
IoT Security Function Distribution via DLT

Le Su∗, Dinil Mon Divakaran†, Sze Ling Yeo‡, Jiqiang Lu§ and Vrizlynn Thing¶
∗Nanyang Technological University, Singapore † Trustwave, ‡Institute for Infocomm Research, A*STAR, Singapore,

§School of Cyber Science and Technology, Beihang University, China, ¶National University of Singapore
lsu1@e.ntu.edu.sg, dinil.divakaran@trustwave.com, slyeo@i2r.a-star.edu.sg, lvjiqiang@buaa.edu.cn, vrizlynn.thing@gmail.com

Abstract—With the rapid deployment of IoT devices, there is
an increasing concern on the security and privacy of the devices.
We are now witnessing newer and higher intensity attacks that
exploit IoT devices. Although security-by-design is important
and necessary, the effectiveness and sustainability of the build-
in security defense may still be questionable. This has created
new opportunities for third-party security service providers to
enter the market. In this work, we leverage the distributed
ledger technology (DLT) to propose a solution for distributing IoT
security functions. We design the system architecture and describe
the different types of operations to be executed. Our system also
allows for reputation scoring that further adds credibility to the
security functions distributed in the network.

I. INTRODUCTION

In a few years, a house will have a number of IoT devices,
with most of them connected to the Internet via a router or a
gateway, and unattended by humans. Many devices are being
manufactured with little consideration for security, and patches
might simply be not available even if vulnerabilities have been
known and exploited. Even today, when there is most often a
human behind a computer in use, vulnerabilities are discovered
frequently and regularly. Yet, the patches are late and many
times not applied, thus leaving these systems vulnerable to
exploits. When it comes to IoT devices, the security-related
problems are expected to increase significantly, for the above-
mentioned reasons [1], [2].

As IoT devices are manufactured by a number of vendors,
the devices could become obsolete, with no official continuous
support for security from the vendors. Besides, the security
functions (e.g., security patches, IDS, etc.) may be developed
by or outsourced to third parties. In such a vibrant, emerging
and crucial market, where the security of the devices is not
guaranteed, we argue that it is necessary to build platforms
that will help the fast development and deployment of reliable
security solutions. We envision a future where anyone can
develop security functions (also henceforth referred to as
SFs) for IoT devices, offering security-as-a-service. This can
potentially lead to the budding of a large number of security
solution providers (SSPs) competing to develop SFs for vast
numbers and types of IoT devices out in the market. The
challenge to this vision is this: how is it possible to verify
and validate SFs developed by any arbitrary provider (some of

All authors were with Institute for Infocomm Research, A*STAR, when
this work was carried out.

whom would be start-ups and inexperienced) in such a way
that the time-to-market is as short as possible?

We consider the problem of fast and efficient development
of security functions for IoT devices, particularly in the context
of smart homes. In this context, we envision the home Internet
gateway of IoT devices to be the last mile of defense [3],
[4]. That is, the responsibility of protecting the devices rests
on the gateway that connects the IoT devices to the Internet.
We expect an IoT gateway to be “intelligent” in the sense
that it can deploy security functions to and for the devices it
protects. The gateway will carry out functions such as patching
of the devices, inspection of device traffic (to check for botnet
patterns), manipulating the packets (say, to use a more secure
protocol than that used by the devices), etc.

In view of the above motivation, we develop and present a
system design that aims at distributing legitimate and correct
security functions through a network of IoT gateways, quickly
and without a central authority leveraging the distributed ledger
technology (DLT). At the same time, the SSPs that develop
efficient and correct security functions tend to gain reputation
in the system, over others that develop buggy and ineffective
functions. The key features of our system are:

(i) It is a decentralized network for efficient distribution and
deployment of security functions.

(ii) All transactions achieve integrity, authenticity and non-
repudiation.

(iii) Our solution brings forth important practices that exist
today for software purchases, e.g., allows the gateways to
test a trial version of the function before deciding whether
to purchase it or not. The system further motivates gateways
to provide user feedback, and circulate the effectiveness of the
security function in the network.

After an overview of our proposed system, we present
the system design in Sec. III, with transactions being defined
in Sec. IV. In Sec. V, we explain how the system could be
implemented. Sec. VI touches on the reputation system, and
Sec. VII discusses potential attacks and their counter measures.

II. SYSTEM OVERVIEW

Our system assumptions are the following:

• Gateways are resourceful machines; they have large
storage and they can also perform heavy computations
(similar to other recent proposals, e.g., [4]). They are
also connected to the Internet with the state-of-the-art
bandwidth capacity of the day (say, 1 Gbps).

• Each gateway has its own public-private key pair,
which could be used for generating digital signatures.

Workshop on Decentralized IoT Systems and Security (DISS) 2020
23 February 2020, San Diego, CA, USA
ISBN 1-891562-64-9
https://dx.doi.org/10.14722/diss.2020.23009
www.ndss-symposium.org



Fig. 1: System Architecture

• Each device in an IoT network trusts its gateway, such
that the gateway could act on behalf of its devices.

Our system consists of a network, which we refer to as the
distributed ledger network, and contains two types of nodes (or
users)—IoT gateways and SSPs. We expect every smart home
to have a gateway; obviously the gateways outnumber the SSPs
in orders of magnitude. As in a traditional DLT network, all
nodes connect to form a P2P network; the P2P network of
nodes stores the decentralized database of information. Each
node has a cryptographic key pair (public and private key) used
to digitally sign and verify messages. Fig. 1 depicts our system
architecture from a high level: in the center it is the distributed
network, where the SSPs reside. Further, the gateways are
connected to the Internet (and subsequently to the SSPs). Each
gateway is also connected to multiple IoT devices, such as
smart cameras, smart TVs, etc. We assume the system is owned
by an alliance of Internet Service Providers (ISPs), such as the
Global Telco Security Alliance [5].

We give a summary of our system, before proceeding to
present the details. An SSP can develop and release an SF
for any product type. A release of an SF always includes
a trial version. If a gateway decides to verify and apply a
particular solution (e.g., to fix a security flaw of one of its
devices), it downloads the trial version of the SF from the SSP.
The gateway applies and evaluates the SF, and subsequently
reports the outcome to the network. These review reports of
the gateways inform the network of the effectiveness of the
SFs that are being released into the market (the distributed
ledger network), consequently leading to build a reputation for
the various SFs. This eventually also helps build a reputation
for the corresponding SSP that developed the function(s).
Furthermore, the gateway, after testing the trial version, has
the right to decide whether to purchase the SF or not.

The above process is realized through a series of transac-
tions, which further trigger the corresponding smart contracts
to execute subsequent actions. These transactions are recorded
in the ledger, and verifiers could validate the authenticity and
the integrity of these transactions.

III. SYSTEM DESIGN

As previously mentioned, a security function (SF) is an
independent software module that can be installed either at a
gateway or an IoT device, for improving the security resilience
of the device. This could be a firewall for one or more devices,

an IDS/IPS system, a DPI (deep packet inspection) module, an
anomaly detection solution to check for suspicious patterns on
network traffic [6], a forensic analyser [7], a security patch,
a firmware update, etc. A gateway can run multiple such SFs
as VMs or containers, as is the case with network functions
today.

Our system is an interaction between two types of entities,
namely SSP and gateways. Their interactions are achieved
through a set of transactions that invoke pre-defined smart
contracts. We now provide a detailed description for each of
the above components:

A. Entities

There are two types of entities in our system:

Gateway: Gateway is a machine connecting (authorized) IoT
devices in a premise (smart home) to the Internet, and could
be identified by the IP address assigned by its ISP. It also acts
as a controller that analyzes, processes and manipulates IoT
traffic to protect the devices. In essence, the gateway plays the
role of a security guard with high computational and storage
capabilities.

Security Solution Provider: The SSP is an entity that devel-
ops and provides security function(s) related to one or more
IoT device types. It could be the device manufacturer/vendor,
or could be any third-party service provider.

B. Roles

There are two roles in our system:

Transaction participant: A participant is either an SSP, or a
gateway. To fulfill their requests, they need to initiate trans-
actions with the smart contracts to invoke the corresponding
actions.

Verifiers: The verifiers in our system depend on the DLT used
for implementation, and is discussed in Sec. V.

C. Transactions and Smart Contracts

In our system, we define five types of transactions: regis-
ter, release, interest, review and purchase. Each transaction
will trigger an associated smart contract, to complete the
corresponding tasks. A smart contract can be triggered by a
participant or another smart contract.

Below, we first describe the general format of a transaction
and then specify the details. Furthermore, we describe, at a
high level, each transaction-accompanying smart contract. In
our system, a transaction has the following format:

Txn Gateway SSP Smart Amount PreTxnLink Digital
Type Info Info Contract Info Signature

Txn Type: The transaction (Txn) type field is filled with one
of the five possible types defined above.

Gateway Info: This field is further divided into two sub-fields:

Gateway Info
Gateway ID Data

2



The “Gateway ID” is an identifier that uniquely represents this
particular gateway, such as the unique public key associated
with it. The “Data” field is used for storing transaction-specific
data, such as the digital signature of the device during registra-
tion, or an SF evaluation report for the review transaction. For
different transactions, one or more sub-fields of the “Gateway
Info” could be left empty.

SSP Info: The SSP information field is similar to the “Gateway
Info” field, and is divided into two sub-fields:

SSP Info
SSP ID Data

Each sub-field is filled with similar information as described
for the “Gateway Info”. One or more sub-fields could be left
empty according to transaction types.

Smart Contract Info: Each transaction interacts with the
associated smart contract to trigger a set of actions. In other
words, each transaction will have to include the smart contract
address, to identify the corresponding contract from the pool of
stored contracts. This field is therefore filled with the address
of the particular smart contract (e.g., its public key).

Amount: This field stores a monetary value associated with
a particular transaction. It could be left empty for certain
transactions if they do not involve any monetary transfer.

PreTxnLink: The “Previous Transaction Link” field is filled
with a link to the previous transaction that is related to this
current one. The definition of the “previous transaction” will
be described later. The purpose of this field is to chain the
transactions together, to prevent possible forgery or modifica-
tion of transactions once they have been recorded.

Digital Sig: This field is used by each transaction initiator to
digitally sign this particular transaction, to provide authenticity,
integrity, and non-repudiation for this transaction. A standard
signature scheme such as RSA could be employed.

Any transaction also includes a timestamp field, to record
the time it is created. As it is a standard field, we omit it here.

IV. TRANSACTIONS IN THE DISTRIBUTED LEDGER

A. Register

Every first-time participant needs to register in the network
to avail the services. The registration process is similar to IoT
gateways and SSPs.

Gateway registration: a gateway needs to register itself;
and the type field in the corresponding transaction would be
register. As this is a gateway self-registration, the “Gateway
ID” is filled with the gateway address. This would be, for
example, the public key of this particular gateway. To prevent
potential Sybil attack, the system further requires the gateway
to provide a valid certificate of ownership obtained from its
governing ISP, and embed it into the “Data” sub-field. As
an additional measure against the fake gateway registration,
the gateways need to pledge a small amount of deposit
during registration; thus the “Amount” field is filled with the
corresponding system-defined monetary value.

Since there is no SSP involved in this transaction, the “SSP
Info” field is left empty. For self-registration, the transaction

needs to trigger the corresponding register smart contract. This
smart contract is pre-written and stored on the distributed
ledger, and thus the gateway needs to specify the smart contract
address under the “Smart Contract Info” field to execute the
corresponding code. For the “PreTxnLink” field, as there is no
transaction earlier than the self-registration for this gateway,
by default we let this field be left empty. Finally, the gateway
produces a signature based on all the previous information and
stores that in the “Digital Sig” field.

When the gateway initiates this transaction, the smart
contract associated with the register is triggered. Taking the
gateway address (e.g., its public key) as input, the smart
contract will:

1) Check whether this gateway has been registered;
2) Verify the digital signature is valid (as the signature

verification is mandatory for all subsequent actions,
we will omit to describe it in the subsequent ones).

If the above two conditions are met, the smart contract
outputs 1, and 0 otherwise. For all subsequent transactions,
the digital signature field is generated similarly, using all the
previous fields as the underlying message to be signed.

SSP registration: The SSP registration is very similar to the
gateway registration. The “SSP Info” field is filled with its
address (such as its public key). The transaction designates
to the corresponding register smart contract and appends with
an SSP digital signature. Furthermore, we require the SSP to
pledge relatively large collateral during registration (using the
“Amount” field). Thus, we increase the cost of a malicious
entity to register legitimately into the system and distribute
flawed programs/binaries as SFs.

B. Release

The release transaction is created only by the SSPs, when-
ever they have a new SF to release to the network, to make it
available to the gateways. There is a smart contract associated
with this transaction, in which a deposit amount from the SSP
is stored. In this transaction, the sub-field “Data” under “SSP
Info” is no longer filled with the digital signature; instead it is
filled with a link value (for example, a short URL, or address
in a repo stored at an SSP) that directs to the SF offered by
the SSP. Such a link is assumed to have limited access (say,
using authentication), the scope of which is up to the SSP to
decide. The “Amount” field specifies the deposit amount the
SSP has to pay. The reason behind mandating the deposit is
to discourage and disincentivize the SSPs from offering low-
quality solutions. A portion of the deposit will be deducted, if
and when, under the review transaction, a gateway has reported
failure feedback for this particular solution. The solution will
no longer be offered to gateways (as it will be automatically
ceased by smart contract) if the deposit amount has fallen
below a threshold value defined by the community/alliance
maintaining the network.

The corresponding release smart contract, upon receiving
the transaction, will check whether the SSP has registered
itself, and the correctness of the “PreTxnLink” field and
signatures. Upon the successful verification, the smart contract
will store the deposit value for future use.

3



C. Interest

This transaction is created by gateways. With this transac-
tion, the gateway and the SSP enter into a contract, wherein
the SSP passes a trial version of the SF to the gateway. There
is an expiry time for the trial version, beyond which the SF
is expected not to work. The “Data” sub-field of “Gateway
Info” is left empty, as it is not required to append the gateway
signature in this transaction. The “Data” sub-field of “SSP
Info” should have the link of the SF, which the gateway is
interested to purchase for securing its device. The transaction
is linked with the interest smart contract, with its address filled
in the field.

For this transaction, the gateway also deposits money into
the smart contract, which will be transferred back to it after
submitting a review report of the SF. A review of the SF
explicitly informs the network whether the solution worked
for the IoT device or not. By having a gateway deposit an
amount for the trial, the system incentivizes a gateway to
submit a review report of the solution it has tested. The
deposited amount may be split between the SSP, the gateway
and the system owner (e.g., the ISP alliance) according to
system pre-defined rules, if the gateway does not perform the
review transaction (described below) within a specified time.
We also define a review deadline: a time by which gateway has
to provide a review report of the corresponding solution. The
review deadline should give gateway sufficient time to try out
the trial solution; that is, it should be longer than the expiry
time of the trial version.

Upon receiving this transaction, the associated interest
smart contract performs the following checks:

1) Verify that the same gateway has not submitted an
interest transaction for the same SF previously;

2) Check for sufficient deposit balance;
3) On the expiry of the review deadline, check whether

there exists a review transaction initiated by the
gateway for this solution. If there exists no such
transaction, the deposit will be forfeited and divided
according to pre-defined rules; otherwise the deposit
will be returned to the gateway.

The first check is to prevent the gateway from behaving
maliciously, by testing an SF multiple times. If the gateway
has previously initiated an interest transaction, it means it has
already tested the same SF. Our system prevents a malicious
gateway in attempting to influence the reputation of an SF
or SSP. Second, by checking if there is sufficient deposit, the
smart contract makes sure that the SF is still valid for gateways
to try out. If the deposit falls below a threshold, it means there
are many failure reports for this particular SF.

D. Review

Once a gateway tests a security function obtained from an
SSP, it may choose to review the SF, via a review transaction.
As mentioned above, there is an incentive to do so. In a
review transaction, the gateway specifies the outcome of the
evaluation. Strictly speaking, from a security point of view,
there are only two outcomes — success or failure; i.e., the SF
either succeeded in removing/mitigating the vulnerability or it
failed. Therefore, in the review transaction, the gateway has to
specify either success or failure, corresponding to the outcome

of the evaluation. (An enhancement to this approach would be
to consider multiple scores for a rating.) The system further
allows the gateway to submit another review transaction after
it has purchased the full version, as some of the trial versions
do not provide full functionalities. The transaction is similar
to the interest transaction, except 1) the “Data” sub-field of
the gateway info is filled with the outcome of testing the SF
(i.e., either success or failure); 2) the “Amount” field is zero,
as there is no money transfer in this transaction.

When a gateway wants to report that the SF fails, it
specifies failure in the review transaction. However, there is a
possibility that a gateway may lie and report a negative review
for an SF. Therefore, once a gateway reports an SSP offered
SF as failed, the gateway thereafter also becomes ineligible
to purchase the particular solution. This scheme discourages
the gateway from lying when the SF works. If the SF works
successfully, the gateway specifies success in its transaction.
The previous transaction would be the interest transaction for
this particular SF. While it is possible that an SSP incentivizes
a set of gateways to report positive reviews of its SF even
if it fails, in a large network, an SSP will have to provide
incentives to a high percentage of gateways to beat the system
successfully. This might be too expensive for an SSP to make
eventual gains from the market.

Upon receiving the transaction, the associated smart con-
tract performs the following actions:

1) Check the gateway has initiated an interest or pur-
chase transaction earlier (the “previous transaction”);

2) Check the past review transactions of this gateway for
this particular SF;

3) Based on the test outcome, recompute the reputation
of the SF, and deduct money from the deposit if it is
set to failure;

4) Trigger the interest smart contract to refund the
deposit to the gateway.

With the second action, we limit a gateway to submit a review
only two times for a given SF: one after the trial, and one
after the actual purchase (i.e., after the full version is tested
for longer duration). For the third action, as we also propose
to have a reputation system for the solutions and SSP, this
particular smart contract will re-compute the reputation score
whenever there is a review transaction. Once the gateway
has submitted a review, the deposit will be returned to it, as
described in the last action.

E. Purchase

Created by a gateway, the purchase transaction is to pur-
chase an SF from an SSP. The “Amount” field is now filled
with the actual amount to be paid to the SSP. In our system, we
allow a gateway to purchase an SF even if it has not tested it
before (i.e., there is no interest and review transaction initiated
by the gateway for the particular device). This is reasonable,
as a gateway may have purchased other SFs from the same
SSP before and trusts it, or simply decides not to spend the
effort to test the trial version based on the reputation score. In
this case, the previous transaction used in the “PreTxnLink”
field varies: it could be either a register or review transaction.

Upon receiving the transaction, the associated purchase
smart contract performs the following:

4



1) If there exists a previous review transaction and the
outcome is set to success, compare the “PreTxnLink”
field using this transaction. If the outcome is a failure,
discard the transaction (the gateway is not allowed to
purchase the SF if it has reported a failure earlier).
If no such review transaction exists, search and use
the gateway registration transaction as the previous
transaction, and verify the “PreTxnLink” field.

2) Re-compute the reputation score for the SF.
3) Transfer the payment to the SSP.

V. SYSTEM IMPLEMENTATION

A. Naı̈ve approach based on blockchain

Different from the traditional blockchain (e.g., the Bitcoin),
in our system, a block consists of transactions related to a
particular SF. This is useful in computing the reputation score
of SFs efficiently. Each block should have the latest reputation
score computed and stored for one and only one SF. To achieve
this computation efficiently, in addition to the hash address
that links the current block to the previous block, a new
block also contains the hash address of the previous block that
has transactions for the same SF. With this additional link, a
verifier (equivalent to a miner in traditional blockchain) can
now compute the reputation of an SF by simply accessing
the last block related to the SF, and adding the scores due to
transactions in the current block. For register transactions, as
they are not related to any particular SF, they will be added
to the latest block together with other related SF transactions,
based on the transaction timestamp.

As in all blockchain networks, verifiers are responsible
for creating blocks of transactions to be added to the ledger.
We mandate that only gateways can be verifiers, to prevent
SSPs from gaining any advantage in the process. Besides the
task of gathering the transactions and creating a block, the
verifiers are also required to verify each transaction. For such
a transaction verification, a verifier repeats the same actions
as the smart contracts do for each transaction: verifies that the
conditions listed are satisfied, as well as ascertains that the
smart contracts have faithfully executed the stipulated actions.
We envision our framework to be a permissioned blockchain
system that is controlled by a group of entities such as the
ISPs as mentioned earlier. With this setting, one could use
Byzantine Fault Tolerance (BFT) or its variant [8] as the
consensus mechanism to achieve a much faster community
agreement process, compare to the permissionless blockchain
that uses Proof-of-Work or Proof-of-Stake consensus.

B. Corda

The distributed ledger Corda [9] is better suited for im-
plementing our system. Corda is designed for a permissioned
platform, where consensus requires the participation of only
the concerned parties involved in the transaction (gateways
and SSPs in our case) and a notary cluster. The ISP alliance
is a suitable notary in our system—while the ISPs may be
interested in forming an alliance to tackle threats and attacks
more effectively, they need not necessarily trust each other.
In Corda, each participating entity (gateway/SSP) needs to
be uniquely mapped to a public key and IP address. This
requirement works perfectly with our smart-home setting; a

gateway (a home router today) already obtains IP address from
the ISP providing the broadband connection, and can addition-
ally generate public-private key pairs. Recall, as mentioned in
Sec. IV-A, a gateway in our system also needs to obtain a
certificate of ownership from its governing ISP, thus having
a legal binding. Similarly, with Corda, we can have legally
binding identity for SSPs too (in addition to IP addresses
and public keys). Note that, each of the transactions defined
in our system already has an associated smart contract (with
clearly defined output) that is triggered for the transaction, and
this is well-aligned with the concept of transaction validity
in Corda. Further, Corda does not restrict a system to any
specific consensus protocol; among others BFT can be used
as a pluggable consensus algorithm by the notary cluster [9].
With simple modifications to our transactions and the recording
of information and data, our system can be implemented using
Corda. Due to space limitation, we omit the details.

VI. REPUTATION SYSTEM

The building of reputation (or rating) systems is a well-
researched topic (see [10], for example), and we do not intend
to go into the details here. Nevertheless, we briefly discuss
how our solution could help in building reputations for the
SSPs and the SFs they develop. The reputation of SFs is
computed by the verifiers during the process of verification of
transactions. The reputation score for a new untested solution
is initialized to zero and is updated and stored in each block.
Since a block has only transactions related to one particular
SF, there is only one such reputation score in each block. For
every positive (success) review report submitted by a gateway,
a “reputation increment” function is executed, and for every
negative (failure) review report submitted, a corresponding
“decrement” function is executed. Finally, for all successful
purchases, a “reputation increment via purchase” function is
executed. All three functions modify the reputation score, and
the exact definition of these functions is dependent on the
reputation model selected for deployment.

VII. SECURITY ANALYSIS

In this section, we provide a security analysis of our
proposed system, describing several potential attacks and their
corresponding countermeasures.

Sybil attack — malicious SSPs registering multiple gate-
ways to game the reputation system: An SSP can always
register a gateway, but recall that the gateway needs to present
the certificate of ownership from an ISP for the register
transaction. Therefore, if malicious SSP purchases multiple
gateways, then this can be easily detected since the certificates
used for registering the gateways will indicate the same name
of the client/user. Alternatively, if the malicious SSP uses
different names for purchasing from one or more ISPs, this
forms an illegal act, and when detected, it would be dealt in
the same way as it is done today. Since the system is owned
by an alliance of ISPs, this kind of illegal registration across
ISPs is also easy to detect.

SSP colluding with legit gateways: Nothing in our system
stops an SSP from colluding with (users of) legitimate gate-
ways. However, this is not a problem specific to only our
system, rather it is common among other similar systems,
such as mobile app rating, rating of products on e-commerce

5



platforms, movie reviews, etc., where there are instances of
collusion among users, as well as between users and service
providers (e.g., in the case of review of restaurants or accom-
modation) [11]. Solutions that are being developed to detect
and mitigate collusion in such systems (e.g., [11], [12]), can
be applied for ours as well.

Malicious entity disguising as an SSP to distribute malware
as security function: In our system, anyone can register as
SSP; therefore, there is a possibility that an attacker registers as
SSP to distribute malware. While this is technically possible,
observe that our design has increased the cost of doing so, by
mandating payment of large collateral during the registration
process. There is also a deposit made for every SF released on
to the network. Beside and beyond this, the malicious entity
would need to obtain a good reputation score to attract a large
number of users, and this would require the entity to develop
a good SF (that then may embed a back door or malicious
code). Finally, making such malware available to our system,
also risks the possibility of being easily and quickly detected,
as the alliance of ISP can always analyze the SFs by registering
authentic gateways for such specific purposes.

VIII. RELATED WORKS

Content distribution in a P2P network has been studied for
decades. The application spreads across various disciplines,
such as privacy-preserving content distribution [13], video-on-
demand systems [14], file sharing [15]. There also exist patents
on the same topic [16]–[18]. The major difference between
the traditional content distributions in a P2P network with our
distributed ledger-based system is, all actions in our system (in
the format of transactions) are recorded in the ledger. These
actions are integrity-checked, authenticity-verified and non-
repudiation-achieved through cryptographic primitives, and
carried out by smart contracts and verifiers in the system. Our
system assumes minimum trust among the participants, and
any modification on the transactions is easily detectable. A few
surveys discussed about the combination of blockchain with
IoT, regarding the security, efficiency, and scalability. Reader
may refer to [19], [20] for more information.

A recent work [21] proposed a blockchain-based firmware
update system for embedded devices in an IoT environment.
The system architecture defined a few transactions and their
specifications, as well as the procedure to achieve the firmware
update. Despite its merit, however, our system has major
differences and advantages compare to it. We utilize smart
contracts to achieve much richer functionalities throughout the
distribution of security functions, while in [21] the traditional
blockchain network might not be able to achieve the pro-
posed functionalities. Our system incentivizes the participants
to behave faithfully and penalizes them otherwise, besides
inherently incorporating easy computation of reputation scores.

IX. CONCLUSION

Motivated by the significant increase in the deployment of
IoT devices and the associated security breaches and attacks,
in this work we propose a distributed ledger-based IoT device
security solution distribution system. We described the overall
system architecture, detailed the different types of actions
that may occur, and provided concrete design by specifying
the transaction format and smart contract rules. One possible

future direction is to implement and test out the proposed
system in a small scale IoT environment.

ACKNOWLEDGEMENT

The authors thank the anonymous reviewers and
Prof. Pekka Nikander, for their constructive comments
and feedback that helped improve this paper.

REFERENCES

[1] Manos Antonakakis et al. Understanding the Mirai Botnet. In Proc.
26th USENIX Security Symposium, pages 1093–1110, 2017.

[2] Symantec. ISTR 2019: Internet of Things Cyber Attacks Grow More Di-
verse. https://www.symantec.com/blogs/expert-perspectives/istr-2019-
internet-things-cyber-attacks-grow-more-diverse; accessed: Feb. 2020.

[3] D. M. Divakaran, R. P. Singh, K. S. K. Liyanage, M. Gurusamy,
and V Sachidananda. ADROIT: Detecting Spatio-Temporal Correlated
Attack-Stages in IoT Networks. In NDSS DISS Workshop, 2020.

[4] V. Thangavelu, D. M. Divakaran, R. Sairam, S. S. Bhunia, and M. Gu-
rusamy. DEFT: A Distributed IoT Fingerprinting Technique. IEEE
Internet of Things Journal, 6(1):940–952, Feb 2019.

[5] Global Telco Security Alliance, 2019. https://www.singtel.com/about-
Us/news-releases/global-cyber-security-aliance-formed-by-etisalat-
singtel-softbank-and-telefni, accessed: Feb. 2020.

[6] I. Nevat, D. M. Divakaran, S. G. Nagarajan, P. Zhang, L. Su, L. L.
Ko, and V. L. L. Thing. Anomaly Detection and Attribution in
Networks With Temporally Correlated Traffic. IEEE/ACM Transactions
on Networking, 26(1):131–144, Feb 2018.

[7] Dinil Mon Divakaran, Kar Wai Fok, Ido Nevat, and Vrizlynn L.L.
Thing. Evidence gathering for network security and forensics. Digital
Investigation, 20:S56 – S65, 2017.

[8] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.
In OSDI, pages 173–186, 1999.

[9] Mike Hearn. Corda: A distributed ledger. Corda Technical White Paper,
2016.

[10] Arash Molavi Kakhki, Chloe Kliman-Silver, and Alan Mislove. Iolaus:
Securing Online Content Rating Systems. In Proc. WWW, 2013.

[11] M. Allahbakhsh et al. Collusion detection in online rating systems. In
Web Technologies and Applications, pages 196–207, 2013.

[12] M. Allahbakhsh and A. Ignjatovic. An Iterative Method for Calculating
Robust Rating Scores. IEEE TPDS, 26(2):340–350, Feb 2015.

[13] Amna Qureshi, David Megı́as, and Helena Rifà-Pous. Framework
for preserving security and privacy in peer-to-peer content distribution
systems. Expert Systems with Applications, 42(3):1391–1408, 2015.

[14] Bo Tan and Laurent Massoulié. Optimal content placement for peer-to-
peer video-on-demand systems. IEEE/ACM Transactions on Networking
(TON), 21(2):566–579, 2013.

[15] Spyridon Mastorakis, Alexander Afanasyev, Yingdi Yu, and Lixia
Zhang. ntorrent: Peer-to-peer file sharing in named data networking. In
Proc. ICCCN, pages 1–10, 2017.

[16] Joseph Boyd and Peter Marcotte. Peer-to-peer content distribution,
May 26 2011. US Patent App. 13/055,641.

[17] Yang Guo, Saurabh Mathur, and Kumar Ramaswamy. Performance
aware peer-to-peer content-on-demand, September 16 2014. US Patent
8,838,823.

[18] Todd R Manion, Ravi T Rao, and Michael Shappell. Method for effi-
cient content distribution using a peer-to-peer networking infrastructure,
April 1 2014. US Patent 8,688,803.

[19] M. A. Khan and K. Salah. IoT security: Review, blockchain solutions,
and open challenges. FGCS, 82:395–411, 2018.

[20] Alfonso Panarello, Nachiket Tapas, Giovanni Merlino, Francesco
Longo, and Antonio Puliafito. Blockchain and IoT integration: A
systematic survey. Sensors, 18(8):2575, 2018.

[21] Boohyung Lee and Jong-Hyouk Lee. Blockchain-based secure firmware
update for embedded devices in an internet of things environment. The
Journal of Supercomputing, 73(3):1152–1167, 2017.

6


