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Abstract—With the surge in data collection and analytics,

concerns are raised with regards to the privacy of the individuals
represented by the data. In settings where the data is distributed
over several data holders, federated learning offers an alternative
to learn from the data without the need to centralize it in the
first place. This is achieved by exchanging only model parameters
learned locally at each data holder. This greatly limits the amount
of data to be transferred, reduces the impact of data breaches,
and helps to preserve the individual’s privacy. Federated learning
thus becomes a viable alternative in IoT and Edge Computing
settings, especially if the data collected is sensitive.
However, risks for data or information leaks still persist, if
information can be inferred from the models exchanged. This
can e.g. be in the form of membership inference attacks. In
this paper, we investigate how successful such attacks are in
the setting of sequential federated learning. The cyclic nature of
model learning and exchange might enable attackers with more
information to observe the dynamics of the learning process, and
thus perform a more powerful attack.

I. INTRODUCTION

Machine learning (ML) is widely used for data analysis and
demands a vast amount of data for better predictions. The data
used for training these models often has private nature or is
otherwise sensitive, e.g. businesses relevant, and owners of
the data may be uncomfortable with sharing it. They may use
techniques for sanitizing data before sharing, to avoid possible
risks of inference. For example, k-anonymity is a method for
preserving the anonymity of individuals, by modifying the
attributes of the dataset in a way that each instance has at
least k—1 other entities with identical quasi-identifiers |1]]. The
method is sensitive to outliers and was shown to be vulnerable
to several types of inference attacks [2]]. Differential privacy
[3] allows to hide individuals’ information and at the same
time preserves statistical properties of the dataset. In settings
where the same or similar analysis needs to be repeated several
times, the approach has limitations, as the privacy budget may
be used up quickly. Further, if the interest of the attacker
is on global properties, these methods provide only limited
protection.

Unlike traditional learning, when data needs to be central-
ized for processing, federated learning addresses the problem
of data ownership and locality. It allows training machine
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learning models locally at each user’s site, thus avoiding
data centralization, and communicating only model parameters
instead. IoT is a candidate for applying federated learning, due
to its distributed nature, its decentralized data recording, and
potentially very sensitive data that some devices might capture.
Algorithms improving and adapting federated learning for IoT
specifications were recently proposed [4]—[6].

Recent studies [[7]—[9] show that certain ML models can still
leak information about the data on which they were trained.
Therefore, these models become the target for adversaries.
Federated learning might even provide a larger attack surface.
In this work, we evaluate the risks of information leakage from
neural network models by performing membership inference
attacks by an insider, in a sequential federated learning setting,
where models are trained in cycles. We show that this setting
is more vulnerable to membership inference attacks by an
insider than in centralized settings. The insider is assumed
to be of the honest but curious adversary model, i.e. a
legitimate participant in the learning that will not deviate
from the protocol, but will attempt to infer information from
legitimately received messages.

We note that a higher risk of membership inference occurs
if two or more malicious parties of the federated learning
cooperate and exchange the observed models, which then
reflect different stages of training. This enables intruders to
see the dynamics of the learning, as its performance changes
after each training at the following party. We show that the
number of nodes in federated learning, as well as the number
of data points at each node, influence the accuracy of the
attack. We further propose different mitigation strategies that
can be applied in federated learning settings to reduce the
effectiveness of membership inference attacks.

II. RELATED WORK

Federated Learning is a method to leave data distributed at
the site where it originates, e.g. on mobile devices, or where
it is initially gathered, but to still learn a global model, based
on parameters aggregated from local training [[10]. The idea of
local training is relevant in particular for personal data, where
data sharing brings regulatory, privacy and technical issues.
Federated learning approaches were thus applied on various
tasks in medical domain [11[]J-[13].

With the trend of increasing computing power at the edge,
federated learning finds applications in IoT. Mills et al. [4]]
addressed problems of federated learning like high communi-
cation costs and a large number of rounds for convergence.
A new communication-efficient federated learning protocol



for mobile edge computing, which selects optimal clients for
aggregating the updates in the scenario with limited resources,
was presented in [5]. Wang et al. [6] proposed a control
algorithms for edge computing architectures that adapts global
aggregation frequency to minimize the learning loss. In [14],
an architecture for smart home, focused on security and pri-
vacy and based of federated learning approach, was proposed.

Several approaches for federated learning can be distin-
guished. The aggregation can in principle happen in two
manners. In sequential learning, sometimes referred to as
(cyclic) incremental learning, computing nodes alternate in
training the model, often in several cycles or rounds. Thus,
each node receives the model at various stages of the training.
In this case, each node trains the model for a certain subset of
their data or a small number of training steps, before the model
is passed on to others. In parallel aggregation, each node trains
the model from all locally available data. The final model is
obtained e.g. by averaging the model parameters.

Several types of attacks that exploit ML models to infer
information about the training data have been discussed. Model
inversion tries to recreate data samples that represent the
underlying original objects. It has been shown to work in very
specific settings, such as recreating pictures of persons to be
identified by a face recognition system [|15]]. Ateniese et al. [9]]
developed an approach to extract statistical information about
the training data from ML classifiers. They also showed that
differential privacy is not preventing this leakage.

In this work, we focus on the membership inference attack
[8]l, put in a sequential federated learning setting. This attack
tries to predict if an instance was in the training set of a
machine learning model, or not. It assumes that similar ML
models trained on similar data must behave in an alike manner.
Salem et al. [7] showed that membership inference is possible
at a lower cost than was considered in the original paper [8].
They omit the assumptions about the adversary’s knowledge of
model architecture, data distribution and still preserve a high
level of membership inference attack performance.

In [16]], the authors differentiate between insider and out-
sider membership inference attack in parallel federated learn-
ing settings. In the former, an intruder has access only to the
final model, while the insider is one of the federated learning
parties, or the central coordination node, if existing. They
show that federated learning is more vulnerable to insider
attacks. The insider may be interested in not disturbing the
outcome of the learning (as they would profit themselves
from a high-quality model learned if the model is utilized to
improve their services and experience), but are still interested
in learning properties about other participants in the federation
(e.g. because they are competing, or simply just curious).

In our setting, we further show that an insider can profit
from the dynamics of models changing in the sequential
(incremental) setting, where the insider can exploit the fact
that the model is the most adapted to the data of the node it
has just been trained on.

III. EXPERIMENTAL SETUP

We briefly describe the setup for our evaluation.

Dataset: We use the Purchases dataset, which is a smaller
version of the ”Acquire Valued Shoppers” dataset from Kag-
gl used in similar studies ( [8]], [16]). 600 binary attributes
represent different products and show if an individual pur-
chased the product. To obtain a classification task from this
dataset, we follow the same procedure as [16]: we use a subset
of 10, 000 records from the dataset, and use k-mean clustering
to cluster the data with different numbers of target clusters, to
obtain 10, 20, 50 and 100 classes. The resulting classes are
generally rather similar in size, but a number of very small and
large classes appear as well. Each class represents the purchase
behavior of a group of customers, therefore the classification
task is to predict the behavioral group for a specific customer.

Federated Learning and Model Architecture: We con-
sider sequential federated learning (cyclic incremental learn-
ing) with 3, 10 and 15 processing nodes. For the learning step,
we distribute the data equally among the different number of
processing nodes, i.e. with three nodes, each party has 3,333
instances, with ten nodes 1,000, and with 15 nodes 666. We
perform random sampling for this distribution. As a model
for predicting purchase behavior, we use a neural network,
as this model type is generally learned via an incremental
optimization, e.g. gradient descend, and is thus a natural fit
for sequential federated learning. Specifically, our network has
one hidden layer consisting of 128 neurons, tanh activation
functions, a dropout layer, and a softmax layer. The learning
rate is 0.001. We initialize the target model with random
weights, and sequentially train it at each party with several
iterations on the whole federated setting, a so-called cycle (C)
(or round), following the same order (sequence) at each round.

Membership Inference Attack: The goal of the member-
ship inference attack is to learn if a specific data instance
was in the training set of the target model. The following
description is based on [8]]. Let D!"%" be the data on which

target
a target model fiqrget Was trained. (;’, Y')target € DELL, i
an instance of the fiurge; training set, where z* is an input
vector and %’ is the output label. Ctarget 1S @ probability vector
and output of the target model fiqrget.

Essentially, membership inference is a binary classification
task: for an instance (z,y), predict if it was ”in” or “out” of
Dﬁgﬁ;’;t. To solve this task we can utilize a classifier fui1qck
called the attack model. The input of the attack model consists
of a probability vector of size ciqrget, plus the correct label.
The output of the attack model is whether the record was in
the training set (labeled 1), or not (0).

The assumption underlying the membership inference attack
is that similar models should behave similarly on similar types
of data. We thus assume that we can emulate the behavior
of the target model by training several shadow models. From
these, we obtain the training set for the attack model.

In the insider threat model, the adversary knows the archi-

tecture of the target model, and thus can train the shadow
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TABLE I: Membership Inference attack on centralized data

Dataset Training Test Attack
Accuracy  Accuracy | Accuracy Precision  Recall F1
Purchase-10 0.958 0.781 0.614 0.571 0913 0.703
Purchase-20 0.974 0.726 0.653 0.607 0871  0.715
Purchase-50 0.992 0.645 0.728 0.659 0943  0.776
Purchase-100 0.990 0.567 0.771 0.705 0.933  0.803

models with the same (or very similar) settings. We train
a shadow model f7, . “on a dataset D1}%% ~ which is

; shadoug’ )
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a record in the dataset Dﬁz%’;ﬁ),wj, we get the probability vector
— i B j j
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is the input for the attack model with label 1. In the same
manner, we obtain probability vectors for instances which are
not in the training set of the shadow model and label them 0.

Membership Inference in Federated Learning: Consid-
ering sequential, incremental federated learning, an interesting
attack model is having malicious users among the participants
of the federation. If the adversary is an outsider, she has access
to the final model. Even if she can infer that some records
were in the training set, she is not able to distinguish in which
particular party’s set. But assuming that the adversary is part of
the federated learning process, she can observe the dynamics
of the learning, which might help in the inference task.

In our experiments, we train 10 shadow models of the same
architecture as the target model, on the part of the Purchases
dataset that was not used in the federated training by any of
the participating parties. The attack model is a neural network
with one hidden layer of 64 neurons and a Sigmoid activation
function. The membership attack is simulated after each party
trained the target model. We measured the accuracy of the
target model’s predictions for the training set and test set.
As training set, we considered the training set of each node,
but also evaluated the results for the union of all training
sets from all federated learning parties. We also performed
the membership inference attack on the training data, hence
attacked each node. For the attack evaluation, we measured
the accuracy, precision and recall of the attack model on the
attack test set. The latter is a combination of target model
predictions (probability vectors) for the data which was in the
training dataset of a node, and the data which was not in the
training set. The ratio of ”in” and “out” data is 50%.

IV. EVALUATION

For validating the effectiveness of federated learning itself,
we compare the accuracy of the target model on the test set in
federated learning with learning a model on centralized data.
We maintain, and in some cases even reach higher accuracy
score with all considered combinations of node numbers
in federated settings. Therefore we conclude that federated
learning does not deteriorate the quality of the target model.

As a baseline for the attack evaluation, we measure the
performance of the membership inference attack on the model
trained on centralized data. Table [I] shows the results of the
membership inference attack for tasks with different numbers
of classes in the training data. With increasing numbers of

classes, the classification task becomes more difficult — there-
fore the gap between training and test set accuracy increases.
With a higher number of classes, the accuracy and precision
of the attacks increase as well. Our baseline attack results are
comparable to those in literature ( [8], [16]).

The attack accuracy depends in particular on the number of
classes in the classification task, as well as the shadow training
data, and the model overfitting to the training set, i.e. if there is
a particularly high accuracy of the model on the training data
and low accuracy on the test set [§]. The higher the number of
classes, the more a model is extracting particular features from
the training data to be able to distinguish between classes.

For evaluating membership inference in the sequential
federated learning setting, we attack the target model after
training at each node, i.e. in each cycle, we perform several,
distinguished attacks. Figures [I] to [3] show the membership
inference attack on the training data of the first node, N1.
After the target model is trained at each of the following nodes,
we measure the attack performance on the attack test set. Half
of the attack test set consists of training data from the node to
be attacked, i.e. N1 in this setting, the other half is test data
that was not used for training in any of the nodes.

The vertical axis of the plots shows the score of the target
model (Accuracy on node N1 training set, accuracy on the
full test set) and the attack model scores on the attack test set
(attack accuracy, precision, recall). The horizontal axis shows
the target model state, where C' stands for a federated cycle,
and N stands for the node number. Thus CiNj is the target
model after training for the i*” cycle at the j** node.

Figure [1| shows results for a membership inference attack in
a sequential federated learning setting with three nodes. For
the classification task with 20 classes (Figure [Ta)), attacking
one node, we reach a higher attack accuracy than with training
on centralized data. Moreover, starting from the second cycle
of federated learning, the results show that right after training
the model at the first node N1, the attack on /N1 training data
performs better at accuracy and precision scores. Figures [Ib]
to show how more training, which leads to an over
adaptation to the specific training instances, influences the
membership inference attack performance. With 200 epochs,
for both the 50 classes and 100 classes tasks, the attack
accuracy increases strongly right after training at node V1.
This trend is way less pronounced, or not presented at all, in
the case of 100 epochs training at each node, as the model
does not have enough training time to adapt that strongly to
the particular characteristics of the data available at each node.
In the classification task with 50 classes, we reach membership
inference accuracy around 0.8 (see Figure [Ic), which is 7%
higher than the attack on the corresponding model trained with
the centralized data.

For federated learning on ten nodes, depicted in Figure[2] we
can observe similar trends. Starting from the second federated
cycle C2, right after training in the node /N1, the membership
inference attack on its data has better accuracy, precision
and recall, which is subsequently declining after training the
target model at each following node. Interestingly, the recall
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Fig. 1: Membership Inference in Federated Learning with three nodes. Attack performance during five federated learning cycles

C4y — Cj: precision, recall and accuracy [0..1]

TABLE II: Membership Inference attack on federated data on
the last federated cycle

100 epochs training per node

Dataset Test accuracy Attack accuracy
3 nodes 10 nodes 15 nodes | 3 nodes 10 nodes 15 nodes
Purchase-10 0.699 0.782 0.782 0.554 0.598 0.616
Purchase-20 0.700 0.720 0.702 0.577 0.636 0.654
Purchase-50 0.666 0.648 0.599 0.656 0.716 0.709
Purchase-100 0.578 0.527 0.471 0.713 0.724 0.700

200 epochs training per node

Dataset Test accuracy Attack accuracy
3nodes 10 nodes 15 nodes | 3 nodes 10 nodes 15 nodes
Purchase-10 0.726 0.768 0.771 0.594 0.604 0.615
Purchase-20 0.711 0.693 0.683 0.634 0.663 0.682
Purchase-50 0.659 0.599 0.589 0.713 0.708 0.714
Purchase-100 0.561 0.477 0.424 0.739 0.745 0.691

has a more drastic variation after training in the target node
(N1). For all classification tasks, we reach higher attack
accuracy attacking one specific node than in the centralized
case. Similarly to the results with three nodes, 200 epochs
on ten nodes causes better attack performance and higher
variations in the attacked node. However, the accuracy of the
target model is higher with 100 epochs per node than with
200, for all classification tasks. Nevertheless, even with 100
epochs for Purchase-100, we reach an attack accuracy of 88%
when attacking node N1.

Federated learning with 15 nodes (see Figure [3) gives
slightly different results on the target model trained with 200
epochs. Already in the first cycle, we can see the difference
between membership attack performance at each federated
learning node starting from around 60%. Figures [3b] and

also show the trend that the attack accuracy is the highest right
after training at the attacked node. Even on the Purchase-10
task, we reach an attack accuracy of 0.69. For Purchase-50
and 200 epochs, we reach 0.87 accuracy and 0.8 precision
of membership inference from node N1. For Purchase-100,
we reach an accuracy and precision of 0.92. However, the
accuracy of the target model, in this case, is 10% lower
comparing to centralized learning.

The membership inference attack works similarly when
attacking the training data from other nodes: right after training
in the target node the attack performance is better than at the
neighboring ones in the sequence. Due to space limitations,
these results are not depicted [

Considering the scenario when an attacker has access only
to the final model and wants to know if some instances were
used by any of the nodes, we see in Table [[I| that for Purchase-
50 and Purchase-100, the attack accuracy is lower than in the
centralized case. However, there are more risks if an intruder
attacks some particular node and has access to the model
before and after training in this node even at only one federated
cycle. In this case, the attack on the model after training has
significantly higher attack accuracy.

Summing up we find that attack performance is better on
models which are trained more at each node, and the attack
accuracy variation is increasing as well with a higher number
of epochs. With a larger number of nodes, we generally also

2Data splits available at Zenodo, |dx.doi.org/10.5281/zenodo.3667751
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Fig. 2: Membership Inference in Federated Learning with ten nodes. Attack performance during 5 federated learning cycles

C1 — C5: precision, recall and accuracy [0..1]

increase the attack accuracy, which can be explained by more
overfitting, and a reduced number of instances per node.

V. ATTACK MITIGATION STRATEGIES

In this section, we briefly discuss mitigation strategies. The
evaluation of their effectiveness for the setting of federated
learning we discussed in this paper will be subject to future
work. Some of the strategies apply to settings where the ad-
versary is an honest-but-curious insider, and some of them can
address also the setting where the coordinator, who receives
potentially all messages, is the adversary. It is worth noting
that, as with any defense mechanism in IT security, there is
an associated cost, and in this case, the cost might mean
computational overhead, and/or a decreased performance of
the final model obtained (e.g. a lower prediction accuracy).

One approach for defense builds on the observation that an
attack, right after the training a particular data set is used for,
is beneficial for inferring the membership. We thus need to
abstract the model from the specific training instances. This
can be achieved by each node injecting a certain amount of
noise to their training data to distort the resulting model.
Another means to achieve a similar result is to apply differen-
tial privacy on the learning output, i.e. directly perturbate the
learned model parameters.

To address insider attacks, randomizing the order of the
nodes in each cycle can reduce the amount of information the
insiders can obtain, as they do not necessarily know anymore
when in the cycle a certain node was training the model, and

they can thus not infer in detail of which participating node
a data sample was a member. A distrusted coordinator could
be limited in its actions by switching to a peer-to-peer model,
where the nodes exchange the learned model directly with
each other. Thus, the coordinator will only see the initial and
final stage of the model in the sequential setting. In general,
a lower number of training epochs at each node reduces
the success rate of the attack. However, finding an optimal
trade-off between the required amount of training to obtain
an effective model, and at the same time adequately defend
against membership attacks, is challenging. Instead, a higher
number of cycles, each with a lower number of epochs per
node, is a viable alternative to reduce the risk of exposure.

VI. CONCLUSION AND FUTURE WORK

We investigated membership inference attack in sequential
federated learning and showed that the attack in these settings
can be more powerful. When there are multiple malicious
participants of federated learning, they can observe the dy-
namics of the membership inference attack. As we showed,
this is because right after training at the particular node, the
membership inference attack on that node’s training data has
better accuracy. Therefore access to membership attack results
from several nodes may bring additional information about the
members’ location at a specific node.

We also outlined possible mitigation strategies. Their eval-
uation for effectiveness, as well as their impact on the overall
utility of the federated learning, will be subject to future work.
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Fig. 3: Membership Inference in Federated Learning with 15 nodes. Attack performance during 5 federated learning cycles
C1 — C5: precision, recall and accuracy [0..1]

ACKNOWLEDGMENT

This work was partially funded from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 826078, project FeatureCloud, and the BRIDGE
1 programme (project KnoP-2D, No 871299) of the Austrian
Research Promotion Agency (FFG),

[1]

[2]
[3]

[4]

[5]

[6]

[7]

REFERENCES

P. Samarati and L. Sweeney, “Protecting privacy when disclosing infor-
mation: k-anonymity and its enforcement through generalization and
suppression,” Computer Science Laboratory, SRI International, Tech.
Rep., 1998.

L. Sweeney, “K-anonymity: A Model for Protecting Privacy,” Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, Oct. 2002.

C. Dwork, “Differential privacy,” in 33rd International Colloquium
on Automata, Languages and Programming (ICALP). Venice, Italy:
Springer, July 2006.

J. Mills, J. Hu, and G. Min, “Communication-Efficient Federated Learn-
ing for Wireless Edge Intelligence in IoT,” IEEE Internet of Things
Journal, 2019.

T. Nishio and R. Yonetani, “Client Selection for Federated Learning
with Heterogeneous Resources in Mobile Edge,” in IEEE International
Conference on Communications (ICC). Shanghai, China: IEEE, May
2019, pp. 1-7.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive Federated Learning in Resource Constrained Edge
Computing Systems,” IEEE Journal on Selected Areas in Communica-
tions, Jun. 2019.

A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes,
“Ml-leaks: Model and data independent membership inference attacks
and defenses on machine learning models,” in 26th Annual Network and
Distributed System Security Symposium (NDSS). San Diego, CA: The
Internet Society, 2019.

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

R. Shokri, M. Stronati, and V. Shmatikov, “Membership inference
attacks against machine learning models,” 2017 IEEE Symposium on
Security and Privacy (SP), 2016.

G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and
G. Felici, “Hacking smart machines with smarter ones: How to extract
meaningful data from machine learning classifiers,” International Jour-
nal of Security and Networks, 2015.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics. FL, USA: PMLR, 2017.

M. J. Sheller, G. A. Reina, B. Edwards, J. Martin, and S. Bakas, “Multi-
institutional Deep Learning Modeling Without Sharing Patient Data:
A Feasibility Study on Brain Tumor Segmentation,” in International
MICCAI Brainlesion Workshop BrainLes. Granada, Spain: Springer
International Publishing, 2018.

A. Jochems, T. Deist, J. van Soest, M. Eble, P. Bulens, P. Coucke,
W. Dries, P. Lambin, and A. Dekker, “Distributed learning: predictive
models based on data from multiple hospitals without data leaving the
hospital,” Radiotherapy and Oncology, 2016.

S. Silva, B. Gutman, E. Romero, P. M. Thompson, A. Altmann,
M. Lorenzi, and U. K. Adni, “Federated learning in Distributed Medical
Databases: Meta-Analysis of Large-Scale Subcortical Brain Data,” Inria
& Université Cote d’Azur, Sophia Antipolis, France, Tech. Rep., 2018.
U. M. Aivodji, S. Gambs, and A. Martin, “IOTFLA : A Secured and
Privacy-Preserving Smart Home Architecture Implementing Federated
Learning,” in 2019 IEEE Security and Privacy Workshops (SPW). San
Francisco, CA, USA: IEEE, May 2019.

M. Fredrikson, S. Jha, and T. Ristenpart, “Model Inversion Attacks
That Exploit Confidence Information and Basic Countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS). Denver, Colorado, USA: ACM, 2015.
S. Truex, L. Liu, M. Gursoy, L. Yu, and W. Wei, “Demystifying
membership inference attacks in machine learning as a service,” I[EEE
Transactions on Services Computing, 2019.



	Introduction
	Related Work
	Experimental Setup
	Evaluation
	Attack Mitigation Strategies
	Conclusion and Future Work
	References

