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Even though the content of the queries and the documents
are encrypted, during this interaction the server learns which
documents are accessed, i.e., the access pattern, and which
queries are equal, i.e., the search pattern. Most existing SSE
schemes [7], [9], [12], [21]–[23], [33] allow such leakage for
performance considerations. However, recent studies [8], [20],
[39] demonstrated that, with some prior knowledge of the
outsourced database or a subset of the queries, an honest-but-
curious server can recover the underlying keywords of queries
with high accuracy, which violates the client’s privacy.

There are different techniques that allow enhancing the
privacy properties of SSE schemes, but they incur an util-
ity cost which is typically a combination of communication
overhead, extra computational complexity, and local client
storage requirements. Certain schemes, like those based on
Oblivious RAM (ORAM) [19] or Private Information Retrieval
(PIR) [11], can fully hide the access pattern when reading
a document from a database. However, they incur a large
communication and computation overhead, respectively, and
are not specifically designed towards securely searching over
an encrypted database (except for TWORAM [17]). A recent
framework by Chen et al. [10] protects access-pattern leakage
in SSE by obfuscating the index of the database before
outsourcing it. This way, the server only learns obfuscated
access patterns, making it harder to successfully carry out
attacks on the client’s privacy from such leakage. However,
despite its efficiency, this framework cannot hide search pat-
terns since the access pattern for each keyword is determined
after outsourcing. This search pattern leakage allows different
practical attacks [20], [27], [31] to perform remakably well
regardless of the access pattern obfuscation (see Sect. IX).

Motivated by this vulnerability of Chen et al.’s scheme [10],
in this work we propose OSSE (Obfuscated SSE), a new SSE
scheme that protects both the access and search patterns. The
main idea behind OSSE is that it produces a fresh obfuscation
per query, instead of just once when outsourcing the database,
thus making it hard for the server to decide whether or not
two queries are for the same keyword. Our scheme allows
to perform queries on the encrypted database and receive
the matched documents in the same communication round
(TWORAM requires at least four rounds [17]). Under some
reasonable assumptions on the query and database distribu-
tion, OSSE achieves a lower communication overhead than
TWORAM (e.g., only a small constant when the keyword
distribution is uniform). Our scheme relies on computation-
heavy cryptographic techniques and thus its computational cost
is considerable (e.g., it can require 30 minutes to run a query
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pattern, and thus are vulnerable to attacks that can recover the 
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search capabilities in mind. Recently, Chen et al. (INFOCOM’18) 
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In this paper, we propose OSSE (Obfuscated SSE), an SSE 
scheme that obfuscates the access pattern independently for each 
query performed. This in turn hides the search pattern and makes 
our scheme resistant against attacks that rely on this leakage. 
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I. INTRODUCTION

Searchable Symmetric Encryption (SSE) [33] schemes 
allow a client to securely perform searches on an encrypted 
database hosted by a server. In a typical SSE scenario, 
the client first locally produces an encrypted version of the 
database and a search index, and outsources them to the server. 
Later, the client can issue queries for keywords that the server 
can securely run on the index, and retrieve the documents that 
match the query to decrypt them locally.
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over 30 000 documents). However, it requires very small con-
stant client-side storage and the query process is parallelizable,
which means that the server can process several queries in
parallel to speed up the search, and return the results in a single
round. Our experimental evaluation shows that obfuscating
search patterns significantly reduces the performance of known
practical query recovery attacks.

Summarizing, our contributions are the following:

• We propose OSSE, an SSE that leverages Inner Product
Predicate Encryption (IPPE) [32] whose main features
are 1) it obfuscates both access and search patterns; 2)
it runs queries in a single communication round, with
an overhead that, depending on the database and query
distribution, can be as small as a constant (three); 3)
its computational complexity is O(n log n/ log log n), but
can be significantly reduced with parallelization; and 4)
OSSE requires a (very small) constant client-side storage,
as opposed to ORAM-based SSE (TWORAM) [17] that
requires O(log2 n) storage.

• We instantiate the notion of differential privacy for queries
and documents in SSE, which in turn imply search
and access pattern privacy, respectively. We prove the
differential privacy guarantees of OSSE.

• We show that, even when OSSE is tuned to provide
high utility (and a low differential privacy parameter ε),
our scheme still provides strong protection against four
different query identification attacks [8], [20], [27], [31].

The paper is structured as follows. In Sect. II we review
related work, before we introduce preliminaries in Sect. III. We
characterize the performance metrics we consider in Sect. IV
and present OSSE in Sect. V. We analyze the security, privacy,
and complexity of our scheme in Sects. VI, VII, VIII, respec-
tively, and evaluate it against empirical attacks in Sect. IX. We
conclude in Sect. X.

II. RELATED WORK

A. Searchable Symmetric Encryption (SSE)

SSE refers to a type of encryption that allows a data owner
to outsource an encrypted database to an untrusted server while
still preserving search functionalities. SSE was put forward by
Song et al. [33], who suggested several practical constructions
whose search complexity is linear in the database size and se-
cure under the Chosen Plaintext Attack (CPA). Goh et al. [18]
pointed out CPA was not adequate for SSE schemes. Curtmola
et al. [12] provided formal notions of security and functionality
for SSE, as well as the first constructions satisfying them with
search complexity linear in the number of results (sub-linear in
the size of the database). Subsequent works provided different
security features, efficiency properties, and functionalities [7],
[9], [21]–[23], [30]. However, all the above SSE schemes
reveal which documents are accessed and returned in each
query. This access pattern leakage opened the door to powerful
query recovery attacks [6], [8], [20], [31], [39].

B. Query Recovery Attacks

In 2012, Islam et al. [20] demonstrated that when knowing
some statistics about a database and the content of a small
fraction of queries, a semi-honest server could recover the

contents of all queries with more than 90% accuracy. This
is the first powerful attack (known as IKK attack) utilizing
access-pattern leakage. Subsequent works propose attacks that
are effective when the adversary only knows a subset of the
database [6], [8] or has imperfect auxiliary information [31].
A different type of attack, called file-injection attack [6], [39],
showed that an active adversary could inject only a small
number of carefully designed files in order to recover the
content of queries by observing the access patterns of the
injected files. Liu et al. [27] introduced an attack that leverages
prior knowledge about the client’s search habits and search-
pattern leakage to identify the underlying keywords of the
client’s queries. Even though these attacks aim at identifying
the underlying keywords of the queries (query recovery), this
in turn can allow the adversary to know the keywords of each
document (database recovery).

C. Oblivious RAM and Private Information Retrieval

Oblivious RAM (ORAM), first introduced by Goldreich
and Ostrovsky [19], was designed to hide memory access
patterns by a CPU. Goldreich and Ostrovsky showed that a
client could hide entirely the access patterns by continuous
shuffling and re-encrypting data, with a poly(log n) com-
munication overhead and O(log n) client-side storage. Since
its proposal, there has been a fruitful line of research on
further reducing this overhead [3], [14], [28], [34], [37]. Path
ORAM [34], popular for its simplicity and efficiency, achieved
O(log n) communication overhead with O(log n) client stor-
age but required block size to be Ω(log n). Apon et al. [3]
showed that one can construct an ORAM scheme with constant
communication overhead by leveraging fully homomorphic
encryption (FHE). Even though subsequent works optimized
this overhead [14], [28], FHE-based ORAM constructions still
require a large communication overhead and rely on com-
putationally expensive cryptographic primitives. A Ω(log n)
lower bound of the overhead has been proven in the com-
putational [26] and the statistical offline setting [19]. Naively
combining SSE and ORAM might lead to a communication
volume larger than directly downloading the entire database
[29]. Garg et al. [17] proposed TWORAM, an ORAM-based
SSE scheme to hide access patterns with a communication
overhead O(log n · log log n), which requires at least four
communication rounds and O(log2 n) client-side storage.

Private Information Retrieval (PIR), proposed by Chor
et al. [11], allows a group of clients to privately retrieve
documents from a public (unencrypted) database in the setting
where there are many non-cooperating copies of the same
database. The main drawback of these schemes is that they
require to touch every bit in the database per access, i.e., a
computation overhead of O(n).

We remark that ORAM and PIR provide private database
access but, contrary to SSE schemes, they are not de-
signed to provide search functionalities by default (except
for TWORAM [17]). This means that a client must know
beforehand the exact indices of the documents to be accessed.
Database search can also be implemented using only FHE [1],
[2]. The main drawback of these schemes is that, even though
they have built-in search capabilities, they require multiple
communication rounds to retrieve variable length results.
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Notation Description
∆ Keyword universe ∆ = {w(1), w(2), . . . , w|∆|}.
D A document, D = {w1, w2, . . . , w|D|}.

id(D) Document identifier (or id) of D.
D Dataset, list of all documents ordered by their ids.
D[i] ith document in D, whose id is i.
n Total number of documents, n .

= |D|.
D(w) List of all documents that contain w ordered by id.

I Secure search index.

TABLE I: Database Notation

D. Differentially Private SSE

Chen et al. [10] proposed a differentially private obfus-
cation framework to mitigate access-pattern leakage in SSE.
The framework obfuscates the search index, i.e., a list of
which documents contain keywords, by adding false positives
and false negatives to it. Consequently, the server only learns
an obfuscated version of the access patterns, from which
it is much harder to derive useful information. However,
since the obfuscation is fixed after outsourcing the index,
querying for the same keyword multiple times results in the
same obfuscated pattern. This repetition actually reveals query
frequencies of keywords, which can be used to recover the
keywords being queried [27].

III. PRELIMINARIES

This section presents the formal definitions related to SSE
and IPPE, that we need to characterize the leakage and security
of our scheme, OSSE. We give a high-level description of our
scheme OSSE in Section V-A.

A. Searchable Symmetric Encryption (SSE)

First, we introduce the notation related to SSE, which we
summarize in Table I. Let ∆ = {w(1), w(2), .. . . . , w(|∆|)} be
the keyword universe, and let |∆| denote its size. Let D be a
document and let id(D) be its document identifier, which we
assume independent of its content. For notational simplicity,
we treat documents as a list of the keywords they contain,
e.g., D = {w1, w2, . . . , w|D|}, and w ∈ D means document
D contains keyword w. Let D be a dataset of n documents,
sorted by their ids. D[i] is the ith document in the dataset;
without loss of generality, we assume id(D[i]) = i. Let D(w)
be the list of documents that contain w ordered by id.

In the following, we define Searchable Symmetric Encryp-
tion (SSE) schemes and borrow the security definition [12].

Definition 1 (Searchable Symmetric Encryption Scheme
(SSE)). An SSE scheme is a collection of the following four
polynomial-time algorithms:

• Keygen(1λ) is a probabilistic key generation algorithm
that is run by the client to setup the scheme. It takes a
security parameter λ and returns a secret key sk such
that the length of sk is polynomially bounded in λ.

• BuildIndex(sk,D) is a (possibly probabilistic) algorithm
that the client runs using the secret key sk and document
collection D to generate an encrypted index I whose
length is polynomially bounded in λ.

• Trapdoor(sk, w) is run by the client to generate a trap-
door τw for a keyword w given the secret key sk.

• Search(I, τw) is run by the server in order to search for
D(w). It takes an encrypted index I for a collection D
and a trapdoor τw for keyword w as inputs, and returns
the set of identifiers of documents containing w.

In order to define the security of an SSE scheme, we
borrow the concepts of history, view and trace [12]. First, the
history contains the sensitive information that the client wants
to keep private, namely the document plaintexts D and the
sequence of keywords queried ~w:

Definition 2 (History). A history over D is a tuple

Ht
.
= (D, ~w) , where ~w

.
= (~w[1], ~w[2], . . . , ~w[t]) . (1)

Here, ~w is the vector of underlying keywords of the t queries.

A partial history of Ht, denoted Hs
t for s ≤ t, contains

only the sequence of queries up to the sth query, i.e., Hs
t
.
=

(D, ~w′) where ~w′
.
= (~w[1], . . . , ~w[s]).

Next, the view specifies what the server can see when
running the SSE protocol, namely the document identifiers
id(D), the encryption of each document E(D[i]), a secure
search index I , and the query tokens (trapdoors) τi:

Definition 3 (View). The view of Ht under key sk is the vector

Vsk(Ht)
.
= (id(D), E(D[1]), , ..., E(D[n]), I, τ1, ..., τt) , (2)

where τi is the query token for the ith query. The partial view
V ssk(Ht) only contains the tokens up to τs, with s ≤ t.

Finally, the trace of a history models the actual leakage of
the SSE scheme. Before defining trace, we first define formally
two types of leakage of SSE schemes: the access pattern and
the search pattern.

Definition 4 (Access Pattern). The access pattern Π~w given
a dataset D and a query vector ~w is a binary matrix of size
t× n such that

Π~w[i, j] =

{
1 if ~w[i] ∈ D[j];

0 otherwise.
(3)

Definition 5 (Search Pattern). The search pattern Φ~w given a
dataset D and a query vector ~w is a symmetric binary matrix
of size t× t such that

Φ~w[i, j] =

{
1 if ~w[i] = ~w[j];

0 otherwise.
(4)

The access pattern reveals which documents contain which
of the queried keywords, and the search pattern reveals which
queries have the same underlying keyword.

Definition 6 (TRACE). The trace of Ht is the vector

T (Ht)
.
= (id(D), |D[1]|, . . . , |D[n]|,Π~w,Φ~w) . (5)

We are ready to define the adaptive semantic security for
SSE. Informally, the definition states that an SSE scheme is
secure if an adversary that observes the view can be simulated
by an algorithm that only sees the trace; this implies that
the trace contains all the information that is relevant to the
adversary.
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Definition 7 (Adaptive Semantic Security for SSE [12]).
An SSE scheme is adaptively semantically secure if for all
t ∈ N and for all (non-uniform) probabilistic polynomial-
time adversaries A, there exists a (non-uniform) probabilistic
polynomial-time algorithm (the simulator) S such that for all
traces Tt of length t, all polynomially samplable distributions
Ht over {Ht : T (Ht) = Tt} (i.e., the set of histories with
trace Tt), all functions f : {0, 1}|Ht| → {0, 1}poly(|Ht|), all
0 ≤ s ≤ t, and sufficiently large λ:∣∣Pr[A(V ssk(Ht)) = f(Hs

t )]− Pr[S(T (Hs
t )) = f(Hs

t )]
∣∣ < δ(λ)

where Ht ← Ht, sk ← Keygen(1λ), and probabilities are
taken over Ht and the internal coins of A,S and the under-
lying Keygen, BuildIndex, Trapdoor, Search algorithms.

Curtmola et al. [12] prove the equivalence of this definition
and adaptive indistinguishability for SSE. In Section VI we
show that our SSE scheme provides adaptive semantic security.

B. Inner Product Predicate Encryption (IPPE)

We explain IPPE [5], [24], [32], a cryptographic tool that
our SSE scheme uses. In IPPE, plaintexts x ∈ Σ and predicates
f ∈ F are vectors Σ = F = ZsN . We say that a plaintext x
satisfies a predicate f , denoted f(x) = 1, if 〈x, f〉 = 0, where
〈·, ·〉 denotes the inner product; otherwise, f(x) = 0.

Definition 8. (SYMMETRIC-KEY INNER PRODUCT PREDI-
CATE ENCRYPTION [32]) (IPPE) An IPPE scheme for the
class of predicates F over the set of attributes Σ consists of
the following probabilistic polynomial-time algorithms.

• Setup(1λ) takes as input a security parameter λ and
outputs a secret key sk.

• Encrypt(sk, x) takes as input a secret key sk and a
plaintext x ∈ Σ and outputs a ciphertext ctx.

• GenToken(sk, f) takes as input a secret key sk and a
predicate f ∈ F and outputs a search token stf .

• Query(stf , ctx) takes as input a token stf for a predicate
f and a ciphertext ctx for plaintext x and outputs f(x) ∈
{0, 1}.

Correctness. IPPE correctnes requires that, for all λ,
x ∈ Σ, and f ∈ F ; letting sk ← Setup(1λ), stf ←
GenToken(sk, stf ), and ctx ← Encrypt(sk, x),

1) If 〈x, f〉 = 0, then Query(stf , ctx) = 1.
2) If 〈x, f〉 6= 0, then Pr[Query(stf , ctx) = 0] ≥ 1 − δ(λ)

where δ is a negligible function.

An IPPE scheme can be used to securely evaluate poly-
nomials [24], as follows. Let ~α = (a0, a1, . . . , ad) be the
coefficients of a polynomial P of degree d. The evaluation
of this polynomial at point x is simply P (x) =

∑d
i=0 ai ·

xi = 〈~α, ~β〉 where ~β = (x0, x1, . . . , xd). Therefore, the
condition P (x) = 0 can be verified by checking whether
Query(st~β , ct~α) = 1, where ct~α ← IPPE.Encrypt(sk, ~α) and
stβ ← IPPE.GenToken (sk, ~β).

Security. Shen et al. [32] define the security of an IPPE
scheme by the following game G between an adversary A and
a challenger controlling the IPPE.

• Setup: The challenger runs IPPE.Setup(1λ), keeps sk to
itself, and picks a random bit b.
• Queries: A adaptively issues two types of queries:

- Ciphertext query. On the jth ciphertext query, A out-
puts two plaintexts xj,0, xj,1 ∈ Σ. The challenger
responds with IPPE.Encrypt(sk, xj,b).

- Token query. On the ith token query, A outputs descrip-
tions of two predicates fi,0, fi,1 ∈ F . The challenger
responds with IPPE.GenToken(sk, fi,b).

A’s queries are subject to the restriction that, for all
ciphertext queries (xj,0, xj,1) and all predicate queries
(fi,0, fi,1), fi,0(xj,0) = fi,1(xj,1).
• Guess: A outputs a guess b′ of b.

The advantage of A is defined as AdvA = |Pr[b′ = b]− 1
2 |.

Definition 9. (FULL SECURITY for IPPE [32]). A symmetric-
key inner product predicate encryption scheme is fully secure
if, for any probabilistic polynomial adversary A, the advantage
of A in winning the above game is negligible in λ.

Roughly speaking, full security guarantees that given a set
of tokens of predicates f1, . . . , fk and a set of encryptions of
plaintexts x1, . . . , xt, no adversary can gain any information
about any predicate or any plaintext other than the value of
each predicate evaluated on each of the plaintexts. The notion
of predicate privacy is inherently impossible in the public-key
setting, which is the reason why our construction works only
in the private-key setting.

A stronger security notion in the context of IPPE, called
simulation-based security (SIM-security), requires that every
efficient adversary A that interacts with the real IPPE can
be simulated given only oracle access to the inner products
between each pair of vectors that A submits to the real IPPE.
SIM-security implies full security, and an IPPE that provides
SIM-secure is also called a Function-Hiding IPPE (FHIPPE).

Definition 10. (SIM-SECURITY for IPPE). An IPPE is SIM-
secure if it is fully secure and, for any efficient A, there exists
an efficient simulator S such that the following two games are
computationally indistinguishable:

RealA(1λ) : IdealA,S(1λ) :
sk ← IPPE.Setup(1λ) sk′ ← S.Setup(1λ)
b′ ← GA,IPPE(1λ) b′′ ← GA,S(1λ)
output b′ output b′′

Here, game GA,IPPE represents the game defined previously,
played between A and IPPE, and GA,S is the game between
A and S.

IV. PERFORMANCE METRICS IN SSE

As explained earlier, existing SSE schemes offer different
privacy, performance, and utility trade-offs. Schemes that leak
the access and search patterns typically provide high perfor-
mance and utility, while high protection solutions such as
ORAM or PIR incur some computation cost, communication
cost, or client storage requirements. Our goal is to find a
middle-ground solution that obfuscates the search/access pat-
terns while being lighter in terms of cost. We make a distinc-
tion between utility metrics, that directly affect the outcome of
the protocol, and performance metrics, that measure the cost
of running the protocol.
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From the client’s perspective, the outcome of the proto-
col are the documents received from the server as a query
response. Privacy-preserving schemes can sometimes return
documents that do not contain the requested keyword (false
positives), or miss out some documents that do contain the
keyword (false negatives). This utility loss can be characterized
by two metrics:

• True Positive Rate (TPR): is the probability that the
server returns a document that contains the queried key-
word as a response to a query.

• False Positive Rate (FPR): is the probability that the
server returns a document that does not contain the
requested keyword as a response to a query.

In most cases, the client aims for large TPR values (e.g.,
> 0.9999) and low FPR values (e.g., < 0.01).

On the other hand, we consider the following performance
metrics that measure the cost of running the SSE algorithm:

• Communication Cost: is the number of bytes exchanged
between the client and the server and the number of
communication rounds needed to perform each query.

• Computational Cost: is the number of operations that
the client and server perform to run the SSE scheme.

• Client Storage Cost: is the amount of local memory that
the client needs in order to run the SSE scheme.

The TPR and FPR can be palliated at the expense of an
increase in the cost of the protocol: The TPR can be increased
by replicating documents on the server side, dividing each
document into K shards and requiring k < K shards for
document recovery [10]. This incurs an extra communication,
computation, and server storage cost. Likewise, false positives
can be trivially filtered by the client by checking whether or
not a returned document contains the queried keyword. Thus,
the effective cost of false positives is bandwidth consumption.

Our SSE scheme, OSSE, requires a single communication
round, a (small) constant client storage, and can run queries in
parallel, which can potentially allow for faster running times.

Finally, we consider both theoretical and empirical privacy
metrics. From the theoretical perspective, in Sect. VII we study
the performance of our scheme and previous proposals in terms
of differential privacy [15], that has already been applied to our
setting [10]. Then, in Sect. IX we use the empirical accuracy
of known attacks [8], [20], [27], [31] to assess the privacy
properties of SSE schemes in practice.

V. ALGORITHM DESCRIPTION

We describe our proposal, that we call Obfuscated SSE
(OSSE). Table II summarizes the notation of this section.

A. Construction Overview

In a traditional SSE scheme, when the client queries for
a keyword w, the server can compute the access pattern Πw,
i.e., a list of the identifiers of the documents in the database
that contain w. The premise for our scheme is simple: we
want to introduce random false positives (i.e., return documents
that do not contain w) and false negatives (i.e., some of the
documents that contain w are not returned). By doing so, we

Notation Description
Πw Real access pattern for keyword w (Def. 4).
Π̃w Obfuscated access pattern for keyword w.
l Document label, computed as a hash l .= h(id(D)).

ctr Counter used in our OSSE scheme.
ctrmax Maximum value of ctr.

w-1 A dummy keyword such that w-1 /∈ ∆.
I[i] Encrypted polynomial that allows computing query matches for

document i.
I Search index, I = (I[1], I[2], . . . , I[n]).
τf Query token for a predicate f .

Γw Set of (τf , l) generated when querying for w.

TABLE II: Notation for the Algorithm Description

only allow the server to observe an obfuscated access pattern
Π̃w. Each query results in a freshly random access pattern,
which in turn also hides the search pattern, since given a set of
obfuscated access patterns it is hard to tell whether or not these
patterns where generated by queries for the same or different
keywords. Despite the simplicity of this premise, achieving
this functionality in a single communication round and without
client storage is particularly challenging.

OSSE works as follows. The client first generates its private
key. Then, for each document in the dataset, the client calls a
function that we call genPoly to generate a polynomial that
encodes the keywords of that document. These polynomials are
encrypted using the private key, and this collection of cipher-
texts forms the search index. The client sends the encrypted
dataset and the search index to the server. When querying for a
keyword w, the client calls a function genPred(w) to generate
a set of predicates, which are then converted into tokens. The
client sends these tokens to the server. The server evaluates the
tokens on the search index (i.e., on the encrypted polynomials
of each document); this evaluation returns a match for those
documents that meet the query and must be returned to the
client. The key to adding random false positives and false
negatives to this matching process lies in the construction of
the functions genPoly and genPred, that we explain below.

In order to speed up computation, the client assigns a label
l to each document by hashing its document identifier, i.e., the
label of D is h(id(D)). The hash function is publicly know, so
the server can compute the label of each encrypted document.
Then, the client attaches a label l to each query token, so that
the server only needs to evaluate each token on the encrypted
polynomials of documents that share the label l.

B. Polynomial Generation (genPoly)

The function genPoly(D, id(D)) generates the polynomial
coefficients for document D, that are later encrypted and sent
to the server as part of the search index. Before explaining
this function, we clarify the following point: when the client
sends a query token to the server, we want to avoid multiple
document matches for a single token, since this reveals that
two documents contain the same keyword and introduces
correlations in the query response, which are hard to take into
account in a privacy analysis. Therefore, the client designs the
polynomials and query tokens so that a token can either match
a single document or none at all. As a consequence, the client
must generate multiple tokens per query in order to retrieve
all the desired documents.
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Now we explain how the client crafts the polynomials.
Consider a document D = {w1, w2, . . . , w|D|} that contains
|D| keywords, has identifier id(D), and label l .= h(id(D)).
Let Smax be the maximum number of keywords that any
document can have. Then, the roots of the polynomial (i.e., the
values for which it should return a match) are the following
(|| denotes concatenation):

(wi||l||ctrwi,l) , for i = 1, 2, . . . , |D| ,
(w-1||0||0) , for i = |D|+ 1, . . . , Smax ,

(id(D)||0||-1) .

(6)

The first set of roots (wi||l||ctrwi,l) include each keyword
wi in the document, the document label l, and a counter
ctrwi,l that is chosen so that none of the polynomials (one
polynomial per document) have a root in common (so as to
avoid more than one match per token). This counter starts at
zero and keeps increasing as the client builds the search index.
For example, two documents D[i] and D[k] might both contain
a particular keyword w and share a label l = h(i) = h(k).
However, their corresponding polynomials will not share a
root, since the value in their ctrw,l field will be different.
The maximum value of this counter is fixed before building the
search index, and it is chosen such that, with overwhelming
probability, the client does not need a higher counter value
(more on this on Sect. V-G). These roots (wi||l||ctrwi,l) allow
the client to find true positive matches by generating tokens
using this structure with their desired query keyword w, and
looping through all labels l and counter values.

The second set of roots (w-1||0||0) include a dummy
keyword w-1 that is not in the keyword universe w-1 /∈ ∆.
These roots act as padding, so that every polynomial has the
same length (the same number of roots and coefficients) and
thus hide the number of keywords that each document has.
Finally, the last root (id(D)||0||-1) allows the client to trigger
false positives using only the document identifier id(D) by
generating a token with this structure.

Building the search index following (6) ensures that the
only root in common between polynomials generated for dif-
ferent document is (w-1||0||0), which is only used for padding
and never queried. This means that a token can only trigger
at most one match. When querying for keyword w, the client
can generate false negatives by skipping some label/counter
values in the generation of tokens (w||l||ctr), force false
positives by generating tokens from (id(D)||0||-1), and force
non-matches by generating tokens from values that do not
match any polynomial, e.g., (w-1||-1||0).

The function genPoly takes as input a document D[i] and
its label i, generates a polynomial based on its keywords as de-
tailed in (6), and returns the vector of polynomial coefficients
vi (which is straightforward to compute from the roots). Since
we have Smax + 1 roots, the vector of polynomial coefficients
will be of size Smax + 2.

C. Predicate Generation (genPred)

The client calls genPred when performing a query. This
function receives a keyword w and outputs a set of (predicate,
label) tuples. The client converts them to (token, label) pairs
and sends to the server to run the query.

The procedure to generate the predicate and label pairs
is shown in Algorithm 1. The algorithm starts by initializing
a multiset that will store the values on which to evaluate
the polynomials, and their associated labels. Then, the first
part of the algorithm (lines 3-5) attempts to generate a query
for each label and counter value, but only adds each with
probability p. Typically, p will be close to 1. The goal of
this part is to try to obtain a match in those documents that
actually contain w, while having a small probability (1 − p)
of false negative. The remaining code aims at hiding the true
positives and non-matches produced by the first part of the
algorithm. The second part (lines 6-9) hides the true positives
by generating false positives for each document in the dataset
following a geometric distribution with parameter 1 − q (we
want q close to zero to avoid a huge amount of false positives).
We explain this distribution choice in Sect. V-F. The third
part (lines 10-13) hides the non-matches of the first part by
generating non-matches for each label l ∈ [|h|] following a
geometric distribution with parameter 1 − q. The remaining
lines (14-18) convert the predicates to a vector format such that
its inner product with the document’s polynomial coefficients
returns whether or not the document should be returned.

Algorithm 1 Predicate generation when querying for w

1: procedure GENPRED(w)
2: TupleSet← ∅
3: for l = 1 to |h| do
4: for ctr = 0 to ctrmax do
5: with prob. p, TupleSet.add

(
[w‖l‖ctr, l]

)
6: for id = 1 to n do
7: nFP ← Geo(1− q)
8: for k = 1 to nFP do
9: TupleSet.add

(
[id‖0‖-1, h(id)]

)
10: for l = 1 to |h| do
11: nNM ← Geo(1− q)
12: for k = 1 to nNM do
13: TupleSet.add

(
[w-1‖-1‖0, l]

)
14: PredLabelPairs← ∅
15: for x, l ∈ TupleSet do
16: predicate =

(
x0, x1, x2, . . . , xSmax+1

)
17: PredLabelPairs.add([predicate, l])

18: return PredLabelPairs

Note that we can get a true positive if the inital coin flip
succeeds (probability p) or if it fails but the geometric distri-
bution generates at least one token, i.e., TPR = p+ (1− p)q.
The probability of false positive is FPR = q.

D. Formal Interface

We formalize OSSE interface following Definition 1 and
using the IPPE functions in Definition 8 as follows:

• Keygen(1λ): takes as input a security parameter λ and
returns FHIPPE.Setup(1λ), which outputs secret key sk.

• BuildIndex(sk,D): takes the secret key sk and the
database D, computes the polynomial coefficients vi =
genPoly(D, id(D)) for every document D ∈ D, and then
encrypts them by calling FHIPPE.Encrypt(sk, vi). The
encrypted polynomials of all documents form the search
index I of the database.
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• Trapdoor(sk, w): takes the secret key sk and a keyword
w, then calls genPred(w) to get a set of (predicate, label)
tuples. Every predicate f is transformed into a query token
τf using FHIPPE.GenToken(sk, f), and the output of
Trapdoor(sk, w) is a set of (token, label) pairs Γw, that
the client sends to the server.

• Search(I,Γw): takes as input the search index I and a
set of query tokens and labels Γw. Then, for every token
and label (τf , l) ∈ Γw, it calls FHIPPE.Query(I[i], τf ),
for all document identifiers i whose label is l; if the
result of the inner product is 0 (there has been a match),
then it returns the corresponding document identifier i.
The output of Search(I,Γw) is the set of matched
document identifiers ~id. The server then sends to the
client the encrypted documents that correspond with these
identifiers (ignoring possible duplicate ids in ~id).

E. Leakage Characterization

As explained above, OSSE hides the access and search
patterns by adding random false positives, false negatives, and
hiding the number of tokens that yield a non-match. In this
section, we characterize the leaked access pattern, that we
call obfuscated access pattern. Then, we define the obfuscated
trace, an update of Def. 6 that characterizes the leakage of
OSSE. We use these concepts in the security and privacy
analysis of OSSE in Sects. VI and VII.

Since OSSE generates tokens independently per query,
we study the adversary’s observation when the user queries
for a particular keyword w. First, the user calls genPred
to generate a sequence of tokens and labels Γw, and sends
them to the server. The server evaluates each of the tokens
(τ, l) ∈ Γw using the search index and either obtains a single
match (in a document that has a label l) or a non-match.
Therefore, for each token and label pair (τ, l) there are n+ |h|
possible adversary observations: either document D[i] (with
label h(id(D[i])) = l) satisfied the token (n possibilities), or
there was a non-match (|h| possibilities, one for each label).
The adversary observes one of these outcomes for each single
token received. Therefore, the obfuscated access pattern Π̃w

for this query can be seen as a multi-nary n+ |h| vector. We
characterize this vector now, following Alg. 1.

First, let’s study the value of Π̃w[i] when i ∈ [n], i.e., the
number of times the adversary observes a match for the ith
document. If this document contains w, then lines 3-5 will
generate a true match with probability p. Otherwise, these
lines will not generate a match for document i. Then, lines
6-9 add false positive matches for each document following a
geometric distribution with parameter 1 − q. The rest of the
algorithm just generates extra non-matches. Therefore,

Π̃w[i] ∼
{

Bern(p) + Geo(1− q) if w ∈ D[i] ,

Geo(1− q) if w /∈ D[i] ,
for i ∈ [n] .

(7)

Now, let’s study the number of non-matches the adversary
sees with label l ∈ [|h|], i.e., Π̃w[n + l]. In lines 3-5, every
token generated with label l will return a non-match except for
those documents with label l that contain w. Since each token
is generated with probability p, the non-matches with label l
follow a binomial distribution with parameters gl

.
= ctrmax−

|D(w)l| and p, where D(w)l is the set of ids of documents
with label l that contain keyword w. Additionally, lines 10-13
generate a number of non-matches with label l following a
geometric distribution with parameter 1− q. Therefore,

Π̃w[n+ l] ∼ Bi(gl, p) + Geo(1− q) for l ∈ [|h|] . (8)

We are ready to define the obfuscated access pattern:

Definition 11 (Obfuscated Access Pattern). The obfuscated
access pattern Π̃~w over a history Ht is a multi-nary matrix of
size t × n + |h| whose ith row Π̃~w[i] is characterized by (7)
and (8).

The obfuscated trace summarizes the leakage of OSSE:

Definition 12 (Obfuscated Trace). The trace of a history Ht

when searching for t keywords ~w in OSSE, called obfuscated
trace and denoted by T̃ , is

T̃ (Ht)
.
= (id(D), |D[1]|, . . . , |D[n]|, h, Fmax, Smax, Π̃~w) , (9)

where Π̃~w is the obfuscated access pattern for the query vector
~w, h is the hash function used to generate document labels,
and Fmax and Smax are the maximum number of documents
that contain a particular keyword and the maximum number
of keywords per document, respectively.

F. Choice of Geometric Distribution for False Positives

As we explain above, OSSE adds false positives following
a geometric distribution. The reason for this choice is the
following: when the adversary observes k > 1 matches for
a certain document D[i], they know for sure that at least
k − 1 are false positives (because there can only be a single
true positive). However, since the geometric distribution is
memoryless, the number of matches k does not reveal anything
more than just observing a single match about whether a
keyword w is in D[i] or not. Mathematically,

Pr(Π̃w[i] = 1|w ∈ D[i])

Pr(Π̃w[i] = 1|w /∈ D[i])
=

Pr(Π̃w[i] = k|w ∈ D[i])

Pr(Π̃w[i] = k|w /∈ D[i])
, (10)

for all k > 1. Additionally, as we prove in Sect. VII, the
geometric distribution allows OSSE to provide differential
privacy guarantees.

G. Label Generation Function h and ctrmax.

Our protocol assigns a label to each document by hashing
its document identifier using a function h(·). Then, when
running genPoly while building the index (BuildIndex), OSSE
uses a counter to ensure that no token can match more than
one document. The size of the label (denoted |h|) determines
how large the counter value must be: a small |h| will cause
a lot of documents with a particular keyword w to have the
same label l, and thus will make ctrw,l large. However, the
maximum value of ctrw,l, denoted ctrmax, must be fixed
before outsourcing the database, otherwise the index building
process would leak information about keyword frequency per
label. If the client commits to a maximum value ctrmax that
is too small, it will not be possible to generate the coefficients
such that their roots are all unique unless some keywords are
removed from some documents. We call this a BuildIndex
failure. In order to avoid a failure and ensure that BuildIndex
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succeeds, we set |h| = Fmax and ctrmax = 3 lnn/ ln lnFmax.
The following theorem guarantees an overwhelming success
probability with these parameters:

Theorem 1. Let h be a hash function that outputs values
uniformly at random in the range |h| = Fmax, i.e., h :
[n]→ [Fmax]. Let ctrmax = 3 lnn/ ln lnFmax. Then, the index
building process succeeds with probability ≥ 1− 1/n.

Proof: Refer to Appendix B.

In practice, ctrmax can be even smaller. In our experiments
in Sect. IX, with a real dataset with n ≈ 30 000 documents and
Fmax ≈ 2 000, a value ctrmax = 7 is enough to successfully
build the index.

VI. SECURITY

In this section, we prove that OSSE is adaptively semanti-
cally secure when the underlying FHIPPE is SIM-secure. For
this, we show that a simulator that receives the obfuscated
trace (Def. 12) can simulate the view of an adversary who is
allowed to adaptively issue queries.

Theorem 2. OSSE is adaptively semantically secure.

Proof: Let S be a simulator that sees a partial obfuscated
trace T̃ (Hs

t ). We show that this simulator can generate a view
(V st )∗ that is indistinguishable from the actual partial view
of the adversary V ssk(Ht) for all 0 ≤ s ≤ t, all polynomial-
bounded functions fp, all probabilistic polynomial-time adver-
saries A, and all distributions Ht; except with a negligible
probability, where t ∈ N, Ht

R←− Ht and sk ← Keygen(1k).

We recall the notions of (partial) view and (partial) obfus-
cated trace in OSSE:

Vsk(Ht)
.
= (id(D), E(D[1]), . . . , E(D[n]), I,Γ1, . . . ,Γt)

V ssk(Ht)
.
= (id(D), E(D[1]), . . . , E(D[n]), I,Γ1, . . . ,Γs)

T̃ (Ht)
.
= (id(D), |D[1]|..|D[n]|, h, Fmax, Smax, Π̃~w[1]..Π̃~w[t])

T̃ (Hs
t )

.
= (id(D), |D[1]|..|D[n]|, h, Fmax, Smax, Π̃~w[1]..Π̃~w[s])

First, note that simulating id(D) is trivial since we assumed
that id(D) = (1, . . . , n). Also, encrypted documents E(D[i])

are indistinguishable from a random string e∗i
R←− {0, 1}|D[i]|

since E is semantically secure. However, simulating the index
I and the search token an label lists Γi is non-trivial.

Since the underlying FHIPPE is SIM-secure, there exists
a simulator SFHIPPE which can simulate FHIPPE, namely
SFHIPPE has access to an encryption oracle SFHIPPE.Encrypt
and a token generation oracle SFHIPPE.GenToken such that
the outputs of the two oracles are indistinguishable from
those of FHIPPE.Encrypt and FHIPPE.GenToken under the
restriction that the inner product predicate of each pair of input
to FHIPPE.Encrypt and FHIPPE.GenToken is equal to that of
each pair of input to SFHIPPE.Encrypt and SFHIPPE. GenToken.

• Simulate I[i]. At time s = 0, S only holds T̃ (H0
t )

= (id(D), |D[1]|, . . . , |D[n]|, h, Fmax, Smax) by which it
generates I[i] as follows: first, S generates a vector of poly-
nomial coefficients by calling genPoly(⊥, i) where ⊥ denotes
an empty list of keywords; then, S calls SFHIPPE.Encrypt

(genPoly(⊥, i)) to compute I∗[i]. It should be noted that I∗[i]
can be matched by a token generated by SFHIPPE.GenToken
when inputting [i0, i1, . . . , iSmax+1]. I∗ can be obtained by
combining all I∗[i] together. We claim that I∗ is indistinguish-
able from I which will be proved below.

• Simulate Γk. At time s ≤ t, S knows T̃ (Hs
t ), by which

it simulates Γs as follows (simulations of Γk, for k < s, can
be constructed similarly). Initialize an empty multiset X . For
i ∈ [n], add Π̃~w[s][i] copies of [i||0||-1, h(i)] to X . Then,
for i ∈ [|h|], add Π̃~w[s][n + i] copies of [w-1||-1||0, i] to X .
Run lines 14 onward of Alg. 1 to get PredLabelPairs.
Transform each predicate in PredLabelPairs into a token
by calling SFHIPPE.GenToken, and the set of (token, label)
pairs is Γ∗s . We prove next that Γ∗s and Γs are indistinguishable.

• Indistinguishability. We prove that I∗ and Γ∗i are
indistinguishable from I and Γi by contradiction: if there
exists an adversary A which can distinguish I∗ and Γ∗i from
I and Γi, we show that A breaks SIM-security. Assume A
can distinguish I∗ and Γ∗i from I and Γi. Let {xj,0} (resp.
{xj,1}) be the underlying secrets of {I[j]} (resp. {I∗[j]}) and
{yj,0} (resp. {yj,1}) be the underlying secrets of Γi (resp. Γ∗i ).
Consider the following two full security games where one is
between A and FHIPPE, denoted by GA,FHIPPE, and the other
one is between A and SFHIPPE, denoted by GA,SFHIPPE . In both
games, the adversary A issues the same queries as follows:

1) Ciphertext query. A queries (xj,0, xj,1),∀j ∈ [n].
2) Token query. A queries (yj,0, yj,1),∀j ∈ [|Γi|] where |Γi|

means the number of tokens in Γi.

In GA,FHIPPE, with probability 1/2, b = 0 and FHIPPE
outputs I ′ and Γ′i (since FHIPPE is probabilistic) which are
indistinguishable from I and Γi. Likewise, in GA,SFHIPPE , with
probability 1/2, b = 1 and SFHIPPE outputs I∗′ and Γ∗i

′ (since
SFHIPPE is probabilistic) which are indistinguishable from I∗

and Γ∗i .

SinceA can distinguish I∗ and Γ∗i from I and Γi, it must be
able to distinguish I ′ and Γ′i from I∗′ and Γ∗i

′, namely A can
distinguish the game with FHIPPE, denoted by GA,FHIPPE (the
real world) from the game with SFHIPPE, denoted by GA,SFHIPPE

(the ideal world). This contradicts the fact FHIPPE is SIM-
secure. Therefore, A cannot distinguish I∗ and Γ∗i from I and
Γi and thus OSSE is adaptively semantically secure.

VII. DIFFERENTIAL PRIVACY ANALYSIS AND
DISCUSSION

In this section, we compare OSSE and the proposal by
Chen et al. [10], henceforth termed CLRZ, 1 under the dif-
ferential privacy framework. We chose this framework since
it is one of the most widely accepted notions of privacy. We
first propose differential privacy for documents and keywords,
which generalize previous SSE-related differential privacy no-
tions [10]. We explain that they imply access and search pattern
protection, respectively. Then, we prove the differential privacy
guarantees of OSSE and compare them with CLRZ. We show
that none of these mechanisms can simultaneously achieve

1This acronym takes the first letter of each author of the paper [10].
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high theoretical privacy guarantees while providing high utility.
In Sect. IX we show that these mechanisms offer adequate
protection even when differential privacy deems them as weak,
since practical attacks widely differ from the strong implicit
adversary assumed in the differential privacy framework.

A. Differential Privacy Definitions

Differential privacy [15] (DP) is one of the most broadly
accepted theoretical notions of privacy, and has been applied
to different areas of privacy, including database privacy [10],
[35], [36]. Differential privacy is characterized by a privacy
parameter ε, and ensures that neighboring inputs to the privacy-
preserving algorithm produce any given output with similar
probability, and thus it is hard to gain information about the
secret input given any observation. Chen et al. [10] define
differential privacy for access pattern leakage. In the definitions
below, we generalize their definition and also instantiate it to
account for search-pattern privacy. Here, we represent an SSE
scheme as a function SE that takes the client input (a dataset
D and a query vector ~w) and outputs the leakage (a trace T ).

Definition 13 (Differential Privacy for Documents). An SSE
characterized by function SE provides ε-DP for documents
iff for any keyword list of length t, ~w ∈ ∆t, for any pair of
neighboring databases D,D′ ∈ 22∆

(they differ in exactly one
position i and exactly one keyword w, i.e., w is in either D[i]
or D′[i] but not both), and any trace T , the following holds:

Pr[SE(D, ~w) = T ] ≤ et·εPr[SE(D′, ~w) = T ] . (11)

We chose to call this notion “differential privacy for
documents” instead of “for access patterns”, since the hidden
variable in this definition is the database that contains the docu-
ments, D. Intuitively, satisfying the above definition guarantees
that no one can determine if a document contains a keyword
given the trace. This implies that an SSE that provides ε-DP
for documents also provides access pattern privacy.

Definition 14 (Differential Privacy for Keywords). An SSE
characterized by function SE provides ε-DP for keywords
iff for any database D ∈ 22∆

, for any pair of neighboring
keyword lists ~w, ~w′ ∈ ∆|~w| (~w and ~w′ differ in only one
element, w[i] 6= w′[i]), and any trace T , the following holds:

Pr[SE(D, ~w) = T ] ≤ ed·εPr[SE(D, ~w′) = T ] . (12)

Here, d is the number of different documents between D(~w[i])
and D(~w′[i]).

A scheme that provides DP for keywords guarantees that
no one can determine, through observing the trace (allowed
leakage), whether a client is searching for one keyword list or
the other. This in turn implies search pattern privacy, i.e., it
prevents the server from guessing whether or not two queries
were performed for the same keyword.

B. Comparison of Differential Privacy Guarantees in SSE

We compare OSSE and CLRZ in terms of differential
privacy. We leave ORAM and PIR schemes out of this com-
parison since, even though they hide the location of individual
documents retrieved, they would require adding differentially
private noise to the number of documents retrieved per query;

DP for documents DP for keywords
CLRZ ε = ln

(
max

{
TPR
FPR ,

1−FPR
1−TPR

})
None (ε =∞)

OSSE ε = ln
(

TPR
FPR

1−FPR
1−TPR

)
ε = ln

(
TPR
FPR

1−FPR
1−TPR

)
TABLE III: Differential Privacy (DP) guarantees.

doing this, on top of their already high overhead, would make
them impractical.

Theorem 3. OSSE provides ε-differential privacy for docu-
ments and keywords, where ε = ln

(
TPR
FPR

1−FPR
1−TPR

)
, with TPR =

p+ (1− p)q and FPR = q.

The proof is in Appendix A. Table III compares the ε
values provided by OSSE and CLRZ in terms of their true
positive and false positive rates (TPR and FPR). The table
shows that CLRZ usually provides stronger DP for documents
than OSSE (larger ε indicates weaker privacy guarantees). On
the contrary, OSSE’s guarantee for protecting access patterns is
weaker, but it also provides differential privacy for keywords,
which implies a certain level of search pattern privacy.

Achieving high privacy regimes requires undesirable TPR
and FPR values for both schemes. For example, achieving ε =
1 with a moderately high TPR = 80% requires FPR ≈ 45%
for CLRZ and FPR ≈ 60% for OSSE, which is prohibitive
in terms of bandwidth. However, if the client wants to get a
random subset of TPR = 30% of the documents that match
a keyword, they can achieve high privacy (ε = 1) with only
FPR = 11% (resp. 13%) with CLRZ (resp. OSSE). In this
high-privacy low-utility setting, CLRZ and OSSE offer similar
DP for documents, but OSSE additionally provides DP for
keywords (i.e., search pattern protection).

There are cases where TPR must be kept close to one
and FPR close to zero for performance issues (e.g., false
positives imply a bandwidth increase). The fact that OSSE
cannot provide a low ε < 1 in these cases does not mean it
is not effective at deterring attackers. In fact, recent work [13]
has shown (for an ORAM-based defense technique) that even
a small amount of noise can seriously harm current database
and query recovery attacks. We confirm that this is also true
for OSSE against different attacks in Section IX. Indeed,
we show that TPR = 0.9999 and FPR = 0.025, which
gives a large ε ≈ 13 for OSSE, is enough to deter different
attacks [8], [20], [27], [31]. CLRZ, however, is significantly
more vulnerable to these attacks since it does not provide
any search pattern protection. The explanation for this high
protection despite low differential privacy guarantees is that
differential privacy assumes a worst-case scenario where the
adversary either knows every single entry in the dataset except
for one, or knows all of the user queries but one. Assuming
this strong adversary is unrealistic in most cases and, besides
that, there exist practical attacks [6], [8], [20], [27], [31] that
do not require an adversary this powerful.

VIII. COMPLEXITY ANALYSIS

We study the communication and computation complexity
of OSSE. Note that OSSE does not require client-side storage
after outsourcing the encrypted database and the search index,
other than for storing parameters and keys. We omit the
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Notation Description
Fmax Maximum keyword frequency (maximum number of documents

that contain any given keyword).
Smax Maximum no. of distinct keywords in a document.

ctrmax Maximum value of ctr allowed.
τsize Size of a query token and label pair (e.g., bytes).
Dsize Maximum size of a document (e.g., bytes).

TABLE IV: Notation for the Complexity Analysis

initialization from the complexity analysis, since it is only done
once. Table IV summarizes the notation of this section.

A. Communication Overhead

The communication complexity refers to the total number
of tokens sent from client to server when querying for a
keyword w, and the number of documents that the server
returns to the client as a response. We study the communication
overhead, i.e., the average communication cost of OSSE
compared to the average cost of a standard SSE scheme.
Let Ew

.
= E{D(w)} be the expected number of documents

that contain keyword w. We assume that q is small enough
so that n · q < Fmax, and use |h| = Fmax and ctrmax =
3 lnn/ ln lnFmax.

First, when querying for keyword w, the client calls
genPred (Alg. 1) to generate tokens. The number of tokens
generated in the first loop (lines 3-5) is the sum of |h| ·ctrmax
Bernoulli distributions with parameter p, while the remaining
two loops generate a number of tokens that is the sum of n and
|h| Geometric distributions with parameter 1 − q. Therefore,
the expected number of tokens sent from client to server is

#tok = |h| · ctrmax · p+ (n+ |h|) · q

1− q
≈ |h| · ctrmax · p+ n · q < Fmax · (ctrmax + 1) ,

where we have used that n � |h| and q
1−q ≈ q since we are

assuming that q is close to zero.

Since the server replies with the documents that are
matched at least once, the expected number of documents
returned is

#doc = Ew(p+q−pq)+(n−Ew)q ≤ Ewp+nq < Ew+Fmax .
(13)

The total communication cost of OSSE is #tok · τsize +
#doc·Dsize. A standard SSE just sends a single query message
to the server and receives, on average, Ew documents. There-
fore, its cost is ≈ Ew·Dsize. Dividing these two expressions and
using some basic algebra, we can express the communication
overhead of OSSE as

COMM-OVEROSSE <
Fmax
Ew

(
(ctrmax + 1) · τsize

Dsize
+ 1

)
+1 .

(14)

In many cases, (ctrmax + 1) < Dsize/τsize (for example,
if the database contains images, the encrypted documents can
easily be 10 times larger than the token size). In that case, the
cost is just COMM-OVEROSSE < 2 · Fmax/Ew + 1.

This cost depends on Ew, which in turn depends on the
query and keyword distribution. We perform the analysis for
three possible distributions: uniform, Zipfian (typical in natural

language [40]), and the worst-case distribution for OSSE
that considers that the queried keywords appear in a single
document. We show how to compute Ew for each of these
distributions in Appendix C. We get

COMM-OVEROSSE <


3 , uniform,
1.36 + 0.61 · log |∆| , Zipf,
1 + 2 · Fmax , worst-case.

(15)
The cost is increased by a factor no bigger than ctrmax+1 for
datasets where each document size is comparable to the size
of each keyword.

B. Computational Complexity

We disregard the initialization cost (generating the index)
since it is only done once at the beginning of the protocol.
We measure the computational complexity of a query as the
number of evaluations that the server needs to compute when
searching for a keyword w. Every time the server receives a
token, it calls the function FHIPPE.Query on average n/|h|
times (since this is the average number of documents with a
given label). Therefore, the number of calls to FHIPPE.Query
is

COMP-COMPOSSE = #tok · n
|h|

< n · (ctrmax + 1) . (16)

C. Faster OSSE

OSSE uses a hash function h to assign a label to each
document. This requires a certain ctrmax value to ensure that
no token can match more than one document. We explain
a variation of the algorithm that assigns labels to docu-
ments that achieves a lower ctrmax and therefore reduces
the communication and computational cost of OSSE. In this
variation, there are two publicly known hash functions h1

and h2. When building the search index, the client generates
roots (w||l||ctrw,l) by choosing l between h1(id(D)) and
h2(id(D)) as the one that minimizes the counter. This way, the
value of ctrmax is only O(ln lnFmax) [4]. This reduction of
ctrmax can provide significant computational and communi-
cation advantages, but at the cost of a considerable reduction of
the differential privacy guarantees (we omit this analysis here
for space constraints). This modification of OSSE is still highly
useful when differential privacy protection is not required (e.g.,
against known attacks).

D. Comparison with Other Schemes

The only searchable ORAM-based SSE scheme is
TWORAM [17], which has a communication overhead of
O(log n log log n) (at least four rounds) and client-side stor-
age of O(log2 n). As explained above, under some realistic
assumptions on the query and keyword distribution, OSSE
requires less communication cost. Also, OSSE does not require
client-side storage except for storing parameters like p and q,
and only uses one communication round.

Even though Fully Homomorphic Encryption (FHE)
schemes are competitive performance-wise [1], [2], they can
only return a fixed, constant number of results on each query
due to the fixed length of each circuit. Adapting FHE schemes
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to variable length results requires multiple communication
rounds, whereas our scheme requires a single round.

The only practical privacy-preserving SSE scheme we are
aware of is CLRZ [10]. In CLRZ, the client sends a single
query token, and receives on average the same amount of doc-
uments from the server as in OSSE. 2 Thus, the communication
overhead of CLRZ is slightly smaller than that of OSSE. The
computational cost of CLRZ depends on the underlying SSE
that it implements; when combined with an inexpensive SSE,
CLRZ can achieve less overhead than OSSE.

IX. EVALUATION

We evaluate the effectiveness and efficiency of OSSE. First,
we evaluate OSSE and CLRZ [10] against different query
recovery attacks:

1) Liu et al.’s frequency attack [27], that recovers queries
using query frequency information and search patterns.

2) The IKK attack [20], that recovers the queries using
keyword co-occurrence data, ground-truth information of
a subset of the client queries, and access and search
patterns. Chen et al. use this attack to evaluate CLRZ [10].

3) Cash et al.’s count attack [8], that builds sets of candidate
keywords for each query based on the query response
volume, and then refines these sets by using co-occurrence
information until only one feasible assignment remains.

4) The graph matching attack by Pouliot et al. [31], that uses
keyword co-ocurrence information and does not require
any ground-truth information about the queries or data set
to be effective.

Blackstone et al. [6] recently proposed a query recovery attack
(subgraph attack) that uses access pattern leakage and partial
database knowledge. The attack tries to match queries to
keywords by identifying patterns from the partial database
knowledge in the observed access patterns. Since CLRZ and
OSSE randomize the access patterns, adapting the attack
against these defenses is not trivial, and therefore we do not
include it in our evaluation.

We run CLRZ without using its document redundancy
technique [10]: this technique aims at reducing false negatives
and is trivially compatible with OSSE; we decide not to use
it for simplicity and because we believe it does not affect
performance results. For a fair evaluation, we adapt the attacks
above to perform well against CLRZ and OSSE. We explain
the details in Appendix D.3

Second, we report the running time of a prototypical
implementation of OSSE in Python on an Intel(R) E7-8870
160-core Ubuntu 16.04 machine clocked at 2.40 GHz with 2
TB of system memory.4

We use the Enron email dataset in our experiments,5 which
contains 30 109 emails. We follow the keyword extraction

2Chen et al. [10] alleviate the false negatives by introducing document
redundancy, but we do not consider this here for a fair comparison. Our
proposal is also compatible with this document redundancy approach.

3Our evaluation code is available at https://github.com/simon-oya/NDSS21-
osse-evaluation

4Our prototype implementation is available at
https://github.com/z6shang/OSSE

5https://www.cs.cmu.edu/∼enron/
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Fig. 1: Accuracy of Query Frequency Attack

process in related work [20], then we ignore keywords that do
not appear in the English dictionary and remove stopwords;
we use the following |∆| most common keywords remaining
as keyword universe (|∆| varies between experiments).

A. Query Frequency Attack

We implement and run the first frequency attack by Liu et
al. [27]. We take |∆| = 250 keywords and download their
query frequency over 50 consecutive weeks6 from Google
Trends.7 We store this frequency information in a 50 × 250
matrix F where F [i, j] is the probability that the client queries
for the jth keyword in the ith week. The client generates
Nq ∈ {100, 300, 1 000} queries per week following the dis-
tributions in F . We evaluate the case where the client uses no
defense, when they use CLRZ, and when they use OSSE. The
server observes the (possibly obfuscated) access patterns and
groups them into Nc clusters using a k-means algorithm (this
is trivial for CLRZ). We give the adversary the true number of
distinct keywords queried by the client to use as Nc. This is a
worst-case against OSSE. The adversary labels all queries in
cluster k ∈ [Nc] as the jth keyword, where j is the column in
F that is closest, in Euclidean distance, to the frequency trend
of the cluster over the 50 weeks.

Figure 1 shows the attack accuracy (number of correctly
identified queries divided over the total number of queries)
averaged over 20 runs. The shaded areas are the 95% con-
fidence intervals for the mean. We vary the FPR and query
number Nq , and fix TPR = 0.9999. Since clustering access
patterns (i.e., finding the search pattern) is trivial for CLRZ,
the accuracy against this defense is independent of FPR. OSSE
achieves higher protection against the attack since it obfuscates
the access patterns of each query independently.

B. IKK Attack

We run the IKK attack [20] using a keyword universe size
|∆| = 500. This attack relies on the keyword co-occurrence,
i.e., a |∆| × |∆| matrix M where M [i, j] is the percentage
of documents that have both the ith and jth keyword. The
attack computes this matrix from a training set, and compares
it with a co-occurrence matrix computed from the observed

6The last week we take is the second week of April, 2020.
7trends.google.com
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access patterns, M ′. Unlike in the original IKK attack setting,
where the queries are unique, we allow repeated queries and
modify the attack accordingly. We also adapt the attack to
perform better against the obfuscated access patterns generated
by OSSE and CLRZ (see Appendix D). We call this improved
version IKK∗. In each experiment, the client generates Nq =
400 queries (using a Zipfian distribution), we give each one
with probability 0.15 to the attacker. We use the same Enron
data for training and testing [20].8

Figure 2 shows the query recovery rate, averaged over 20
runs, for TPR = 0.9999 and different FPR values. We plot
the average baseline 15% ground-truth queries known to the
attacker as reference. We see that IKK∗ improves over IKK, as
expected, and that OSSE reduces the attack accuracy almost by
half compared to CLRZ. This is due to two facts: first, OSSE
hides the search patterns and makes it hard for the adversary to
use the known queries (15%) towards identifying other queries.
Second, since each access pattern is generated independently
in OSSE, the search space for IKK against this attack is of
size |∆|200, which is much larger than |∆|!/(|∆| − 200)!, the
size of the search space in CLRZ.

C. Count Attack

The count attack [8] uses volume information to build a set
of candidate keywords for each query and refines them with
co-occurrence information until only one possible matching
remains. We optimize the attack against OSSE and CLRZ
by modifying a generalization of the attack found in the
original paper [8] (see Appendix D). We give the adversary
the plaintext database to build the auxiliary volume and co-
occurrence information. However, the adversary does not see
any ground-truth query. We run the experiments for the same
parameters as IKK (|∆| = 500, Nq = 400, Zipfian distribution
for queries). When the algorithm fails to find any plausible
matching, we set the accuracy to 1/|∆| (random guessing).

Figure 3 shows the accuracy of the count attack (20 runs)
as well as the frequency of failure (inconsistency rate) against
OSSE. The count attack achieves perfect accuracy when no
defense is applied, but its accuracy already decreases to 0.65
against CLRZ with TPR = 0.9999 and FPR = 0. The
accuracy remains stable against CLRZ as FPR increases, but it
sharply decreases against OSSE, mostly due to inconsistencies.
These inconsistencies stem from the fact that the heuristics
of the count attack require that the observed volume and co-
occurrences of queries fall inside certain expected intervals.
OSSE generates freshly random access patterns, so the proba-
bility that at least one observed volume falls outside an interval
is high, which explains the high inconsistency rate.

D. Graph Matching Attack

We implement the graph matching attack [31] using the
PATH algorithm [38]. We randomly split Enron emails evenly
into a training and testing set, and give the adversary the
training set only (we redo the split in each run). The adversary
does not have any ground truth information about the queries.
This is a more realistic scenario than considered by IKK and
the count attack. We take |∆| = 250 keywords instead of 500,

8We use the following attack-specific parameters: initial temperature 200,
cooling rate 0.9999, and reject threshold 1 500.

# cores BuildIndex (min) Trapdoor (s) Search (min)
4 272.5 580.7 1099.1
8 136.3 290.5 549.6
16 68.2 145.3 274.8
32 34.1 72.8 137.4
64 17.1 36.4 68.7

128 8.5 18.2 34.4
160 6.9 14.7 27.5

TABLE V: Running Times

since this attack is computationally demanding. This attack
requires a large number of queries to work properly, since it has
imperfect information about the dataset. We use Nq = 2 000
queries (Zipfian distribution).9

Figure 4 shows the query recovery rate of the graph
matching attack, averaged over 100 runs, for TPR = 0.9999
and different FPR values. The attack achieves an accuracy of
≈ 99% against CLRZ, which is surprisingly large considering
that the adversary has imperfect information. The performance
against OSSE drops below 50% with only 0.5% false positives
and keeps decreasing as FPR grows.

E. Running Time

We measure the average running time of the OSSE func-
tions BuildIndex, Trapdoor, and Search on Enron dataset.
We use the function-hiding inner product encryption scheme
by Kim et al. [25] with the MNT159 pairing curve. We limit
the number of keywords in each document to Smax = 300 by
splitting large documents into smaller ones. By default, 97%
of the documents have no more than 300 keywords. After
splitting, the number of documents increases to n = 30 562
and Fmax ≈ 2 000. With the single hashing method, we get
ctrmax = 7, while the dual hashing method explained in
Sect. VIII-C yields ctrmax = 3. We evaluate the running time
of the latter. We use p = 0.9999 and q = 0.01.

Table V summarizes the running times. Chen et al. [10]
report running times for CLRZ in Enron dataset around 100
seconds for obfuscating the search index, and less than 200
milliseconds per query. Even though the running times of
OSSE in our experiment (e.g., half an hour for a search) can be
reduced by switching from Python to a more efficient language
and parallelizing the queries, our scheme is substantially
slower than CLRZ. In exchange, OSSE provides search pattern
obfuscation, a rare property that we have shown provides
significant protection against different query recovery attacks.

F. Summary of Results

Our experiments reveal that OSSE achieves higher privacy
protection than CLRZ against a variety of query recovery
attacks. This includes a search pattern-based attack [27] and
access pattern-based attacks with ground-truth information
about queries and dataset (IKK [20]), ground-truth information
about the dataset (count [8]), and no ground-truth information
(graph matching [31]). The advantage of OSSE over CLRZ
comes from the fact that OSSE generates each access pattern
independently at random, which hides the search pattern.
Interestingly, our evaluation shows that this undermines attacks

9The objective function of the graph matching attack has an hyperparameter
α ∈ [0, 1]. We used α = 0 since it yielded the highest accuracy.
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that rely on access pattern leakage. This is because these
attacks [8], [20], [31] formulate the query recovery problem
by implicitly assuming the adversary can distinguish between
queries for distinct keywords (i.e., search pattern leakage).
When this is not true, the adversary needs to increase their
search space (IKK) or perform clustering before running the
attack (frequency attack, count attack, and graph matching).
This causes an extra source of error for the adversary.

All these privacy benefits come at the cost of a high
running time. Our scheme is therefore adequate when the
data owner values privacy over running time, and when the
system is bandwidth-constrained and cannot afford to use
multi-round bandwidth-demanding schemes such as ORAM-
based ones [17].

X. CONCLUSIONS

Searchable Symmetric Encryption (SSE) allows a data
owner to outsource its data to a cloud server while maintaining
the ability to search over it. Existing SSE schemes either
prevent leakage but are prohibitive in terms of their cost, or
are efficient but extremely vulnerable to query and database
identification attacks. In 2018, Chen et al. proposed a middle-
ground solution that is cost efficient and partially protects
which documents match each query, i.e., the access pattern.
However, this scheme leaks whether or not the same keyword
is being searched multiple times, i.e., the search pattern.

In this work, we propose OSSE, an adaptively semantically
secure SSE scheme that obfuscates both access and search pat-
terns by generating each query randomly and independently of
previous queries. We prove that the communication overhead
of OSSE can be a small constant when the keyword distribution
in the dataset is uniform, and O(log |∆|), where |∆| is the
keyword universe, when the keyword and query distributions
are Zipfian. Although it has a large computation complexity,
OSSE is easily parallelizable, and performs a search in a
single communication round. Our evaluation shows that OSSE
is highly effective against current query identification attacks
while providing high utility, and demonstrates the importance
of hiding search patterns in privacy-preserving SSE schemes.
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APPENDIX

A. Differential Privacy Guarantees of OSSE

Before deriving the proof for Theorem 3, we introduce
some results on ratios of probability distributions.

1) Upper Bounds on Probability Ratios: Let G ∼ Geo(1−
q) be a random variable that follows a geometric distribution
defined over {0, 1, 2, . . . }, let A ∼ Bern(p) be a Bernoulli
random variable, and let Bn ∼ Bi(n, p) be a binomial random
variable. We prove the following results.

Lemma 1. For any non-negative integer α ∈ Z+,

Pr(G+A = α)

Pr(G = α)
≤ p+ q(1− p)

q
, (17)

Pr(G = α)

Pr(G+A = α)
≤ 1

1− p
. (18)

Proof: The ratio in (17) takes the following values de-
pending on α:

Pr(G+A=α)
Pr(G=α) =

{
(1−p)(1−q)

1−q = 1− p, if α = 0;
pqα−1(1−q)+(1−p)qα(1−q)

qα(1−q) = p+q(1−p)
q , if α > 0 .

The bounds in (18) and (17) follow from the fact that 1− p <
p+q(1−p)

q .

Lemma 2. For any non-negative integers α, n ∈ Z+,

Pr(G+Bn+1 = α)

Pr(G+Bn = α)
≤ p+ q(1− p)

q
, (19)

Pr(G+Bn = α)

Pr(G+Bn+1 = α)
≤ 1

1− p
. (20)

Proof: First, we expand the ratio:

Pr(G+Bn+1 = α)

Pr(G+Bn = α)
(21)

=

∑min(α,n+1)
β=0 Pr(Bn+1 = β) · Pr(G = α− β)∑min(α,n)
β=0 Pr(Bn = β) · Pr(G = α− β)

(22)

=

∑min(α,n+1)
β=0

(
n+1
β

)
pβ(1− p)n−β+1qα−β(1− q)∑min(α,n)

β=0

(
n
β

)
pβ(1− p)n−βqα−β(1− q)

. (23)

We use
(
n+1
k

)
=
(
n
k

)
+
(
n
k−1

)
with the convention that(

n
k

)
= 0 when k < 0 or k > n, and we perform a change of
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variable β′ .= β − 1 in the numerator. Then, (23) equals:

= 1− p+
p

q
·
∑min(α−1,n)
β′=0

(
n
β′

)
pβ
′
(1− p)n−β′qα−β′(1− q)∑min(α,n)

β=0

(
n
β

)
pβ(1− p)n−βqα−β(1− q)

(24)
= 1− p if α = 0 ,

= 1− p+ p/q if α > n ,

∈ (1− p, 1− p+ p/q) otherwise.
(25)

Therefore, the ratio is smaller than 1− p+ p/q, which proves
(19), and its inverse is smaller than 1/(1 − p), which proves
(20).

Lemma 3. For any non-negative integers α, n,m ∈ Z+,

Pr(G+Bn+m = α)

Pr(G+Bn = α)
≤
(
p+ q(1− p)

q

)m
, (26)

Pr(G+Bn = α)

Pr(G+Bn+m = α)
≤
(

1

1− p

)m
. (27)

Proof: We can expand the left ratio in (26) as

Pr(G+Bn+m = α)

Pr(G+Bn = α)
=

m∏
k=1

Pr(G+Bn+k = α)

Pr(G+Bn+k−1 = α)
. (28)

Then, by applying the bound in (19) to each of the m terms
of this product, we reach (26). Likewise, we can prove (27)
by applying (20) m times.

2) Differential Privacy for Documents: We derive the ε
guarantee that OSSE provides according to Definition 13. We
use M to denote the randomized mechanism that takes the
outsourced dataset D and a single query for keyword w and
outputs the obfuscated access pattern for that w, i.e,. Π̃w.
Recall that Π̃w is a n+ |h|-sized random vector characterized
by (7) and (8).

Let D and D′ be two adjacent datasets that are identical
except for their kth document (D[k] and D′[k], respectively).
These documents differ in a single keyword. Let w∗ be the
keyword that is only in D[k], and w′∗ the keyword that is
only in D′[k]. Let Π̃w be the random output ofM(D, w), and
Π̃′w be the random output of M(D′, w). Let π be a particular
observed obfuscated access pattern. Then, we want to find an
upper bound for the ratio

Pr(M(D,w)=π)
Pr(M(D′,w)=π) = Pr(Π̃w=π)

Pr(Π̃′w=π)
=
n+|h|∏
i=1

Pr(Π̃w[i]=π[i])

Pr(Π̃′w[i]=π[i])

(29)
If w /∈ {w∗, w′∗}, then this ratio is equal to one. Now consider
the case where w = w∗. In that case, the distribution of Π̃w[i]
and Π̃′w[i] is the same, except for i = k (since w is in D[k]
but not in D′[k]) and i = lk, where lk = h(k) is the label of
the kth document. Therefore, we have

Pr(M(D,w∗)=π)
Pr(M(D′,w∗)=π) =

Pr(Π̃w∗ [k]=π[k])

Pr(Π̃′w∗ [k]=π[k])
· Pr(Π̃w∗ [lk]=π[lk])

Pr(Π̃′w∗ [lk]=π[lk])

(30)

Since Π̃w∗ [k] ∼ Bern(p) + Geo(1 − q) and Π̃′w∗ [k] ∼
Geo(1 − q), we can bound the left coefficient using (17).
Likewise, since Π̃w∗ [lk] ∼ Bi(g, p)+Geo(1−q) and Π̃′w∗ [lk] ∼

Bi(g + 1, p) + Geo(1 − q) for some positive integer constant
g, we can bound the right coefficient using (20).

Therefore, using (17) and (20) we obtain

Pr(M(D, w∗) = π)

Pr(M(D′, w∗) = π)
≤ p+ (1− p)q

q
· 1

1− p
= 1+

p

q(1− p)
.

(31)
We can follow the same procedure to prove the same bound
when the client queries for w′∗.

Finally, if we consider a sequence of t queries, in the worst
case all of them are for either w∗ or w′∗, so the differential
privacy guarantee according to Definition 13 is

ε = ln

(
1 +

p

q(1− p)

)
. (32)

Using TPR = p + q(1 − p) and FPR = q, we obtain the
value in Theorem 3.

3) Differential Privacy for Keywords: Consider a database
D, and a pair of neighbouring keyword lists ~w, ~w′ ∈ ∆|~w| that
are identical except for their kth element, that is w in ~w and
w′ in ~w′. Let Π̃w be the output of M(D, w) and Π̃w′ be the
output of M(D, w′). Then, we want to find an upper bound
for

Pr(M(D,w)=π)
Pr(M(D,w′)=π) = Pr(Π̃w=π)

Pr(Π̃w′=π)
=
n+|h|∏
i=1

Pr(Π̃w[i]=π[i])

Pr(Π̃w′ [i]=π[i])
.

(33)
For i ∈ [n], the distribution of Π̃w[i] and Π̃w′ [i] will be
different if D[i] contains only one of {w,w′}. Let D0,1 be
the indices of documents that do not contain w but contain
w′. For i ∈ D0,1, Π̃w[i] ∼ Geo(1 − q) and Π̃w′ [i] ∼
Bern(p) + Geo(1 − q). The ratio between the probabilities
of these distributions can be bounded using (18). Likewise,
define D1,0 (indices of documents that contain w but do not
contain w′), D1,1 (contain both), and D0,0 (contain neither).
Using (17) and (18) we can get:

Pr(Π̃w[i] = π[i])

Pr(Π̃w′ [i] = π[i])
≤


1 if i ∈ D0,0

1
1−p if i ∈ D0,1
p+q(1−p)

p if i ∈ D1,0

1 if i ∈ D1,1

(34)

Therefore,

n∏
i=1

Pr(Π̃w[i]=π[i])

Pr(Π̃w′ [i]=π[i])
≤
(

1
1−p

)|D0,1| (p+q(1−p)
p

)|D1,0|
.

(35)

Now, we focus on the variables Π̃w[i+n] for i ∈ [|h|]. Let
Di

0,1 be the indices of the documents in D0,1 whose label is
i (same for the other sets D0,0, D1,0, and D1,1, for i ∈ [|h|]).
Then, we can write

Π̃w[i+ n] ∼ Bi(gi+n + |Di
0,1|, p) + Geo(1− q) ; (36)

Π̃w′ [i+ n] ∼ Bi(gi+n + |Di
1,0|, p) + Geo(1− q) , (37)

for some constants g1+n, g2+n, . . . , g|h|+n. If |Di
0,1| < |Di

1,0|,
we can define a different set of constants g′i+n

.
= gi+n+|Di

0,1|
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and write

Π̃w[i+ n] ∼ Bi(g′i+n, p) + Geo(1− q) ; (38)

Π̃w′ [i+ n] ∼ Bi(g′i+n + |Di
1,0| − |Di

0,1|, p) + Geo(1− q) ,
(39)

Using (27), we can write

Pr(Π̃w[i+ n] = π[i+ n])

Pr(Π̃w′ [i+ n] = π[i+ n])
≤
(

1

1− p

)|Di1,0|−|Di0,1|
(40)

On the contrary, if |Di
0,1| > |Di

1,0|, using (26) we get

Pr(Π̃w[i+ n] = π[i+ n])

Pr(Π̃w′ [i+ n] = π[i+ n])
≤
(
p+ q(1− p)

q

)|Di0,1|−|Di1,0|
(41)

Now, using the fact that
∑|h|
i=1 |Di

0,1| = |D0,1| and∑|h|
i=1 |Di

1,0| = |D1,0|, we write

|h|∏
i=1

Pr(Π̃w[i+ n] = π[i+ n])

Pr(Π̃w′ [i+ n] = π[i+ n])
≤
(

1
1−p

)|D1,0| ( p+q(1−p)
q

)|D0,1|
.

(42)
Here, we have used the fact that (40) and (41) are maximized
when Di

0,1 is empty when Di
1,0 is not, and vice-versa. Finally,

multiplying (35) and (42), we get

Pr(M(D, w) = π)

Pr(M(D, w′) = π)
= ≤

(
1

1− p
· p+ q(1− p)

q

)|D0,1|+|D1,0|

,

(43)

and therefore according to Definition 14,

ε = ln

(
1 +

p

q(1− p)

)
, (44)

which implies Theorem 3.

Note that our ε bounds in (32) and (44) can be made
smaller by allowing a small probability of failure δ and using
the advanced composition rule [16] of differential privacy.

B. Analysis of ctrmax in OSSE.

This analysis is equivalent to the balls-and-bins problem
with Fmax balls and Fmax bins. We assume |h| = Fmax and
that the hash function outputs values uniformly at random.
We sat that the search index construction succeeds if we pick
a ctrmax value that is strictly larger (since the counter starts
at 0) than the maximum number of documents that share a
label and keyword in common. Then, we want to prove that,
when ctrmax = c·lnFmax/ ln lnFmax (for some constant c that
we will determine), the probability of success is overwhelming
(larger than 1− 1/n).

Let S denote the success event, and let ni,j be the number
of documents that have keyword w(i) and label j (i ∈ [|∆|], j ∈
[Fmax]). Then,

Pr(S) = Pr
(
∩|Λ|i=1 ∩

Fmax
j=1 {ni,j < ctrmax}

)
(45)

= 1− Pr

(
∪|Λ|i=1{max

j
ni,j ≥ ctrmax}

)
(46)

≥ 1−
|Λ|∑
i=1

·Pr

(
max
j
ni,j ≥ ctrmax

)
. (47)

Now, we bound Pr(maxj ni,j ≥ ctrmax). Note that, for a
keyword w(i), the maximum number of documents that have
that keyword is Fmax.

Pr(max
j
ni,j ≥ ctrmax) ≤

(
Fmax
ctrmax

)(
1

Fmax

)ctrmax

(48)

≤
(

e

ctrmax

)ctrmax

. (49)

Now, using that ctrmax = c · lnFmax/ ln lnFmax,

Pr(max
j
ni,j ≥ ctrmax)

≤
(

e

ctrmax

)ctrmax

= exp

(
c · lnFmax
ln lnFmax

· ln e ln lnFmax
c lnFmax

)
(a)

≤ exp

(
c · lnFmax
ln lnFmax

· (ln ln lnFmax − ln lnFmax)

)
= exp

(
−c lnFmax +

c lnFmax · ln ln lnFmax
ln lnFmax

)
≤ exp(−(c− 1) lnFmax) =

1

F c−1
max

,

where (a) holds when c ≥ e. Then,

Pr(S) ≥ 1−|Λ| ·Pr(max
j
ni,j ≥ ctrmax) ≥ 1− |Λ|

F c−1
max

. (50)

This probability is larger than 1− 1/n when

c ≥ ln |∆|+ lnn

lnFmax
+ 1 . (51)

Since n � Fmax and typically |∆| ≥ Fmax, then the assump-
tion that c ≥ e in (a) above holds.

This implies that we need

ctrmax =

(
ln |∆|+ lnn

lnFmax
+ 1

)
· lnFmax

ln lnFmax
(52)

=
ln |∆|+ lnn+ lnFmax

ln lnFmax
≤ 3 · lnn

ln lnFmax
(53)

C. Analysis of Expected Number of Documents with a Keyword
w Under Different Distributions

We study Ew
.
= E{D(w)}, i.e., the expected number of

documents that have a particular keyword w, for different
keyword and query distributions.

The general expression for Ew is

Ew =

|∆|∑
i=1

Pr(w(i)) · |D(w)| , (54)

where Pr(w(i)) is the probability that the client queries for
keyword w(i).

1) Uniform Distribution: When all keywords have the same
(maximum) frequency of appearance |D(w)| = Fmax then,
regardless off Pr(w(i)), we have

Ew =

|∆|∑
i=1

Pr(w(i)) · Fmax = Fmax . (55)
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2) Zipfian Distribution: Zipf’s law states that the frequency
of a individual word in a corpus of natural language utterances
is inversely proportional to its rank (the position of it in a
sorted list in decreasing order of frequency) [40]. Assume
the keywords in ∆ are sorted in descending frequency order.
We know that |D(w(1))| = Fmax. Then, if keyword frequency
follows Zipf’s law, we can write

|D(w(i))| =
Fmax
i

. (56)

When query frequencies also follow Zipf’s law, we get

Pr(w(i)) =
1

i ·H|∆|
, where H|∆|

.
=

|∆|∑
i=1

1

i
. (57)

Then,

Ew =

|∆|∑
i=1

1

i ·H|∆|
· Fmax

i
≈ Fmax

ln |∆|+ γ
· π

2

6
, (58)

where we have used that the harmonic number Hn ≈ log n+γ
where γ ≈ 0.58 is the Euler-Mascheroni constant, and∑|∆|
i=1 i

−2 ≈ π2/6.

3) Worst-Case Distribution: OSSE’s communication over-
head is inversely proportional to Ew, so the worst-case dis-
tribution for OSSE is the one that minimizes Ew. Since
each keyword is in at least one document, and the maximum
keyword frequency is Fmax, the worst-case will happen when
there is a set of keywords with frequency one and those
keywords are the only ones that the client queries, so Ew ≈ 1.

D. Adapting co-occurrence attacks against OSSE and CLRZ.

In our evaluation, we consider three attacks that use co-
occurrence and volume information, namely IKK [20], count
attack [8], and graph matching [31]. These attacks compute
the co-occurrence matrices M and M ′ from the observations
and the auxiliary (training) information, respectively, and use
these matrices to find an assignment of queries to keywords.
We explain how to compute these matrices, and then we delve
into specifics of each attack.

First, consider a case where no defense is applied. Let m
be the number of distinct obfuscated access patterns observed
by the adversary (m ≤ |∆|), and let Π̃(i) be the ith distinct
obfuscated access pattern observed (i ∈ [m]). Recall that n is
the number of documents in the dataset. Then, M is an m×m
matrix such that its i, jth entry contains the probability that a
document is returned for both the ith and jth distinct queries.
Mathematically,

M [i][j] = 〈Π̃(i), Π̃(j)〉/n , (59)

where 〈·, ·〉 is the dot product.

Matrix M ′ is a |∆|×|∆| matrix whose i, jth entry contains
the probability that a document contains both w(i) and w(j),
estimated using the training set. Let Π(i) be the true access
pattern of keyword w(i) in the training data and let n′ be the
total number of documents in the training data. Then,

M ′[i][j] = 〈Π(i),Π(j)〉/n′ . (60)

In order to adapt the attacks against CLRZ and OSSE,
we modify the computation of M ′ by taking the true positive
and false positive rates (TPR and FPR) into account. A
document is returned as response for queries w(i) and w(j) with
probability TPR2 when that document contains both keywords,
with probability TPR · FPR when it only contains one of the
keywords, and with probability FPR2 when it contains neither.
Mathematically, let ni,j

.
= 〈Π(i),Π(j)〉/n′ be the normalized

number of documents that have both w(i) and w(j), and let
n̄i,j

.
= 〈1 − Π(i), 1 − Π(j)〉/n′ be the normalized number of

documents that do not have w(i) nor w(j). Then, we update
the computation of M ′ as follows:

M ′i,j =


i 6= j : TPR2 · ni,j + FPR2 · n̄i,j

+TPR · FPR · (1− ni,j − n̄i,j) ,
i = j : TPR · ni,i + FPR · n̄i,i .

(61)

All the attacks we evaluate, except for the frequency
attack [27], use these matrices. We explain particularities of
each attack below.

1) Adapting IKK: The naive version of the attack, that
we simply call IKK in our experiments, uses M and M ′

as in (59) and (60), respectively. Against CLRZ, we use
the original implementation [20] where each distinct access
pattern is assigned to a unique distinct keyword. Against
OSSE, however, the same keyword can generate different
access patterns. Therefore, in that case we modify the heuristic
IKK annealing algorithm so that it allows assigning the same
keyword to different observed access patterns.

The improved version of the attack, that we call IKK∗ in
our experiments, uses M ′ from (61).

2) Adapting the count attack: The count attack [8] first
builds a list of candidate keywords for each observed query
based on the query response volume and background infor-
mation about the dataset (in our experiments, we give the
adversary the full plaintext database). Then, the count attack
rules out assignments using co-occurrence information until
all of the queries are disambiguated and only one possible
matching remains.

Cash et al. propose a generalization of the attack when the
background information is imperfect. In this variation, they
assume that the number of documents returned in response
to a query follows a Binomial distribution parametrized by
the background (training) information, and use confidence
intervals derived from Hoeffding bounds to build keyword
candidates and disambiguate queries. This version of the
count attack applies naturally against CLRZ and OSSE, since
adding false positives and false negatives to the access patterns
actually causes the query volume and co-occurrences to follow
a Binomial distribution.

The attack against CLRZ proceeds as follows:

1) Compute the co-occurrence matrices M and M ′ as in (59)
and (61), respectively.

2) Compute the confidence intervals such that the observed
volumes and co-occurences (in M ) are within that interval
(centered around the values in M ′) with probability p =
0.95 (c.f. [8], Theorem 4.1).
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3) Build the set of candidate keywords for each observed
query based on the volume information (diagonal ele-
ments of M and M ′). If any candidate set is empty, the
attack fails.

4) Disambiguate queries by following the brute-force ap-
proach by Cash et al. (c.f. [8], Section 4.4). We first
select the set of the 10 most-frequently observed queries,
build all the possible assignments of those queries to their
candidate keywords, and try to disambiguate queries for
each of those assignments using co-occurrence informa-
tion. The attack returns the assignment that disambiguated
the highest number of queries. If all of the assignments
resulted in an inconsistency (the candidate set of a key-
word became empty), the attack fails.

Running the count attack against OSSE is not straightfor-
ward, since the attack heuristics assume that each distinct query
belongs to a different keyword. In OSSE, however, the same
keyword will likely generate different access patterns every
time it is queried. Therefore, we apply the clustering technique
that we used for the frequency attack in Section IX-A: the
adversary takes all the observed access patterns and clusters
them into Nc groups, where Nc is the true number of distinct
queries issued by the client (we give the adversary this ground-
truth information so that its performance is a worst-case against
OSSE). Then, the adversary takes the center of each cluster as
the “representative” access pattern of that group (note that this
is still consistent with (61)) and runs the attack as explained
above. All the elements within a cluster are assigned the
keyword of their representative access pattern.

3) Adapting the graph matching attack: The graph match-
ing attack [31] uses keyword co-occurrence information, sim-
ilar to IKK. We evaluate the adapted attack only, i.e., using
M and M ′ from (59) and (61), respectively. Since this attack
also assumes that each distinct access pattern is assigned to a
different keyword, we use the clustering technique to group
access patterns in OSSE and then run the graph matching
algorithm using the cluster centers.
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