do the filtering, we manually extract the blue basic
blocks from BinDiff and perform an analysis with SimTA on
sta’ reveiling if attacker-controlled input (i.e., paramTypes
and params as passed to the lifecycle functions in Listing 1)
is accessed. If no attacker-controlled input is accessed, we do
not consider the change for further analysis.

Second, we run a further analysis using SimTA to examine
the constraints introduced by the patches. From each filtered
blue basic block (i.e., basic blocks 4 and 5 remain), we look
for the next subsequent basic blocks that have equivalent basic
blocks in sta (i.e., for basic block 5, these would be basic
blocks 7 and 8). Since we know from the previous analysis
which part of the attacker-controlled input is accessed in basic
block 5, we can selectively set this input to a symbolic value,
and execute both versions of storageTA to a common basic
block (e.g., basic block 8). Lastly, we can view and compare
the constraints in both versions using SimTA, and reason about
the security impact of the introduced patches.

In the following paragraphs, we elaborate on four analyses
performed using SimTA.

One of the changed functions, strToByte(), is a hex-
decode function and contains changes according to BinDiff.
By passing the new basic blocks to SimTA, we can see that
these basic blocks do not access attacker-provided input and,
therefore, we exclude it from further analyses.
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A further function containing changes is the lifecycle
function TA_InvokeCommandEntryPoint known from
Section V-A. Within the set of introduced basic blocks for
this function, SimTA identifies basic blocks operating on the
paramTypes argument. By selectively setting paramTypes
symbolic and examining the constraints in both versions of
storageTA, we unveil missing parameter type checks for
all commands in this TA. This forgotten check is particularly
critical for the FREAD and FWRITE commands, since these
commands operate on attacker-provided buffers. If we can
control the location of these buffers, we have an arbitrary
read or write primitive. It is no surprise that we find a bug
like this in storageTA since these are exactly the primitives
Stephens [22] used in his work. Using SimTA, we rediscovered
the type-confusion underlying CVE-2016-8764.

Another interesting finding revealed by SimTA is an in-
troduced length check for a buffer in the FOPEN command.
This 1-day bug was discovered because of an additional length
check of a buffer contained in the params argument. SimTA
enabled us to identify this check and investigate the conse-
quences of its absence in sta. For this bug, it was necessary to
investigate sta at a much later location than the actual check
was introduced. Its severity becomes clear by looking at an
unconstrained attacker-controlled size and attacker-controlled
source buffer that gets passed into a memory copy function
having a fixed-sized heap-based destination buffer. An attacker
can corrupt the heap using this vulnerability and potentially
gain code execution within sta. As should be clear from the
context, this bug is fixed, but it is a perfect example of how
SimTA supports binary-diff-guided analyses for TAs.

Our last discovery covers the authentication logic present
in the TA_OpenSessionEntryPoint lifecycle function.
Within this logic, an identifier of the calling CA and a constant
client signature is checked. Aside from the fact that we can
easily fake these inputs since they are controlled by the user,
we can see diverging constraints using SimTA in this logic.
There are two allowed identifiers, and from the introduced
constraints, it becomes clear that the signature for the identifier
/system/bin/tee_test_store is not checked at all in
sta. Presumably, this identifier is used for testing purposes
and should not be part of the code used in production. Using
this identifier, we can get access to the core logic of sta
without providing any client signature.

In summary, we provide evidence for the effectiveness of
SimTA by re-discovering the type confusion bug underlying
CVE-2016-8764 and identifying two further patches for critical
issues in storageTA.

VIII. LIMITATIONS

SimTA was not developed, having a holistic emulation of
the TEE in mind. It is rather an approach to have an effective
and fast way to retrieve runtime information from two TAs –
one being a patched version of the other – and facilitate the
analysis of introduced patches.

We are aware of two aspects of the TC TEE that we do not
emulate correctly. In particular, we did not initialize and hook
up the heap implementation that comes with globaltask.
SimTA’s heap implementation is basic and does not consider

fragmentation of the heap or merging of heap chunks. More-
over, we do not implement the 8-bit entropy Address Space
Layout Randomization (ASLR) used on the device [22].

We only implemented the SimProcedures from the GP TEE
Internal Core API that are needed to execute storageTA.
These SimProcedures are made publicly available and can be
used as a starting point to support more functions of this API.
In summary, we are confident that SimTA can be extended to
other TC TAs or even other TEE implemenations that comply
with GP specifications.

IX. OUTLOOK AND FUTURE WORK

Our future work will extend SimTA to more TAs. Be-
sides TC, there are TEEGris and OP-TEE that are known to
follow GP specifications. From recent Linux kernel sources
for Qualcomm SoCs, we can also see that GP concepts have
been introduced. Consequently, the approach chosen by SimTA
might be viable for all major TEEs.

One arising problem in this area is that vendors start to lock
down their systems. For instance, Huawei stopped providing
bootloader unlock codes, which are necessary to customize the
NW software stack in mid-2018. This situation leaves security
researchers with interest in TEEs with many hoops to jump
through before they can analyze their targets.

X. CONCLUSIONS

In this paper, we presented our ongoing research in finding
1-day vulnerabilities in TAs. We developed SimTA, an angr-
based solution to emulate the TEE runtime for TAs found on
Huawei devices. Using SimTA, we replicated a known bug
in Huawei’s storageTA and revealed two additional critical
issues that have been silently patched by the vendor.

We hope to foster TEE-related security research with this
work and provide our tools to reduce the effort to enter this
interesting field of research for other security researchers.
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