ADROIT: Detecting Spatio-Temporal Correlated
Attack-Stages in IoT Networks

Dinil Mon Divakaran*, Rhishi Pratap Singhf, Kalupahana Liyanage Kushan Sudheeraf,
Mohan Gurusamy' and Vinay Sachidananda*
*Trustwave, National University of Singapore
dinil.divakaran @trustwave.com, rhishi@comp.nus.edu.sg, kushan@nus.edu.sg,
elegm @nus.edu.sg, vinay.sachidananda@trustwave.com

Abstract—As 10T devices become increasingly deployed for
personal as well as commercial purposes, the cyber threat
landscape is also changing with recent years witnessing attacks
with higher intensity and sophistication. Attacks consists of
multiple stages, such that the individual attack-stages not only
happen at different times but are also dispersed spatially across
large number of IoT devices residing in multiple networks.
These characteristics make it challenging to detect the attack-
stages using solutions that are localized in space and time. This
work looks into the problem of detection of attack-stages in
IoT networks. We develop Adroit, a system that correlates
anomalies across different networks and different time-windows,
using a scalable network architecture. In Adroit, network traffic
of devices is processed locally to detect potential anomalous
behavior. Alerts on the anomalies are regularly sent to a security
manager residing in the cloud, which employs a well-known
data mining approach, FIM, to extract attack patterns. Results
from our preliminary experiments conducted using an OpenStack
environment are encouraging — Adroit is able to detect attack-
stages with high accuracy while filtering out much of false alerts.

I. INTRODUCTION

The unprecedented growth in the number and type of IoT
devices as well as device-centric applications makes IoTs an
attractive attack surface, thereby introducing new challenges to
cyber security and privacy [L1]. Recent times have witnessed
IoT devices being compromised and exploited for launching
large-scale attacks causing huge losses [7, [10]. A cyber attack
consists of multiple stages such as social engineering cam-
paign, reconnaissance, intrusion, infection, C&C communica-
tion, and launch of targeted attacks (e.g., TCP SYN flooding,
DNS-based DDoS attacks, data exfiltration, etc.). To deal with
this rapidly evolving threat landscape, it is important to detect
different stages of large-scale attacks (referred to as attack-
stages) as early as possible. Such a detection solution is useful
in many ways, providing early warning of malware spread,
extraction of signatures, timely prediction of attack-stages and
quick mitigation. To develop an effective detection solution,
there are two challenges we need to overcome:

1. Spatial dispersion: Threats and attacks target as well as
originate at different network premises. This means, a tradi-
tional detection solution residing at one network premise will

Workshop on Decentralized IoT Systems and Security (DISS) 2020
23 February 2020, San Diego, CA, USA

ISBN 1-891562-64-9

https://dx.doi.org/10.14722/diss.2020.23006
www.ndss-symposium.org

observe only malicious activities related to its own network [9],
and would not have visibility of similar or related activities in
other networks. For example, a short burst of packets to a new
destination from one device might be missed or ignored, but if
the same pattern is observed at multiple premises, that could
be an indication of a sophisticated low-rate DDoS attack [3].

2. Temporal dispersion: The malicious network activities
due to the attack-stages can happen at different times. A bot
can remain infected for a long duration, and during that time,
it may engage in multiple rounds of one or more attack-stages
such as scanning for and exploiting other vulnerable devices,
loading of malware, exflitration of data, etc. A particularly
interesting example is that of establishing communication with
a C&C server — attempts of a newly infected bot to locate its
C&C server (e.g., using a static list of IP addresses or DNS)
may happen over hours or days to evade detection.

Detecting malicious activities in silo does not provide the
broader view required to connect the dots and recognize the
larger threat taking shape across different networks and at
different times. While these challenges existed before, they are
amplified in the IoT era, as demonstrated by Mirai attack [7]]
and Hajime botnet [10]. A naive approach to detect different
stages of an attack from various networks is to have a (cloud-
based) centralized solution, to which all traffic flows from
all devices in deployed networks are sent to. The centralized
solution can then process the network traffic to look for specific
patterns of attack-stages (see [6, [12]). But such an approach
has multiple disadvantages: (i) The amount of data from all
devices that needs to be sent to and processed at the centralized
location is going to be humongous. The constrained resources
in this case (based on the available budget) are not just the
computational power and storage requirements at the cloud,
but also network bandwidth required to stream data from
enterprises to the cloud. (ii) IoT device communication consists
of private and confidential data. It is now well-known that
even traffic analysis that excludes payloads leaks sensitive
information [2]. Therefore, users would be unwilling to store
device traffic in the cloud, where there is risk of information
leak. (iii)) Models to detect known specific patterns might
miss out new attack-patterns; for example, the manifestation of
vulnerability exploitation of Wannacry ransomware in network
traffic is different from that of Mirai botnet.

To tackle the above challenges, we propose Adroit, a
system that correlates suspicious activities across space and
time to detect patterns related to attack stages. Adroit is build
on a distributed network architecture depicted in Fig. [1| (similar

Falhs

(:) Gateway {15 Gateway (\) Gateway
@ @ H @ i & @
loT Devices 4 L loT Devices : loT Devices ‘

Off-path logical links

- = = = Wired/wireless links

Fig. 1: Distributed network architecture for IoT security

to recent works [[14, 3l]). A gateway resides at the perimeter
of a network premise[ﬂ connected to all IoT devices in that
network. Gateways have the capability to passively monitor
network traffic of the connected devices. We assume gateways
have reasonable computational and storage resources, as is
the case with home access routers today. The gateways at the
premises are all connected to a security manager residing in the
cloud or an ISP datacenter; therefore the links (in the figure)
connecting the gateways and the manager are only logical
links. The manager is essentially a software logic that could
be deployed either independently as a standalone software, or
as an application that is integrated with the SIEM (Security
Information and Event Management) engine [4], or even as an
SDN application (thereby assisting in real-time mitigation).

They key properties of Adroit are the following:

1. Traffic of IoT devices are processed only locally at the
gateways. Only alerts (information on anomalies generated
at the gateways) are sent to a security manager. Thus, in
comparison to sending network traffic of all devices to a
centralized entity, Adroit reduces the bandwidth required by
orders of magnitude.

2. Adroit minimally leaks private information of devices.
As we will see in Sec. a gateway at a network premise
constructs, stores and updates normal profiles of IoT devices.
Alerts are generated only for those traffic flows that do not
match against the profile, i.e., for ‘anomalous’ traffic.

3. Adroit takes an unsupervised approach for detecting the
various attack-stages. We employ a well-know data mining
technique—FIM (frequent itemset mining)—at the security
manager, to efficiently and automatically extract patterns corre-
sponding to attack-stages (Sec. [[I-B). This requires no knowl-
edge of specific attack-stages, and therefore has the potential
to detect new malicious activities.

4. The distributed architecture of Adroit removes the con-
straint arising from the spatial dispersion of IoTs and network
premises, and allows us to correlate alerts from different gate-
ways at the security manager. Furthermore, we also develop a
window-based mining approach, that extracts patterns across
past time-windows based on the patterns detected in the current
time window (Sec. [[Il. Thus, Adroit performs both spatial
and temporal correlation of alerts.

YA premise could be a home consumer or an enterprise.

Manager Attack stage Aggregate
(online task) [patterns FiM alerts
@ AYes

Real-time
traffic

Connection o
Behawor

Feature extraction

Gateway (online task)

Cuckoo Hash Table

Profile device traffic Key Statistics
6‘\5 ky S11, 812, -+
v ky $21, 9822, - -
Gateway (offline task) . :

Fig. 2: Functional block diagram of Adroit

II. PROFILING AND ANOMALY DETECTION AT GATEWAYS

Fig. 2] shows the functional block diagram of Adroit.
Below, we discuss the tasks carried out by a gateway.

A. Profiling IoT devices

We define a profile of an IoT device as a concise represen-
tation of the traffic characteristics of that device. We assume
most [oT devices (such as smart camera, smart lock, etc.) use
a specific set of protocols, as a device serves very specific
functionality. The set of protocols and applications a device
uses are highly dependent on the device functionality. Yet, the
mappings of devices to protocols and servers are deterministic
in the sense that, we do not expect them to change, unless
there is a firmware/software update [9, [14]. Exceptions to this
assumption are IoT hubs, e.g., Google Home.

As mentioned earlier, we assume a gateway has sufficient
memory, and therefore it can store profiles of IoT devices in
the memory for fast processing. Intuitively the right time for
profile construction is when a device connects to the network
(gateway) for the first time. Since the normal behavior of IoT
device can change due to system updates, profiling also needs
to be carried out multiple times during the lifetime of the
device. It is reasonable to assume that, such profile updates
need to be performed only in the timescale of days, and not
every minute/hour. Therefore, the process of profiling devices
can be considered as an offline task.

Cuckoo hash table for IoT profiles: One could use a hash
table to store the profiles of IoT devices at a gateway. Once
the profile table is built, it will be used for real-time detection
of anomalies in IoT communications. For anomaly detection
at gateways, as will be seen in Sec. the only operation
performed on a profile table is the lookup operation. A
traditional hash table cannot guarantee a constant lookup
time, whether the scheme used is chained hashing or linear
probing. This is where the Cuckoo hash table (CHT) [13]
is useful. In a CHT (with two hash functions), exactly two
bucket locations are accessed to perform a 1ookup operation
in the worst case. To achieve this constant time lookup, the
compromise made in the CHT design is for the insert
operation [13]]. But since insert operation is only required
for constructing a profile, and is therefore only used offline,
the overhead for insert operation is tolerable.

For an IoT device d, a profile table P? is created by
processing network traffic flows of that device during a pre-

TABLE I: Profile of D-Link socket

dstIP dstPort | Protocol | Dir | count Size
mean | std | mean std
dns.google. 53 UDP Out 2 0 219.8 4.3
api.dch.dlink.com. 30 TCP Out 10 0 1227 0
api.dch.dlink.com. 443 TCP Out | 22.6 | 2.26 | 5792.4 | 9554
ntpl.dlink.com. 123 UDP Out 2 0 152 0
r0802.dch.dlink.com. 443 TCP Out | 1244 | 9.39 | 5212.9 | 974.8
tzinfo.dch.dlink.com. 80 TCP Out 10 0 824 0
wrpd.dlink.com. 80 TCP Out 10 0 1202 0

defined interval. For this purpose, a traffic flow is identified
by the common 5-tuple of source and destination IP addresses,
source and destination ports and protocol, such that two flows
with the same 5-tuples are separated in time by a threshold
(say, five seconds). We refer to the S-tuple flow identifier as
fid. Though, we process traffic in 5-tuple flows, the profile
table stores only session-level information. We define a session
as an aggregation of 5-tuple flows, localized in time, and
having the same 4-tuple of srcIP, dstIP, dstPort,
Protocol. In other words, multiple connections between two
end-points for the same service (e.g., HTTP) are aggregated
into one session by dropping the source port (which changes
randomly with every new connection). In practice, it is also
useful to separate incoming and outgoing connections; this
can be achieved either by using two tables or by adding
another attribute in addition to the 4-tuple key—Dir, which
will indicate the direction of the connections in a session.

Essentially, the profile table of a device is indexed using
the session identifier sid = {srcIP, dstIP, dstPort,
Protocol, Dir}. In the indexed slot corresponding to a
session in the CHT P?, we store statistical information such as
mean and standard deviation of different features such as flow-
size in packets (count), flow-size in bytes (size), etc. Table
provides the profile table of a D-Link socket.

B. Anomaly detection at gateways
There are two kinds of anomalies we detect at a gateway:

Connection anomaly: A connection to a new external IP
address or use of a new application (port) not found in the
profile table is suspicious. Such a new connection will not
have an index in P9 for the specific device d. To detect this,
for a packet corresponding to device d, the gateway extracts
the values for the sid fields (srcIP, dstIP, dstPort,
and Protocol from the header; Dir from the direction of
the first packet of the flow), and performs a 1ookup on the
profile table P? with sid as the key. If the 1ookup fails, it
is a connection anomaly. All connection anomalies for device
d are stored in a hash table C%; different from P¢ the S-tuple
fid is used as an index in C%. Therefore, an alert for an
anomaly corresponds to a flow.

Behavior anomaly: 1t is possible that a connection finds a
matching key in the profile table P%, and yet there is a statis-
tical anomaly. For example, an attacker might compromise a
device and host the data extfiltration service on the same cloud
platform which hosts the device’s application. This category
of anomalies consist of flows that already map to a valid key
in the profile table P9, but yet deviates from the “normal”
behavior. To detect behavior anomalies, a gateway maintains a
hash table B¢ for device d, consisting of all the active 5-tuple
flows — flows that had at least one packet in the last ¢ seconds

(t is a configurable parameter). Once the flow becomes inactive
(meaning no packet was transmitted in the last ¢ seconds),
the gateway uses z-score to compare the flow features (sizes
of flow in bytes and packets as well as flow duration) to the
corresponding session features in P¢. If the z-score is high, the
flow is deemed as statistical anomaly, and an alert is generated.
Once a flow becomes inactive, it is removed from B<.

A gateway temporarily stores anomalies in tables C and
B (the superscripts are dropped for readability). At every
predefined interval, a gateway sends all alerts stored in both
tables to the security manager. Subsequently, both the hash
tables are cleared of all entries. Fig. [3] gives several examples
of alerts seen at a security manager. The first six fields
corresponds to the 5-tuple £id and direction Dir, while the
last column is the size of the flow in discrete categories.

III. ATTACK-STAGE DETECTION AT SECURITY MANAGER

The security manager and gateways connect and communi-
cate via secure web sockets. The manager gathers alerts from
all connected gateways and stores them in a database. We now
describe the process of attack-stage detection at the manager.

A. FIM based pattern extraction

The challenge at the manager is to process the alerts and
extract out only meaningful patterns corresponding to attack-
stages. Observe that, not all alerts are related to attack-stages,
or even malicious. Alerts can be generated by a gateway, if
the profile did not capture the normal behavior perfectly. This
can happen for a number of reasons, say, due to changes in
firmware, applications or user behavior. Besides, random scans
unrelated to attacks take place frequently around the Internet
for research and other purposes. We refer to all such alerts not
related to attack-stages as false alerts. Therefore, the manager
is tasked to mine for attack patterns by automatically filtering
out false alerts (noises). We argue that there are two ways to
identify noises: (i) if alerts corresponding to such noises are
low in number, and (ii) if there are no ‘similar’ alert(s) across
more than one gateway (network premise).

To achieve our goal, we propose to employ FIM (frequent
itemset mining) [[L], a data mining technique used to extract
recurring patterns across all transactions (in our case, alerts).
In the FIM language, each field of an alert is an item, and a
set of k items is called an k-itemset, where k is the length
of the itemset. For instance, each incoming alert in Fig. [3] has
seven items, whereas, the initial four extracted itemsets (in the
bottom table) have five items (k = 5) and the last itemset has
six (k = 6). Given a list of n alerts, an itemset (i.e., a pattern)
is called a frequent itemset, if it appears in at least § x n
alerts, where 6,0 < 0 < 1, is called the minimum support.
Therefore, the goal of FIM is to mine frequent itemsets in an
alert database.

We can mine all possible frequent itemsets, also called as
lattice, in the alert database using a fundamental FIM algorithm
such as Apriori [1]. Though, the complete lattice provides
a comprehensive overview of all the patterns, the extent of
patterns is exhaustive, and the complexity associated with the
generation of the lattice can go up to O(n x 27~1), where 7
is the total number of itemsets [[1]. Moreover, many patterns
are closely related, and generally, lower length itemsets are

Incoming Alerts

srclP dstiP Protocol | srcPort | dstPort | Dir | sizeBin
1 scanner1.com 10.6.1.12 TCP 45678 23 In | Small |
2 | scanner2.com 10.6.1.12 TCP 56897 23 In | Small
3 | scanner3.com 10.6.2.2 TCP 55001 23 In | Medium | | @ ,
4 | scanner3.com 10.6.5.173 TCP 45877 23 In | Medium E §a
5 10.6.2.2 cnc.com TCP 23669 | 48000 |Out| Medium T.";z
6 10.6.5.173 cnc.com TCP 56814 | 48000 |Out| Medium | ra §
: : : H : H : : o
31 10.6.2.2 victim1.com TCP 23456 80 Out| Medium <
32 10.6.5.173 victim1.com TCP 35689 80 |Out| Medium
33 victim2.com dns.server UDP 13074 53 Out| Small
34 | victim2.com dns.server UDP 18869 53 |Out| Small |J
: ; : : : : : ﬁ -
101 10.6.2.13 firmware1.com TCP 49225 80 |Out| Large g 1<)
102| 10.6.13.144 random1.com TCP 48369 443 | Out| Medium 2 %
103 | firmware2.com 10.6.19.66 UbP 23698 69 In | Large i2) é
. CE]
3 =}
&

FIM
Extracted Itemsets

srclP dstIP Protocol | srcPort | dstPort | Dir | sizeBin
1 * 10.6.1.12 TCP * 23 In Small
2| scanner3.com * TCP * 23 In | Medium
3 * cnc.com TCP * 48000 |Out| Medium
4 * victim1.com TCP * 80 Out | Medium
5| victim2.com dns.server ubP * 53 Out| Small

Fig. 3: Example of alerts received at the manager (top table),
and maximal frequent itemsets (MFI) mined (bottom table).

subsets of higher length itemsets, and thus, redundant. For
instance, in the case of lattice, there would be redundant pat-
terns such as <<%, x, TCP, x, 23, In, *>> (where * stands
for any value for that item) in addition to the first pattern
<<%x,10.6.1.12,TCP, *,23,In,Small>>, among the
mined patterns listed in the bottom table of Fig. 3]

As alternatives, we can generate subsets of the lattice in the
forms of closed frequent itemset (CFI) and maximal frequent
itemset (MFI), where the itemsets in the former do not have
any superset with the same support, while the itemsets in the
latter do not have any superset which is frequent. Both CFI
and MFI have significantly lesser number of itemsets than
the lattice, while MFI is itself a subset of CFI. In terms of
contained information, the patterns in the MFI have much more
information as they are generally of higher length, and the
number of patterns and complexity are lowest. Thus, in this
work, we mine for MFI.

We now revisit Fig. [3] The patterns shown in
the bottom table are obtained when mined for MFIL
For instance, when mined with a minimum support
count of 2, alerts 31 and 32 form a pattern of
<<x,cnc.com, TCP, x,48000, Out,Medium>>, and it
can be interpreted as multiple IoT devices attempting to
connect with cnc.com. However, in the case of false alerts,
i.e., not related to the attack-stages, a clear pattern is not
visible. Protocol and Dir are the only frequent items;
but this itemset is of very small length and will disappear
if itemsets mined for are MFI.

B. Pattern search algorithm

Pattern mining is performed on an aggregation of alerts,
which is collected over a time-window. The length of the
window obviously influences the time to detect, and we keep
it as a configurable parameter. When the attack detection is

Algorithm 1 Pattern mining at time-slot 7 with look-back

Input: F: mined patterns (an array), A: alerts, 6;: lower bound
of minimum support, A~, A*: decrement and increment
step sizes of minimum support, 7’,: look-back time-slots

1. F[r] + MFI_Iter(any_pattern,F, Alr], 6, ;) >
mine for any maximal frequent itemset in alert database

at time 7 while reducing 6 iteratively until 6;

for eacht € {r,...,7—T,} do
for each I € F[7] do

0+ (06—A7)
A"+ filterAlerts(I, A[t]); > filter the alert

database by pattern 1

6: F' + MFI_Iter(new_pattern,F, A" 0 0))
> mine for any new pattern in filtered alert database A’

while reducing ¢’ iteratively until 6;

7: Flt] « FtJUF’ > add new patterns
8: end for

9: end for

10: 0+ (0 +A™T) > increase for next time-slot

executed across multiple time-windows, it enables Adroit
to take temporal correlation into account. Furthermore, this
makes it possible to have different minimum support in
different time-windows. Note that, minimum support is the
most important parameter that will decide the accuracy of our
detection system. If it is too low, false alerts would be extracted
as patterns (false positives); and if it kept too high, some of
the attack-patterns might not be extracted. Hence, we come
up with a detection algorithm, presented in Algorithm [T] that
dynamically adapts the minimum support across intervals.

To vary the minimum support, the algorithm is guided
by the patterns that are detected. The algorithm begins by
initializing the minimum support with a high value. Once a
pattern is detected (line [T), assuming it captures one of the
attack-stages, the algorithm explores for more patterns with
a lower minimum support. However, mining on all alerts is
not only computational expensive, but may also risk extracting
patterns of false alerts. To overcome this, we limit mining on
alerts related to the already detected patterns (line [3)). That is,
we first prune the alert database by filtering out alerts that do
not have one of the IP addresses of the detected pattern. We
highlight that, our mining solution is modified to also mine for
IP subnets from IP addresses (in either the srcIP or dstIP
fields). Therefore, the pruning process is based only on IP
addresses or IP subnets of previously mined patterns. Second,
this conditional mining (line [6) is carried out on pruned alerts
of not just the current timeslots, but also for T, previous time-
slots (line 2}9), thereby considering correlation across time.
Essentially, the algorithm does a look-back in time for more
patterns conditioned on the patterns detected in the current
time-slot. Moreover, to avoid the minimum support being set
to a very small value (and thereby increase the false alert
patterns), we increase the minimum support by a constant
(line [TO) at the end of the current time-slot.

IV. PERFORMANCE EVALUATION

A. Experimental setup

For our experiments, we emulate a Mirai-like environ-
ment [[7] as illustrated in Fig. [using OpenStack. The entities

Compromised
False alert Attack victim t " | loT
generator external loTs @ Manager
]
[(\5 Gateway} [(\) Gateway} T {{1%5 Gateway}
1721610/24 “_ 1721620/24,"’*\ 172.16.7.0/2’4,/]‘\

oN0 630

IoT Devices

Fig. 4: Experimental setup

emulated are seven gateways, a security manager, 65 IoT
devices, 1 attack victim, 2 compromised external IoTs, a
C&C server, a loader and a false alert generator. False alert
generator is a set of VMs generating harmless and independent
scans-based alerts, the intensity of which is configurable.
Note that, the challenge of detecting meaningful anomalies
(attack-stages) increases with the intensity of noises, which, as
explained previously, can arise due to a host of reasons such
as network errors, changes in user or application behavior,
firmware updates, false positives, etc. The gateways and the
security manager run the algorithms that we described in the
previous sections. Each gateway continuously monitors the
traffic of the connected IoT devices. Alerts generated at the
gateways are sent to the manager at every 20 second interval.
We implemented the FIM algorithms using the Java-based
SPMF software platform [8]].

We emulated different stages of a Mirai-like botnet, specif-
ically scans, brute-force login attempts, malware downloads,
C&C communications, HTTP DDoS and reflective DNS DDoS
attacks on the victim. Scan and brute-force login activities hap-
pen throughout the experiment. As a new IoT is compromised,
malware is downloaded and communication with C&C servers
are made; subsequently the victim server is attacked. DDoS
attacks on victim lasts for ~ 5 minutes. With this setup, we
conducted two sets of experiments as follows.

Experiment 1: The goal of this experiment is to analyze the
ability of Adroit in detecting attack patterns using spatial
correlation. To this end, we compare local v/s global detection
capabilities; in other words, if mining was performed only at
the gateways instead of the security manager, how would the
system perform in comparison to mining only at the manager.
Therefore, the experiment was run twice, once where FIM was
executed only at the gateways, and the second time only at
the manager. In each case, FIM is run only once, at the end
of the experiment (~45 minutes). Thus, we also anayze the
effectiveness of FIM in mining relevant patterns. Here, we
consider multiple false-alert levels, in which level O refers to
the case, where there is no false alert. The number of false
alerts are nearly two times and eight times the number of alerts
related to attack-stages, for levels 1 and 2, respectively.

Experiment 2: Our aim with this experiment is to analyze
detection capability of Adroit for different settings/variants
of Algorithm [I] when attack-stages are temporally dispersed.
We set a false-alert level of 1. Mining is done for MFIs across
multiple time windows with window-size (7) set to 5 minutes.
Here, 80% of the attack-stages generated are spread across 6
time-windows.

B. Result analysis

Experiment 1: Fig. [plots the detection accuracy, in
terms of Fyp- scoreﬂ for security manager, individual gateways,
and aggregate gateways (Gateway-all), for different values
of minimum support count (not fraction) varied from 2 to
100 in steps of 2. Note, false-alert level O corresponds to
the scenario where there are only alerts related to attack-
stages. In this scenario (Fig. [5a), clearly, the security manager
outperforms the gateways, individually and also collectively,
in detecting attack patterns. This observation remains true
also for the other two scenarios (Fig. [5b] and [5¢)), but with
higher minimum support. Comparing the best cases, the man-
ager outruns Gateway-all by 7%, 11%, and 7.5%, in Fig.
[5al [5b] and respectively. The manager mines on alerts
received from all gateways; hence if alerts of an attack-stage
is spread spatially across different gateways, the manager has
the capability to mine them together and extract patterns that
would be otherwise missed at gateways due to lower count in
alerts. Nevertheless, gateways are also able to achieve good
performance (in terms of F;-score), for attack-stages targeting
their respective networks, thereby demonstrating the capability
of FIM in mining attack patterns. In general, we observe that
detection capability is dependent on the minimum support and
having a static minimum support is not advisable.

Experiment 2: Fig. [6] plots the F;-score and the number of
attack-patterns detected (True Positives) for the different time-
slots. The four bars correspond to four different approaches
for mining. In both constant minimum support and search w/o
look-back algorithms, mining is performed only in the current
window (i.e., the algorithm goes up to line [T] of Algorithm I)),
yet, in the former, the minimum support does not change.
Both search w/ look-back variants execute Algorithm [I] fully,
with the only difference being the look-back time-slots (77,).
From the figure, it is evident that the proposed pattern search
algorithms with look-back have extracted significantly higher
amounts of attack related patterns, in comparison to other two
variants (in terms of True Positives, more than 2.7x), and
importantly, across multiple time windows. Not only have they
extracted more attack patterns, but also achieve higher F;-score
in many time windows. Constant minimum support algorithm
does not dynamically adapt to the intensity of attacks, and
thus, fails to extract a significant amount of true positives.
Although, search w/o look-back dynamically changes the min-
imum support, it does not consider the temporal dispersion of
attack-stages, thereby missing out patterns related to the ones
detected in the current time-window. The look-back algorithm
dynamically adapts, consequently achieving a significant per-
formance improvement.

V. DISCUSSIONS
A. Deployment scenarios for Adroit

1. Securing consumers: We envision the IoT gateways in
Adroit to be integrated with home routers deployed by ISPs.
This gives ISPs capability to run detection and mitigation
solutions at home gateway. While an ISP is not supposed to use
private information of consumers (such as, packet payloads)
for its own purpose, consumers who want an ISP solution to
protect its devices might consent to the solution inspecting

2F; -score is the harmonic mean of precision and recall.

1.01 1.0 1 1.0

0.8 A 0.8 0.8 1
2 0.6 2 0.6 A © 0.6
o o 1]
O O o
Q Q@ Q
& 0.4 £ 0.4 4 04

| 1 l,‘.'-a- Gateway-1 —» - Gateway-all 0.2
0.2 0.2 —A-+ Gateway-3 -3 Manager
-6+ Gateway-5 e
0.0 ; : ; ; . 0.0 1 ; ; ; ; 0.0 ; . . ; .
0 20 40 60 80 100 0 20 60 80 100 0 20 40 60 80 100

Minimum support count

(a) False alert level O

Minimum support count

(b) False alert level 1

Minimum support count

(c) False alert level 2

Fig. 5: Performance of FIM at gateways and manager.

3 Constant minimum support
Search w/o lookback

BXX Search w/ T, =1 lookback
Search w/ T,, = 3 lookback

0.8 0.6 0.4 0.2 00 0 10 20 30
F1-score # True positives

Fig. 6: Performance with different variants of Algorithm

traffic. Yet, a solution in which consumer’s private information
does not leave the premise is preferred, to minimize risk of in-
formation leak. In Adroit, only alerts (i.e., meta-information)
relating to anomalies leave consumer premise.

2. Securing enterprises: Observe that, the distributed archi-
tecture of Adroit is also similar to the SIEM (e.g., IBM
QRadar) architecture we have today. A log collector deployed
at an enterprise collects, processes and sends filtered alerts
coming from different security appliances (firewall, IDS, OS
event logs, etc.) to the SIEM engine in the cloud. Our solution
can be seen as an extension of SIEM into the IoT market.

B. Next steps

In this work, we developed Adroit and demonstrated its
capability in detecting attack-patterns with low false-positive
rate. Going ahead, we plan to carry out extensive evaluation
of Adroit, across larger timescales and considering botnets
beyond Mirai. From a solution perspective, our next step is to
identify the detected patterns; i.e., classify the detected patterns
into one of the specific attack-stages.

ACKNOWLEDGMENT

This research is supported by the National Research Foun-
dation, Prime Minister’s Office, Singapore under its Corporate
Laboratory @ University Scheme, National University of Sin-
gapore, and Singapore Telecommunications Ltd.

REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algo-
rithms for Mining Association Rules in Large Databases.
In Proc. VLDB ’94, pages 487-499, 1994.

[2] Noah Apthorpe, Dillon Reisman, and Nick Feamster.
A Smart Home is No Castle: Privacy Vulnerabilities
of Encrypted IoT Traffic. In Workshop on Data and
Algorithmic Transparency (DAT’16), 2016.

[3] Ketan Bhardwaj, Joaquin Chung Miranda, and Ada
Gavrilovska. Towards [oT-DDoS Prevention Using Edge
Computing. In USENIX HotEdge Workshop, 2018.

[4] S. Bhatt, P. K. Manadhata, and L. Zomlot. The Opera-
tional Role of Security Information and Event Manage-
ment Systems. IEEE Sec. Privacy, 12(5):35-41, 2014.

[5] Levente Csikor, Dinil Mon Divakaran, Min Suk Kang,
Attila K&rosi, Baldzs Sonkoly, David Haja, Dimitrios P.
Pezaros, Stefan Schmid, and Gédbor Rétvari. Tuple Space
Explosion: A Denial-of-Service Attack against a Software
Packet Classifier. In Proc. ACM CoNEXT, 2019.

[6] Dinil Mon Divakaran, Fok Kar Wai, Ido Nevat, and Vri-
zlynn Thing. Evidence Gathering for Network Security
and Forensics. Digital Investigation, 20:S56 — S65, 2017.

[7] Manos Antonakakis et al. Understanding the Mirai
Botnet. In Proc. USENIX Security, 2017.

[8] P. Fournier-Viger et al. The SPMF Open-Source Data
Mining Library Version 2. In Machine Learning and
Knowledge Discovery in Databases, pages 3640, 2016.

[9] Ayyoob Hamza, Hassan H. Gharakheili, Theophilus A.
Benson, and Vijay Sivaraman. Detecting Volumetric
Attacks on loT Devices via SDN-Based Monitoring of
MUD Activity. In Proc. ACM SOSR, pages 36-48, 2019.

[10] Stephen Herwig, Katura Harvey, George Hughey, Richard
Roberts, and Dave Levin. Measurement and Analysis of
Hajime: a Peer-to-peer IoT Botnet. In Proc. NDSS, 2019.

[11] D. Kumar, K. Shen, B. Case, D. Garg, G. Alperovich,
D. Kuznetsov, R. Gupta, and Z. Durumeric. All Things
Considered: An Analysis of IoT Devices on Home Net-
works. In USENIX Security, 2019.

[12] 1. Nevat, D. M. Divakaran, S. G. Nagarajan, P. Zhang,
L. Su, L. L. Ko, and V. L. L. Thing. Anomaly Detection
and Attribution in Networks With Temporally Corre-
lated Traffic. IEEE/ACM Transactions on Networking,
26(1):131-144, Feb 2018.

[13] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
Hashing. J. Algorithms, 51(2):122-144, May 2004.

[14] V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia,
and M. Gurusamy. DEFT: A Distributed IoT Finger-
printing Technique. [EEE Internet of Things Journal,
6(1):940-952, Feb 2019.

	Introduction
	Profiling and anomaly detection at gateways
	Profiling IoT devices
	Anomaly detection at gateways

	Attack-stage detection at security manager
	FIM based pattern extraction
	Pattern search algorithm

	Performance evaluation
	Experimental setup
	Result analysis

	Discussions
	Deployment scenarios for Adroit
	Next steps

