Security Analysis against Spoofing Attacks for
Distributed UAVs

Kyo Kim*, Siddhartha Nallurif, Ashish Kashinath*, Yu WangT, Sibin Mohan*, Pajic Miroslavf, Bo Li*
*Department of Computer Science, TDepartment of Electrical and Computer Engineering
*University of Illinois at Urbana-Champaign, "Duke University
*{kkim103, ashishk3, sibin, Ibo} @illinois.edu, T{siddhartha.nalluri, yu.wang094, miroslav.pajic} @duke.edu

Abstract—Distributed unmanned systems are increasingly
finding use in a variety of applications, viz. reconnaissance, disas-
ter management, search and rescue, ezc. Sensing and actuation are
key for the correct operation of such systems, especially since they
do not have centralized control. These types of distributed systems
have shown to be susceptible to spoofing attacks, such as false
data injection attacks (on sensor values) — either via Man-in-
the-middle (MitM) mechanisms or counterfeit signal generation.
While machine learning techniques have been used to detect
anomalous behavior, it has not found use in this domain. In
this paper we pose the following questions: (a) “how well does
a feed-forward deep learning model perform in detecting sensor
anomalies?”” and (b) “how can we inflate the dataset to reduce
the cost of collecting data?” The second question aims to assist
with the process of generating data for training the deep learning
models and we study the effectiveness of Generative Adversarial
Networks (GANSs) for this purpose. Using software-in-the-loop
(SITL) simulations, we analyze the feasibility of learning the
behavior an unmanned autonomous vehicle (UAV). We present
our findings for both of these questions in this paper.

I. INTRODUCTION

Unmanned autonomous vehicles (UAVs) are canonical
cyber-physical and IoT systems where a combination of phys-
ical and and computational components interact with the ex-
ternal environment in a feedback loop. However, if adversaries
exploit the sensors in such systems then it is possible to
move the system into an unsafe state or worse, compromise
the integrity of the mission. This problem is exacerbated
in the case of distributed UAVs that must often operate in
a decentralized manner for the mission to succeed; for in-
stance, applications such as search and rescue, reconnaissance,
firefighting in remote areas, among others. Researchers have
shown how to use out-of-band signal injection methods to
compromise inertial sensors [19] and acoustic noise injection
to attack both the gyroscope sensor [16] and the accelerometer
sensor. Other attacks [7] demonstrate the ability to generate
malicious network packets to compromise the integrity of the
telemetry data. These attacks succeed due to the fact that
sensor is data is either not authenticated or originates from
an untrusted source.

There exists several techniques that incorporate authenti-
cation using cryptographic approaches [9], [10] and signal

Workshop on Decentralized IoT Systems and Security (DISS) 2020
23 February 2020, San Diego, CA, USA

ISBN 1-891562-64-9

https://dx.doi.org/10.14722/diss.2020.23011
www.ndss-symposium.org

processing approaches [1], [15], primarily in the context of
GPS. However, these approaches have limitations such as
requiring customized hardware. They also lead to a large
number of false alarms due to the lack of flexibility.

Researchers have attempted to add intelligence to the
controllers (i.e., the control code that estimates the current
state of the system and decides on future actions) to detect or
work around such attacks. Plugins have been proposed for the
Extended Kalman Filter (EKF), the most common controller
in contemporary UAVs (e.g., [8], [13], [18]). However, EKF-
based intrusion detection techniques have several shortcom-
ings [18]: (a) they require precise knowledge of both the
system model and the noise, which are not always possible
in practice, and (b) they only work for linear systems, or
nonlinear system working in a linearizable region. That is, if
the system dynamics is highly nonlinear then the residual of the
EKF can change even without attacks. Therefore, we argue that
burdening the EKF with sensor spoofing detection is inherently
a flawed approach. EKF is a state estimation and de-noising
algorithm used to clean up sensor values and thereby aid in
improving the stability of the system and was not designed to
operate as an anomaly detector. As a result, we propose the
isolation of the security defense and the controller algorithm
in distributed, decentralized UAV systems.

In this paper, we propose the use of a machine-learning
technique to detect sensor spoofing especially in UAVs. From
a computational point of view, the advent of light-weight
machine learning algorithms [14] has made it possible to run
inference on resource-constrained systems that is characteristic
of many UAVs. However, using deep learning approaches also
raises issues with data collection. Since mission sensor values
form a time series, collecting it is expensive (in terms of time
required), both in simulation and in practice. Hence, we must
augment the data to increase the size of the dataset for better
training. Generative Adversarial Networks (GANs) [5] have
shown promise in the image-domain in terms of generating
realistic fake images. We explore the utility of GANs to make
our dataset more complete. The process is to augment the
data by generating synthetic datasets derived from the training
set using GANs. However, we must first investigate if GAN
performs “well enough” for generating such augmented data.
We tested three GANs for this purpose: vanilla [5], softmax
[11] and Wasserstein [2] and report their performance in
Section V. Therefore, the goal of this paper is to investigate
the practicality of using deep learning models in this domain
for both, sensor anomaly detection and generating better data
for training the models.

At a high level, our findings are: (a) the state of the
mission (and especially changes between states) affects the
performance of the anomaly detection model, (b) adversarial
training aimed at reducing the effectiveness of adversarial
inputs reduces the (average) prediction performance and (c)
vanilla GAN generated samples that were recognizably close
to the mission path but still not ideal. In summary, our
contributions are twofold:

1) we evaluate the robustness of deep anomaly detection
models for UAV swarms, especially under adversarial
attacks and

2) use domain-specific analyses on the feasibility of using
GANSs to generate adversarial inputs as a method to test
the overall robustness of the system.

As explained in the next section, we use a simple scenario
with two UAVs to demonstrate our techniques and analyses.

II. BACKGROUND

/)
;
h_____‘v_____
3

Fig. 1: Example of an intelligence, surveillance and recon-
naissance (ISR) mission where each drone is circling in its
designated area (red arrow). The blue arrow represents the
auditing point where UAVs exchange sensor history.

A. Architecture of UAV and Ground Station

At a high level, the UAV consists of three components:

e Low-level hardware consisting of sensors, motors, pro-
pellers, batteries and so on,

o Flight controller hardware that includes NAVIO2 and Pix-
hawk controllers that serve a centralized interface to com-
mand and control low-level hardware,

e Flight controller software that provides high-level control
to enable complex flight modes as well as other autonomy-
related functionalities. (i.e., PX4! and ArduPilot?.

Both the low-level UAV hardware as well as the flight con-

troller hardware can be simulated in software, e.g., using

software-in-the-loop (SITL) systems.

Mission. In a swarm of UAVs, we consider the case where each
UAV is designated to survey a chosen area. This is typical of
intelligence, surveillance, reconnaissance (ISR) missions. The
UAVs then exchange information, including their history of
sensor values, at fixed points in their trajectory. An example of
such a mission (with two UAVs) is shown in Figure 1. If a UAV
reports sensor readings that are not predicted by the model,
then it is marked as anomalous by its neighbors. We chose this
mission to demonstrate our methodology — our techniques and
analyses can be applied to other missions involving distributed
UAVs and distributed IoT systems in general.

Ground Station Architecture The ground station is a
computer that runs ground control software that provides a

Uhttps://px4.io/
Zhttps://ardupilot.org/

- Ground Station Scripts
Flight Controller Software (Dronekit etc.)

{Ardupilot, PX4 etc.,) Ground Station Software
Flight Controller Hardware (((@ D}) (Mission Planner,
(NAVIOZ2, Pixhawk etc.,) ¥ %/ |Q Ground Control etc.,)

. |Ground Station Connectivity|
Motors, Propellers, Sensors| MAVLink :
! ! Telemetry Radio 915MHz,
(GPS, IMU etc.,) (y

802.11 WiFi etc.,)
Ground Station

Drone (UAV)

Fig. 2: Software and Hardware components present in a UAV
and the Ground Station that communicate with one another
using the MAVLink protocol.

user interface such as a map or coordinates to operate the
UAV. Examples include Q Ground Control,> APM Planner
2.0* and Mission Planner.’ In addition, the ground station
often uses libraries such as dronekit® that enables the use
of scripts to create and send messages to the UAV.” The
UAVs communicate with each another and the ground station
using the MAVLink (Micro Aerial Vehicle Link) Protocol,® a
low-overhead messaging protocol — one that is commonly
used in this domain. This protocol is specifically designed
for resource-constrained devices such as UAVs as well as
bandwidth-constrained links. The schematic architecture of this
setup is shown in Figure 2.

B. Deep Models

Anomaly Detection Design Choices. Broadly, there are two
basic approaches from the domain of machine learning: (a)
model-based approach and (b) dataset-based approach. Model-
based approach engineers a model that is designed to capture
the dynamics of a particular UAV whereas data-driven ap-
proaches use a general model that learns the dynamics given a
dataset. However, there exist trade-offs for using each approach
[4]. The advantage for the latter is that there is no manual
system identification, model validation and filter design. The
drawback is that the human insight is not explicitly embedded
into the model (i.e., one must hope that the ML model learns
the insight). However, by using a deep model, we aim to
capture the nominal non-trivial dynamics of UAVs and achieve
position prediction robustness under adversarial environment.

Stealthy Attacks. For deep models, adversarial examples are
considered stealthy attacks since they are inputs that appear to
be valid but contain small perturbations that cause the model
to classify it differently. FGSM [6] is one of the methods
that can generate adversarial examples. Within the context of
this paper, the adversarial examples are inputs that increase
the prediction error of the position given finite amount of
perturbation from the valid input. We only know that during
training and testing, certain examples cause error greater than
the anomaly threshold. In an actual deployment, the error
amount can be leveraged by the adversary to manipulate the
drone; for instance, by making it drift off course while the
drone still believes it to be on the right path. Therefore,

3http://qgroundcontrol.com/

“https://ardupilot.org/planner2/

Shttps://ardupilot.org/planner/docs/mission-planner-overview.html

Shttps://dronekit.io/

"Note: while the main objective of the work is to analyze decentralized
UAVs, we use a ground control station in our experiments for ease of capturing
sensor data and carrying out analysis. The eventual goal of our work is to have
all such analysis and detection running on each UAV.

8https://mavlink.io/en/

validating against the feasibility of Stealthy Attacks is crucial
to the security analysis of such systems.

Generative Adversarial Networks (GANs) [5] have shown
promise in generating realistic images in the computer vision
domain. At a high-level, it works because two deep models
compete against each other viz. a generator and a discrimina-
tor. The role of the generator is to fool the discriminator given
a noise vector z. The role of the discriminator is to mark a
given sample as fake (i.e., is it from the generator) or real
(i.e., from the dataset). The loss incurred by the discriminator
updates both, generator and the discriminator.

III. OUR APPROACH

As mentioned earlier, we intend to use a feed-forward
deep-learning model [17] to detect anomalous sensor signals,
in particular those from the inertial measurement units (e.g.,
accelerometer, gyroscope and GPS). We start with FGSM. We
try other various methods to generate adversarial signals that
can avoid detection by the deep-learning models in the future.
Hence, we have two problems to address: (a) feasibility of the
deep model and (b) use of GAN to generate adversarial data.
Figure 3 shows the high-level pipeline of our approach. This
section describes the specifics of each stage of the pipeline but
we start with the adversary model.

Model Training Robustness Testing
Data Collection ’ « Fast Gradient Sign
!) o [Method (FGSM)g
L Attack
+ Adversarial Training
Sensor
Data GAN Training GAN Analysis
VM Gene [Discrim « Norm Variation
I \ -rator |¢/"| -inator * Minimum Norm
Difference
Gazebo Gﬁ - P
Samples Visualization

Fig. 3: We first collect sensor data directly from SITL that
runs inside a VM to simulate a single core machine. We then
use ML to capture the dynamics, develop a model for anomaly
detection and train the GAN for data augmentation. We then
analyze the feasibility of using both models.

Attack Model. In this paper, we consider false data injection
attacks. We assume that the adversary has the capability to
manipulate the sensor values (such as GPS, accelerometer
and gyroscope) and these manipulated values are reflected
in the audit by other drones. The attack vector we assume
is similar to that of [3]: a malicious flight control library is
on the system. However, we assume that the adversary can
perform whitebox attacks on the model (i.e., the adversary is
aware of the parameters of the anomaly detector model). The
adversary’s objective is to manipulate the sensor values that
cause the UAV to steer off of its original path and not raise
any alarm by the model.

Data Collection. Sensor traces (from the IMU) were collected
by hooking into the sensor generation code of the simulation
platform (§1V). Mission traces, M, are composed of multiple
trials 7; where i is the i trial. Each 7} is composed of sensor
values x; and the length of each 7; may not be the same. The
feature length is 15 since each IMU provides 6 sensor values
(each for the accelerometer and gyroscope) and the last three

are the GPS values. Formally, the mission traces are in the

following format: M = {Ty,...,T5}, T; = {zo,..,x,} €
Rt <15

Deep Model. We consider multi-layer perceptron (MLP) with
Leaky-Relu Activation [12] at each hidden layer for non-
linearity. We use MLP as a baseline since it is the simplest
deep model where the inference is more feasible in embed-
ded and power-constrained devices compared more complex
model such as convolutional or recurrent models. Leaky-Relu
activation enables the model to learn non-linear dynamics. To
test the effectiveness of the model, we test its performance
using a clean dataset, i.e., one with no adversarial signals. To
test the robustness, we perform adversarial attack on the model
using the Fast Gradient Sign method (FGSM). FGSM was the
first method to generate an adversarial example and can be
computed relatively fast compared to more complex methods.
At high level, it is a method of perturbing the input such that
the loss is maximized. Therefore, it serve as a baseline attack.
We analyze the effectiveness of adversarial training on the
model by performing the attack — i.e., using the adversarially
generated signals as input to the feed-forward model.

GAN. A generator, GG, generates a segment of the sensor traces
of length k& with feature d = 15, 2’ € RFExd given a random
vector z ~ N[0, 1]7. The objective is for the G to capture the
distribution of the mission — i.e., the distribution of window
of sensors that are expected in the mission. Generators are
prone to learn only a portion of the total distribution (i.e.,
mode collapse) which results in generating only that portion
of the distribution. Also, training GANs may not be a stable
process. Researchers have proposed the Wasserstien GAN [2]
and Softmax GAN [11] variations to address these issues.
Therefore, to evaluate the quality of GG, we must first check if
the generated examples are diverse (i.e., the generated sensors
are not too similar to each other) and similar to the true mission
traces. Hence, we perform the following analysis (explained in
section IV): (a) Norm variation analysis, (b) Minimum norm
difference analysis and (c) Position visualization to measure
the viability of quality of the generated samples quantitatively
and qualitatively.

IV. EXPERIMENTAL SETUP

To evaluate the performance our systems, we first describe
the data collection setting and process and demonstrate that it is
realistic. Then we provide details on how we built the anomaly
detection model as well as the GAN. Finally, we describe the
process of evaluating both.

Simulation Setup consists of ArduPilot Software-in-the-
Loop (SITL)® for flight control simulation and Gazebo!® for
physics simulation. We use the SITL since ArduPilot runs on
the Navio2!! platform and we can use the actual flight stack for
our experiments while not having to deal with the vagaries of
the actual UAV. This helps us refine our analysis and detection
models before we implement it on a real UAV (we build the
one in Figure 2 in our lab); our aim to demonstrate all of
these techniques on a real system in the future. Since the
default physics simulation of the SITL’s is not sufficient, we

9https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
10nttp://gazebosim.org/
https://emlid.com/navio/

Error Distribution
1.4 4

1.2

1.0

o.a

Meters

0.6

0.4

0.2 4

0.0

400 o0 soo0
Timesteps

()

Error Distribution

400 600 800
Timesteps

(b)

Fig. 4: Distribution of error on testing set after adversarial training. X-axis is the mission duration in timesteps where each
timestep is 200ms. Y axis is the error in meters. Before adversarial training (4a) and after adversarial training (4b)

FGSM Induced Error Difference and Attack Success Rate w.r.t. €
2.00

attack success rate
—— mean error diff

1.75

1.50

1.25

Value

1.00

0.75

0.50 1

0.25

0.00

0.000 ©0.001 ©0.002 0.003 0.004 ©0.005 0.006 0.007

Epsilon

()

FGSM Induced Error Difference and Attack Success Rate w.r.t. £

attack success rate
—— mean error diff

1.6

1.4

1.2

1.0

0.8

Value

0.6

0.4

0.2

0.0
0.000 ©0.001 0002 0.002 0.004 0.005 0.006 0.007
Epsilon

(b)

Fig. 5: X-axis is the epsilon amount of perturbation added to the input example. For blue line, Y-axis is the attack success rate.
For the red line, Y-axis is the error difference in meters. the red shade is the range of error caused by the the FGSM. Figure 5a
is the FGSM error induced and attack success rate before adversarial training. Figure 5b is after the adversarial traiing.

used the Gazebo interface, which is a well-established robotics
simulator. The SITL runs inside a VM configured with a
single core whereas Gazebo, physics simulator, runs on the
host running the VM. Single core assignment to the VM was
done to simulate the computational constraints of the UAV.

Mission Parameters To simulate an intelligence, surveillance
and reconnaissance (ISR) mission, the UAV’s mission is di-
vided into: (i) ‘liftoff’ stage: a UAV elevates itself vertically
by 10m, (ii) ‘loiter’ circle stage: UAV moves 10m outward
and laps around the liftoff position with 10m radius and (iii)
‘landing’ stage: UAV moves inward and lands at a different
position from where it started.

Data Preprocessing. To avoid numerical precision error, we
converted the GPS values to the 3D Cartesian space where the
origin is the UAV’s initial position. The data is scaled using
Scikit-learn'> MinMaxScaler where each feature ranges
between 0 and 1 as it is the standard deep learning practice.

Model Training. We consider a feed-forward neural net (i.e.,
MLP) with 2 hidden layers with Leaky-Relu (LRelu) activation
to make the model non-linear to enable learning the non-linear
dynamics. The model attempts to predict the next position of
the UAV and, hence, learn the sensor dynamics of the mission.
Therefore, given the an example z; at time step ¢, the label y;
is the position of x;4 .

Model Evaluation. To evaluate how well the model predicts
the next position, we use “prediction error distribution”*. If the
model’s prediction error is greater than 1 meter, we consider
the sensor value to be anomalous. To evaluate robustness, we
will attack the model using FGSM.

GAN Training. We used the PyTorch implementation of three
types (vanilla, Softmax and Wasserstein) of GANs'?® to train
the generator. The generator is trained to produce an example
of window size k. Therefore, the set of “real” examples for the
discriminator is the sliding window size of k on the mission
trial traces with stride 1. Formally, X,cq; = {a : a = T;[j :
JHEIVE <5, <t;—k.

GAN Evaluation. Norm Variation Analysis is an analysis on
the variation in set of generated data. Formally, given a set of
generated traces, X' = 2’ : 2’ = G(z), we randomly select one
of the generated data x/, and compare the 2-norm difference
against all other generated traces =/, € X!, == X'\ {z.}.
We measure std(||z], — zl,||)Vz!,

Minimum Norm Difference Analysis tells us how well G
captured the distribution of a mission by evaluating the ideal
location to splice the generated data into the original trial trace.
Therefore, given that a mission, 7', has length ¢ and window
of sensors, z, at timestep ¢, Vi € [0,t — k], the min norm diff
is defined as: min{||z’ — z|| : 2’ € X'}

Position visualization complements the previous two analyses
since it is very difficult for humans to infer the state and stage
of the UAV from raw sensor traces. Therefore, we 3D plot the
generated samples’ positions and compare it to the mission
path.

V. MODEL AND GAN PERFORMANCE EVALUATION

We now describe our results for evaluating the perfor-
mance of our detection and adversarial data generation systems
described above. The specific training parameters that we
elaborate here are the best ones chosen after multiple trials.

2https://scikit-learn.org/stable/

Bhttps://github.com/eriklindernoren/PyTorch-GAN

Vanilla GAN Generated Path Segments

0.0 0.2
B 0.4
0.6

Softmax GAN Generated Path Segments

0.8

WGAN Generated Path Segments

Fig. 6: 3D visualization of the path taken by the UAV (blue line) and path generated from vanilla GAN(6a), softmax GAN(6b),

and WGAN(6¢) (red line).

Model Performance: The MLP model was trained for 4800
epochs to achieve an average error of 0.332m on the test set
with an accuracy 0.957 as shown in Figure 4a. The standard
deviation for the error was 0.283 with median at 0.281. The
figure indicates that a change in the mission stage causes a
spike in the prediction error. For instance, at around ¢ = 235,
we see that the error jumps to 1.2m in figure 4a since that is
when the UAV switches from initial mode to takeoff. Similarly,
at around ¢ = 700, the UAV switches from mode Loiter Circle
to Landing. A false alarm is raised (i.e., exceeds error threshold
of 1m) when the UAV switches to lift off and landing modes
as seen in the figure at around ¢ = 235 and ¢ = 720.

Attack on the Model. Figure 5a shows the FGSM attack
rate before adversarial training. An attack is successful if the
perturbation causes the input to be classified as anomalous
but was previously not so. Instances that are near the error
threshold are likely the ones that will cross over. For instance,
when Epsilon is low, the timesteps with error rate close to the
threshold (e.g., t = 700) will likely to be the ones that will
exceed the threshold. As shown in the figure, epsilon needs to
be around 0.003 for the attack to be successful a quarter of
the time.

After Adversarial training. The model’s performance degrades
to average meters error of 0.932 and 0.646 accuracy (threshold
set to Im error) with error distributed as shown in figure 4b.
The average performance worsened likely due to the model
needing to map wider range of inputs close to the labeled
value. The error standard deviation was 0.190 with median at
0.947. Compared to Figure 4a, we see that the overall error
values are higher while error variance is lower. Therefore,
under the same threshold, we see that in Figure 5b the model
is “more susceptible to the attack™ since the post-adversarially
trained model’s error values are already near the threshold most
of the time.

GAN Performance: The GANs (vanilla, Wasserstein and
softmax) were trained with window size k£ = 20 and trained
for 200 epochs. Norm Variation Analysis. Table 1 shows the
statistics of the norm difference of 100 generated samples for
each GAN. The low standard deviation of softmax indicates
that it most likely suffers from mode collapse (i.e., generated
samples are similar) WGAN seems to generate more diverse
examples (when compared to GAN) based on larger range in
the “min” and “max” norm difference and higher mean and
median values while maintaining similar standard deviation.

Minimum Norm Difference. Figures 7 show the relationship

Vanilla GAN Min Norm Diff

—— min norm diff
gx
ay
gz

. 4[')0 600 360
Timesteps

(a)

Softmax GAN Min Norm Diff

7
— min norm diff
ox
e1 — ay
— gz
s
8
=
s
>
1
o4
6 2[')0 . 4(‘)0 660 860
Timesteps
(®
WGAN Min Norm Diff
— min norm diff
6 gx
— ay
s T gz
wa -
[<5]
=
==+
>
- {Q 4
v —
o U V

6 2 [I)O . 460 6 CI)O 8 lI)O
Timesteps

()

Fig. 7: Min norm difference vs gyro sensor reading compar-
ison: (7a) GAN, (7b) Softmax GAN, and (7c) Wasserstein
GAN. The x-axis is the mission duration where 1 timestep
is 200ms. The y-axis for the blue line is the 2-norm difference
value and the sensor values. In all three GANs, we see that
changes in gyro reading results in spike in norm difference.

GAN Type Vanilla Softmax Wasserstein
Max 3.411562 1.593482 8.119476
Min 0.149875 | 0.447159 0.412769
Mean 0.149875 | 0.924011 4.596173
Median 3.672165 | 0.906382 5.025689
Std 2.192810 | 0.271916 2.060317

TABLE I: Norm Difference Statistics

between the minimum norm difference and the gyroscope
sensor values. The spikes indicate that all three GANs have
a difficult time capturing the segment of sensor values where
big changes are occurring in the IMU readings. The sudden
spikes indicate changes in mission phases: (a) the first spike is
the liftoff, (b) second is the start of the circle loitering phase,
(c) the third is the end of the loiter while (d) the last spike is the
landing stage. This behavior seems to indicate that capturing
the sensor distribution when the mode changes occur is hard
and may require separate models for each stage of the mission.

Position Visualization. Figure 6 plots a visualization of the
position of the UAV — based on the generated signals from
each of the GAN models. Each axes are the basis in the 3D
space. The figure (6b) highlights the mode collapse in Softmax
GAN as analyzed using norm variation analysis. The visualiza-
tion also confirms that WGAN generated much more diverse
examples (i.e., wider range of generated samples) However,
the WGAN does not seem to capture the sensor distribution
of the mission as it looks like it is generating random positions.
Of the three, vanilla GAN seems to capture the distribution of
the mission the best because the generated path aligns closest
to the mission path. However, it does not seem to provide
adequate performance (i.e., generating a window of realistic
mission trace) to be used in data augmentation.

Discussion Hence the main takeaways from this work include:
1. a change in the UAV mission state affects the performance
of the model; hence we might need separate models for each
phase.

2. adversarial training results in a degradation of the average
prediction performance; however, the prediction performance
becomes more consistent.

3. vanilla GAN performed best (of the three we tested) and
was able to generate samples that were recognized as being
close to the mission path but not ideal.

VI. CONCLUSION

We demonstrated the practicality of deep models for UAV
sensor anomaly detection. We developed a feed-forward deep
model that captures the dynamics of the UAV and GAN to
augment the dataset for better training. Our early results show
that recreating the models for even simple missions (especially
during transition stages) is hard but vanilla GANs worked best
for this task. In addition, adversarial training provides stable
prediction error at the expense of performance.

ACKNOWLEDGMENT

This work was supported by Boeing Research & Tech-
nology (BR&T) under the Collaborative Research Project
BRT-Z0418-5048: Machine Learning-based Communication
and Anomaly Detection in Distributed Autonomous UAV
Swarms.The authors would like to thank Dr. Jae H. Kim (Boe-
ing PM) for his advice and guidance throughout the project.

The authors would also like to thank AMD for providing the
Vega 20 GPU which was used in our experiments.

(1]

(2]

(3]

(4]

(51

(6]

(71

(9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

D. M. Akos, “Who’s afraid of the spoofer? gps/gnss spoofing detection
via automatic gain control (agc),” NAVIGATION: Journal of the Institute
of Navigation, vol. 59, no. 4, pp. 281-290, 2012.

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv
preprint arXiv:1701.07875, 2017.

P. Dash, M. Karimibiuki, and K. Pattabiraman, “Out of control: stealthy
attacks against robotic vehicles protected by control-based techniques,”
in ACSAC, 2019.

P. Freeman, R. Pandita, N. Srivastava, and G. J. Balas, ‘“Model-
based and data-driven fault detection performance for a small uvav,”
IEEE/ASME Transactions on mechatronics, vol. 18, no. 4, pp. 1300-
1309, 2013.

1. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672—
2680.

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

K. Highnam, K. Angstadt, K. Leach, W. Weimer, A. Paulos, and
P. Hurley, “An uncrewed aerial vehicle attack scenario and trustworthy
repair architecture,” in 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshop (DSN-W).
IEEE, 2016, pp. 222-225.

Y. Huang, J. Tang, Y. Cheng, H. Li, K. A. Campbell, and Z. Han,
“Real-time detection of false data injection in smart grid networks: An
adaptive cusum method and analysis,” IEEE Systems Journal, 2014.

T. E. Humphreys, “Detection strategy for cryptographic gnss anti-
spoofing,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 49, no. 2, pp. 1073-1090, 2013.

M. G. Kuhn, “An asymmetric security mechanism for navigation
signals,” in International Workshop on Information Hiding. Springer,
2004, pp. 239-252.

M. Lin, “Softmax gan,” arXiv preprint arXiv:1704.06191, 2017.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1,
2013, p. 3.

K. Manandhar, X. Cao, F. Hu, and Y. Liu, “Detection of faults and
attacks including false data injection attack in smart grid using kalman
filter,” IEEE transactions on control of network systems, 2014.

J. Manning, D. Langerman, B. Ramesh, E. Gretok, C. Wilson,
A. George, J. MacKinnon, and G. Crum, “Machine-learning space
applications on smallsat platforms with tensorflow,” in Proceedings of
the 32nd Annual AIAA/USU Conference on Small Satellites, Logan, UT,
USA, 2018, pp. 4-9.

A. Ranganathan, H. Olafsdéttir, and S. Capkun, “Spree: A spoofing
resistant gps receiver,” in Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking. ACM, 2016, pp.
348-360.

Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim,
“Rocking drones with intentional sound noise on gyroscopic sensors,”
in 24th USENIX Security Symposium (USENIX Security 15), 2015.

D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer
feed-forward neural networks,” Chemometrics and intelligent laboratory
systems, vol. 39, no. 1, pp. 43-62, 1997.

S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics.
2005.

Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered: Fabricating
implicit control over actuation systems by spoofing inertial sensors,” in
27th USENIX Security Symposium (USENIX Security 18), 2018.

MIT press,

