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Abstract—Federated Learning (FL) is an appealing method
for applying machine learning to large scale systems due to the
privacy and efficiency advantages that its training mechanism
provides. One important field for FL deployment is emerging
IoT applications. In particular, FL has been recently used for IoT
intrusion detection systems where clients, e.g., a home security
gateway, monitors traffic data generated by IoT devices in its
network, trains a local intrusion detection model, and send this
model to a central entity, the aggregator, who then computes a
global model (using the models of all gateways) that is distributed
back to clients. This approach protects the privacy of users as it
does not require local clients to share their potentially private IoT
data with any other parties, and it is in general more efficient than
a centralized system. However, FL schemes have been subject to
poising attacks, in particular to backdoor attacks.

In this paper, we show that FL-based IoT intrusion detection
systems are vulnerable to backdoor attacks. We present a novel
data poisoning attack that allows an adversary to implant a
backdoor into the aggregated detection model to incorrectly
classify malicious traffic as benign. We show that the adversary
can gradually poison the detection model by only using com-
promised IoT devices (and not gateways/clients) to inject small
amounts of malicious data into the training process and remain
undetected. Our extensive evaluation on three real-world IoT
datasets generated from 46 IoT devices shows the effectiveness
of our attack in injecting backdoors and circumventing state of
the art defenses against FL poisoning. Finally, we discuss shortly
possible mitigation approaches.

I. INTRODUCTION

The market of Internet-of-Things (IoT) devices is booming
as more and more users leverage wireless connectivity and
intelligent functionality to access various services. However,
many of these devices are riddled with security problems
due to inadequate security designs and insufficient testing.
Consequently, security vulnerabilities are exploited in various
attack scenarios as shown recently by, e.g., ”IoT Goes Nu-
clear” [28], attacks against Honeywell [10], or a set of Z-Wave
devices [11] as well as crucial large scale DDoS attacks [2],
[35], [13], [36], [25]. Given that increasingly IoT devices are
entering the market and a general security standard is missing,
one can expect that many insecure devices continue to be
deployed in many application domains. Patching IoT devices
against known attacks is not effective due to the diversity

of vulnerabilities and attacks. Hence, it is reasonable not to
make many assumptions about the security architectures and
features on IoT devices and rather counter security threats aris-
ing from attacks compromised devices, in particular, against
unknown attacks. To detect compromised devices, network-
based intrusion detection systems (NIDSs) can be deployed in
end-user networks [23], [9], [26]. An NIDS passively monitors
and analyzes device communications (network traffic) in order
to detect if the network is under attack. A compelling NIDS
approach that has the potential to detect previously unknown
attacks is based on anomaly detection. It consists of training
a model characterizing normal device behavior and using this
model for detecting ”anomalous” behavior that deviates from
the normal model. In this context Federated Learning (FL)
seems to be an adequate tool, as FL is an emerging solution for
the distributed training of machine learning models utilized in
various application areas. It can provide benefits with regard to
communication requirements and privacy of training datasets,
which is why recently a number of FL-based systems have
been proposed, e.g., for word prediction [20], [19], medical
applications [32], [14], [8], as well as for IoT [23], [27],
[30], [31], [18]. In FL, each local client participating in the
system uses its private local training dataset to train a local
model, which is sent to a central aggregator. The aggregator
then uses a federated averaging algorithm to aggregate the
local models to a global model which is then propagated
back to the local clients. Especially for applications targeting
IoT settings, FL can provide significant privacy benefits, as
it allows local clients to participate in the system without the
need to expose their potentially privacy-sensitive local training
datasets to others. This is particularly important if behavioral
data of IoT devices are used, since information about the usage
and actions of IoT devices may allow to profile the behavior
and habits of their users, thus potentially violating user privacy.
Another benefit that FL provides in IoT settings is that the
aggregation of locally trained models makes it possible to
obtain accurate models quickly even for devices that typically
generate only little data (e.g., simple sensors or actuators).
Relying only on data available in the local network would
require a lot of time to collect sufficient training data for an
accurate model.

However, recent research shows that FL can be a target
of backdoor attacks, a type of poisoning attack in which the
attacker corrupts the resulting model in a way that a set of
specific inputs selected by the attacker will result in incorrect
predictions as chosen by the attacker. There are currently
several backdoor attacks on image classification [33], [3], [12]
and word prediction [3].
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Goals and contributions. In this paper, we present backdoor
attacks on FL-based IoT anomaly detection system, in which
the attacker aims at poisoning the training data by stealthily
injecting malicious traffic into the benign training dataset.
Consequently, the resulting model would incorrectly classify
malicious traffic as benign and fail to raise an alarm for such
attack traffic patterns. We show that compromised IoT devices
can be utilized by the attacker to implant the backdoor. We
evaluate the effectiveness of our attack on a recent proposal
for FL-based IoT anomaly-detection in [23]. In the anomaly
detection scenario, a backdoor corresponds to malicious be-
havior generated by the attack, e.g., IoT malware that would
be accepted as normal by the anomaly detection model.

Our main contributions as follows:

• We introduce a new attack approach that circum-
vents IoT intrusion detection system using Federated
Learning (FL). In this attack, the attacker indirectly
attacks FL-based IoT anomaly detection systems by
controlling IoT devices to gradually inject malicious
traffic. Contrary to existing poisoning approaches, our
attack does not require the attacker to compromise
clients [3], [12].

• We provide an extensive evaluation using three timely
real-world IoT datasets related to a concrete FL-
based IoT anomaly detection system to demonstrate
the impact of our attack, showing that it can bypass
existing defenses.

II. SYSTEM AND THREAT MODEL

In traditional anomaly detection settings, the model is
learned based on training data originating from the objects
to be modeled. The IoT setting, however, poses challenges for
this approach. For one, IoT devices, being typically single-
use appliances with limited functionality, do not generate
significant quantities of data, making training of a model
purely on data collected from the local network of a user
challenging, as it may take a long time to aggregate sufficient
data for training a stable model. This mandates an approach in
which training data from several different users is aggregated
into a joint training dataset, making it possible to learn a stable
model faster.

On the other hand, however, it is not desirable to aggre-
gate training data centrally, as the data obtained from the
communication of IoT devices potentially can reveal privacy-
sensitive behavioral information about users. To enable effec-
tive learning of detection models by making use of several
user’s training data while maintaining the privacy of individual
users’ datasets, federated learning can be applied. In contrast
to a fully centralized learning architecture, in an FL setting
each client (user) trains a local model based on its locally
available training data instead of sending its data to a central
entity. The locally trained client models are then aggregated
by the central entity to a global model, which can then be
distributed back to the clients to be used in anomaly detection
locally, or used as a basis for subsequent training iterations for
refining the model further. The advantage of this approach is
that clients can benefit from information contributed by other
clients while not having to share their detailed training datasets
and thereby better protect the privacy of local users.

Fig. 1: Overview of the FL-based IoT intrusion detection
system [23]

In a typical IoT scenario, the FL setting would be imple-
mented by having in each local private IoT network (e.g., the
smart home of a user) a dedicated security gateway (SGW)
aggregating a training dataset from devices in the local network
and training local detection models for those devices [23], [31].
The intelligent nodes of local networks would then share their
local models with a central server aggregating the models and
generating a global model from them. Similar learning set-
ups have been successfully implemented, e.g., for device-type-
specific intrusion detection [23].

A. System Model

We consider a setting in which FL is used to realize an
anomaly detection-based intrusion detection system for IoT
devices, as we have kindly received access to a number of real-
world datasets (Sect. IV-A1) of IoT devices and IoT malware.
We adopt the system setting, DÏoT, proposed by Nguyen
et al. [23], in which neural network-based models are used
to detect compromised IoT devices in local networks. The
system is based on training a model with packet sequences
in a device’s communication flows and detecting abnormal
packet sequences (e.g., generated by IoT malware) that are
not consistent with the normal communications of the device
in question. The overall system set-up is shown in Fig. 1.
It consists of a number of local Security Gateways, which
collaborate with an Aggregator to train anomaly detection
models based on GRUs (Gated Recurrent Unit, a type of
Recurrent Neural Network (RNN)) [7] for detecting anomalous
behavior of IoT devices. The Security Gateways act as the local
WiFi routers in end-user networks, so that all IoT devices, e.g.,
in the smart home of a user connect to the Internet through
the Security Gateway over WiFi or an Ethernet connection. In
this way, the gateway is able to monitor all communications
of IoT devices in its network. To train detection models used
for anomaly detection, an FL approach is applied: Security
Gateways locally train detection models, which they then send
to the Aggregator, who will aggregate them to a global model
and propagate this global model back to the Security Gateways.
Therefore, each Security Gateway can benefit from training
data contributed by all participating gateways. During the
operation of the system, the training of the detection model is
iteratively repeated in order to gradually increase the accuracy
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of the model, as more training data become available. This
repeated training process is performed either routinely, or, until
the global model reaches a specific level of convergence, i.e.,
when the model doesn’t improve significantly anymore. We
formalize the operation of the system in two phases, training
phase and detection phase, as follows:

Training phase. The global model Gk is trained through
many training iterations t = 1, 2, . . . to learn the normal
communication patterns of a specific device type k. In the
training iteration t, the Security Gateways receive global model
Gt−1

k from previous training round t − 1 then each Security
Gateway i uses its own data Dik generated by device type k
to train Gt−1

k to achieve a local model W t
ik as formalized in

Eq. 1:
W t

ik ← LocalTrain(Gt−1
k , Dik) (1)

Then those local models (W t
1k,W

t
2k, . . . ,W

t
nk) are sent to

the Aggregator, in which it aggregates them into the global
model Gt

k using FedAvg, a widely used aggregation algorithm
proposed by McMahan et al. [19], as formalized in Eq. 2:

Gt
k =

∑n
i=1 nikW

t
ik

nk
(2)

Where nik is the number of data points that the Security
Gateway i has for device type k and nk is total data points
for device type k: nk =

∑n
i=1 nik.

Detection phase. The intrusion detection is performed by
the Security Gateways by identifying the device communica-
tion behaviors that do not match with the trained global model
corresponding to the device’s type and raising an alarm, if such
traffic is detected. It also collects training data for the training
process mentioned above.

B. Threat Model

Attacker’s goal. The attacker aims at corrupting the global
model G so that G will provide incorrect predictions but
attacker’s chosen outputs C: G(x) = c ∈ C for targeted
inputs x ∈ T , while performing normally on benign inputs
x 6∈ T . In IoT intrusion detection case, the attacker’s goal is
to manipulate the global anomaly detection model used for
intrusion detection in a way that adversarial inputs like packet
sequences of malicious traffic from, e.g., IoT malware like
Mirai malware [2], [23] are incorrectly deemed normal by the
detection model. Consequently, the model would not detect
that malicious traffic as anomalous.

Attacker’s capability. We assume that the attacker com-
promise and control a number of IoT devices in different
local networks. The attacker can also use his own devices
to connected to the Security Gateways. The attacker has full
control of the compromised IoT devices, e.g, controlling those
devices to inject arbitrary traffic. For simplicity, we assume that
the attacker has full control of d IoT devices in m Security
Gateways and m models trained from those Security Gateways
are poisoned models.

No compromised Security Gateways required. In our at-
tack, the attacker does not need to compromised Security Gate-
ways (clients) while current poisoning attacks often require
compromising clients [3], [4], [6]. It makes our attack more

practical than requiring Security Gateways to be compromised
because Security Gateways are strictly secured devices.

Full knowledge of the targeted system but no control.
The attacker has full knowledge of the operations and param-
eters of the intrusion detection system, e.g., DÏoT as described
in Sect. II-A, but has no control of the system. He can only
control compromised IoT devices.

Assumptions. The attacker can control one or more IoT
devices in each of m Security Gateways. Since compromising
IoT devices takes considerable effort, we assume that m is
at most less than half of the total number of clients n, i.e.,
m < n

2 .

III. OUR DATA POISONING ATTACK

In general, in order to evade an anomaly detection system,
the attacker adjusts his attack in the way that the malicious
behaviors are close to benign behaviors. However, a challenge
of this approach is that the attacker has to modify malicious
traffic in the way that the semantic of attack retains. Recent
defenses, e.g., DÏoT show that by precisely modeling network
communication of devices with the help of deep learning, their
system can detect malicious traffic effectively. We, therefore,
propose a different attack vector. Instead of trying to adjust
attack traffic patterns, e.g., changing malware’ behaviors to
directly evade the anomaly detection, our attack targets the
data collection state. Our intuition is that by injecting a small
amount of malicious traffic into the benign traffic, this traffic
will be not detected as anomalous, and will be learned as
normal traffic in the training phase, i.e., the model is gradually
backdoored. Consequently, the model will not detect that
”backdoored” traffic as malicious in the detection phase. To
do that, the attacker can use the compromised IoT devices to
implant malicious traffic which will be used as training data
by the Security Gateway running on the local network gateway
(cf. Fig. 1).

We formalize our attack process as follows: In the absence
of the attacker, a Security Gateway i monitors the communi-
cations of an IoT device type k and uses the communication
data as training data Dik for a behavioral model Wik of the
device type k as shown in Eq. 1. However, if an attacker A
manages to compromise and take control over device d which
has device type k, it can cause the device to inject specific
malicious network traffic patterns DA that will be captured by
the Security Gateway i and used along with the benign traffic
data Dik as training data for training a local model Wik for
device type k, i.e., DA is an additional input for the Eq. 1
which is generalized (without specific training round t) as in
Eq. 3 as follows:

W ′ik ← LocalTrain(Gk, Dik +DA) (3)

Where W ′ik illustrates that model Wik is poisoned with DA.
Using this approach the attacker can thus poison the training
dataset used to train model Wik and can thereby introduce a
backdoor in the model, as the attack network traffic patterns
contained in DA will be erroneously used by Security Gateway
i as benign training data and consequently incorporated in
model W ′ik.

The challenges of our attack. The challenges of our at-
tack are two folds: It has to evade (1) the traffic anomaly
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detection of Gk [23] and (2) the model anomaly detection
of the aggregator [33], [3]. For the former, the proportion of
malicious traffic data injected by the compromised IoT devices
must be small enough compared to the benign data so that
it retains undetected by Gk. Otherwise, that malicious data
will be excluded from the training data. One way to tackle
this challenge is that the attacker can inject malicious traffic
at the time that the compromised device d is generating a
high volume normal traffic. For the later, if a model anomaly
detection approach is deployed in the aggregator to detect
anomalous models deviated from normal models (see Sect.
V-A), the attacker has to also control the amount of poisoned
data in the way that it does not make the poisoned model W ′ik
deviated from the benign models, i.e., W ′ik retains undetected.
To tackle this challenge, the attack can control poisoned data
rates as explained as follows:

Controlling Poisoned Data Rate (PDR). In our attack
the attacker A can control the ratio of poisoned traffic DA it
injects in the network with respect to the benign traffic Dik the
compromised device generates. We denote this ratio Poisoned
Data Rate (PDR):

PDR =
|DA|
|Dik|

By controlling the amount of malicious data DA injected
by the compromised device the attacker controls the PDR of its
attack. AttackerA will seek to select a PDR that would provide
an optimal balance between effectiveness and stealthiness of
the backdoor attack, in which the higher the PDR used is,
the better the accuracy of the backdoor will be. However, this
will also make the poisoned model Wik is more deviated from
the benign models lead to be easier to detect. We will prove
the effectiveness of this attack strategy in the Sect. IV-B and
Sect. V.

IV. EVALUATION

A. Experimental Setup

1) Datasets: To be comparable to the work of DÏoT, we
use the same datasets. Moreover, we have also obtained the
dataset from paper authors Sivanathan et al. [34]. In total, we
evaluate our attack on three real-world datasets generated by
46 commodity IoT devices and infamous IoT malware, Mirai
[2]. Here is the list of our used datasets:

• DÏoT-Benign: The IoT traffic has been generated from
18 IoT devices deployed in a real-word smart home
[23].

• UNSW-Benign: The IoT traffic has been generated
from 28 IoT devices in an office for 20 days [34].

• DÏoT-Attack: The attack traffic has been generated by
5 IoT devices infected by the Mirai malware which has
13 attack types, e.g., infection, scanning, SYN flood,
HTTP flood, etc. [23].

Following the work from DÏoT described in Sect. II, we
separate benign datasets for each device type resulting in 24
device-type-specific datasets in total and each of these datasets
will be evaluated independently. To simulate FL setting, the

dataset of each device type will be divided among clients, in
which each client has an independent data of approximately
3000 packets.

2) Experimental implementation and metric: We imple-
mented our attacks using the PyTorch framework [1] and
conducted all experiments on a server with 20X Intel Xeon
CPU cores, 64GB RAM, 4X NVIDIA GeForce GPUs (with
11GB RAM each), and Ubuntu 18.04 LTS OS.

To measure the effectiveness of our attack, we use for
parameters as follows:

• Backdoor Accuracy (BA). It refers to how good a
poisoned model is in the backdoor task, i.e., it is the
fraction of malicious samples that the system falsely
classifies as normal samples to the total malicious
samples.

• Main Task Accuracy (MA). It indicates how good
the anomaly detection model correctly detects benign
traffic, i.e., it is the fraction of normal samples that
the system correctly classifies as normal traffic to the
total normal samples.

• Poisoned Data Rate (PDR) as defined in Sect. III).

• Poisoned Model Rate (PMR). It is the fraction of
the number of the gateways that have compromised
IoT devices to the total number of the gateways, i.e.,
PMR = m

n .

B. Experimental Results

Malicious Data Injection. We conduct an experiment to find
out how much data that the attacker can gradually inject in the
network so that it is still under the radar of the system. We
took 7,688 windows of data (250 samples per window) from
five randomly chosen device types (AmazonEcho, DlinkCam,
DLinkType05, EdimaxPlug, NetatmoWeather). We gradually
increase the amount of malicious data injected in each win-
dow until the system detects this window is anomalous. As
expected, the attacker needs only inject PDR = 36.7± 6.5%
malicious data in average to make the system incorrectly
identifying the malware traffic as malicious.

Attack accuracy. To evaluate the accuracy of our attack in
which controlling PDR strategy is applied in the condition
of different poisoned model rates (PMR), we conducted an
experiment on the Netatmo data (100 clients) with wide-range
of PDR and PMR. As shown in Fig. 2, our attack achieves
BA = 100% for all PMRs except for PMR ≤ 5%. For ex-
ample, with PDR = 35% the adversary can poison the global
model successfully BA = 100% with only PMR = 20%, i.e.,
it requires only 20% of Security Gateways has compromised
IoT devices.

V. DEFENSES

A. Generalized clustering approach

To evaluate the effectiveness of our attack against state-of-
the-art defenses based on distinguishing malicious and benign
models, e.g., [33], [6], [3], we generalize those approaches
as a clustering-based approach, in which we use k-means to
cluster models into two groups, in which the bigger cluster
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Fig. 2: Backdoor accuracy for different PDRs and PMRs. Note
that MA is 100% for all attacks
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Fig. 3: Distribution of pairwise L2-norms for different PDRs

is considered to be benign and the models of the smaller
cluster are discarded, i.e., the models from the smaller group
are assigned as malicious, e.g., [33]. We run an experiment
with 100 client models in total, where 75 were benign and
25 under adversaries control, using our attack with a PMR
of 25%. We preset k-means with number of clusters as two
and use the pairwise L2-norm distances as input. Figure 3
illustrates the distribution of these distances. As the figure
shows, our attack imitates the L2-norms of benign clients well.
However, for higher PDRs the distances increase significantly.
While for the majority of the benign clients, the malicious
clients for all PDRs, have almost the same distances, as they
are all in the first bar of the histogram, to another group of
benign clients, the distances increases for higher PDRs. This is
confirmed by the BAs and the clustering results. After 3 rounds
of training, the BA reaches 100% for a PDR of 20%. However,
the experiment also shows that a PDR of 30% is too high since
here, the clustering is effective and filters the malicious clients
out. Therefore, the attacker can select 10% < PDR ≤ 20%
to launch attacks successfully (BA = 100%) without being
detected.
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Fig. 4: BAs for different PDRs after multiple rounds

B. Differential Privacy

Another state-of-the-art defense is based on a differential
privacy approach, as it was proposed by McMahan et al.[21]
and discussed in detail in Sect. VI, in which all updates
are downscaled, if they are higher than a fixed clipping
boundary and Gaussian noise is added to all parameters after
the aggregation. The rational behind this approach is that it
reduces the attack impact by averaging out poisoned updates.
Figure 4 shows the BA for different PDRs after multiple
rounds. The setup is the same as in Sect. V-A. We chose
a clipping boundary of two, based on the update norms for
the benign clients. We evaluated a wide-range of noise levels
(standard deviation of Gaussian noise) as from 0.0001 to
0.0075. Figure 4 shows the BAs for the highest noise level.
It shows that the attack is successful against the clipping and
noising defenses since it reaches a BA of 100% after 4 rounds
with a PDR of at least 20%. However, on the other side, the
defense also causes a drop in the MA. For the highest noise
level, the MA goes down to 94.2%, while our attack is still
successful. For the lower noise levels, BA still retains 100%.
Therefore, this defense is not effective to mitigate our attack
unless a scarifying MA, i.e, this defense is not practical.

C. Possible Mitigation Approaches

As discussed above, existing defenses are ineffective to
mitigate our attacks, this highlights the need for new defense
approaches. In this section, we discuss possible solutions that
are potential for future works. In general, there are three
possible directions to find a solution to mitigate our attacks
as follows:

• New poisoning FL defenses on the sever-side. The
first direction is to introduce a new FL poisoning
defense deployed on the aggregator, e.g., finding better
features and clustering algorithms to identify poisoned
model updates. Since this approach only investigates
the model updates, it does not require changes in the
IoT intrusion detection part.

• Filtering or tolerating poisoned data on the client-
side. Since clients, e.g., Security Gateways has full
control of the training data, introducing a poisoned
data filtering or tolerating approach is a potential so-
lution. For example, we can investigate the possibility
of utilizing existing poisoning defenses for centralized
learning, e.g, noisy data tolerance [17], [22] or outlier
data mitigation [29].

• Identifying malicious traffic injection. Another so-
lution is to improve the sensitivity IoT intrusion detec-
tion systems to be able to identify even small amount
of malicious traffic at the injection state and discard
this traffic data.

VI. RELATED WORK

Poisoning attacks against machine learning models origi-
nally targeted centralized training settings [5]. These attacks
intend to modify decision boundaries (or cause concept drift)
by manipulating training inputs to the model [15]. This goal
is achieved by modifying training input labels [5], by crafting
synthetic inputs meant to produce a slow concept drift [16] or
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by injecting noise in samples before feature extraction [24].
Mitigating such attacks can be addressed using training meth-
ods tailored to deal with noisy data [17], [22].

In FL settings, a number of poisoning attacks have been
proposed [12], [33], [6], [3]. These attacks focus only on
benchmark datasets of text prediction or image classification
applications. In these attacks, the attacker has full control
of compromised clients, i.e., the adversary can arbitrarily
change training datasets or training algorithms. For example,
Bagdasaryan et al. [3] propose a constrain-and-scale attack
that the attacker can fully manipulate the training process: data,
algorithms, and parameters. We however consider a different
application setting as IoT and introduce a new attack approach.
Moreover, our attack does not require attackers to compromise
clients, i.e., it requires weaker attackers’ capability, making our
attack more practical.

To tackle poisoning attacks in FL, several defenses have
been proposed [12], [33], [6]. The main idea of those defense
approach is to identify malicious updates that deviated from
the benign updates. For example, Auror [33] tries to cluster
model updates into two classes based on indicated features,
in which the smaller class will be identified as the malicious
class and filtered out. Blanchard et al.introduces Krum [12],
in which the client that has the smallest sum of distances to
other n−m−2 clients will be selected as the global model. We
generalize these clustering-based approaches and show that it
is not effective to defend our attack (see Sect. V-A). Another
defense approach is to reduce the attack impact by scale down
models that have high update amplitudes or add noise to
average out poison updates [3], [21]. However, this approach
is not practical because it also damages the performance of
the model in the main task as shown in Sect. V.

VII. CONCLUSION

In this paper, we introduce a novel backdoor attack on FL-
based IoT intrusion detection system, in which the attacker can
gradually inject poison data via compromised IoT devices (and
not gateways/clients compared to existing approaches). Our
extensive evaluation on three real-world IoT datasets generated
from 46 IoT devices and infamous IoT malware, Mirai, shows
that our attack is effective and bypasses current defenses. This
raises the need for new defense mechanisms against our attacks
on FL-based IoT intrusion detection system.
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