
HERA: Hotpatching of Embedded
Real-time Applications

Christian Niesler, Sebastian Surminski, Lucas Davi
University of Duisburg-Essen, Germany

{christian.niesler, sebastian.surminski, lucas.davi}@uni-due.de

Another challenge in this area concerns recent develop-
ments in the so-called Industrial Internet of Things (IIoT) area:
systems initially designed without security in mind are now
interconnected with each other and the Internet introducing
a large attack surface [5]. Many of these systems require
interaction with the physical world and, more importantly, have
strict real-time constraints. These devices run jobs that must be
completed within deadlines in order to work properly. Failing
to meet these deadlines results in device malfunction and
might even result in physical damage, e.g., regarding a vehicle
control device, engine control unit, or robotics system. Security
vulnerabilities on this type of devices can have disastrous
consequences. For example, an industrial robot may fail with
respect to safety and harm factory workers or cause a produc-
tion halt with great financial loss [5]. Sophisticated attacks on
industrial control systems are a real threat, as past incidents
have shown, e.g., an attack against a German steel mill, which
could not properly shut down its blast furnace [6]. Failures in
individual control components resulted in an undefined state
of the blast furnace and prevented its proper shutdown, leading
to severe physical damage [7].

While there exist several methods to tackle the security
problems of IoT devices (such as device hardening or soft-
ware and hardware penetration tests, to name a few), a key
mechanism to remove the vulnerability is patching or updating
the device. Patching of computer systems is highly important
and very common these days. Today, patch management and
distribution of patches belong to the main and common tasks
of IT departments [8]. Usually, updates are installed using an
application or a special service. The update method has a high
influence on the rate and speed of patch deployment [9]. In
order to apply the patches, often a restart of the application or
the system is required. In case of IoT systems, patches are often
relatively large, i.e., monolithic blocks that have to be applied
atomically because of the device architecture. As this leads
to a loss of state and introduces a downtime of the system,
these updates have to be scheduled using planned downtime
and patching windows. Unfortunately, this opens a window
of opportunity for an adversary to exploit a not-yet-updated
device although patches are already available. At first glance,
this does not seem to be a major issue as the time window is
limited. However, recent studies showed that working exploits
for a given vulnerability become public just on the same day
or the subsequent day after the corresponding patch has been
published [10].

Apart from the described time window, several devices
do not accept any downtime, namely devices with real-time
constraints such as plant control systems with real-time com-

Abstract—Memory corruption attacks are a pre-dominant
attack vector against IoT devices. Simply updating vulnerable
IoT software is not always possible due to unacceptable downtime
and a required reboot. These side-effects must be avoided for
highly-available embedded systems such as medical devices and,
generally speaking, for any embedded system with real-time
constraints. To avoid downtime and reboot of a system, previous
research has introduced the concept of hotpatching. However, the
existing approaches cannot be applied to resource-constrained
IoT devices. Furthermore, possible hardware-related issues have
not been addressed, i.e., the inability to directly modify the
firmware image due to read-only memory.

In this paper, we present the design and implementation of
HERA (Hotpatching of Embedded Real-time Applications) which
utilizes hardware-based built-in features of commodity Cortex-M
microcontrollers to perform hotpatching of embedded systems.
HERA preserves hard real-time constraints while keeping the
additional resource usage to a minimum. In a case study, we
apply HERA to two vulnerable medical devices. Furthermore,
we leverage HERA to patch an existing vulnerability in the
FreeRTOS operating system. These applications demonstrate the
high practicality and efficiency of our approach.

I. INTRODUCTION

The Internet of Things (IoT) enables new use-cases and
connectivity in many different domains: consumer electronics,
household appliances, and even medical devices are increas-
ingly connected to the Internet. While these devices get widely
adopted, their security is often critical [1]. In particular, IoT
devices in delicate areas, like medical applications, or safety-
critical environments, like robotics, often suffer from pro-
gramming errors and exploitable vulnerabilities. Recent studies
show that pacemakers, i.e., critical medical devices implanted
into patients bodies when their heart rhythm is too slow or
irregular, suffer from security vulnerabilities [2]. In 2017, the
US Food and Drug Administration (FDA) approved a firmware
update for a pacemaker that was in use by 450k patients [3].
Although applying the firmware update was non-invasive, it
introduced negative side-effects: the fall back to ventricular
demand pacing, during reprogramming, may cause temporary
symptoms for some patients. Furthermore, the manufacturer
estimates a small rate of unpredictable device resets and
failures. Such a device reset or failure bears the risk of serious
health consequences, including death [4].

Network and Distributed Systems Security (NDSS) Symposium 2021
21-25 February 2021, Virtual
ISBN 1-891562-66-5
https://dx.doi.org/10.14722/ndss.2021.24159
www.ndss-symposium.org

munication between components [11] or pacemakers [4]. Real-
time constraints often emerge from the application context and
the importance of continuous operation to maintain a specific
state. In case of the steel mill, its control systems cannot be
halted arbitrarily, because they control physical processes that
will continue. But industrial control systems can also be part of
much larger networks: power plants are part of a international
power supply network, connected via the power grid. The
power grid needs to respond to varying energy demands and
needs to ensure continuous power supply of factories, offices,
and households. This requires coordination and planning in
order to prevent power failures.

Hence, these devices require special treatment, i.e., the
only reasonable but challenging option is to hotpatch these
devices. Hotpatching means patching a program while it ex-
ecutes, without the need to stop or restart the program. This
hotpatching process guarantees high availability and keeps the
current state of the program at all times. To our surprise,
hotpatching has been studied extensively in the context of
traditional software [12] and server applications [13]–[15], but
has received very little attention in the context of embedded
systems.

Furthermore, hotpatching results in changes of code exe-
cution and may violate real-time constraints. Hotpatching is
adding a patch, i.e., modifying the code, likely extending the
execution time of a software fragment, with a certain amount
of overhead. However, the overhead of the hotpatching process,
causing a delay in the execution, is a risk since it is often not
part of the scheduled program execution. This is not an issue in
the context of traditional software [12]. However, within real-
time systems, this can likely result in missing hard deadlines.
Traditional software without real-time constraints is more
generous regarding a single uninterruptible delay as it has no
consequences due to a failed deadline. Hotpatching of real-time
embedded systems strictly requires a small and predictable
delay. A large uninterruptible execution delay is unacceptable
for systems with hard real-time constraints, resulting in many
vulnerable devices being unpatched. Especially in the most
critical devices, the patching is stalled because interruptions are
not possible. This opens the door to attacks on these systems.

Contributions. We propose HERA, the first vulnerability
hotpatching system for embedded systems with real-time con-
straints. Our framework allows to perform security updates
on real-time embedded systems during operation without any
interruption or violation of real-time constraints. In contrast to
existing approaches like Katana [16] and Kitsune [17], we do
neither require dynamic linking nor previous changes to the
target program. Instead, we exploit common built-in hardware
debugging features readily available on the ARM Cortex-
M mainstream processor to instrument all affected program
locations with minimal overhead. By employing the on-board
debugging unit for patch application, we also avoid any direct
firmware image manipulation thereby allowing hotpatching to
take place on devices with block-writable read-only memory;
a common characteristic of embedded devices. As such, this
allows us to induce minimal changes to the execution time as
code redirection (trampoline insertion) as well as patch acti-
vation is encapsulated in atomic instructions on the hardware
level.

Especially considering security patches, this has several
advantages. It often eliminates the need for complex state
transfer operations as most security patches do not modify
the program state or its data structures. A good example
are memory corruption vulnerabilities which can often be
mitigated through additional bounds checking operations. This
also reduces the amount of time for prior patch verification as
no substantial modifications to the running system are added.
Furthermore, it minimizes the additional resource usage as
only minimal security-related enhancements are applied to the
system.

While we allow the code to be updated in background,
we achieve switching to updated code via an atomic instruc-
tion thereby minimizing time overhead and giving absolute
predictability. We evaluate our solution theoretically through
the examination of uninterruptible code sections, as well as
through external switch time measurements. As our evaluation
shows, the time overhead is minimal and constant. Further-
more, a case study with two medical devices and a hotpatch
for an existing vulnerability in the FreeRTOS operating system
shows general applicability. This makes HERA suitable for
hotpatching of even hard real-time systems, i.e., the most
critical real-time systems.

Hotpatches for the HERA framework can be developed on
both: higher programming languages and then derived from the
compiled binary using binary diffing, and directly on assembly
level. While the first is the preferred way if source code is
available, the latter allows to develop patches for closed-source
devices.

To the best of our knowledge, our proposed system is
the first hotpatching system that targets and solves the above
described challenges like block-writable memory, minimizing
the hotpatching overhead and spare resource usage in a sin-
gle system. To summarize, this paper presents the following
contributions:

• We present HERA, the first framework to allow hotpatch-
ing of real-time embedded systems without requiring any
hardware changes.

• We give detailed guidelines how a hotpatch can be derived
directly from normal binary files to allow the development
of a hotpatch within existing workflows in Section V.

• In a case study in Section VII-A, we use this framework
to patch security vulnerabilities of two real-time critical
medical devices, a syringe pump and a heart rate sensor,
as well as the FreeRTOS operating system.

• In our evaluation in Section VII-B, we measure the exact
overhead of the framework. We show that the overhead
of our framework is in the order of processor cycles and
does not vary. This allows deployment of our system in
real-time environments with hard deadlines.

II. BACKGROUND

Since this paper addresses hotpatching of embedded sys-
tems with real-time constraints, we describe the main compo-
nents and core concepts of such devices in this section.

ARM Architecture. With more than 160 billion units shipped,
ARM is currently the most popular processor architecture [18],
especially for IoT devices [19]. Furthermore, ARM architec-
tures are frequently present in the real-time operation context.

2

For instance, a large share of PLCs (control units for indus-
trial processes) are based on ARM [20]. Its microprocessor
architecture is based on the reduced instruction set computer
(RISC) design model [21]. By definition, it builds upon an
instruction set with small and optimized instructions, instead of
more complex and specialized instructions. ARM is an energy-
friendly micro-architecture featuring asynchronous logic to
reduce power consumption [22].

Flash Patch and Breakpoint Unit. Several ARM processors
feature a hardware unit for debugging purposes which is
called FPB (Flash Patch and Breakpoint) [23]. For example,
the popular Cortex-M3 and M4 processors feature such a
unit. The FPB unit allows to set hardware breakpoints. A
comparator implemented in hardware is used to identify the
correct breakpoint and then halt the processor or modify code
memory. A full FPB unit comes with up to six comparators
for hardware breakpoints [24].

This instruction replacement functionality is a typical fea-
ture of hardware debugging units. For example, the Tensilica
Xtensa processor architecture features debug options that offer
the same instruction replacement functionality as the FPB unit
of the ARM Cortex-M3/M4 [25]. The popular microcontrollers
ESP32 and its predecessor ESP8266 use such Tensilica Xtensa
processors [26], [27]. ESP8266 and ESP32 chips are a popular
platform for IoT devices: more than 100 million of such IoT
chips have been shipped by the manufacturer [28].

Real-time Systems and Requirements. Computer systems
can have different requirements due to expected or mandatory
response times. In case a system has strict deadlines towards its
response times, it is called a real-time system. There are differ-
ent types of real-time expectations and system requirements,
which are typically differentiated by their strictness. A system
can have hard, soft and firm real-time requirements. A hard
real-time system has deadlines, that must be met at all times.
Otherwise, this has severe consequences. Typical examples
for hard real-time systems are safety-critical applications like
control units for car airbags. In contrast, the firm deadline
allows for infrequent misses as the consequences are not
catastrophic, but too many would degrade the system of its
usefulness. A missed deadline has no further value in a firm
system. The playback of music is such a firm system. A few
missed bits of music will not degrade the entire system, but
frequent misses will. A system neither hard nor firm is referred
to as soft. The value of the information starts to decrease. A
home heating system can be said to be a soft system. The
system will tolerate frequent deadline misses as long as it will
have a few timely temperature measurements. The value of
past measurements decreases as the system operates on the
most current measurements [29].

Real-time Operating System. Real-time capability is often
ensured by the use of a real-time operating system (RTOS).
The RTOS schedules tasks according to a given priority to meet
hard and soft deadlines. It provides the capability to handle
multiple threads and ensures given deadlines are met through
a real-time scheduling algorithm, e.g., Rate Monotonic [30].
The RTOS is crucial to manage complex embedded applica-
tions and multiple tasks bounded by real-time requirements.
Lightweight RTOS are a popular method to abstract from the
bare-metal hardware while maintaining hard real-time capa-
bility. Although embedded devices are resource-constrained,

Task 1

Task 2

IDLE
t1 t2 t3 t4 t5 t6t0

Time

t7 t8

Figure 1: Example of a RTOS schedule.

there exists a wide variety of suitable operating systems [31].
RTOS exist in a variety of architectures, implementations and
categories depending on the target system and its real-time
properties, i.e., hard, soft or firm system [32]. The main
component of any RTOS is a scheduler in control of the
underlying hardware responsible to execute tasks with respect
to their deadlines. Figure 1 shows a typical schedule of a
RTOS. Tasks have different deadlines, thus different priorities.
A lower priority task can be interrupted in favor of tasks with
higher priority. This ensures that urgent tasks are not blocked
by less important ones. High priority tasks are usually short
and frequent, low priority tasks are usually long and infrequent.
A system with enough available resources will complete all
tasks before their respective deadlines [30].

One of the most popular embedded systems is FreeR-
TOS [33], and is suited for real-time purposes. We use
FreeRTOS to implement and evaluate HERA in the case study
described in Section VII-A.

Hotpatching. Hotpatching means patching a program while
it executes, thus without restarting or rebooting the patched
system or service. This requires to consider the current state of
the program to circumvent negative side-effects. Hotpatching
can be categorized by its changes, e.g., single code snippets,
protocol changes, or larger changes in data structures [34].

Update Services. Updating and patching are commonly used
to fix program errors and security vulnerabilities. In order to
apply these patches, special applications are developed, which
allow to manually or automatically install patches. These
programs have the task to fetch the update, check the integrity,
install, and verify the installation. IoT devices typically come
with such update methods [1]. The FreeRTOS operating system
features a module for over-the-air (OTA) updates [35]. With
OTA updates, the device is able to download and apply the
update by itself via the Internet without external interaction.

III. PROBLEM STATEMENT & CHALLENGES

In this paper, we present and evaluate a hotpatching ap-
proach that allows to patch resource-constrained embedded
devices without violating real-time constraints. Such resource-
constrained devices, which are interacting with the physical
world, are a worthwhile target for adversaries with malicious
intent. Those devices can cause potential harm to humans
(safety) and even society (critical infrastructure), thus requiring
regular updates to accurately respond to newly discovered
vulnerabilities and novel attack techniques. Consider a modern
automobile which includes a network of integrated electronic
components and systems with different attack surfaces that
can be targeted by an adversary. In an experimental analysis
of a modern automotive, Koscher, Czeskis, Roesner, et al.
demonstrate potential attacks and the large attack surface of

3

current cars, which will likely increase in upcoming years [36].
The medical sector moves into a similar direction. The health
industry slowly shifts towards real-time disease monitoring for
personalized healthcare, which can be seen by the evolution of
wearable devices and their increasing application [37]. These
wearable devices continuously measure physical signals like
blood pressure or skin temperature and communicate with each
other. Often, they are integrated into a so-called Body Area
Network (BAN) [38], with vast communication mechanisms
like Bluetooth, infrared, radio-frequency identification (RFID),
and near-field communication (NFC) [37]. As any embedded
device is powered by software, which may suffer from errors
and vulnerabilities, security and privacy concerns arise. The
current state of knowledge regarding such systems shows three
major threats to medical devices: telemetry (wireless interface),
software threats (alternating logic through vulnerabilities) and
hardware/sensor interface threats (alter sensor signals) [38].
As a result, these devices require security updates in order to
mitigate vulnerabilities. However, applying security updates is
not always possible, if these devices may not be interrupted, or
applying patches comes with side-effects [4]. In these cases,
hotpatching is a viable solution to fix security vulnerabilities.

Challenges arise from the fact that these embedded devices
must operate continuously and may not experience any inter-
ruption. The patching may not have any side-effects and the
whole patching process has to be completely deterministic.
This is especially important for highly-critical devices, e.g.,
manufacturing plants, but also for unattended patching pro-
cesses, e.g., in the case of pacemakers. The patch itself must
be validated to ensure correctness. As patches influence the
execution of the system, this also changes the time required
for the execution. While this is no problem for commodity
systems, in case of systems with real-time capabilities changes
in the timing can have severe consequences. Therefore, a
predictable timing of the execution is mandatory for such
systems. Furthermore, the patching process must work with
minimal hardware requirements. Built-in embedded devices
are manufactured and used in huge quantities. Hence, they are
heavily optimized to minimize the needed hardware, in order
to lower energy consumption as well as costs. As a result, these
devices come with little resources, especially regarding spare
hardware and memory. This makes standard A/B patching
schemes or methods using a complete hardware switchover no
practical solution. The hotpatching approach has to work using
standard off-the-shelf hardware, so that it can be implemented
into existing devices without hardware changes, as changes
in the hardware usually require larger redesign and extensive
development process.

Current research focus on correctness of patch application
or minimizing resource consumption and downtime. Mugarza,
Parra, and Jacob propose a “Quarantine-mode” to setup and
monitor a live patch [39]. Zhang, Ahn, Zhang, et al. describe a
software-based trampoline approach for hotpatching that min-
imizes the resource and energy use of embedded devices [40].
Real-Time Patch capabilities have been considered in [41],
[42] and in [43], though the focus are the requirements and
solutions for a full real-time patching process including state
transfer and atomic switching. Frameworks for hotpatching
such as Katana [16] or Kitsune [17] successfully showed
the applicability of hotpatching and simplified development
efforts for generation of hotpatches and applications. However,

both require dynamic linking of application code. Embedded
devices on the other hand often do not provide any means of
run-time linking and use a static linking approach. No focus
has been laid yet at hotpatching vulnerabilities in resource-
constrained devices subjected to real-time constraints. Sum-
ming up, we identified several challenges that arise when hot-
patching embedded real-time systems: (1) preserving hard real-
time requirements, (2) compatibility with existing hardware,
(3) memory architecture of embedded devices, (4) concurrency
issues when applying patches.

The HERA framework we introduce in this paper addresses
all these challenges. It works on standard Cortex-M3/M4
processors and relies on built-in debugging features. The
memory overhead is minimal, as only the patch itself and
a list of several memory addresses have to be stored. The
actual switching process to enable the hotpatch is an atomic
instruction on processor level. Using the built-in FPB unit, a
processor instruction is replaced on-the-fly. This instruction is
executed atomically, i.e., in one step and cannot be interrupted.
As a result, no unexpected side-effects can occur. Since this
is all done within a single instruction, the execution time is
completely deterministic, which is mandatory for real-time
systems with hard deadlines.

IV. ASSUMPTIONS AND ATTACKER MODEL

Assumptions. We assume a real-time system that features all
types of deadlines, i.e., hard, firm, and soft deadlines. Further-
more, we assume a real-time operating system (RTOS) archi-
tecture. The RTOS itself ensures proper real-time operation.
That is, it runs all tasks correctly with respect to deadlines.
An update is available, either as source code or binary. The
system is equipped with sufficient resources allowing to run
the update within its real-time requirements as well as a low
priority or idle-time task to download the patch to the system
writable memory, i.e., RAM. Thus, no deadlines are missed.
An updater service, that is able to download the patch as well
as a secure update mechanism are assumed to be in place.
The updater then triggers an atomic (hardware) switchover to
enable the patch. The concrete implementation of the updater
service is out of scope as this is heavily dependent on the target
use-case. For example, the updater service should regularly
check for updates and download these via an external interface.
Before applying the patch, the integrity and authenticity has to
be checked, as well as the transmission and the source of the
patch has to be verified. Thus, the update mechanism itself
is secure. As elaborated in Section II, software updates and
corresponding updaters are commonly used in practice. Note
that the real-time operating system FreeRTOS already includes
an updater service that can be adapted to specific needs [35].

Attacker Model. We assume a remote attacker who is able
to exploit an arbitrary vulnerability due to a programming
mistake. A typical error is a buffer overflow error due to
a missing bounds check. An attacker is able to exploit the
vulnerability to overwrite parts of the memory and launch a
run-time attack. We assume the root cause can be mitigated
by introducing or replacing a code block, e.g., by introducing
further checks or validating inputs. The attacker does not
have physical access and can only attack the device remotely.
Furthermore, we assume there is a secure updater available,
that the attacker cannot manipulate or sabotage.

4

V. OVERVIEW OF HERA

In this section, we introduce the design of HERA, the first
hotpatching framework for embedded systems with real-time
constraints. First, we analyze existing hotpatching strategies
and present the high-level approach of our hotpatching strategy
(cf. Section V-A). Thereafter, we present in detail the different
components of HERA (cf. Section V-B).

A. On Hotpatching Strategy

There exist three main hotpatching strategies, namely
(1) relocation of linked binaries, (2) instrumentation of the
binary, and (3) A/B update schemes.

Hotpatching Relocatable Executables. This approach re-
quires modification of the binary linking data structures. Dy-
namically linked binaries reference code that is not part of the
compiled library and is loaded during run-time. This is often
the case for libraries which are shared among different appli-
cations and common practice in modern operating systems like
Windows or Linux without strict real-time requirements. The
operating system holds a data structure with symbolic links to
this shared code piece and resolves those links during run-time.
The implementation of hotpatching with relocatable executa-
bles is straightforward in case dynamic linking is supported
by the underlying operating system. With dynamic linking
only a symbolic link needs to be adjusted during run-time to
apply a hotpatch. Thus, whole components can be exchanged
and the number of total active patches is unlimited. However,
in embedded systems, due to real-time constraints, binaries
are often linked statically and the operating system does
not support dynamic linking [44]. This is because run-time
linking creates overhead and may deteriorate predictability,
i.e., a key property of a real-time system. In fact, the popular
FreeRTOS real-time operating system is linked statically [45].
As such, popular patching frameworks such as Katana [16] and
Kitsune [17] are not applicable as they both require dynamic
linking.

Instrumentation-Based Hotpatching. This approach requires
modification of the program execution. The most common
technique is a direct rewrite of the firmware image (i.e., the
running executable) by redirecting the execution through a so-
called trampoline. A trampoline is a single instruction, e.g.,
a branch or jump instruction, inserted at an arbitrary point
redirecting the original control-flow of an application. Another
technique is dynamic binary translation. This approach is based
on executing the application inside of a translator component
enabling exchange and instrumentation of instructions on-the-
fly [46]. However, this approach induces a high overhead and
requires high computing resources which resource-constrained
embedded devices, especially in a real-time context, do not
provide.

A/B schemes. Another hotpatching method is the concept
of a so-called A/B update scheme [39], [47]. This scheme
consists of two instances: one instance is actively running; the
other instance can be updated. At a dedicated point in time,
a switchover from the active to the newly updated instance
is performed. The main advantage of this strategy is that
the update can take place completely independent from the
active instance. A/B updated schemes are widely used in
practice, e.g., over-the-air updates for Android devices [48]

and Espressif ESP32 microcontrollers [49]. However, on the
downside, this approach requires doubling the memory to hold
both instances, and a dedicated management unit that allows
the update of the inactive instance and performs the switchover.
The real-time capability of a A/B scheme depends on the
management unit. Common A/B solutions like in Android [48]
require a full device reboot. As embedded systems are often
equipped with minimal hardware and memory and in addition
bound to real-time constraints, this is not a viable hotpatching
strategy for these devices. An even more sophisticated method
is to use a so-called complete switchover: multiple instances
are executed in parallel and a single instance can be taken
offline and patched, while the other instances continue to run.
Again, this results in a large overhead as two instances have
to be executed and managed by a dedicated unit at the same
time [50].

HERA Hotpatching. Our hotpatching strategy is specifically
tailored towards embedded systems with minimal comput-
ing power and memory. We introduce a hardware-assisted
hotpatching strategy which allows arbitrary code insertions
through so-called trampolines dynamically inserted into the
program binary. Our system is based on a standard real-time
operating system (RTOS) which ensures that all deadlines
are met through proper scheduling. The activation of a patch
usually requires a so-called atomic patch activation, i.e., the
activation process must not be interrupted to preserve consis-
tency of the system. Leveraging hardware allows us to perform
this atomic patch activation very efficiently thereby making it
suitable for hard real-time constraints.

Our approach enhances the instrumentation-based hot-
patching approach without requiring binary instrumentation
and additional software layers. The key idea is to replace
instructions during run-time using the on-board debugging
unit, which is readily available on commercial off-the-shelf
processors. Using the hardware breakpoint capability of the
on-board debugging unit, trampolines can be inserted on-the-
fly. The amount of available trampolines is dependent on the
board’s number of hardware breakpoints.

Modern microcontrollers feature a debugging unit allowing
developers to insert these so-called breakpoints. A breakpoint
allows developers to stop and restart the execution of the
CPU at arbitrary points. This is used to inspect the CPU
and peripherals, investigating software issues. However, a
debugging unit can also implement additional functionality
such as the capability to exchange a single instruction. For
instance, this feature is implemented in the FPB debugging
unit of ARM Cortex-M3/M4 processors [23]. This unit can
temporarily stop the CPU, drop the fetched instruction, and
fetch a new instruction. Hence, we can leverage this behavior
to redirect the control flow to newly deployed hotpatches.
Since the redirection to patched code is performed hardware-
assisted, the overhead is negligible and constant. A detailed
analysis of the performance of the FPB unit is performed in
Section VII-B.

B. Design

As alluded to earlier, we have designed a hotpatching
solution based on existing built-in hardware features used for
debugging. A high-level overview of our HERA architecture

5

Hardware

RTOS

High priority

Updater task

Patching unit

Low priority

Patch

Task 1 Task ... Task NTask 2

Patch applied

Triggers atomic switchover
Software

Trampoline code
Patch insertion

HERA

(a) Component View: The low-priority updater task modifies hardware
to enable a higher priority task patch in real-time through atomic
jump.

High-priority task

Low-priority task

Updater task (IDLE)

Time

Atomic jump
to patched code

(b) Sequence View: The patch is added with a hardware supported
trampoline and properly scheduled through the RTOS.

Figure 2: High-level architecture and functionality of the
HERA framework.

and its functionality is depicted in Figure 2. Figure 2a shows
the combination of hardware patching unit, real-time operating
system (RTOS), and the HERA framework. An exemplary up-
date and patching process is outlined in the sequence diagram
in Figure 2b.

As shown in Figure 2, there are two main steps to patch
the system: (1) patch preparation and (2) switchover. The
patch preparation covers the updater mechanism and patch
processing steps such that the patch can be reached without any
issue by a trampoline. The switchover covers the notification
of the hardware patching unit (atomic switchover) and the
hardware-assisted trampoline insertion during run-time.

Our system is based on a RTOS which ensures that
all deadlines are met through priority-based scheduling. The
RTOS is running different tasks with different priority lev-
els. Independent of the priority, a task may suffer from a
vulnerability that needs to be quickly mitigated through a
hotpatch. This hotpatch needs to be received, verified, and
properly instantiated onto the embedded system. The updater
task is executed in background and interrupted by higher-
priority tasks to avoid any disturbance on time-critical tasks.
Hence, we do schedule the updater task with either low priority
or within the idle-time. The updater task is responsible for the
patch preparation (1) as well as the switchover (2) step. The
updater distinguishes between patch code, i.e., mitigation code
precompiled for the target architecture and meta-information
like patch size or patch insertion point. Meta-information
includes all required information to apply the patch code. Both
patch code and meta-information are packaged within a patch
format. In particular, the updater copies the patch code to a
patch slot in RAM and prepares the switchover by adding

meta-information like patch insertion point and trampoline
to respective data structures (FPB configuration). Once patch
processing is finished, the updater task notifies the hardware-
unit with an atomic instruction to activate the patch. After
this hardware switchover, the FPB starts to insert trampolines
through its hardware breakpoint functionality. Figure 2b shows
how the trampoline insertion and patch execution is handled
from the scheduler point of view. The RTOS is properly
scheduling all its tasks to meet the deadlines. The patch is
inserted on-the-fly by exchanging a single instruction of the
task with a trampoline. Hence, the patch code itself is part
of the normal scheduling process, just handled like any other
code fragment of the same task. From a high level perspective,
this approach resembles an in-place patching based on a
trampoline [40]. The crucial difference is that the trampoline
insertion is efficiently performed through commodity hardware
and without interrupting the ordinary execution of the currently
running tasks.

(1) Patch Preparation. This step prepares for an atomic
switchover or atomic patch enable. All actions taken in the
preparation step are uncritical and do not influence the appli-
cation as they take place in a low priority or IDLE task. Recall,
as previously described in Section II and shown in Figure 1 an
RTOS system commonly uses priority-based scheduling. Given
enough resources, this strategy will meet all deadlines of the
scheduled tasks. The IDLE state is only entered when there are
no concurrent tasks scheduled. For some architectures a direct
control-flow redirection to RAM is not possible. Therefore, we
use a preconfigured trampoline in ROM and a so-called dis-
patcher, which chooses the appropriate patch by checking the
control-flow information stored on the stack. The preparation
step includes the following steps: (1) Receive the patch from
an external source, (2) verify the patch by checking its integrity
and origin, (3) parse the meta-information from the patch
format, (4) store the patch in selected memory area1 (RAM),
(5) add a new entry to the dispatcher2, (6) configure the
patching unit with insertion point and corresponding branching
instruction (trampoline configuration), (7) trigger the atomic
switchover.

(2) Switchover. After the patch preparation, the atomic
switchover and the trampoline insertion process have to be
performed. The patch is enabled by setting a hardware break-
point [23]. This breakpoint, typically used for debugging,
can be activated by a single assembly instruction, writing a
designated hardware register. A single assembly instruction
on a CPU is atomic by definition. The breakpoint uses the
preconfigured data (insertion point and branching instruction)
to perform the insertion of the trampoline during run-time. As
shown in Figure 3, the debugging unit continuously monitors
all instructions the CPU is executing. Each configured break-
point has a comparator that triggers an event in case the CPU
reaches a preconfigured memory location, identified by a mem-
ory address. This memory location is the insertion point for
the trampoline. A breakpoint event usually shifts control to an
external debugger. For the sake of hotpatching, we replace the
breakpoint with a trampoline, i.e., branching instruction, thus
inserting the patch. This process runs continuously without

1A special memory area is reserved as designated patch data storage.
2Only required on architectures with no direct control-flow redirection from

ROM to RAM.

6

Instruction

Instruction

Instruction

Instruction

Memory

CPU
Execution

Breakpoint

Breakpoint

FPB unit with hardware breakpoints

Patch Table
Data structure with

replacement instructions

BL JUMP_SECTION

BL JUMP_SECTION

CPU interrupt
and instruction
replacement

Address

Address

Address

Address

Figure 3: Hardware Architecture Overview: Hardware sup-
ported run-time trampoline insertion through debugging unit
(FPB).

Current instruction

Replace instruction
with patch table

entry

Instruction
address matches

patch Table?

no

Execute and continue
to next intstruction

<jump_section>
push {r7, lr}

LDR pc, 0x20
(jump to dispatcher)

<dispatcher>
identify patch
jump to patch

Execute patch

ROM

RAM

RAM

return
(jump back)

RAM

Instruction

Instruction

Instruction

Memory

Current
instruction

Yes

1

2

3

4

5

6

Figure 4: Patch Process Flow: Run-time trampoline insertion
through debugging unit (FPB).

impacting the behavior of the processor. As breakpoints can
be configured independently from each other, new trampolines
can be added and deleted without disabling previous patches.
This is important in order to support hotpatching different
vulnerabilities that might affect a system over time.

Since different processors vary in programming models
for their built-in debugging unit, we will focus on the ARM
FPB unit as our proof-of-concept implementation is using
it. Figure 3 shows the hardware perspective of our patching
solution. The FPB unit has a fixed number of breakpoints
(comparators) that continuously monitor the currently executed
instruction. The debugging unit is attached to the CPU, which
enables it to interrupt the processor’s execution and replace the
fetched instruction with another instruction, i.e., the trampoline
instruction. Each breakpoint references an instruction, it will
load instead of the aborted instruction on a breakpoint hit.
These instructions are stored in a data structure called patch
table allocated in the microcontroller’s RAM region. Figure 4

covers the process flow of the trampoline (patch) insertion
mechanism, which consists of: (1) continuous monitoring of
the currently executed instruction, (2) instruction replacement
on breakpoint hit, (3) control-flow redirection to a dispatcher,
(4) dispatcher redirection to the appropriate patch, (5) patch
execution, and (6) return and continued execution.

Figure 4 shows the process of on-the-fly breakpoint in-
sertion as well as the interdependence between RAM and
ROM memory. This interdependency is necessary as embedded
system firmware is placed in read-only memory, which is only
writable during programming. Some microcontrollers allow
for page-rewrites during run-time. However, this would likely
affect a significant portion, usually a page, of the stored
firmware and thus the running RTOS. Furthermore, the process
of page writing and erasing is very energy consuming [47]. As
a consequence, direct firmware manipulation is not feasible.
Therefore, we allocate our hotpatch to RAM which allows us to
perform byte-wise writing in contrast to block-writing on page
granularity to ROM. The jump_section (ROM) in Figure 4 is
used to redirect the code execution to the stored patch in RAM
via a small patch dispatcher. The jump_section and dispatcher
are needed as our chosen proof-of-concept platform does not
support direct branching from ROM to RAM. The RAM is out
of range for a branch instruction.

Limitations. Our main scope are security patches for mem-
ory corruption vulnerabilities which typically require adding
further checks replacing code parts. Furthermore, HERA can
also be used to add further functionality, e.g., by adding
new code parts. In case of complex updates, which require
change in state or data structures, the HERA framework needs
to be extended to allow state transfer, i.e., the migration of
information from old to new data structures, thus ensuring a
consistent program state. This is not necessary for typical se-
curity patches, as these are typically small and featureless [51].
Hotpatches should be as simple as possible, as they have to
work during run-time. Different devices have varying memory
content and state, hence changing values of variables and data
structures is a delicate task.

HERA hotpatches are not reboot-safe as they are not
stored in persistent memory. Hence, if a device is rebooted
unexpectedly, the hotpatch is removed. This is due to the fact
that writing persistent flash memory is often not feasible (see
Section V-B). In order to cope with reboots, the updater has to
be modified to automatically check for hotpatches and apply
them upon every start. If indeed non-volatile writable memory
is available, HERA can easily be extended to support persistent
hotpatches.

The number of different patches that can be applied is
limited by the number of breakpoints that the processor can
keep. It is possible to fix multiple issues using a single
breakpoint, as the breakpoint is just the entry point to the
patch. So it is possible to replace a larger code segment,
tackling several vulnerabilities using just a single breakpoint.
Furthermore, the HERA framework focuses on hotpatching,
i.e., fixing security issues until the next regular possibility for
full system patching. After applying the full system patch, all
breakpoints are free again for further hotpatches.

7

VI. IMPLEMENTATION

Based on the assumptions and design decisions made
in Section V, we implemented a prototype of HERA as a
library which uses the FPB unit of the ARM Cortex-M4
platform. The NUCLEO-F446RE development board from
STMicroelectronics serves as a Cortex-M4 platform reference.
With an ARM Cortex-M4 CPU and only 512 kB of flash
memory and 128 kB of SRAM [52], it represents a typical
Cortex-M based embedded system. Any embedded system
such as the used NUCLEO-F446RE is constrained by different
properties depending on the chip or the application context. A
categorization of constraints is given by Bormann, Ersue, and
Keranen [53]. In Section VI-A, we discuss the configuration
of a debugging unit for run-time hotpatching and provide a
proof-of-concept implementation. In Section VI-B, we provide
guidelines how hotpatches can be created within the develop-
ment cycle. Section VI-D discusses necessary preconditions
for successful patching.

A. HERA Library

The core of our hotpatching approach is the use of de-
bugging units integrated into modern microcontrollers, cf.
Section V-B. These units often provide a code remapping
mechanism in addition to their breakpoint functionality (Sec-
tion V-A). The code remapping feature allows to drop the
execution of an instruction at a previously selected memory
location (memory address) and load another instruction from
memory. Hence, control-flow can be manipulated by exchang-
ing an instruction with a branch. With the aid of the code
remapping mechanism, trampolines can be inserted during run-
time. The configuration of code remapping generally requires
the same information as a breakpoint: (1) insertion point,
(2) trampoline, and (3) hardware breakpoint. The insertion
point specifies the memory address, where the breakpoint
should halt the CPU execution and perform the trampoline
insertion. The trampoline is a branch instruction, that redi-
rects control-flow from the insertion point to the patch. The
hardware breakpoint of the debugging unit is used for run-
time trampoline insertion. The debugging unit has a limited
amount of hardware breakpoints, which represent a patch slot
in HERA.

Since debugging units can differ in their programming
model, we opted to choose the well-known ARM embedded
platform [18], [19] for our prototype implementation; specifi-
cally, the ARM Cortex-M4 and the NUCLEO-F446RE board.
The integrated debugging unit is called FPB (Flash Patch
and Breakpoint) [23] and includes a code remapping feature.
Note that HERA can be implemented on any architecture that
provides a debugging unit with code remapping capability;
only the hardware-related configuration needs to be adjusted
to the target architecture. For industrial-grade usage the patch
and dispatcher loading process need to be extended. To achieve
code remapping, the FPB unit requires the same input as any
other debugging unit: insertion point, trampoline, and hardware
breakpoint. This input is stored together with the configuration
of the FPB unit in two different data structures: the first one is a
control structure located at an internal memory address outside
of ROM and RAM. This data structure is used to configure and
control the breakpoint and code remapping feature. It is also
used to reference the second data structure, called patch-table,

holding our trampoline instructions. To use the FPB debugging
unit for hotpatching, we implemented a C-library to perform
the necessary FPB unit configuration and prepare the load of
the patch. The library provides the following functions:

fpb_init. This function initializes the FPB unit by preparing
and properly referencing the required data structures. Further-
more, it checks the availability of a FPB unit on the given
board. A successful initialization confirms the FPB capability
of the used hardware unit.

fpb_enable. This sets the global enable bit of the FPB unit.
If not set, the unit will ignore any configured and enabled
breakpoint.

enable_single_patch. This function creates the trampoline
through the code remapping feature and breakpoint usage.
The trampoline consists of a branch instruction performing a
control-flow redirect from the insertion point to the patch entry
point. The branch instruction can be either supplied with the
patch or a branch instruction calculation can be implemented
based on the given offsets. This function sets the breakpoint
to the trampoline insertion point and defines the breakpoint
behavior as code remapping. Finally, it enables the hotpatch
through a atomic switchover using a single register write.

load_patch_and_dispatcher. The function implements the
patch loading and preparation process. A basic dispatcher (see
Section V-B) is loaded and modified with the given knowledge
of patch locations. Afterwards, the patch is copied to RAM.

The entire patching process runs in a low priority task,
managed by the FreeRTOS [54] system. The atomic switchover
is interruptible as it consists of a single assembly instruction,
which cannot be interrupted by definition, see Section V and
Section VII. As a consequence, the embedded system cannot
miss any deadline as proper real-time scheduling stays in place.
Furthermore, no further concurrency handling is required.

The implemented program flow can be summarized as fol-
lows: (1) initialize the FPB unit and check board compatibility,
(2) load the dispatcher to RAM, (3) copy the patch to RAM
(dedicated patch region), (4) modify the dispatcher with a patch
location entry if required, (5) enable the FPB unit globally,
(6) configure and enable the instruction matcher, (7) the patch
flow is active.

B. Patch Development

Next, we describe how a patch is developed for hotpatch-
ing. This especially requires code changes in the embedded
firmware to effectively mitigate the discovered vulnerability.
In the software development cycle common within the indus-
try [55], developers mitigate the vulnerabilities by constantly
updating and modifying the software, creating patches. It is
also a good practice to separate feature updates from security
updates. Given our trampoline architecture, hotpatches can be
obtained by means of static code comparison of the unpatched
and patched firmware version. Creating a hotpatch is typically
straight-forward and requires little additional work: the devel-
oper performs the static code comparison of the binary images
and extracts the patch based on the instructions that have been
changed or inserted. Development tools such as IDA Pro3 or

3https://www.hex-rays.com/products/ida/

8

https://www.hex-rays.com/products/ida/

Listing 1: CVE2018-16601 source-level patch
1 if ((uxHeaderLength >
2 (pxNetworkBuffer->xDataLength
3 - ipSIZE_OF_ETH_HEADER)) ||
4 (uxHeaderLength < ipSIZE_OF_IPv4_HEADER))
5 { return eReleaseBuffer; }

Radare24 already support the generation of an instruction dif-
ference on binary level. These development tools also directly
indicate the required trampoline insertion points as they show
the memory addresses of the instructions where the patched
firmware differs from the unpatched version. The trampoline
can be either directly derived from the insertion point and the
future patch location within the devices RAM, or a dynamic
instruction calculation can be implemented within the updater
task (see Section V-B). A fully developed updater could also
dynamically choose a free patch slot (hardware breakpoint).
The developer may add slight modifications to the patch. For
example, restoring some stack values and registers like the
frame pointer. These modifications are currently only required
because of the dispatcher solution, see Section V-B, which has
been implemented to overcome the limited range for branching
instructions on our proof-of-concept platform. However, these
modifications can be reused along all hotpatches.

In general, the developer can follow these steps for hotpatch
development: (1) create and compile a patched version of the
application, (2) compare the patched and unpatched firmware
on assembly level, (3) extract the differences and add mod-
ifications, (4) determine the insertion point and package the
patch for application.

C. Example of Hotpatch Development for FreeRTOS

This section presents the development process of the
FreeRTOS case study from Section VII-D, following the devel-
opment guidelines described in Section V-B and Section VI-B.

FreeRTOS 9.0.0 is vulnerable to CVE2018-16601 [56]. The
reason for this vulnerability is a missing bounds check on the
length of the IP Header [57]. The vulnerable function is called
prvProcessIPPacket and is located in the file FreeRTOS_IP.c.
A comparison with the current FreeRTOS 10.0.3 shows the
bounds check that was implemented to mitigate this vulnera-
bility. Listing 1 lists the source code of the patch.

We backported the source-level patch into the vulnera-
ble FreeRTOS version and compiled two binaries, with and
without the patch. With the use of Radare2, we performed a
binary diff that reveal the assembly instructions in Listing 2
that perform the bounds check. In a binary diff, newly inserted
assembly instructions are marked with a ’+’ symbol. This indi-
cates the trampoline insertion point. To cope with limitations of
the FPB unit, the insertion point is shifted to the first precedent
instruction at a 4-byte aligned memory address.

As explained in Section V-B, some instructions have to be
adjusted. In case the patch should continue directly after the
trampoline, the patch requires a return to the dispatcher and
jump_section. In case the branch target is outside the patch,

4https://www.radare.org/n/

Listing 2: Binary diff between the vulnerable and the patched
FreeRTOS binary
1 lsls r3, r3, 2
2 and r3, r3, 0x3c
3 str r3, [r7, 0x24]
4 + ldr r3, [r7]
5 + ldr r3, [r3, 0x1c]
6 + subs r3, 0xe
7 + ldr r2, [r7, 0x24]
8 + cmp r2, r3
9 + bhi 0x801619a

10 + ldr r3, [r7, 0x24]
11 + cmp r3, 0x13
12 + bhi 0x801619e
13 + movs r3, 0
14 + b 0x80162ca
15 ldr r3, [r7, 4]

the offset between RAM and ROM is typically too large to
be coded directly into a branch instruction. This control-flow
redirection is the reverted case of the jump_section control-
flow redirect. The branch is performed by manipulating the
program counter register, which contains the memory location
of the next instruction to execute.

D. Patch Application

After the patch has been developed, it is transmitted
processed, and finally activated on the target device. This is
performed by the updater service which executes as a low-
priority task to handle the tasks described in Section V-B.
Apart from the actual patch, a patch file also contains an inser-
tion point, a trampoline, and a hardware breakpoint. All of this
can be combined into a simple binary file format. For both, the
updater and the patch format, already implemented solutions
exist. These solutions can be adopted for industrial usage as
such update methods are common among IoT devices [1]. The
updater fetches and processes the patch file. Next, the updater
triggers the atomic switchover once all FPB and patch prepara-
tion is finished, i.e., sending the patch activation signal. This
is done by the library functions load_patch_and_dispatcher
and enable_single_patch as described in Section VI-A. As the
updater task is preemptable and patch activation is atomic, no
update time needs to be defined or selected. The patch can be
activated as soon as possible without negative impact on the
application.

E. Example of Hotpatch Application for FreeRTOS

We implemented an updater service as described in Sec-
tion VII-D and Section VI-D. The updater task handles the
patch preparation and performs the atomic switchover. Af-
terwards, the FPB unit continuously monitors the program
execution and halts the CPU at the predefined trampoline
insertion point. Thereafter, the breakpoint drops this instruction
and replaces it with the trampoline. Those steps are described
in detail in Section V-B. The resulting instructions of the
process after the run-time code-remapping are visualized in
Listing 3. In line 4, the canceled instruction is replaced by a
branch to the jump_section, i.e., the patch.

The control-flow is redirected to the jump_section, a special
function serving as entry-point of the patch. This entry point

9

https://www.radare.org/n/

Listing 3: Instruction replacement on breakpoint hit
1 push {r7, lr}
2 [...]
3 ldrb r3, [r3]
4 lsls r3, r3, 2 bl jump_section
5 and r3, r3, 0x3c
6 [...]

Listing 4: Dispatcher in the FreeRTOS case study
1 push {r3}
2 ldr.w r3, [0x20000052]; dispatcher entry
3 cmp lr, r3
4 beq 0x20000074; patch location
5 [...]
6 pop {r3}
7 pop {r7, pc}

is required as no direct branch from ROM to RAM is possible
on the used hardware, as described in Section V-B. The
jump_section manipulates the program counter (PC) shifting
execution to the dispatcher. The dispatcher checks the origin
of each control-flow redirection, indicated by the LR register.
This register contains the return address, which is stored
automatically by each branch and link (BL) instruction. A
comparison between the current origin (LR) and each possible
origin (dispatcher entry) can determine the patch to execute,
which is shown in the resulting dispatcher code presented in
Listing 4.

VII. EVALUATION

To demonstrate the practicability of our hotpatching frame-
work HERA, we conducted diverse measurements and case
studies in our evaluation. In particular, we evaluate HERA
based on the open-source implementation of two real-world
medical devices (a syringe pump and a heartbeat sensor),
which both provide critical functionality and real-time re-
quirements. We port the two programs to our target hardware
platform and even integrated the electrical part of both devices,
i.e., actuators, sensors, and displays to facilitate evaluation
of HERA based on a real and representative physical setup.
The representative test setup is shown in Figure 5. As no
vulnerability is known for the open-source implementation of
both devices, we implanted typical memory corruption vul-
nerabilities (out-of-bounds write) allowing a remote attacker
to compromise the devices.

As the HERA framework patches systems on binary level,
hotpatch development can be conducted on basis of binaries
as well as using source code. However, developing patches
for real-world embedded systems rises several challenges.
Typical embedded devices do not come with the possibility
to easily modify the software they run. Porting the software
to development hardware leaves manifold issues due to the
close interactions with the hardware. While it is straight-
forward to develop patches using source-code or a binary
with minimal changes, this is more complicated if a binary
contains a multitude of changes as more than a single bug
are fixed. For the measurement study, exact knowledge of
the internal software and debug features of the processor are

Power supply

Stepper motor
for syringe

Heart rate sensor

LCD

NUCLEO-F446RE
development board

Driver for
stepper motor

Figure 5: Photo of the implemented setup.

required. Therefore, our case study bases on two open-source
medical devices, where both source code and hardware setup
are publicly available and well-documented.

Embedded devices often execute software written in
memory-unsafe languages, likewise our example projects. Due
to the manual memory management, memory errors are preva-
lent and often lead to critical software vulnerabilities [58].
Programming errors belong to the most common causes for
vulnerabilities with code execution capability for devices with
local, remote or internet access [59]. A recent example of a
critical real-world vulnerability is referred to as Ripple20 [60].
Ripple20 is a series of vulnerabilities discovered in a small
TCP/IP stack affecting a wide range of embedded devices.
The series include multiple vulnerabilities that are caused by
improper input or parameter validation. Ripple20 proves that
out-of-bound write and read vulnerabilities are a recent and
major threat to embedded landscape.

Using our out-of-bounds write vulnerabilities (improper
validation), we developed return-oriented programming (ROP)
attacks against each application. Thereafter, we developed
patches for both applications, of which each inserts a bounds-
checking preventing the out-of-bounds write rendering the
ROP-attack useless. Furthermore, we also performed a mea-
surement study on these example applications, quantifying the
overhead induced by hotpatching. These measurements clearly
demonstrate that HERA is highly efficient inducing negligible
overhead.

A. Case Study: Medical Devices

Next, we describe our two safety-critical medical devices,
namely the syringe pump and the heartbeat sensor. Both
devices build upon the popular Arduino platform. They are
a good target for our evaluation as they both need to strictly
meet hard deadlines to guarantee the patient’s health.

Syringe Pump. A syringe pump is a medical device used by
an external monitoring or sensor system to inject intravenous

10

medication to a patient in regular time intervals. It is critical
to inject the correct amount, with the correct injection rate
at precisely defined points in time. While commercial syringe
pumps are typically expensive, there has been interest in de-
veloping syringe pumps as open source, allowing to reproduce
such medical devices [61]. This enables manufacturing of such
critical, but possibly life-saving medical devices, even though
industrial-produced syringe pumps are not available, e.g., due
to cost reasons or sudden incidents like catastrophes.

For the evaluation of HERA, we used an open-source
implementation of a syringe pump [61]. This project was for
example also previously used by Abera, Asokan, Davi, et al.
to show feasibility of an implementation for remote attestation
of embedded devices [62].

Heartbeat Sensor. The second example is a heartbeat sen-
sor [63], which is a timing-critical sensing device. Accurate
measurements depend on the real-time sampling rate of the
sensor. If the timing varies, this massively influences the
quality of the measurements. Measurements can easily become
unreliable due to noise, peaks, or a variable signal, thus
continuous sampling is required. Security is as important as
high availability. An incorrect injected amount of medication
or a false heart-rate caused by malicious manipulation can
have lethal consequences for patients, who rely on the correct
function of those devices.

In order to use our framework, we had to port both appli-
cations from the Arduino to the ARM Cortex-M4 platform
and enable it to run on the FreeRTOS operating system.
The Arduino platform is a popular platform for open-source
projects as well as affordable medical system due low-cost
and extensive software support [64]. Recall that the Cortex-
M4 is a processor that readily features a FPB unit. For the
implementation, as well as further measurements, we used the
setup shown in Figure 5 and described in Section VI.

Exploitation Steps and Requirements. To create a proof-
of-concept (POC), we implanted the following security vul-
nerability into both applications: a missing bounds check in
the command receive function which allows an attacker to
perform a buffer overwrite. Note that Cortex-M4 processors
feature a Harvard bus architecture for simultaneous data and
instruction fetches, but have a unified memory space. This
means that program code, data, and peripherals share the same
memory space [24, Section 3.1.1]. A Harvard architecture
usually prevents direct code insertion [65], but since it is
only applied at the micro-architecture level the shared memory
space still allows for traditional code injection [66] as well
as return-oriented programming (ROP) [67]. As mentioned
in Section IV, we assume a remote attacker with no direct
physical access, yet able to communicate with the device
through one of its external interfaces. In this particular sce-
nario, the attacker has the capability to use the serial interface
of both applications hosting the command interface. In normal
operations, the device can be controlled via the serial interface.
In our scenario, allows this interface an attacker to exploit a
buffer-overwrite/read error. We developed two exploits, one for
each device. With these exploits, a ROP-attack is launched,
manipulating the program execution in a way so that the
syringe pump delivers a large amount of fluid independent of
its configuration. The ROP-attack on the heartbeat sensor stops

the continuous heartbeat measurement, altering the received
sensor signal to a falsified value.

Patching the Vulnerabilities. We developed patches for both
applications to add the missing bounds checks: if a message is
too large for the buffer, it is dropped, as the applications both
have fixed-size commands. Patch development has been carried
out according to the description in Section VI. We created a
hotfix for the application, developed in the C programming
language. Afterwards, we created a binary diff between the
compiled unpatched and patched version at assembly level.
Then, we added minor modifications to reconstruct the stack
frame pointer and adjusted the jump instructions. In our proof
of concept, we use a pre-configured preemptable RTOS task
to directly load the patch into RAM. The transfer to RAM and
patch activation are triggered through a button press.

Patch Task. The implementation of the case study is based on
an interruptible patch task originating from a preconfigured
patch. In a real-world scenario the patch would be received
through a secure update mechanism from an external interface
(see Section II).

The patch task transfers the patch to a dedicated patch
region located in RAM. The use of RAM for patch storage is
often required since embedded devices provide only block-
writable memory and Flash (ROM) modification is either
difficult or not possible. Furthermore, the hotpatch is intended
as a temporary solution to protect the device until the next, but
likely distant, full firmware update opportunity. After copying
the patch to the correct patch region, the patching task conducts
all required preparations of the patch. Finally, using the FPB
unit, the patch is activated via an atomic switch. This procedure
is a single instruction on processor layer thereby it ensures
minimal overhead and prevents the patching process from
being interrupted.

FPB Atomic Switch. The FPB unit, which is the core of
the HERA framework, can create a true atomic switch to the
patched software version without the need to use a locking
software pattern like critical code sections. As explained in
Section V, a trampoline can be inserted on-the-fly by the FPB
hardware. The trigger to activate this insertion mechanism is
a single register write [23], which can be achieved in a single
store assembly instruction. A disassembly of the case study
binaries confirms that the register is accessed only once with a
store instruction. The CPU executes a single instruction either
fully or not at all. Thus, the FPB patch activation through
a register is truly atomic. The execution of an instruction
cannot be interrupted halfway to cause an inconsistent state.
Therefore, the RTOS can operate without special consideration
of the patch activation process.

The case study showed, that the unpatched device was
vulnerable to the developed ROP-attack. Without the patch,
it was possible to trigger both devices to malfunction. After
the patch activation, which inserted the missing bounds checks,
the exploit did not work anymore. During the patch activation
process, both devices continued to work normally. In what
follows, we measure the exact overhead and quantify the
interruptions to argue practical applicability of our approach.

11

B. Measuring the Overhead

As the insertion of the trampoline is performed on-the-fly
based completely on hardware, the overhead caused by the
addition of further code is minimal. As the patching method
is based on a small block of assembly instructions, there is no
impact due to used compilers or intermediate software layers.
The trampoline to the dispatcher code is required as the jump
target cannot be addressed directly within a jump instruction.

The inserted patch itself is handled the same way as any
other code fragment. That is, it is likewise interruptible by
the scheduling from the running RTOS system. The RTOS
can interrupt the execution of the patch at any time, if this is
required to meet real-time deadlines. The added overhead from
the FPB unit is deterministic because it is only the instruction
fetch or literal load for the replaced instruction [23]. This
makes it possible to also patch real-time critical code sections.
As the replaced instruction is well-known, the developer can
exactly calculate the required time for a instruction fetch with
knowledge of the microarchitecture and CPU frequency. In the
following, we will further elaborate on the time required for
the FPB unit to switch.

To quantify the overhead we measured the exact switching
time using an oscilloscope5 and the processors’ clock as
reference. We inserted triggers for external pins to determine
which instruction is currently executed. The GPIO bus of
the connected pins is directly connected to the CPU [52].
Furthermore, we configured the bus frequency driving the
external pins to be the same as the CPU clock [52]. Hence, the
pin trigger causes no additional delay other then the necessary
instructions to drive the pins state. For the overhead mea-
surements, we accept the additional delay caused by driving
the pins states. However, we will eliminate this delay by a
reference measurement, i.e., the times necessary for the pins
to switch, see Figure 7. We repeated all measurements for
five times. We did not measure any deviation. This comes as
no surprise since our patch strategy completely controls the
execution and builds upon hardware features that are executed
atomically. Hence, we avoid giving any variance numbers in
the following. Real-time hotpatching needs predictability and
requires minimal overhead to meet the deadlines in place. With
the help of an oscilloscope we examine two characteristics
of the hotpatching system: (1) Atomic Switch Time: The time
required to activate a single patch, that must pass through the
execution cycle uninterrupted. (2) Control Flow Redirection:
The time required to abort the execution of a single instruction
and insert as well as execute the trampoline.

As we already discussed in theory, the Atomic Switch Time
is the execution time of a single assembly instruction. The
Control Flow Redirection just adds the cost of the transaction
abort, i.e., a single instruction fetch, see Section V-A. By
means of physical measurements, we check that the theoretical
assumptions hold in practice. With the examination of variance
of both characteristics, we can check for predictability, i.e.,
constant time overhead. Since the measurement itself adds
overhead (e.g., pin overhead) and thus measuring a single
assembly execution is not feasible, we focus on the properties.
Even with the overhead in place, the measurements should
have the expected properties, i.e., no variance. The overhead

5Siglent SDS1104X-E

Table I: Duration of the transaction abort for different ex-
amples. This represents the time needed to abort current
instruction and switch to the jump_section.

Case Duration Pin Overhead Difference
While-Loop 1.624 µs 1.384 µs 240 ns
Syringe pump 1.456 µs 1.26 µs 196 ns
Heartbeat 1.476 µs 1.288 µs 188 ns

added through the pins is eliminated through a reference mea-
surement. Thus, the actual overhead created by our hotpatching
method can be estimated precisely.

Atomic Switch Time. We measure the time to perform the
atomic switch to enable the patch using the implemented
use cases, see Section VII-A. In both cases we measure a
switch time of 1.524 µs, including a pin overhead of 1.288 µs.
By calculating the difference between total time and the
pin overhead, we obtain the overhead time induced by the
hotpatching, in this case 236 ns. Since the CPU was clocked
at 42 MHz, we can calculate a total of 236 ns · 42 MHz ≈ 10
clock cycles for the 5 switch instructions, whereby only one
needs to be atomic. Thus, the atomic switch is performed in
significantly less than 10 clock cycles. As mentioned before,
these measurements were repeated five times, but no deviation
was measured. The time required to enable the patch is small
and constant, independent of the actual patch.

Control Flow Redirection. The second experiment evaluates
the time to perform a trampoline insertion, i.e., the on-the-
fly instruction exchange and trampoline jump. The results are
presented in Table I. The expected overhead according to the
data sheet is a single instruction abort [23]. As measurements
on sub-instruction level are not feasible, we included the time
to jump to the trampolines’ target address into the measure-
ment. We inserted a function called jump_section that serves
as the target of the trampoline. In case of our example codes,
the syringe pump and the heartbeat sensor, the measurement
starts before the replaced instruction and terminates within the
jump_section. The first table entry ‘While-Loop’ represents
the time required to branch into the jump_section and directly
return. Thus, the measurement is stopped a couple instructions
later, after the trampoline was executed successfully. In case of
the medical devices, only around eight CPU cycles are required
to exchange instructions and branch into the jump_section: As
the CPU clock is 42 MHz, the number of cycles that is required
for the control flow redirection can be calculated. The syringe
pump takes 196 ns ·42 MHz ≈ 8.2 cycles, the heartbeat sensor
takes 188 ns ·42 MHz ≈ 7.9 cycles. The While-Loop example,
which continuously performs jumps to and returns from the
jump_section, takes 240 ns·42 MHz ≈ 10 CPU cycles. Because
this case includes the return back to the trampoline insertion
point, this is to be expected as additional instructions are
executed. The minimal number of cycles to execute a single
instruction is one cycle [23]. Thus, a difference of only two
cycles is very small. The overall evaluation of the measured
times to abort the transaction indicates that the overhead for
the Control Flow Redirection is negligible.

In order to verify that the transaction abort, which costs
a single instruction fetch, is constant and independent from
the aborted instruction, we performed measurements replacing

12

Table II: Time required to abort different instructions.

Instruction Cycles Duration
NOP 1 1.644 µs
PUSH {lr} 2 1.644 µs
LDR 2 1.644 µs
B.n 2 1.644 µs
UDIV 2-12 1.644 µs

Injection

Patch applicaton

Task injection sleep injection injection sleep injection

Duration 12.93s 1.00s 12.93s 12.93s 1.00s 12.93s

unpatched patched

1.00s

sleep

time

Figure 6: Measurements of the full end-to-end experiment on
the syringe pump.

different instructions. The measured times, that include the pin
overhead as well as the overhead to branch to and return from
the jump_section with the respective instruction are presented
in Table II. The chosen instructions are common and cover a
wide range of execution costs. While the no-operation (NOP)
instruction takes a single CPU cycle, the PUSH instruction
takes two cycles, and a division takes up to 12 cycles to
complete. The duration, i.e., the execution time, has not
changed while exchanging the different instructions. Therefore,
one can confirm that the transaction abort is constant and
independent from the instruction, which will be replaced by the
trampoline. The pin overhead is also constant and amounts to
1.384 µs for this measurement setup. The cost per instruction is
broken down into details in the reference manual of the ARM
Cortex-M4 processor [23].

C. Further Measurements

In general, patches can consist of multiple parts as several
issues potentially have to be fixed in one hotpatch. This is
easily possible with HERA as we support the use of multi-
ple trampolines. We evaluated the time required to execute
multiple patches in a row. The FPB unit on the Cortex-M4
processor supports up to six break points [23]. However, we
used only five in our evaluation as we required one breakpoint
for the measurement setup. The setup consists of a while-
Loop containing NOP instructions. These NOP instructions
have been replaced step by step with the trampolines by
configuring the FPB breakpoints. Figure 7 shows the measured
times for each number of breakpoints. A single measurement
is a loop cycle with the previously configured amount of
breakpoints. The reference baseline, i.e., the overhead due to
the pin triggering, is indicated by zero breakpoints. Again,
each measurement was repeated five times. Unsurprisingly, we
did not measure any deviation as the switches by the FPB
unit are atomic instructions with fixed execution time. It can
be stated safely, that the duration per breakpoint is constant
and multiple trampolines can be inserted with a known and
constant overhead.

To validate that the patching process using HERA works
correctly in practice, we performed a full end-to-end experi-

0 1 2 3 4 5
0

1

2

3

4 Total duration Duration per Breakpoint

of breakpoints

Ti
m

e
in

 µ
s

Figure 7: The duration of the patching depending on the
number of breakpoints.

ment on the syringe pump. We measured the timings of the
full hotpatching process during the operation of the syringe
pump using the oscilloscope. Figure 6 shows the experiment
and the measured results. The syringe pump applies 1 mL
with 1 s pauses in a continuous process. First, the normal
operation of the unpatched program is measured. Then, during
an idle phase, the patch is applied and activated. The operation
continues seamlessly. Using the oscilloscope, we verified that
the timings were not affected by neither the hotpatch nor the
patch application. The patch application that was automatically
scheduled during the idle-time and did not cause any delay.

D. Case Study: Patching FreeRTOS

In our second case study, we use the HERA framework
to patch an existing vulnerability in FreeRTOS. CVE2018-
16601 [56] describes a vulnerability in the TCP/IP stack of
FreeRTOS, allowing to corrupt the memory and allowing a
remote attacker to execute code remotely or perform a denial-
of-service (DoS) attack, which disrupts the device. This vulner-
ability is caused by a missing bounds check because the size of
the IP header is not validated at any point [57]. FreeRTOS up
to version 10.0.1 is affected, the vulnerability has a CVSSv3
of 8.1 (high). This is a severe vulnerability, which should be
patched immediately. However, updating a device interrupts its
service, so that patches are stalled. Therefore, we developed a
hotpatch which works without any impairments to the device
and its service, following our previously described guidelines.
As source code for FreeRTOS is available, we compiled two
binaries. The first binary is a vulnerable release of FreeRTOS,
the second one is a patched version. We integrated the HERA
framework such that the patch is automatically applied to the
first, vulnerable binary.

In detail, we developed a prototype basing on FreeRTOS
Labs 160919, which uses FreeRTOS 9.0.0 together with the
vulnerable TCP/IP stack [68]. First, we linked the HERA
library to the vulnerable FreeRTOS and compiled it into binary.
Then, we backported the fix from the recent FreeRTOS 10.0.3
with TCP/IP stack V2.2.1 to the vulnerable FreeRTOS 9.0.0.
Using Radare2, we performed a binary diff from the two
binaries and derived a hotpatch from it. We implemented a
low-priority updater task that automatically applies the update

13

as soon as the system is in IDLE status. Details on the
development process and implementation of this hotpatch have
been already described in Section VI-C and Section VI-E.
This case study shows that the HERA framework is suited
to hotpatch practical security vulnerabilities.

E. Conclusion of Evaluation

With the case study on the medical devices, we showed
that HERA can be used to hotpatch critical embedded systems.
While the vulnerabilities in these devices have been inserted
intentionally, the hotpatch for CVE-2018-16691, a serious
vulnerability in FreeRTOS is an example for a existing vul-
nerability that can be hotpatched. Through our extensive mea-
surements, we provide evidence that the performance overhead
induced by HERA is negligible both in theory and practice.
The overhead for a Control Flow Redirection is on a sub-
instructional level, and the Atomic Switch Time is only a single
assembly instruction, which is either executed up to completion
or disregarded by the CPU. The design of the trampolines is the
minimal number of instructions required to jump to the patch.
It is possible to insert multiple trampolines with constant,
predictable, and negligible overhead, which was verified in
a full end-to-end experiment. This makes HERA suitable for
patching systems with hard real-time properties, i.e., the most
strict and critical requirements. In particular, our case-studies
on real-world medical device software demonstrate that HERA
provides an efficient and effective mechanism to hotpatch
resource-constrained embedded devices that have real-time
constraints.

VIII. RELATED WORK

The need for Hotpatching comes from high availability
constraints. The idea of hotpatching or dynamic software
updating has been around for a while and focused on tra-
ditional software [12]. Research has spent great efforts in
applying hotpatching to traditional software, especially server
applications [13]–[15]. Gu, Cao, Xu, et al. optimized a Java
VM using a lazy updating approach to avoid a disruptive
halt and restart cycle [69]. Even the multi-threaded nature
of server applications has been considered [15], [70]. While
traditional updates, where programs or systems are restarted,
erase the system state, in hotpatching this state has to be
maintained. A main problem in hotpatching is to apply changes
and to transfer this state. Makris and Bazzi discuss a stack
reconstruction algorithm, which allows the update of active
functions [71]. Other work focuses on a checkpoint model,
i.e., putting program into a state where state transfer is easily
achievable. The framework Kitsune [17] makes use of such
update points, that need to be specified by the programmer.
This model has been extended to support arbitrary complex
software updates [13]. Giuffrida, Iorgulescu, Kuijsten, et al.
present a fault-tolerant state transfer approach [72]. The frame-
work POLUS targets server software and introduces a state
synchronization model to eliminate the need for specific update
points. It maintains the new and old data structures in parallel
and slowly shifts towards the new data structure by means
of synchronization [15]. However, not all updates require
a complex state transfer mechanism. In contrast to generic
program updates, security patches are said to be “small, iso-
lated, and feature-less” [51]. The prevalent model for applying

hotpatching is the relocation of executables [16], [17], [73].
In general, hotpatching, also called dynamic software updates,
can be categorized by the used model and effect of the software
update [34]. With the rise of Internet of Things (IoT) and
the spread of cyber-physical systems, hotpatching has been
considered as an approach to target security issues. Cyber-
physical systems or the Internet of Things represent distributed
and interact with real-world entities. Thus, real-time or high
availability constraints can apply in different forms. Park, Kim,
Kim, et al. describe an architecture on how to gather and
distribute updates [74]. Felser, Kapitza, Kleinöder, et al. also
present a special architecture for patching sensor nodes [75].
It includes the automatic calculation of differences and image
creation to update the sensor node in order to incrementally
link new code to the existing application. Current research
focuses on the domain of smart devices and its application
fields, e.g., energy management or smart cities. In sensor
nodes, energy consumption is often a critical factor. This
challenge is tackled by Zhang, Ahn, Zhang, et al. in the
context of energy-harvesting devices [40]. Mugarza, Amurrio,
Azketa, et al. describe the application and deployment of
a hotpatch and live update framework Cetratus [39] in the
smart city domain [76]. Salls, Shoshitaishvili, Stephens, et al.
present Piston, a framework that allows to apply hotpatching
to devices that are not designed for such hotpatching by using
exploits [77].

Real-time requirements introduce further challenges to
hotpatching [41]–[43]. Wahler, Richter, and Oriol describes
a generic software-based hotpatching for real-time systems
and its components [41]. They investigate how to identify
points in time suitable for a update process and propose a
state transfer model. The key assumptions are that the critical
update process has a linear time amount. Thus, the critical
update process fits in one cycle. Furthermore, the state transfer
assumes a shared memory space that an updated component
can take over. The main limitation is that the state transfer
has to fit in one cycle. Therefore, Wahler, Richter, Kumar, et
al. propose a state synchronization algorithm to synchronize
two components, i.e., old and new component. An atomic
switchover takes place at the full synchronization point. This
allows updates with arbitrarily large states [42]. Wahler and
Oriol present FASA (Future Automation System Architecture),
implementing the component-based updating model [43].

An important additional aspect in high-availability systems
is often fault-tolerance. Besides availability, many systems also
need fault-resistance. A measure to achieve fault-tolerance
is redundancy or replication. A variety of those replication
schemes exist and they can be integrated into hard real-
time applications [78]. Replicated systems can be patched
one at a time as those systems usually substitute each other
during downtime. There exist multiple solutions to achieve
replication [79]. While this is a good solution if multiple,
redundant instances are already available, this is not a general
solution. Redundancy is costly and requires hardware and
resources not present in limited embedded systems. Therefore,
hotpatching embedded systems is the only solution.

IX. CONCLUSION AND SUMMARY

Current research has not yet addressed the challenges of
applying hotpatches on embedded devices: the low resource

14

availability due to the need for low-energy consumption,
guaranteed availability, and the simultaneous need for hard
real-time capabilities. In this paper, we present HERA, the
first framework to tackle all these challenges allowing the
application of hotpatches to real-time constrained embedded
systems using commercial off-the-shelf hardware. Patches in
HERA are processed during idle-time and activated within
just a single processor instruction. Thus, patching cannot
interfere with the application or other processes. The patch
itself is added by the on-board debugging unit during run-
time with negligible and exactly predictable overhead verified
by oscilloscope measurements. This makes HERA suitable for
systems with the most strict real-time requirements. In a case
study, we used HERA to hotpatch two medical devices with
a critical vulnerability. Furthermore, we developed hotpatches
for HERA to patch a real-world vulnerability in the TCP/IP
stack of FreeRTOS. This shows the effective and efficient
applicability of HERA to hotpatch real-time critical embedded
systems.

ACKNOWLEDGMENT

This work has been partially funded by the DFG as
part of project S2 within the CRC 1119 CROSSING. This
work was supported by the DFG Priority Program SPP 2253
Nano Security (Project RAINCOAT). We thank our shepherd
Jeyavijayan Rajendran and the anonymous reviewers for their
valuable feedback.

REFERENCES

[1] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “SoK: security
evaluation of home-based iot deployments,” in IEEE Symposium on
Security and Privacy (SP), IEEE, 2019. DOI: 10.1109/SP.2019.00013.

[2] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B.
Defend, W. Morgan, K. Fu, T. Kohno, and W. H. Maisel, “Pacemakers
and implantable cardiac defibrillators: Software radio attacks and zero-
power defenses,” in IEEE Symposium on Security and Privacy (SP),
IEEE, 2008. DOI: 10.1109/SP.2008.31.

[3] US Food and Drug Administration, Firmware update to address
cybersecurity vulnerabilities identified in abbott’s (formerly st. jude
medical’s) implantable cardiac pacemakers: FDA safety communica-
tion, Oct. 18, 2017. [Online]. Available: https : / / www . fda . gov /
medical - devices / safety - communications / firmware - update - address -
cybersecurity - vulnerabilities - identified - abbotts - formerly - st - jude -
medicals (visited on 06/25/2020).

[4] D. B. Kramer and K. Fu, “Cybersecurity concerns and medical devices:
Lessons from a pacemaker advisory,” Jama, vol. 318, no. 21, 2017.

[5] D. Quarta, M. Pogliani, M. Polino, F. Maggi, A. M. Zanchettin, and
S. Zanero, “An experimental security analysis of an industrial robot
controller,” in IEEE Symposium on Security and Privacy (SP), IEEE,
2017. DOI: 10.1109/SP.2017.20.

[6] E. Kovacs, “Cyberattack on german steel plant caused significant
damage,” Security Week, vol. 18, 2014.

[7] T. D. Maiziere, “Die Lage der IT-Sicherheit in Deutschland 2014,”
Bundesamt für Sicherheit in der Informationstechnik, 2014.

[8] T. Gerace and H. Cavusoglu, “The critical elements of the patch
management process,” Communications of the ACM, 2009. DOI: 10.
1145/1536616.1536646.

[9] A. Nappa, R. Johnson, L. Bilge, J. Caballero, and T. Dumitras,
“The attack of the clones: A study of the impact of shared code on
vulnerability patching,” in IEEE Symposium on Security and Privacy
(SP), IEEE, 2015. DOI: 10.1109/SP.2015.48.

[10] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in International Con-
ference on Software Engineering (ICSE), IEEE, 2012. DOI: 10.1109/
ICSE.2012.6227141.

[11] G. N. Ericsson, “Cyber security and power system communication–
essential parts of a smart grid infrastructure,” IEEE Transactions on
Power Delivery, 2010. DOI: 10.1109/TPWRD.2010.2046654.

[12] M. E. Segal and O. Frieder, “On-the-fly program modification: Systems
for a dynamic updating,” IEEE Software, 1993. DOI: 10 . 1109 / 52 .
199735.

[13] C. Giuffrida, C. Iorgulescu, G. Tamburrelli, and A. S. Tanenbaum, “Au-
tomating live update for generic server programs,” IEEE Transactions
on Software Engineering, 2017. DOI: 10.1109/TSE.2016.2584066.

[14] M. Payer and T. R. Gross, “Hot-patching a web server: A case study
of ASAP code repair,” in Annual Conference on Privacy, Security and
Trust (PST), IEEE, 2013. DOI: 10.1109/PST.2013.6596048.

[15] H. Chen, J. Yu, R. Chen, B. Zang, and P.-C. Yew, “POLUS: A pow-
erful live updating system,” in International Conference on Software
Engineering (ICSE), IEEE, 2007. DOI: 10.1109/ICSE.2007.65.

[16] A. Ramaswamy, S. Bratus, S. W. Smith, and M. E. Locasto, “Katana:
A hot patching framework for ELF executables,” in International
Conference on Availability, Reliability and Security (ARES), IEEE,
2010. DOI: 10.1109/ARES.2010.112.

[17] C. M. Hayden, E. K. Smith, M. Denchev, M. Hicks, and J. S. Foster,
“Kitsune: Efficient, general-purpose dynamic software updating for
c,” in ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), ACM, 2012. DOI:
10.1145/2384616.2384635.

[18] ARM, Arm Processors for the Widest Range of Devices–from Sensors
to Servers, 2020. [Online]. Available: https://www.arm.com/products/
silicon-ip-cpu (visited on 07/08/2020).

[19] Eclipse Foundation, Iot developer survey 2019, 2019. [Online]. Avail-
able: https : / /outreach .eclipse . foundation /download- the-eclipse- iot -
developer-survey-results (visited on 07/06/2020).

[20] M. D. Schwartz, J. Mulder, J. Trent, and W. D. Atkins, “Control
system devices: Architectures and supply channels overview,” Sandia
Report SAND2010-5183, Sandia National Laboratories, Albuquerque,
New Mexico, 2010.

[21] J. Goodacre and A. N. Sloss, “Parallelism and the ARM instruction set
architecture,” Computer, vol. 38, no. 7, 2005. DOI: 10.1109/MC.2005.
239.

[22] S. Furber, “Computing without clocks: Micropipelining the arm pro-
cessor,” in Asynchronous Digital Circuit Design, Springer, 1995.

[23] ARM, “Cortex-M4 processor technical reference manual,” Revision:
r0p1, ARM 100166_0001_00_en, 2015. [Online]. Available: https : / /
static . docs . arm .com/100166 /0001 / arm_cortexm4_processor_ trm_
100166_0001_00_en.pdf (visited on 12/16/2020).

[24] J. Yiu, The Definitive Guide to ARMő Cortexő-M3 and Cortexő-M4
Processors. Elsevier Science, 2013, ISBN: 9780124079182.

[25] Tensilica, Inc., “Xtensa instruction set architecture (isa) reference
manual,” RC-2010.1 Release, 2010.

[26] Espressif Systems, “Esp8266ex datasheet,” Version 6.6, 2020.
[27] ——, “Esp32 series datasheet,” Version 3.4, 2020.
[28] ——, Espressif achieves the 100-million target for iot chip shipments,

2018. [Online]. Available: https : / / www . espressif . com / en / news /
Espressif _ Achieves _ the _ Hundredmillion _ Target _ for _ IoT _ Chip _
Shipments (visited on 11/02/2020).

[29] K. G. Shin and P. Ramanathan, “Real-time computing: A new discipline
of computer science and engineering,” in Proceedings of IEEE, Special
Issue on Real-Time Systems, IEEE, 1994.

[30] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,” Journal of the ACM (JACM),
1973. DOI: 10.1145/321738.321743.

[31] O. Hahm, E. Baccelli, H. Petersen, and N. Tsiftes, “Operating systems
for low-end devices in the internet of things: A survey,” IEEE Internet
of Things Journal, 2016. DOI: 10.1109/JIOT.2015.2505901.

[32] P. Hambarde, R. Varma, and S. Jha, “The survey of real time operating
system: Rtos,” in International Conference on Electronic Systems,
Signal Processing and Computing Technologies, IEEE, 2014. DOI: 10.
1109/ICESC.2014.15.

[33] AspenCore, 2019 embedded markets study, Mar. 2019. [Online]. Avail-
able: https : / / www. embedded . com / wp - content / uploads / 2019 / 11 /
EETimes_Embedded_2019_Embedded_Markets_Study.pdf (visited on
06/18/2020).

[34] C. Giuffrida and A. S. Tanenbaum, “A taxonomy of live updates,”
in Annual Conference of the Advanced School for Computing and
Imaging, 2010.

[35] FreeRTOS, Over the air (ota) updates, 2020. [Online]. Available: https:
//www.freertos.org/ota/index.html (visited on 07/09/2020).

[36] K. Koscher, A. Czeskis, F. Roesner, S. N. Patel, T. Kohno, S. Check-
oway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in IEEE

15

https://doi.org/10.1109/SP.2019.00013
https://doi.org/10.1109/SP.2008.31
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://www.fda.gov/medical-devices/safety-communications/firmware-update-address-cybersecurity-vulnerabilities-identified-abbotts-formerly-st-jude-medicals
https://doi.org/10.1109/SP.2017.20
https://doi.org/10.1145/1536616.1536646
https://doi.org/10.1145/1536616.1536646
https://doi.org/10.1109/SP.2015.48
https://doi.org/10.1109/ICSE.2012.6227141
https://doi.org/10.1109/ICSE.2012.6227141
https://doi.org/10.1109/TPWRD.2010.2046654
https://doi.org/10.1109/52.199735
https://doi.org/10.1109/52.199735
https://doi.org/10.1109/TSE.2016.2584066
https://doi.org/10.1109/PST.2013.6596048
https://doi.org/10.1109/ICSE.2007.65
https://doi.org/10.1109/ARES.2010.112
https://doi.org/10.1145/2384616.2384635
https://www.arm.com/products/silicon-ip-cpu
https://www.arm.com/products/silicon-ip-cpu
https://outreach.eclipse.foundation/download-the-eclipse-iot-developer-survey-results
https://outreach.eclipse.foundation/download-the-eclipse-iot-developer-survey-results
https://doi.org/10.1109/MC.2005.239
https://doi.org/10.1109/MC.2005.239
https://static.docs.arm.com/100166/0001/arm_cortexm4_processor_trm_100166_0001_00_en.pdf
https://static.docs.arm.com/100166/0001/arm_cortexm4_processor_trm_100166_0001_00_en.pdf
https://static.docs.arm.com/100166/0001/arm_cortexm4_processor_trm_100166_0001_00_en.pdf
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://www.espressif.com/en/news/Espressif_Achieves_the_Hundredmillion_Target_for_IoT_Chip_Shipments
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/JIOT.2015.2505901
https://doi.org/10.1109/ICESC.2014.15
https://doi.org/10.1109/ICESC.2014.15
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.freertos.org/ota/index.html
https://www.freertos.org/ota/index.html

Symposium on Security and Privacy (SP), IEEE, 2010. DOI: 10.1109/
SP.2010.34.

[37] K. Guk, G. Han, J. Lim, K. Jeong, T. Kang, E.-K. Lim, and J. Jung,
“Evolution of wearable devices with real-time disease monitoring for
personalized healthcare,” Nanomaterials, vol. 9, no. 6, p. 813, 2019.

[38] M. Rushanan, A. D. Rubin, D. F. Kune, and C. M. Swanson, “Sok:
Security and privacy in implantable medical devices and body area
networks,” in IEEE Symposium on Security and Privacy (SP), IEEE,
2014. DOI: 10.1109/SP.2014.40.

[39] I. Mugarza, J. Parra, and E. Jacob, “Cetratus: A framework for
zero downtime secure software updates in safety-critical systems,”
in International Symposium on Industrial Embedded Systems (SIES),
IEEE, 2018. DOI: 10.1002/spe.2820.

[40] C. Zhang, W. Ahn, Y. Zhang, and B. R. Childers, “Live code update for
iot devices in energy harvesting environments,” in Non-Volatile Memory
Systems and Applications Symposium (NVMSA), IEEE, 2016. DOI: 10.
1109/NVMSA.2016.7547182.

[41] M. Wahler, S. Richter, and M. Oriol, “Dynamic software updates for
real-time systems,” in Workshop on Hot Topics in Software Upgrades
(HotSWUp), ACM, 2009. DOI: 10.1145/1656437.1656440.

[42] M. Wahler, S. Richter, S. Kumar, and M. Oriol, “Non-disruptive large-
scale component updates for real-time controllers,” in Workshops of the
IEEE International Conference on Data Engineering (ICDE), IEEE,
2011. DOI: 10.1109/ICDEW.2011.5767631.

[43] M. Wahler and M. Oriol, “Disruption-free software updates in automa-
tion systems,” in IEEE Emerging Technology and Factory Automation
(ETFA), IEEE, 2014. DOI: 10.1109/ETFA.2014.7005075.

[44] R. Zurawski, Embedded Systems Handbook. CRC press, 2005. DOI:
10.1201/9781420038163.

[45] S. Holmbacka, W. Lund, S. Lafond, and J. Lilius, “Lightweight
framework for runtime updating of c-based software in embedded sys-
tems,” in Workshop on Hot Topics in Software Upgrades (HotSWUp),
USENIX Association, 2013.

[46] M. Payer, B. Bluntschli, and T. R. Gross, “Dynsec: On-the-fly code
rewriting and repair,” in Workshop on Hot Topics in Software Upgrades
(HotSWUp), USENIX Association, 2013.

[47] J. Kwon, J. Cho, and D. Park, “Function block-based robust firmware
update technique for additional flash-area/energy-consumption over-
head reduction,” in International Symposium on Intelligent Signal
Processing and Communication Systems (ISPACS), IEEE, 2019. DOI:
10.1109/ISPACS48206.2019.8986373.

[48] Android Open Source Project, A/B (Seamless) System Updates, 2020.
[Online]. Available: https : / /www.arm.com/products / silicon- ip -cpu
(visited on 07/09/2020).

[49] Espressif Systems, Over the air updates (ota), 2020. [Online]. Avail-
able: https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-
reference/system/ota.html (visited on 07/09/2020).

[50] H. Chen, R. Chen, F. Zhang, B. Zang, and P.-C. Yew, “Live updating
operating systems using virtualization,” in International Conference on
Virtual Execution Environments (VEE), ACM, 2006. DOI: 10 . 1145 /
1134760.1134767.

[51] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz, “OPUS: online
patches and updates for security,” in USENIX Security Symposium,
USENIX Association, 2005.

[52] STMicroelectronics, Stm32f446xc/e technical reference manual, 2019.
[Online]. Available: https://www.st.com/resource/en/data_brief/nucleo-
f446re.pdf (visited on 12/16/2020).

[53] C. Bormann, M. Ersue, and A. Keranen, “RFC 7228: Terminology for
constrained-node networks,” Internet Engineering Task Force (IETF),
vol. 7228, 2014. DOI: 10.17487/RFC7228.

[54] FreeRTOS, GitHub - FreeRTOS, 2020. [Online]. Available: https : / /
github.com/FreeRTOS/FreeRTOS/tree/master (visited on 07/09/2020).

[55] Microsoft, SDL Process Guidance Version 5.2, 2012. [Online]. Avail-
able: https: / /www.microsoft .com/en-us/download/details .aspx?id=
29884 (visited on 07/21/2020).

[56] CVE-2018-16601. Available from MITRE, CVE-ID CVE-2018-16601.
2018. [Online]. Available: http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2018-16601 (visited on 07/23/2020).

[57] O. Karliner, Freertos tcp/ip stack vulnerabilities the details, 2018.
[Online]. Available: https://blog.zimperium.com/freertos-tcpip-stack-
vulnerabilities-details/ (visited on 07/23/2020).

[58] L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in IEEE Symposium on Security and Privacy (SP), IEEE,
2013. DOI: 10.1109/SP.2013.13.

[59] D. Papp, Z. Ma, and L. Buttyán, “Embedded systems security: Threats,
vulnerabilities, and attack taxonomy,” in Annual Conference on Pri-
vacy, Security and Trust (PST), IEEE, 2015. DOI: 10.1109/PST.2015.
7232966.

[60] JSOF-Tech, Ripple20 - 19 zero-day vulnerabilities amplified by the
supply chain, 2020. [Online]. Available: https://www.jsof-tech.com/
ripple20/ (visited on 07/14/2020).

[61] B. Wijnen, E. J. Hunt, G. C. Anzalone, and J. M. Pearce, “Open-source
syringe pump library,” PloS one, vol. 9, no. 9, 2014.

[62] T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-FLAT: control-flow attestation for
embedded systems software,” in ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), ACM, 2016. DOI: 10.1145/
2976749.2978358.

[63] Joy-IT, Heartbeat Sensor KY-039, 2018. [Online]. Available: http : / /
anleitung . joy - it . net / wp - content / uploads / 2018 / 11 / SEN - KY039 -
Manual.pdf (visited on 07/23/2020).

[64] D. Kushner, “The making of arduino,” IEEE Spectrum, vol. 26, 2011.
[65] A. Francillon and C. Castelluccia, “Code injection attacks on harvard-

architecture devices,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), ACM, 2008. DOI: 10.1145/1455770.
1455775.

[66] O. Aleph, “Smashing the stack for fun and profit,” Phrack Magazine,
1996. [Online]. Available: http://www.shmoo.com/phrack/Phrack49/
p49-14.

[67] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2007. DOI: 10 .
1145/1315245.1315313.

[68] FreeRTOS, Labs 160919, 2016. [Online]. Available: https : / / www.
freertos.org/FreeRTOS-Labs/downloads/160919_FreeRTOS_Labs.zip
(visited on 07/23/2020).

[69] T. Gu, C. Cao, C. Xu, X. Ma, L. Zhang, and J. Lu, “Javelus: A
low disruptive approach to dynamic software updates,” in Asia-Pacific
Software Engineering Conference (APSEC), IEEE, 2012. DOI: 10.1109/
APSEC.2012.55.

[70] F. Rommel, L. Glauer, C. Dietrich, and D. Lohmann, “Wait-free code
patching of multi-threaded processes,” in Workshop on Programming
Languages and Operating Systems, (SOSP), ACM, 2019. DOI: 10.1145/
3365137.3365404.

[71] K. Makris and R. A. Bazzi, “Immediate multi-threaded dynamic soft-
ware updates using stack reconstruction,” in USENIX Annual Technical
Conference, USENIX Association, 2009.

[72] C. Giuffrida, C. Iorgulescu, A. Kuijsten, and A. S. Tanenbaum, “Back
to the future: Fault-tolerant live update with time-traveling state trans-
fer,” in Large Installation System Administration Conference (LISA),
USENIX Association, 2013.

[73] H. Jeong, J. Baik, and K. Kang, “Functional level hot-patching platform
for executable and linkable format binaries,” in IEEE International
Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2017.
DOI: 10.1109/SMC.2017.8122653.

[74] M. J. Park, D. K. Kim, W.-T. Kim, and S.-M. Park, “Dynamic software
updates in cyber-physical systems,” in International Conference on
Information and Communication Technology Convergence (ICTC),
IEEE, 2010. DOI: 10.1109/ICTC.2010.5674807.

[75] M. Felser, R. Kapitza, J. Kleinöder, and W. Schröder-Preikschat, “Dy-
namic software update of resource-constrained distributed embedded
systems,” in Embedded System Design: Topics, Techniques and Trends,
IFIP TC10, Springer, 2007. DOI: 10.1007/978-0-387-72258-0_33.

[76] I. Mugarza, A. Amurrio, E. Azketa, and E. Jacob, “Dynamic software
updates to enhance security and privacy in high availability energy
management applications in smart cities,” IEEE Access, 2019. DOI:
10.1109/ACCESS.2019.2905925.

[77] C. Salls, Y. Shoshitaishvili, N. Stephens, C. Kruegel, and G. Vigna,
“Piston: Uncooperative remote runtime patching,” in Annual Computer
Security Applications Conference (ACSAC), ACM, 2017. DOI: 10.1145/
3134600.3134611.

[78] P. Chevochot and I. Puaut, “Scheduling fault-tolerant distributed hard
real-time tasks independently of the replication strategies,” in Interna-
tional Conference on Real-Time Computing Systems and Applications
(RTCSA), IEEE, 1999. DOI: 10.1109/RTCSA.1999.811280.

[79] R. Guerraoui and A. Schiper, “Software-based replication for fault
tolerance,” Computer, 1997. DOI: 10.1109/2.585156.

16

https://doi.org/10.1109/SP.2010.34
https://doi.org/10.1109/SP.2010.34
https://doi.org/10.1109/SP.2014.40
https://doi.org/10.1002/spe.2820
https://doi.org/10.1109/NVMSA.2016.7547182
https://doi.org/10.1109/NVMSA.2016.7547182
https://doi.org/10.1145/1656437.1656440
https://doi.org/10.1109/ICDEW.2011.5767631
https://doi.org/10.1109/ETFA.2014.7005075
https://doi.org/10.1201/9781420038163
https://doi.org/10.1109/ISPACS48206.2019.8986373
https://www.arm.com/products/silicon-ip-cpu
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/ota.html
https://doi.org/10.1145/1134760.1134767
https://doi.org/10.1145/1134760.1134767
https://www.st.com/resource/en/data_brief/nucleo-f446re.pdf
https://www.st.com/resource/en/data_brief/nucleo-f446re.pdf
https://doi.org/10.17487/RFC7228
https://github.com/FreeRTOS/FreeRTOS/tree/master
https://github.com/FreeRTOS/FreeRTOS/tree/master
https://www.microsoft.com/en-us/download/details.aspx?id=29884
https://www.microsoft.com/en-us/download/details.aspx?id=29884
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16601
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16601
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://blog.zimperium.com/freertos-tcpip-stack-vulnerabilities-details/
https://doi.org/10.1109/SP.2013.13
https://doi.org/10.1109/PST.2015.7232966
https://doi.org/10.1109/PST.2015.7232966
https://www.jsof-tech.com/ripple20/
https://www.jsof-tech.com/ripple20/
https://doi.org/10.1145/2976749.2978358
https://doi.org/10.1145/2976749.2978358
http://anleitung.joy-it.net/wp-content/uploads/2018/11/SEN-KY039-Manual.pdf
http://anleitung.joy-it.net/wp-content/uploads/2018/11/SEN-KY039-Manual.pdf
http://anleitung.joy-it.net/wp-content/uploads/2018/11/SEN-KY039-Manual.pdf
https://doi.org/10.1145/1455770.1455775
https://doi.org/10.1145/1455770.1455775
http://www.shmoo.com/phrack/Phrack49/p49-14
http://www.shmoo.com/phrack/Phrack49/p49-14
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
https://www.freertos.org/FreeRTOS-Labs/downloads/160919_FreeRTOS_Labs.zip
https://www.freertos.org/FreeRTOS-Labs/downloads/160919_FreeRTOS_Labs.zip
https://doi.org/10.1109/APSEC.2012.55
https://doi.org/10.1109/APSEC.2012.55
https://doi.org/10.1145/3365137.3365404
https://doi.org/10.1145/3365137.3365404
https://doi.org/10.1109/SMC.2017.8122653
https://doi.org/10.1109/ICTC.2010.5674807
https://doi.org/10.1007/978-0-387-72258-0_33
https://doi.org/10.1109/ACCESS.2019.2905925
https://doi.org/10.1145/3134600.3134611
https://doi.org/10.1145/3134600.3134611
https://doi.org/10.1109/RTCSA.1999.811280
https://doi.org/10.1109/2.585156

	Introduction
	Background
	Problem statement & Challenges
	Assumptions and Attacker Model
	Overview of HERA
	On Hotpatching Strategy
	Design

	Implementation
	HERA Library
	Patch Development
	Example of Hotpatch Development for FreeRTOS
	Patch Application
	Example of Hotpatch Application for FreeRTOS

	Evaluation
	Case Study: Medical Devices
	Measuring the Overhead
	Further Measurements
	Case Study: Patching FreeRTOS
	Conclusion of Evaluation

	Related Work
	Conclusion and Summary

