
Enabling Decentralised Identifiers and Verifiable
Credentials for Constrained Internet-of-Things

Devices using OAuth-based Delegation

Dmitrij Lagutin, dmitrij.lagutin@aalto.fi
Aalto University, Finland

In co-operation with
Yki Kortesniemi, Nikos Fotiou, Vasilios A. Siris

Workshop on Decentralised IoT Systems
and Security (DISS)

San Diego, USA, 24.2.2019

mailto:dmitrij.lagutin@aalto.fi

24 February 2019 DISS 2019 2

Motivation: Identifiers and IoT
● It should be possible to use services and devices while

preserving privacy and preventing tracking

● Current identifier and certificate solutions have several
problems
– Different identifier for each service, lack of interoperability

– Social logins: lack of privacy and control by the user

– Very complicated to provide privacy-preserving proofs online

● From privacy's point of view, digital identifiers should
provide:
– Self-sovereignty (owner controls the identifier)

– Ability to change identifiers at will

– Anonymity

24 February 2019 DISS 2019 3

Use Case: Printing at University

24 February 2019 DISS 2019 4

Requirements of Use Case
● User (visiting lecturer) wants to print a document

before the lecture in a secure way
– User does not have a university user account

– Printers are managed by a third-party printing service, which
collaborates with the university

● User should stay anonymous as much as possible
– Printing Service (PS), Authorisation Server (AS), or Printer will

never learn user's real identity or able to track user

● User and printing service need mutually authenticate
each other:
– Printing Service is trusted by University

– Authorisation Server is trusted by Printing Service

– User has right to print from University

24 February 2019 DISS 2019 5

Decentralised Identifiers and
Verifiable Credentials

● Decentralised Identifiers (DIDs) aim to provide self-sovereignty

– DIDs can be created by the user without dependence on any third party, hence a
large number of DIDs can be used (even different one for each transaction)

– Often derived from key pair, e.g.: did:sov:3k9dg356wdcj5gf2k9bw8kfg7a

● With verifiable credentials (VCs), owner of identifier can “prove”
something (e.g. date of birth, degree) about themselves

– Selective disclosure: disclose only part of the information present in credential

– Zero-knowledge Proofs (ZKP) allow one to prove of, e.g., being over certain age
without revealing real age

● IoT devices may not be able to use public-key cryptography
(resource constrains, lack of entropy, cost of upgrading, etc.)

● How to use privacy-enabling properties of DIDs and VCs
with existing constrained IoT devices?

24 February 2019 DISS 2019 6

Existing Solutions for IoT
Authentication and Authorisation

● OAuth 2.0 allows a client to obtain access to protected
resource, residing on resource server (RS)
– Access control is managed by authorisation server (AS), which

issues access tokens

– OAuth does not define used authentication solution

– ACE extension for constrained IoT devices: allows usage of proof-
of-possesion tokens that are based on pre-shared key

● Some technologies are not relevant for this use case
– OpenID Connect: functionality is provided by DIDs and VCs

– User Managed Access (UMA) 2.0: not always suitable for
constrained devices

24 February 2019 DISS 2019 7

Delegating DID processing with OAuth

● Authorisation Server (AS) can act as a bridge between
OAuth and DIDs
– All actors except the device (printer) utilize DIDs and VCs for

mutual authentication

– Printer delegates DID processing to AS

● AS issues proof-of-possesion access tokens to client
(Lecturer), after authentication has been performed
(ACE-OAuth)
– Lecturer uses the access token to access the printer

24 February 2019 DISS 2019 8

Printing at University: Actors

24 February 2019 DISS 2019 9

Message Flow

24 February 2019 DISS 2019 10

Implementation

● The described solution has been implemented using
Sovrin DID scheme (Hyperledger Indy) and OAuth2
server
– User receives credentials from a Hyperledger Indy instance

– User contacts OAuth server as usual

– OAuth server generates a proof request containing a nonce

– User generates a proof based on credentials using the nonce

– Communication continues using standard OAuth protocol

● The source code will be made available before the
publication of the paper

24 February 2019 DISS 2019 11

Comparison with Existing Solutions

● Using decentralised identifiers improves privacy
X.509 Certificates DID + VC

Granularity Coarse Fine-grained

Duration Usually long Short or long

Processing By humans Machine-readable

● Printing service or the printer will never learn real identify of
user

– User can change DIDs frequently to protect against correlations attacks

● Proposed solution is compatible with and complementary to
OAuth and its extensions

– Provides mutual authentication, decouples resource server from AS, can provide
trusted AS discovery

– No modification to the actual device (printer) necessary

24 February 2019 DISS 2019 12

Conclusions
● Decentralised identifiers and verifiable credentials

improve privacy in several situations
– Open standards, allowing easy deployment and adoption across

organisations and industries

● Delegation allows constrained OAuth-capable devices
to take advantage of DIDs and VCs
– Without any modifications to existing devices

● We have implemented a proof-of-concept solution
which will be released as open source

The research reported here has been partially undertaken in the context of projects SOFIE (Secure
Open Federation for Internet Everywhere), which has received funding from European Unions
Horizon 2020 research and innovation programme under grant agreement No. 779984, and
TrustNet (Trust Network for Distributed Personal Data Management), which has received funding
from Business Finland under grant No. 3387/31/2017.

24 February 2019 DISS 2019 13

Backup slide: Message Flow

● User and printing service mutually authenticate each
other using proofs:
– Printing Service is trusted by University

– Authorisation Server is trusted by Printing Service

– User has right to print from University

● Afterwards, proof-of-possesion access token, derived
from pre-shared key, is issued using standard ACE-
Oauth

● Message flow can be optimised by transmitting proofs
during TLS handshake, utilising Encrypted Server
Name Indication extension (TLS 1.3)

24 February 2019 DISS 2019 14

Verifiable Credential Example
{

 "@context": [

 "https://www.w3.org/2018/credentials/v1",

 "https://example.com/examples/v1"

],

 "id": "http://example.gov/credentials/3732",

 "type": ["VerifiableCredential", "UniversityDegreeCredential"],

 "issuer": "https://example.edu",

 "issuanceDate": "2010-01-01",

 "credentialSubject": {

 "id": "did:example:ebfeb1f712ebc6f1c276e12ec21",

 "degree": {

 "type": "BachelorDegree",

 "name": "Bachelor of Science in Mechanical Engineering"

 }

 },

 "proof": {

 "type": "RsaSignature2018",

 "created": "2018-06-18T21:19:10Z",

 "verificationMethod": "https://example.com/jdoe/keys/1",

 "nonce": "c0ae1c8e-c7e7-469f-b252-86e6a0e7387e",

 "signatureValue": "BavEll0/I1zpYw8XNi1bgVg/sCneO4Jugez8RwDg/+
MCRVpjOboDoe4SxxKjkCOvKiCHGDvc4krqi6Z1n0UfqzxGfmatCuFibcC1wps

 PRdW+gGsutPTLzvueMWmFhwYmfIFpbBu95t501+rSLHIEuujM/+PXr9Cky6Ed+W3JT24="

 }

}

24 February 2019 DISS 2019 15

ACE-OAuth Token Response
Header: Created (Code=2.01)

Content-Format: "application/ace+cbor"

Payload:

{

 "access_token" : b64'SlAV32hkKG ...

 (remainder of CWT omitted for brevity;

 CWT contains COSE_Key in the "cnf" claim)',

 "profile" : "coap_dtls",

 "expires_in" : "3600",

 "cnf" : {

 "COSE_Key" : {

 "kty" : "Symmetric",

 "kid" : b64'39Gqlw',

 "k" : b64'hJtXhkV8FJG+Onbc6mxCcQh'

 }

 }

}

24 February 2019 DISS 2019 16

Backup slide: Implementation

● Used software
– https://github.com/hyperledger/indy-sdk/

– https://github.com/bshaffer/oauth2-server-php

● Proofs are processed in JSON using Base64
encoding

● Implementation is written using Python, other
bindings are also available for Indy SDK

https://github.com/hyperledger/indy-sdk/
https://github.com/bshaffer/oauth2-server-php

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

