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Abstract—Network functions virtualization (NFV) enables
agile deployment of network services on top of clouds. However,
as NFV involves multiple levels of abstraction representing the
same components, pinpointing the root cause of security incidents
can become challenging. For instance, a security incident may be
detected at a different level from where its root cause operations
were conducted with no obvious link between the two. Moreover,
existing provenance analysis techniques may produce results that
are impractically large for human analysts to interpret due
to the inherent complexity of NFV. In this paper, we propose
ProvTalk, a provenance analysis system that handles the unique
multi-level nature of NFV and assists the analyst to identify the
root cause of security incidents. Specifically, we first define a
multi-level provenance model to capture the dependencies be-
tween NFV levels. Next, we improve the interpretability through
three novel techniques, i.e., multi-level pruning, mining-based
aggregation, and rule-based natural language translation. We
implement ProvTalk on a Tacker-OpenStack NFV platform and
validate its effectiveness based on real-world security incidents.
We demonstrate that ProvTalk captures management API calls
issued to all NFV services, and produces more interpretable
results by significantly reducing the size of the provenance graphs
(about 3.6 times reduction via the multi-level pruning scheme and
two times reduction via the aggregation scheme). Our user studies
show that ProvTalk facilitates the analysis task of real-world users
by generating more interpretable results.

I. INTRODUCTION

Today, softwarized services are increasingly deployed over
virtual resources (e.g., containers or VMs) sharing underlying
physical infrastructures [1], [2]. In particular, NFV enables
the replacement of proprietary devices with software network
services and allows for more dynamic and agile network ser-
vice deployment in the cloud [3]. This new paradigm converts
traditional networking into a multi-level NFV stack by running
virtual services over multiple levels of virtual resources. Each
level of the NFV stack is operated by a different managerial
component accessible through its API interface to create,
modify or delete network services and their related resources.
Such added complexity of NFV may increase the risk of
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vulnerabilities and misconfiguration in the deployed services
[4], [5]. For instance, by exploiting CVE-2020-12689 [6],
an attacker can gain unauthorised access to the NFV manage-
ment API, and compromise other clients’ network services.
The multi-level nature of NFV together with its sheer scale
and complexity may also render pinpointing the root cause of
security incidents more challenging. Existing solutions in NFV
(e.g., [7], [8]) mainly focus on localizing failed components
instead of identifying the activities leading to the incident.

Unique challenges of provenance analysis in NFV. Data
provenance is a well-established technique used for root cause
analysis that has been applied in other domains such as IoT
(e.g., [9]), SDN (e.g., [10]), cloud (e.g., [11]) and operating
systems (e.g., [12]). Most existing approaches rely on tracking
system-level events (detailed in Section V-C and VI). The
existing management-level solution [11] is limited to clouds
with no support for multi-level/cross-level analysis (more
comparison in Section V-C3). However, applying provenance
analysis to each level of the NFV stack (e.g., cloud), while ig-
noring the relationships between levels, would be insufficient.
For instance, a user request for creating a network service
may lead to a series of operations to create virtual resources
across different levels of the NFV stack. Without capturing
the dependencies between such operations and resources, a
provenance analysis would not be able to link a security
incident to its root cause if they happen to be at different
levels of the NFV stack.

There exist provenance analysis solutions for other multi-
level systems (e.g., SDN). However, one unique aspect of NFV
that distinguishes it from those systems is that different NFV
levels are actually representing the same components (e.g., a
virtual firewall) with different degrees of abstraction (e.g., as
a service, a virtual network function, or a virtual machine) as
detailed in Section II-A. In contrast, most existing multi-level
provenance solutions (e.g., [13], [14], [15]) mainly focus on
multiple systems working together while each plays a different
role (e.g., SDN controller vs. applications [16], or the operating
system of the host vs. applications [15]). Therefore, their
provenance graphs do not need to be explicitly segregated into
different levels that can be mapped back to each other. In other
words, although those solutions can analyse the interactions
between different systems, they do not support the need for
analysing the information flows to/from different abstractions
of the same resources that we face in NFV (which will be
further illustrated through a concrete example in Section II-C).
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Moreover, the sheer scale of NFV environments implies
impractically large and complex provenance graphs for human
analysts to interpret. Some recent works (e.g., [17], [18])
focus on assisting the analyst by identifying the high-level
abstraction of behavior corresponding to different parts of
the provenance graph. However, these approaches still require
some level of domain-knowledge. For instance, the analyst
may be required to determine a label (e.g., program compila-
tion) for each extracted subgraph in the training dataset [17].
Determining such labels can be especially challenging in a
multi-tenant environment like NFV considering the complexity
and interleaving nature of the users’ behavior.

Key ideas. In this work, we argue that the uniqueness of
NFV not only leads to novel challenges in provenance analysis
but also brings about new opportunities. To explore such op-
portunities, we propose ProvTalk, an interpretable multi-level
provenance analysis approach for assisting security analysts to
investigate the root cause of security incidents in NFV. The key
insight behind ProvTalk is that the multi-level aspect of NFV
intrinsically provides higher level semantics corresponding to
lower-level concepts (e.g., a virtual firewall is represented
as a virtual network function or virtual machine at lower
levels). By establishing such a cross-level mapping, we can
trace a security incident back to its root causes located at
a different level, while improving the interpretability of the
provenance graph. Specifically, ProvTalk links the provenance
graphs at different levels of the NFV stack through capturing
the cross-level dependencies between different abstractions of
the same network service, which also implicitly captures the
cross-level dependencies among operations. Then, based on the
captured dependencies, ProvTalk improves the interpretability
of its results in three steps. First, ProvTalk removes irrele-
vant information from provenance graphs by propagating the
pruning label of nodes across different levels based on the
established dependencies between resources and operations.
Second, through mining (system or user-related) frequent pat-
terns, ProvTalk hides redundant nodes by visually aggregating
them into a single node (which can be expanded to reveal
the hidden details when necessary). Third, ProvTalk leverages
a rule-based approach to automatically translate details of a
provenance graph into a human-readable format to provide
high-level guidance to analysts.

In summary, our main contributions are as follows.
• To the best of our knowledge, ProvTalk is the first

provenance-based solution specifically designed for NFV.
Our provenance model captures the unique multi-level
nature of NFV environments, and provenance analysis
using ProvTalk allows tracing a security incident back
to its root cause potentially located at a different level.

• We propose three novel techniques to improve the inter-
pretability of provenance graphs. The multi-level pruning
and mining-based aggregation schemes can both reduce
the size and complexity of provenance graphs, and the
rule-based translation can provide useful guidance to
analyzing provenance graphs. These techniques can not
only ease the task of human analysts in applying ProvTalk
to large scale NFV environments, but also be potentially
applied to other multi-level virtual environments.

• We implement ProvTalk and integrate it into our Tacker-
OpenStack [19] testbed as an attached middleware. We
validate the effectiveness of ProvTalk based on real-world

security incidents. Our experiments using both real-world
data and testbed data show that ProvTalk produces more
interpretable provenance graphs with significant reduction
in their sizes, without losing the information vital for the
investigation. We demonstrate that ProvTalk can capture
all management API calls while incurring an insignificant
storage, latency and computational overhead. Finally, our
user studies show that ProvTalk can markedly ease the
analysis task of real-world users.

The remainder of this paper is organized as follows: Sec-
tion II provides NFV background and motivates our solution.
Section III describes our methodology. Section IV details
the implementation of ProvTalk, and Section V presents our
experimental results and user studies. Section VI discusses
limitations and future work. Section VII reviews related work.
Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATING EXAMPLE

This section provides background on NFV, defines our
threat model and describes a motivating example for ProvTalk.

A. NFV Background
The left side of Fig. 1 illustrates a high-level view of

the ETSI NFV reference architecture, where a user-specified
service description is implemented through the virtual net-
work function (VNF) block (which provides a high-level
representation of network functions) and the NFV infrastruc-
ture (NFVI) block (which represents the underlying cloud
infrastructure), while both blocks are provided by the same
network operator [3]. The right side of Fig. 1 shows an
example of a multi-level network service deployment with
corresponding management modules, and depicts how the
actual deployment of a network service would correspond to
the ETSI architecture. Specifically, the VNF block in the ETSI
architecture maps to the NFV level, where a network service
is deployed as several VNFs forming a VNF forwarding
graph (VNFFG). The NFVI block in the ETSI architecture
is mapped to both the service function chaining (SFC level),
where there are virtual resources such as port pair groups,
and the cloud level, where there are virtual resources such as
VM, port and subnet. Finally, users can manage those levels
through management modules including Network Function
Virtualization Orchestrator (NFVO), Virtual Network Function
Manager (VNFM), Software Defined Networking Controller
(SDN-C) and Virtualized Infrastructure Manager (VIM).

      Within-level dependency             Cross-level dependency           
      Users’ issued API call              Triggered lower-level API call
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Fig. 1: High-level view of ETSI NFV reference architecture
(left); Example of multi-level network service deployment
showing the dependencies between resources (right).
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Fig. 2: Attack scenario detected at the NFV-level (left); log-based analysis (middle); excerpts of the provenance graphs (right).

Fig. 1 demonstrates how dependencies may exist between
resources either at the same level or between different levels.
For example, the solid lines at the NFV level indicate that the
two VNFs, namely VNFa and VNFb, are part of (and connected
through) a VNFFG named VNFFGx (similar dependencies
exist between the port pair groups and port chains, the VMs
and ports, as well as the ports and subnets). Furthermore, the
dashed lines represent dependencies across different levels.
For example, the dashed line between VNFa (NFV-level)
and VMa (cloud-level) indicates that the creation of VNFa
will automatically trigger the creation of VMa. Similarly, the
creation of VNFFGx will automatically trigger the creation of
PortChainx. Finally, a dashed line links PortPaira (SFC level)
to its two components (Porta1 and Porta2).

The above example shows how operations executed at dif-
ferent levels might affect resources and consequently introduce
(within-level or cross-level) dependencies in the NFV stack.
These dependencies are crucial to correctly identify the root
cause of security incidents in NFV. To capture those concepts,
we define a multi-level provenance model in Section III-A1.

B. Threat Model and Assumptions
Our in-scope threats include both external attackers who

exploit existing vulnerabilities in the NFV stack, and insiders,
such as NFV clients, cloud users and tenant administrators,
who make the NFV stack exploitable either through mistakes
or by malicious intentions. As our provenance model focuses
on capturing management operations, we limit our scope
to attacks that involve operations directed through the NFV
management interfaces (e.g., command line and dashboard).
Similar to most existing provenance solutions, we assume our
solution is deployed by the owner of the system, and thus it has
access to the full NFV stack, and we assume the NFV stack
management modules, the provenance building mechanism and
the provenance storage are all protected with existing tech-
niques such as remote attestation [20], [21], hash-chain-based
provenance storage protection [22] or type enforcement [23].

Out-of-scope threats include attacks that involve no man-
agement operations or resources captured in the provenance
graph, and attacks that can completely bypass the NFV

management interfaces. Moreover, as with most works on
provenance analysis, we do not consider attackers who can
temper (either through attacks or by using insider privileges)
the infrastructure management system (e.g., breaching the
integrity of the API calls and databases of services) or the
provenance solution itself. Although our framework provides
more interpretable information for easier analyses, it relies
on the human analysts to pinpoint the root cause at the
end. Finally, although our provenance results may lead to the
discovery of existing vulnerabilities or misconfigurations, our
focus is not on vulnerability analysis, intrusion detection, or
configuration verification, and our solution is expected to work
in tandem with those solutions.

C. Motivating Example

In this section, we provide a motivating example to show
the benefit of applying ProvTalk. Fig. 2 illustrates an attack
scenario (left) and the challenges faced by a security analyst
(middle and right) in investigating the root cause.

Tedious log investigation. Upon receiving an alert from the
virtual IDS (VNFids) about unauthorized SSH traffic, an analyst
begins investigating the root cause of this incident. As shown
in Fig. 2 (middle), the analyst may need to inspect thousands
of log entries at all levels of the NFV stack. However, this can
be cumbersome if done manually, since there is no apparent
relationship between those entries.

Lack of cross-level dependencies. To establish the relation-
ships between log entries, assume the analyst applies a prove-
nance analysis tool (e.g., [24], [11]) to each level. As shown
in Fig. 2 (right), the tool would generate a provenance graph
that shows the virtual IDS (VNFids) becomes part of VNFFGx
through CreateVNFFG operation, where it is preceded by a
virtual firewall (VNFfw). The analyst can also see that VNFfw is
configured to filter the SSH traffic (by UpdateVNF-Config-SSH
operation), and thus, the security incident (unauthorized SSH
traffic) is not supposed to happen. At this point, the analyst is
unable to proceed further using the provenance graph at the
NFV-level alone, since no other operations at this level can
explain what caused the incident.
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Size and complexity of multi-level analysis. For the sake of
this example, now suppose the analyst manually establishes
the cross-level dependencies based on his/her experiences.
For instance, he/she can identify that VNFFGx is deployed
as PortChainx at a lower (SFC) level. He/she could then
link the provenance graphs at different levels to each other,
and continue the investigation at the lower (SFC and cloud)
levels. However, the sheer scale of NFV environments and
the existing dependencies among a large number of resources
(e.g., there may be hundreds of VMs attached to Subnet1)
mean that pinpointing the root cause among all the nodes and
edges in the provenance graph is still very challenging. On the
other hand, the provenance graph contains a lot of irrelevant
or redundant information. For instance, in Fig. 2 (right),
the grayed out portion of the provenance graph is actually
irrelevant to the incident, since it corresponds to an irrelevant
VNFFG (VNFFGz). Moreover, the groups of green and blue
nodes at the cloud-level are triggered by the platform after
each NFV-level operation CreateVNF, and thus are redundant.
Leaving such information as-is in the provenance graph can
make the analysis time consuming and error-prone.

Example output of ProvTalk. ProvTalk is designed to address
all the aforementioned challenges in an automatic fashion,
so analysts can focus on the most relevant information for
identifying the root cause. For example, Fig. 3a illustrates the
result of ProvTalk corresponding to the above example. While
we leave the details (e.g., the hexagons and hatched box) to
Section III, the attack scenario is self-explanatory from the
figure as follows. First, the attacker creates two ports (i.e.
Portmal1 and Portmal2). Next, he/she updates the device owner
field of Portmal2, and immediately creates VMmal attached to
this port so that he/she can exploit a vulnerability [25] for
spoofing the IP address of the enterprise sending network
traffic into VNFFGx. Finally, the attacker inserts the port pair
group of VMmal into the port-chain corresponding to VNFFGx
(via Update-Port-Chain operation). The attacker can then send
malicious traffic using VMmal inserted between the virtual
firewall and IDS services to evade them.

Comparison to existing works. In Fig. 3a, we can see the
provenance graph generated by ProvTalk is explicitly divided
into three disjoint levels, with nodes corresponding to a com-
mon resource “mapped to” each other (e.g., VNFfw vs. VMa).
In contrast, Fig. 3b and 3c show that the provenance graphs of
existing “multi-tier” provenance techniques (e.g., [15], [16])
usually do not have such explicit separation between levels,
as they focus more on the information flow between multiple
systems that play different roles (e.g., operating system vs.
application in Fig. 3b, or application vs. control plane in
Fig. 3c). Therefore, such works are not designed to support
the need for capturing the information flow to/from different
abstractions of the same resource in NFV.

III. PROVTALK

In this section, we detail different modules of our approach.
Fig. 4 shows an overview of ProvTalk consisting of three main
stages: provenance construction, training and investigation.

A. Provenance Construction
In this section, we define our NFV provenance model, and

describe the provenance construction module.
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existing works [15], [16] to highlight the different multi-level
nature (b) and (c).

1) NFV Provenance Model: We define a platform-
independent provenance model1 based on the standard spec-
ification PROV-DM [26]. The example provenance graph in
Fig. 3a follows this model to show two types of nodes:
entities and activities. Entities (shown as ovals) represent
virtual resources (e.g., VMmal), and activities (shown as boxes)
represent management operations (e.g., CreateVM). To avoid
cycles, we adopt the node versioning method as in [27],
[28], where a new version of an entity is created if an
operation affects its represented resource. For example, Fig. 3a
shows that a new node representing PortChainx (i.e., the
node ⟨PortChainx, V ersion1⟩) is created after it gets up-
dated by Update-Port-Chain operation. Directed edges denote
the dependency between an operation and its generated or
used resources. For instance, the edge from Update-Port-
Chain to PortPairGroupmal shows that this operation uses
PortPairGroupmal to update PortChainx. Finally, we represent
cross-level dependencies by edges labeled as MappedTo, which
connect the entities related to the same resource at different
levels, e.g., the edge between VNFids and VMb in Fig. 3a.

2) Building the Provenance Graph: To capture all oper-
ations affecting virtual resources, we deploy our event inter-
ception mechanism as middlewares [29], [11] attached to man-
agerial services at all levels of the NFV stack. These services
include but are not limited to networking, compute, storage,
image and NFV orchestration services. In Section V-D, we

1Additional details of our provenance model can be found in Appendix A.
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show that intercepting all management API calls through
the deployment of our middlewares is enough to satisfy the
completeness property. Moreover, to process the intercepted
API calls, we define a set of parsing and typing rules according
to cloud and NFV documentations [30], [31], [32]. Specifically,
the information required for building the provenance graph
is embedded in the intercepted API calls. Therefore, upon
intercepting each API call and based on the provided rules,
ProvTalk parses the fields of that API call, identifies the type
of the requested operation (e.g., CreateVNF), determines the
affected virtual resources, and the ID of the user issuing that
API call. Next, it creates nodes representing the operation and
the affected resources with edges capturing their dependencies.
ProvTalk also stores the extracted information (e.g. user ID)
and the time of interception as node attributes. Then, it appends
the created nodes and edges to the provenance graph stored in
the backend graph database.

Additionally, to capture the cross-level dependencies be-
tween resources, we provide ProvTalk with a set of mapping
rules. Upon the creation of each NFV-level resource, NFV
platforms automatically store the ID of that resource and its
lower-level associated resource in specific cells of the platform
databases. Therefore, we define rules specifying the queries for
extracting the IDs of those resources and creating MappedTo
edges between their nodes. For instance, the ID and associated
virtual service of a VM are stored in two columns in the same
row of table nova instances. Accordingly, we define the rule
“Upon the interception of CreateVNF operations, ProvTalk
should issue a query to nova instances table to extract VM-ID
from the same row storing the ID of the created VNF”.

B. Multi-level Pruning
The provenance graph may include a large number of

nodes and edges that are irrelevant to the target incident. Most
of the existing pruning techniques are designed for single-
level provenance models [11], [9], [28], and they remove
irrelevant nodes according to the analyst’s provided pruning
criteria. However, in the specific context of multi-level NFV
environments, this approach has the limitation of identifying
and pruning irrelevant nodes only at the same level as where
the target incident is detected. In other words, those techniques
do not factor in the dependencies between provenance graphs
captured at different levels, which can be useful in identifying
the potentially irrelevant nodes across different levels. The
analyst could certainly provide additional pruning criteria
for identifying irrelevant nodes at every level. However, this

requires more effort from the analyst, and it also assumes
he/she has a good understanding about all levels of the NFV
stack and corresponding security assumptions. The reliance on
such assumptions may make the pruning error-prone and result
in pruning nodes that are indeed relevant to the attack.
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Fig. 5: Excerpt of the provenance graph related to the incident
discussed in Section II-C contrasting the effectiveness of one-
level [11] and multi-level pruning.

To address those issues, we propose a multi-level pruning
mechanism to automatically identify and keep the potentially
relevant nodes across different levels by leveraging cross-
level dependencies (Section III-A1). Specifically, after labeling
all the potentially relevant nodes at the same level as the
target resource (i.e., the resource associated with the incident),
ProvTalk passes the label assigned to each resource to its
corresponding resources at other levels via the cross-level de-
pendencies (MappedTo edges). Next, ProvTalk further follows
all paths to pass the labels to all the reachable nodes. To
further narrow down the analysis, ProvTalk allows the analyst
to specify some additional constraints about the nodes passing
the labels. Finally, ProvTalk discards nodes that are not labeled
as they are not reachable from the target resource.

Example 1. Fig. 5 shows an excerpt of the provenance graph
in our motivating example (Section II-C) contrasting one-level
pruning (e.g., [11]) with multi-level pruning. Both approaches
first identify the target resource VNFFGx (starred node), assign
it a label and pass it to all reachable nodes meeting the
provided criteria. Then, all non-labeled nodes are pruned. For
the one-level pruning, as the cross-level dependencies are not
considered, the label is only passed to all reachable nodes
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at the same level (e.g. VNFids, CreateVNF). Thus, only the
group of nodes at the NFV-level (inside dashed blue box)
are pruned, leaving the graph at other levels with potentially
irrelevant nodes. In contrast, ProvTalk leverages cross-level
dependencies (i.e., MappedTo edges) to pass the label from
the target resource to nodes at lower levels (e.g., PortChainx
and the path specified by an arrow). Thus, the irrelevant nodes
inside the green box can also be identified and pruned.

C. Aggregation
The pruned provenance graph may still include a large

amount of redundant information. However, pruning those is
not a viable option as they may contain valuable information
about the root cause. For example, some operations such
as CreatePortPair and CreatePortPairGroup (hatched box in
Fig. 3a) are frequently issued by cloud admins as a part of rou-
tine maintenance tasks. However, as explained in Section II-C,
they may also be part of the attack steps (e.g., operations issued
by the attacker to insert a malicious VM into a port chain).
Hence, if we hypothetically remove those operations due to
their redundancy, the analyst would fail to pinpoint the root
cause. Additionally, there is no systematic way of associating
high-level semantics to those frequent operations, which could
make the provenance graph easier to understand. For instance,
the analyst cannot identify the cloud-level operations in Fig. 2
(groups of blue and green nodes) that were automatically
triggered after each NFV-level operation CreateVNF.

Therefore, we propose an aggregation-based solution that
visually aggregates the nodes corresponding to such operations
into a compound node labeled with the corresponding NFV-
level operation or administrative routine. Our aggregation
technique is designed to be fully reversible such that each com-
pound node can be easily expanded to show the original nodes,
which allows the analyst to easily recover the potentially
useful details of the aggregated nodes (hexagons and hatched
box in Fig. 3a). Our approach consists of two mining-based
schemes for cross-level operations and administrative tasks
operations, which involve training and investigation stages.
Similar to most approaches in this area (e.g., [33]), we collect
training data from a controlled environment to ensure there is
no involvement of malicious actors.

1) Cross-level Aggregation: The sequence of lower-level
operations automatically triggered after an NFV-level oper-
ation are generally fixed, and thus frequently appear in the
provenance graph causing redundancy. To avoid this, ProvTalk
leverages a mining-based approach to model such sequences,
and then applies the model to identify and aggregate the lower-
level nodes corresponding to each NFV-level operation.

Cross-level Dependency Modeling (CDM). Since lower-level
operations are generally triggered shortly after their corre-
sponding NFV-level operations, we leverage this intuition to
build a model of those lower-level operations generated within
a small time interval. To this end, our API interceptors log
operations triggered at all levels (i.e., NFV, SFC, and cloud)
with a timestamp indicating the time when ProvTalk intercepts
each operation. Next, based on those timestamps, ProvTalk
extracts a sequence of lower-level operations triggered within
tCDM seconds after each logged NFV-level operation. The
analyst may determine the interval tCDM based on studies of
the NFV platform (e.g., computational power).

However, since there may be many operations issued at
almost the same time in a real-world NFV environment, the ex-
tracted sequences may include irrelevant lower-level operations
(e.g., the operations triggered by other NFV-level operations).
To address this issue, we model relevant operations by deriving
frequent patterns of lower-level operations. Specifically, for
each NFV-level operation, we feed the extracted sequences
to our sequential pattern mining algorithm (an efficient self-
supervised method for discovering the frequent patterns of
ordered items in a controlled environment), which then out-
puts the list of mined patterns with their frequencies (i.e.,
support [34]). Finally, we identify the most frequent patterns
related to each NFV-level operation, which are provided to the
CDD module during the investigation stage.

Example 2. Fig. 6 depicts modeling the lower-level manage-
ment operations triggered by the NFV-level operation, Creat-
eVNF. ProvTalk extracts sequences of lower-level operations
logged shortly after each CreateVNF (shown by rows of the
Sequences table). We show two example scenarios causing
different extracted sequences corresponding to the CreateVNF
operation. Scenario1 describes cases where a single user issues
a CreateVNF operation. Scenario2 describes cases where two
NFV-level operations, CreateVNF and DeleteVNF, are issued
at approximately the same time, and thus the extracted se-
quence includes an irrelevant operation, DeleteVM (triggered
by DeleteVNF). To derive the operations triggered by Creat-
eVNF, ProvTalk retrieves the most frequently observed patterns
in Sequences table, which yields [CreatePort, CreatePort, ...]
with the support value of 60%.
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[CreatePort, CreatePort, ..]
[CreatePort, DeleteVM, ..]

DeleteVM

Fig. 6: An example of cross-level dependency mining for the
NFV-level operation, CreateVNF (top); Scenarios leading to
different extracted sequences of lower-level operations corre-
sponding to the CreateVNF operation (bottom).

Cross-level Dependency Discovery (CDD). During the inves-
tigation stage, CDD identifies and aggregates the nodes related
to the mined operations corresponding to the same NFV-level
operation (e.g., CreateVNF). This can be challenging, since
there usually exist many nodes representing the same type of
operation (e.g., several CreatePort nodes in Fig. 2). Our key
insight is that, since all the triggered operations correspond to
the same NFV-level operation, we can expect some dependency
among them. Additionally, due to cross-level dependencies be-
tween resources, if an operation affects a resource at the NFV-
level, a triggered operation will affect its associated lower-level
resource. Based on such intuition, Fig. 7 shows how CDD
works. First, CDD identifies the node representing the resource
affected by an NFV-level operation (e.g., a created VNF at
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NFV-level) and its lower-level associated resource connected
by a MappedTo edge (e.g., its corresponding VM at cloud-
level). Next, to start an iteration, it tags the operation node
connected to the resource node, removes that operation from
the mined sequence, then tags the next connected resource
node on the path. The iteration stops once the sequence is
empty. Finally, CDD visually aggregates the tagged nodes
into a compound node labeled as the corresponding NFV-level
operation (see Appendix B for more details).

Identify NFV-level 
affected resource and 
lower-level associated 
resource

- Tag operation connected 
to resource node
- Remove tagged operation 
from mined sequence

Is mined 
sequence 
empty?

Tag connected resource node yes

Tagged Provenance graph

- Provenance graph
- Mined sequence
- NFV-level operation

No

Fig. 7: Identifying the cross-level dependencies.

Example 3. Fig. 8 depicts an example aggregation related
to CreateVNF operation. CDD identifies the lower-level node
⟨VMfw, V ersion 3⟩ associated with VNFfw. Next, it identifies
the nodes representing the operations triggered by CreateVNF
and their affected resources (Fig. 8a). The identified nodes are
visually aggregated into a compound node (the hexagon in
Fig. 8b), which is labeled as DeployVNF2.

CreateVNF
VNFfw

ID: xxx

UpdatePort

VMfw

ID: xxx-pair
Version: 3

Port1fw

Port2fw

UpdatePort

VMfw

Port1fwVMfw Port2fw

CreateVM

Port1fwPort2fw

CreatePortCreatePort

NFV

Cloud

MappedTo

Subnet2Subnet1

Subnet1 Subnet2

(a)

CreateVNF VNFfw
ID: xxx

VMfw
ID: xxx-pair
Version: 3

Port1fw

Subnet2Subnet1

Subnet2
Subnet1

MappedTo

Port2fw

NFV

Cloud

Deploy VNF

(b)
Fig. 8: Example of cross-level dependency discovery (a) before
and (b) after aggregation.

2) Administrative Behavior Aggregation: To further ease
the interpretation, we aggregate the routine administrative
operations (e.g., maintenance tasks) repetitively appearing in
the provenance graph. ProvTalk mines the frequent sequences
representing the paths (that are not aggregated by CDD) in the
training stage, and aggregates the paths matching the mined
sequences in the investigation stage.

Administrative Behavior Modeling (ABM). This module
builds a model of routine administrative behavior based on
frequent paths and using sequential pattern mining [34]. Fig. 9
shows the steps of our ABM module: 1) ABM retrieves all
paths with the length of at most lroutine. The analyst can
adjust lroutine based on the requirements of the investigated
platform, e.g., the regularity of life-cycle management of
resources. 2) ABM converts the retrieved paths into string
sequences. Our intuition is that nodes compose a path in a
similar way that items compose an ordered sequence. Formally,
a causal path can be translated into a sequence of items
[f(res nodei), f(op nodei), f(res nodei+1), ...] where f is

2We use the label DeployVNF, instead of CreateVNF, to make referring to
compound nodes easier in the paper.

the function for obtaining the string representation of a node.
In this work, we use the resource or operation type attribute
as the string representation of each node. For example, the
path (Port1)←(CreateVM)←(VM1)←(StartVM) is converted
into the following sequence: [Port, CreateVM, VM, StartVM].
3) Finally, we apply the sequential pattern mining algorithm
BIDE [34] to identify the most frequent patterns which are
used by ABD during the investigation stage.

Step1: 
Path 

extraction

Step2: 
Path 

conversion

Step3: 
Mining frequent 

patterns

[StartVM,...]
[LockVM,...]
[...]

Provenance 
graph

Paths Sequences

[Start..]
[...]

70
Seq. Freq.

Frequent pat.

Fig. 9: Steps of ABM module.
Administrative Behavior Discovery (ABD). This module
identifies and aggregates the paths with a corresponding se-
quence that matches the patterns mined by ABM. Specifically,
ABD retrieves all paths with the length of at most lroutine.
Next, it converts those paths into sequences of string elements
as described in the previous step (the ABM module), while it
also captures the IDs (a unique number automatically assigned
to each node by the graph database) of the consisting nodes.
Then, it identifies the sequences that are observed among the
frequent patterns mined by ABM. If a matching sequence is
identified, the ABD module finds the nodes corresponding to
that sequence using their unique IDs and aggregates them
into a single Admin Routine compound node. Moreover, to
increase the number of aggregated nodes represented by each
compound node (i.e., the reduction power of our scheme), we
merge Admin Routine nodes with common aggregated nodes.

Example 4. Fig. 10 shows an example of administrative
behavior aggregation. As we can see on the left, two paths are
converted into sequences Sequencek and Sequencej, and are
initially aggregated into the blue and red shaded compound
nodes. However, due to their common aggregated node, ABD
merges them into one single compound node (right side).

CreateVM

UpdatePort

StartVM Admin
Routine

Sequencek = [CreateVM, Port, UpdatePort]
Sequencej = [CreateVM, VM, StartVM]

Subnet1

Port1

VM1 Subnet1

Fig. 10: Example of administrative behavior aggregation and
merging compound nodes.

In Fig. 3a, we have shown our motivating example prove-
nance graph after applying both aggregation schemes. As we
can see, the resulted provenance graph is significantly smaller
and more interpretable with the assigned labels.

D. Rule-based Translation
To further enhance the interpretability of the provenance

graph and facilitate the analysis, we propose a rule-based
technique to translate the captured information into a human-
readable text. As we demonstrate in Section V-E, the generated
text can provide useful guidance to the analyst in investigating
the provenance graph and identifying the root cause. The
analysts may also take advantage of the generated text for
filing a report describing the result of their investigations. To
this end, ProvTalk first backtracks from the node corresponding
to the target resource (e.g., the node VNFFGx in Fig. 3a)
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to retrieve all paths connected to this node. ProvTalk also
allows the analyst to specify a time interval so that only paths
generated during that time will be translated. Next, it extracts
the information captured in each path, and generates a textual
description reflecting those information and the incident alert.

As an example, Fig. 11 shows the automatically generated
description of the highlighted path in Fig. 3a. The generated
text is organized in three paragraphs: the first paragraph reflects
the information extracted from the incident alert as well as
the number of operations represented in the path. The second
paragraph details the information extracted from the path,
and the last paragraph includes the information necessary for
identifying the described path in the provenance graph.

By the detection time 21-01-06 11:44:07.769, there are 6 operations performed in 
the specified time interval 0:00:15.454 hours corresponding to the target entity 
VNFFGx created by admin user using 2 VNFs.

User 12ddf created PORTmal2 at 07:10:03.403. He updated device_owner 
Portmal2 at 07:10:05.123. And  created VMmal using that port(s) after 0:00:0.878 
hours. Then, he created PortPairmal using that port(s) after 0:00:03.202 hours. 
And created PortPairGroupmal using that PortPair(s). He updated PortChainx, 
using that PortPairGroup(s) after 0:00:02.239 Hours.

More details can be found in the provenance graph following this node path [215 
- 211 - 208 - 207 - 204 - 202]. Node(s) (UpdatePortChain-ID: 215) worth a closer 
look: nonAdmin user (ID: 12ddf) modifies admin (ID: 53atb) modified resource(s).

Fig. 11: Example of auto-generated textual description.

Path Translation. ProvTalk automatically follows graph paths
to extract and include the following four node attributes in
sentences of the second paragraph): 1) user: ProvTalk treats
the user issuing an API call as the subject of the sentence, and
identifies it by the user ID attribute stored in operation nodes.
2) operations: ProvTalk treats operation type node attribute
as the verb of the sentence. 3) resources: resources affected
by each operation are treated as objects, and are identified
by the entities from which there is an edge pointing to an
activity (Section III-A1). 4) timestamps: ProvTalk includes the
timestamp attribute (stored in operation nodes) as the propo-
sitional phrase in the sentence. Additionally, to smooth the
transition between sentences, it uses pronouns and transitional
words. ProvTalk also applies pre-defined sentence templates to
automatically form the descriptions. To support aggregation,
analysts can configure ProvTalk to treat the label of compound
nodes as the verb of generated sentences.

To enable retrieving the information not already reflected in
the generated text, the third paragraph describes the unique IDs
of the corresponding nodes, using which the analyst can map
the generated text back to the provenance graph. Additionally,
ProvTalk can be configured to include specific parts of the
extracted information that may deserve more attention.

IV. IMPLEMENTATION

We implement ProvTalk in a testbed based on Tacker [19],
SFC [32] and OpenStack [2] (a popular platform supporting
NFV for telecommunication service providers [35], [36]). We
note that only our API interception mechanism is platform-
specific (i.e., OpenStack/Tacker), while the modular design of
our approach makes it readily adaptable to other multi-level
virtualized platforms (see Section VI for detailed discussion).
To intercept provenance metadata from the REST API calls is-
sued to different services (i.e., Tacker, SFC, and Openstack ser-
vices, e.g., Nova and Neutron), we implement our provenance
construction module as Python WSGI middleware [37], [38],

which stores the provenance graph in Neo4j [39] database,
and uses Cypher language [40] to query the database. We
implement pruning and aggregation modules in Python, and
use BIDE algorithm [34] to mine frequent sequences. We set
the interval tCDM to 15 seconds (Section III-C1) and lroutine to
10 (Section III-C2). We also use the Thh=0.8 and Thl=0.5 as the
thresholds in our aggregation (explained in Appendix B). Our
translation module exports the provenance graphs into JSON
format [41], and uses SimpleNLG Python realiser [42] for
generating sentences. To visualize the provenance graphs and
enable the interaction with ProvTalk, we provide a frontend
graphical user interface. We use Cytoscape [43] to visualize the
provenance graph, and support the aggregation and expansion
of compound nodes.

V. EVALUATION

To evaluate ProvTalk, we seek to answer the following
questions:

RQ1: How effective is the provenance model at capturing
real-world attacks in NFV environments?

RQ2: To what extent can ProvTalk reduce the size of
the provenance graph? What is the effect of accuracy on the
performance? How does it compare to the existing techniques?

RQ3: What is the overhead introduced by ProvTalk in terms
of latency, computation and storage? How does it compare to
the existing OS-level provenance techniques?

RQ4: How complete and sound is ProvTalk in terms of
capturing and analysing all management API calls?

RQ5: How helpful is the enhanced interpretability in root
cause analysis for real-world users?

Experimental Setup and Dataset. We run ProvTalk on an
Ubuntu 18.04 server equipped with Intel Xeon Bronze 3104
CPU @1.70GHz and 128GB of RAM. We conducted our ex-
periments based on both our testbed and a real research cloud
dataset. To generate diverse sequences of operations in our
dataset, we deploy 31 different types of VNFs while randomly
varying their parameters (e.g., the number of virtual ports), and
seven variations of VNFFGs with varying parameters (e.g., the
number of VNFs per VNFFG). Table I shows statistics about
the datasets generated in our NFV testbed.

TABLE I: Statistics of our NFV testbed datasets.
Training Datasets Testing Datasets

# of API calls (in thousands) 6 9 12 15 3 6 9 12
# of nodes (in thousands) 11 16 21 28 5 10 15 20
# of VMs (in hundreds) 6 8 10 11 3 6 9 11
# of VNFs (in hundreds) 3 5 6 6 3 4 6 7

A. Effectiveness
To answer RQ1, we automatically reproduce in our testbed

10 attack scenarios that involve NFV management operations
(as discussed in e.g., [44], [45], [47]) via a Bash script. Table II
summarizes those scenarios, the most relevant operations and
the vulnerabilities that are exploited through the requested op-
erations for launching the attack. We evaluate the effectiveness
of ProvTalk on these attacks as we know the precise ground
truth (attack steps) published in the existing works3 and the
publicly reported vulnerabilities [49]. For all the 10 attacks,

3Most of these works (e.g., [44], [45]) focus on security verification (rather
than provenance analysis), and thus we cannot directly compare our results
with these solutions.

8



TABLE II: Attack scenarios used to evaluate the effectiveness of ProvTalk (the shaded rows indicate the incident and root cause
are located at different levels).

Root Cause Detected Incident Most Relevant Management Operation Types Vulnerability
Stealthy node injection into a VNFFG [44] Unauthorized Access Create-Port-Pair, Create-Port-Pair-Group, Update-Port-Chain CVE-2017-2673
Bypassing anti-spoofing rules in network [29] Unauthorized Access Create-VNFFG, Create-Port, Create-VM, Update-Port CVE-2015-5240
Firewall VNF misconfiguration CPU DoS Create-VNFFG, Update-VNFFG, Update-VNF CVE-2017-7400
Malformed security group rule addition Host Unavailability Create-Security-Group, Create-Security-Group-Rule, Create-VM CVE-2019-9735
Overlapping security group rule addition Host Unavailability Create-Security-Group, Create-Security-Group-Rule, Create-VM CVE-2019-10876
Update of security group is not applied [45] Data Leakage Add-Security-Group, Start-VM, Delete-Security-Group-Rule CVE-2015-7713
Neutron proper authorization failure [46] Port Scanning Create-Router, Create-Port, Create-VM CVE-2014-0056
Wrong VLAN ID [47] Data Leakage Create-Network, Update-Network Not specified
Failing to delete VMs in resize state Disk DoS Create-VM, Resize-VM, Delete-VM CVE-2016-7498
Excessive VM creation on the same host [48] Disk DoS Create-VM Not specified

we successfully trace back to the root cause of the reported
incident using ProvTalk. Note that due to the novelty of NFV,
very few papers exist on NFV-specific attacks or vulnerability
exploits which limit our choice of attacks (although given the
prevalence of NFV 5G telecommunication, we envision an
extensive research on this matter in the future). Due to page
limitation, we only chose 10 cases among those vulnerabilities
to present in this paper. We showcase the effectiveness of our
approach based on four cases: two vulnerabilities in Table II
presented in the motivating example (first and second rows)
and two cases presented below (third and seventh rows). We
choose those scenarios because their incidents are detected
at a different level from where the root cause operations are
conducted, which make the analyses more challenging.

1) Cloud-level Alert, NFV-level Root cause: In this sce-
nario (see Table II, third row), a VNFFG with a virtual fire-
wall is protecting an end-to-end network service. The analyst
receives a high CPU utilization alert from VMb. Using the
provenance graph generated by ProvTalk (Fig. 12), the analyst
can observe that the VM generating the alert at cloud-level
(VMb) corresponds to VNF1 (1). He/She can also see that
VNF1 was included in VNFFGz (2). Moreover, according to
the provenance graph, VNFFGz was updated by the admin for
chaining a preceding virtual firewall (3). However, shortly after
adding the firewall, another user changed its configurations
so that it will not filter syn-flood traffic (4). As updating the
configuration to allow syn-flood traffic right after the insertion
of a firewall in a VNFFG is not a routine behavior and is
conducted by a non-admin user, the analyst can attribute this
to a potential privilege escalation by that user.
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Fig. 12: Root cause of the CPU DoS Identified by ProvTalk.

2) NFV-level Alert, Cloud-level Root Cause: In this sce-
nario (see Table II, seventh row), the analyst receives a port
scanning alert from a virtual IDS service, VNFids. Using the
multi-level provenance graph generated by ProvTalk (Fig. 13),
he/she can easily identify that VNFids is associated with VMb,
which is created in Subnet1 (1). He/She can also observe that
an attacker from a different cloud tenant creates another port

in Subnet1 attaching it to Router1 (2), and then creates a VM
attached to this port (3). As this chain of operations shows that
a different tenant could enter the network of the target resource,
the analyst suspects that an attacker exploited a vulnerability
in the NFV platform [50] to send malicious traffic to Subnet1,
which is detected by VNFids.
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Fig. 13: Root cause of port scanning identified by ProvTalk.

B. Graph Reduction Performance
To answer RQ2, we measure the reduction in the size of the

provenance graph after applying our pruning and aggregation.

Comparing multi-level pruning with one-level pruning. To
measure the effectiveness of multi-level pruning, we apply
both multi-level pruning and one-level (NFV-level) pruning
on provenance graphs of different sizes for the same incident.
Fig. 14a shows that the reduction factor (i.e., the number of
pruned nodes over that of all nodes) of multi-level pruning
scheme is significantly higher (on average, by almost 3.6
times) than the one-level pruning scheme in all datasets.
Furthermore, Fig. 14b shows that multi-level pruning removes
a larger number of nodes representing resources than those
representing operations. The reason is that most operations
affect several resources at the same time, therefore, pruning an
operation will automatically prune its many related resources.
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Fig. 14: Evaluating the effectiveness of multi-level pruning.

Aggregation. We measure the effectiveness of our aggregation
for datasets of different sizes, while varying the minimum
support values (aka min-sup) [34]. The min-sup value indicates
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the minimum acceptable frequency of mined patterns in our
training data, and thus, by varying the min-sup value from
low to high, we can evaluate the performance for moderately
to highly conservative scenarios respectively. Fig. 15a shows
the ratio between the number of nodes in the original graph
and that of the non-aggregated nodes. Fig. 15a shows that,
on average, the number of nodes in the original provenance
graph is around 2.6 times larger than the number of non-
aggregated nodes and the reduction ratio increases with the size
of the dataset. The reason is that, in larger provenance graphs,
there usually exist more diverse sequences of operations, which
increases the level of redundancy, and hence, allows for more
aggregation. Moreover, smaller min-sup values lead to a lower
ratio of non-aggregated nodes in smaller datasets, in contrast
with larger datasets where reduction is similar for all measured
values. The reason is that smaller datasets are more likely to
lack the patterns mined via greater min-sup values, i.e., some
of the most frequent mined patterns in the training data.
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Fig. 15: Evaluating the effectiveness of aggregation.

Fig. 15b shows the ratio between the number of nodes in
the original provenance graph and in the one after aggregation
(which consists of non-aggregated and compound nodes). On
average, our aggregation schemes decrease the size of the
provenance graph by half, which shows the usefulness of our
approach in providing a smaller provenance graph for inves-
tigation with the added higher-level semantics. Furthermore,
the ascending trend of the curve shows that, as the size of the
original provenance graph grows, our aggregation schemes is
more effective in terms of reducing the graph size. One reason
is that in larger provenance graphs there usually exist more
overlapping compound nodes subsequently aggregated into a
single compound node (Section III-C). In other words, as the
size of the provenance graph grows, larger groups of nodes
are aggregated into a single compound node, which leads to
a greater reduction power. We can also see that lower min-
sup values lead to a greater size reduction in smaller testing
datasets, which is aligned with our results of Fig. 15a.

To gain more insights into the effectiveness of the aggre-

gation, we evaluate the aggregation power of our approach
(i.e., the number of aggregated nodes represented by compound
nodes). Fig. 15c shows that the ratio between the total number
of aggregated nodes and that of the compound nodes grows
with the size of the provenance graph. On average, 5.69
aggregated nodes are represented by each compound node.
To evaluate the performance of each aggregation scheme,
we measure their contribution to reducing the size of the
provenance graph separately. As we can see in Fig. 15c, for
all datasets, the ratio between the number of compound nodes
and the aggregated nodes they represent is higher for the
administrative aggregation scheme. This can be partially ex-
plained by the merging we conduct on overlapping compound
nodes related to the administrative behavior (Section III-C).
Note that we do not merge cross-level compound nodes, as
each of those nodes corresponds to a particular NFV-level
operation and are labeled accordingly. Moreover, the ratio
between aggregated and compound nodes under both schemes
increases with the size of the provenance graph, which shows
the better performance of both schemes for larger datasets.

Effect of accuracy on the reduction power. To evaluate how
much the reduction power of ProvTalk may be affected by
inaccuracies of our aggregation module, we simulate different
accuracy values (of the frequent pattern mining step of our
aggregation module) ranging from 20% up to 97%. To do
so, we first manually verify the paths that are identified
to be related to cross-level dependencies or administrative
behaviors in our testing datasets. Then, we configure ProvTalk
to randomly select a number of validated paths and leave
them non-aggregated in the provenance graph. We determine
the number of these ignored paths according to the desired
accuracy value and the total number of paths extracted from
the provenance graph. Fig. 15d shows the variation in the
size reduction caused by different accuracy values in our four
testing datasets. On average, the lowest accuracy value of 20%
decreases the reduction power by almost 0.19 times only (i.e.,
preserving the total reduction power of around two times). It is
also worth noting that since our aggregation module provides
a more compact instance of the provenance graph (rather than
discarding the nodes or the attack detection), low accuracy
values would only affect the reduction power without losing
vital information or generating false alarms.

C. Efficiency
To answer RQ3, we measure the efficiency of ProvTalk

based on our NFV testbed and real-world dataset.
1) Scalability Evaluation with NFV Testbed: To evaluate

our approach in environments with a large number of diverse
management API calls and deployed virtual services, we run
ProvTalk on datasets generated in our NFV testbed (Table I).

Training time consumption. We measure the time required
by the training stage of ProvTalk. Worthy to note that this is
a one-time cost since the lower-level operations triggered by
NFV-level API calls and administrative tasks do not change
very frequently. Fig. 16a shows the time required by the CDM
module for extracting the logged lower-level operations and
running sequential pattern mining algorithm over the extracted
operations. While the time required by both steps grows almost
linearly with the size of the dataset, the total time does not
exceed 80 seconds for the largest dataset. Fig. 16b depicts the
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time required by the CDD and ABM modules. Although the
required time increases with the size of the datasets, it remains
under four minutes in total for the largest dataset.
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Fig. 16: Evaluating the training stage overhead.

Runtime delay. We measure the delay caused by ProvTalk
in the runtime execution of NFV management operations.
Fig. 17 shows that, on average, ProvTalk adds around a two-
millisecond delay for logging the information of most cloud-
level operations. Longer delays (around eight milliseconds)
mostly correspond to operations which also have a longer
execution time (e.g., CreateVM has an execution time of above
10 seconds [51]). The average delay increases to 4 and 6
milliseconds for SFC-level and NFV-level operations (which
also have a longer execution time). In summary, ProvTalk
incurs a negligible overhead of around 0.04% additional delay
to NFV management operations.
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Fig. 17: Runtime delay imposed to API calls at different levels.

Storage cost. We also evaluate the storage consumption of
ProvTalk. Fig. 18a shows that the storage required by ProvTalk
remains significantly lower than the logs generated by the
platform. The reason is that the generated logs contain a
large amount of information (e.g., listing deployed services)
that are less important for security analysis, and thus are not
included in the provenance graphs. Fig. 18b compares the
storage required by ProvTalk and processed logs (containing
only the information that we store as the attributes of nodes).
Since the processed logs do not capture the relationships
between operations necessary for the analyses, the size of the
provenance graphs is greater than the processed logs, while
it remains around 10 megabyte in the largest dataset with
20,000 API calls. To evaluate the storage cost of ProvTalk
for environments with different available services, we measure
the storage required for provenance graphs that are recorded at
each level separately. Fig. 18c shows that the storage related
to OpenStack API calls is significantly higher than the others,
which can be caused by the higher number of API calls at
this level (triggered both by cloud users and the platform
after NFV-level operations). On the other hand, SFC operations
consume the least amount of storage, due to the limited type
and number of API calls that are attributed to this level.

CPU consumption. We measure how the rate of incoming API
calls impacts the CPU usage. To simulate setups with different

workloads, we vary the rate of received API calls per hour so
that the time elapsed between every two consecutive API calls
would be a fraction of the time elapsed between the same API
calls in our real data. Fig. 18d shows that the CPU usage
during the construction of the provenance graph increases
almost linearly with the rate of received API calls. The rate of
about 1,000 API calls per hour is comparable to the workload
of our research cloud which incurs less than 1.25% CPU
consumption. For enterprises with higher rates of API calls
(e.g., 3,000 API calls per hour), the CPU consumption remains
under 3.5%, which shows the scalability of our approach.

Comparing with OS-level provenance approaches. We also
evaluate the benefit of tracking management API calls over
their corresponding OS-level events. Table III shows the size
of the OS-level provenance graph generated following each
management API call as well as the provenance graph con-
structed by ProvTalk (two bottom rows). To build the OS-
level provenance graph, we deploy a widely used open source
tool, SPADE [52], in our controller host. We show an excerpt
of the OS-level provenance graph generated after CreateVNF
operation in Fig. 19. We can see that the OS-level provenance
graphs would be impractically large in NFV environments
(reaching millions of nodes and edges) even under a moderate
workload of a research cloud with thousands of API calls
issued during only a few days (Section V-C2). Additionally, in
contrast with OS-level events, API management interfaces are
usually accessible to a broad range of NFV/cloud customers
(e.g., AWS CloudTrail) [53], which may include potentially
malicious users. Therefore, by tracking management opera-
tions, ProvTalk enables an effective analysis on a vast group
of security incidents in NFV, while avoiding the cost of large
OS-level provenance graphs. Moreover, tracking management
API calls provides a higher-level perception of changes in the
NFV stack, and thus enables easier root cause identification.

TABLE III: Comparing the size of OS-level provenance graphs
generated following each management API call with ProvTalk.

OS-level CreateVNF DeleteVNF CreatePortChain LockVM
# of nodes 2582 2548 13065 234
# of edges 12692 10116 38585 615
Storage (mb) 3.3 2.4 9.9 0.27

ProvTalk CreateVNF DeleteVNF CreatePortChain LockVM
# of nodes 16 16 35 2
# of edges 19 19 42 2

2) Experiments with Real-world Data: We evaluate the
applicability of our approach by using 5 days of OpenStack
logs collected from a real research cloud hosted at a major
telecommunications vendor with hundreds of hosts and users.
Although logs generated by the platform lack sufficient in-
formation [54], we build the provenance graph using those
logs as we were not allowed to install API interceptors in
this cloud (detailed in Appendix D). Those logs consist of
1,882 API calls affecting the deployment configuration of
354 VMs. Note that the number of the extracted API calls
is smaller compared to our NFV testbed dataset, due to
the unavailability of Tacker-level logs in that environment.
Accordingly, ProvTalk generates a provenance graph of 2,157
nodes in 99.8 seconds which consumes only 2.53 megabytes
storage. Thus, ProvTalk imposes negligible storage costs in
real-world virtualized environments.

We conclude that unlike existing techniques localizing
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Fig. 18: Evaluating the storage and computation cost of ProvTalk (PG denotes provenance graph).

path: /usr/lib/python2.7/dist-packages/tackerclient
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tackerclient

subtype: directory
type: Artifact

path: /usr/lib/python2.7/dist-packages/tackerclient
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path: /etc/hosts
sybtype:file

name: nova-api
type: Process

cwd: /var/lib/heat
name: heat-engine

type: Process

Fig. 19: Excerpt of the OS-level provenance graph generated
by SPADE [52] upon issuing the CreateVNF operation. We
magnified a subgraph to illustrate an example of the relation-
ships between processes and data objects in an NFV controller.

failed components (e.g., [8], [7]), ProvTalk facilitates identify-
ing the root cause activities, while incurring reasonable costs.

3) Comparing with DominoCatcher: We compare the over-
head and performance of ProvTalk with DominoCatcher [11].
While DominoCatcher can only support the cloud level,
ProvTalk can be applied to different virtual environments (e.g.,
cloud only, cloud and SFC, and cloud/SFC/NFV). Therefore,
while all the experiments are based on cloud-level prove-
nance graphs (the only level captured by DominoCatcher), we
have applied ProvTalk under three scenarios, i.e., cloud-level
only (ProvCloud), considering the cross-level dependencies
between cloud/SFC levels (ProvSFC), and cloud/SFC/NFV
levels (ProvNFV).

Size reduction. Fig. 20a shows the reduction of cloud-level
provenance graphs of our testing datasets after applying the
pruning schemes of DominoCatcher and ProvTalk (under
aforementioned scenarios). The reduction factor is the number
of pruned nodes over the total number of the cloud-level nodes.
As Fig. 20a shows, the pruning schemes of ProvCloud and
DominoCatcher have a similar reduction factor as neither of
them captures cross-level dependencies. In contrast, ProvSFC
and ProvNFV provide around 13% and 60% further reduction,
respectively, which confirms the added benefits of our multi-
level pruning schemes. In addition, Fig. 20b compares the total
reduction enabled by both the pruning and aggregation tech-
niques of ProvTalk with DominoCatcher. The administrative
aggregation of ProvCloud enables around 71% further reduc-
tion compared with DominoCatcher. In constrast, ProvNFV
has twice the reduction factor of DominoCatcher. Note that
there is a smaller reduction caused by ProvSFC. The reason is
that ProvSFC first prunes the portion of cloud-level nodes that
corresponds to the routine administrative behavior, and thus
a smaller number of nodes will remain to be aggregated by

ProvSFC.
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Fig. 20: Comparing the effectiveness and overhead of ProvTalk
and DominoCatcher [11].

Overhead. Fig. 20c shows that ProvNFV consumes only
around 5 megabytes additional amount of storage compared
with DominoCatcher. The additional storage cost increases as
the number of NFV-level operations and resources grows (from
300 to 700 VNFs in our testing datasets). The storage required
by DominoCatcher is similar to that by provenance graphs of
ProvCloud, as both schemes capture only the dependencies
between cloud-level operations. Note that ProvSFC requires
an insignificant additional amount of storage (around 0.2
megabyte) compared with ProvCloud due to the small number
of API calls related to SFC-level. Fig. 20d shows that, on av-
erage, ProvNFV consumes around 0.5% higher CPU resources
than DominoCatcher and other implemented levels of ProvTalk
due to capturing the dependencies across all levels. The CPU
consumption of ProvSFC is close to DominoCatcher due to
the lower number of operations at SFC-level. In conclusion, we
can see that the low storage and CPU consumption of ProvSFC
in addition to its effectiveness (Fig. 20a, 20b) demonstrate the
benefit of our solution for virtual environments with only the
cloud and SFC levels. Although ProvNFV has a slightly higher
storage and CPU cost, it leads to significant reduction (twice
that of DominoCatcher).

D. Correctness
To answer RQ4, we evaluate how completely and soundly

ProvTalk can capture and process changes in the NFV stack.

Completeness. Our analysis shows that all operations directed
through NFV management interfaces are passed as API calls to
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the endpoint services to be applied to the NFV stack. To ensure
completeness property, we deploy ProvTalk as a middleware
attached to all those services so that it can capture all man-
agement API calls (i.e., 100% coverage). Table IV shows the
number of unique types of management API calls (according to
Tacker-OpenStack documentation [55]) that are issued to most
commonly used services. Moreover, we conduct an exhaustive
study of all database tables in the NFV platform and devise
an entity-relationship (ER) model to ensure all cross-level
relationships are captured by constructed provenance graphs.

TABLE IV: The number of types of management API calls.
Services Tacker Nova Neutron Glance Swift Heat
Unique API calls 73 313 251 31 16 58
Coverage (%) 100 100 100 100 100 100

Soundness. ProvTalk stores the interception time of API calls
at all services to preserve the temporal order of events during
backtracking on the provenance graph. Moreover, our pruning
scheme preserves the soundness property by leveraging the
cross-level dependencies as follows. At the same level as
where the incident is detected, ProvTalk prunes only the nodes
identified to be irrelevant according to the defined pruning
policies (which is consistent with [11], [28]). Our multi-level
pruning leverages cross-level dependencies to only prune the
nodes at other levels that correspond to the irrelevant nodes
identified by the existing techniques. Also, our aggregation
schemes ensure the soundness property by preserving all the
relationships between the aggregated nodes and the rest of
the provenance graph. In other words, all edges pointing
to/from each group of aggregated nodes will point to/from
their representative compound node, and the compound nodes
can be expanded to show the aggregated nodes in the original
form.

E. User Studies
To answer RQ5, we conducted two user studies4 based

on standard practices [56] in which the participants have to
identify the root cause of an incident using ProvTalk. In our
first study (static outputs), participants are provided with the
outputs of ProvTalk that we obtained in advance. In our second
study (live interaction), participants could directly interact with
ProvTalk, trigger each module, and/or analyse the output of
customized queries (e.g., nodes related to operations requested
by non-admin users).

TABLE V: Statistics of participants. PG means provenance-
based analysis. (A), (L) and (N) mean advanced, little and no
knowledge, respectively. Numbers of participants are shown in
the first row of the tables related to each study.
1st (Static outputs) Industry (14) Academia (7)
Background (NFV-PG) A-A A-L A-N L-L L-N A-L L-L
Participants (%) 14 19 5 19 9 5 29
Scores 3.89 4.19 4 4.1 4.38 3.92 4.26

2nd (Live interaction) Industry (6) Academia (11)
Background (NFV-PG) A-A A-L A-N A-L L-L L-N N-N
Participants (%) 12 17 6 35 12 12 6
Scores 4.78 3.91 4.36 4.14 4.44 4.28 4.05

Participants. To conduct both studies, we recruited partici-
pants from a telecommunication industrial organization and

4Those studies have been approved by Research Ethics/Office of Research
of our university.

graduate students working in cybersecurity from our university.
Table V shows the statistics of participants in each study and
the average score for all provided statements.

In the beginning of both studies, we provided a brief review
of an attack story (our motivating example in Section II-C),
and asked the participants to express their level of agree-
ment with our provided statements. Our web-based platform
showed the outputs generated by ProvTalk in split-screen
together with the statements. Appendix E shows the list of
statements common between our two studies. Table VI shows
the additional statements specific to our second study (live
interaction). Participants could express their agreement level
by choosing either Strongly agree, Agree, Neutral, Disagree
or Strongly disagree. To quantify the results, we calculated the
average scores by assigning an integer between one and five to
each option (five represents Strongly agree and one represents
Strongly disagree).
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Fig. 21: Participants’ agreement with the statements.

Results. According to Table V, ProvTalk achieves scores
above 3.8 among all groups. Fig. 21 shows the distribution of
participants’ agreement with statements of our studies. Based
on our results, pinpointing the root cause is challenging for
most participants using the multi-level provenance graph (Q1-
3). The results from Q4 and Q5 demonstrate the advantage of
our multi-level pruning over the existing schemes in making
the provenance graph easier to understand. The results (Q6-
9) affirm the analysis becomes easier with our aggregation
schemes by decreasing the size of the provenance graph and
assigning expressive labels to compound nodes (i.e., adding
semantics). Additionally, most participants find the expansion
of compound nodes helpful for detailed analyses (Q10). The
generated textual description facilitates the analyses for most
participants (Q11-12), and they can easily associate the de-
scriptions with their corresponding parts of the provenance
graph for detailed analyses (Q13). We show the average quan-
tified score for the aforementioned statements in Appendix E.

Added benefit of live interaction. There is a slight difference
between agreement levels in the two studies, with a more
significant gap in some cases, especially Q4 and Q9. We
believe that the improved results in our second study (live
interaction) is due to the added capabilities of participants to
directly play with all modules or make customized queries
(as shown by Q14-15). Additionally, interactive features such
as zooming and node dragging render the effectiveness of
ProvTalk more visible to participants (as shown by Q16-Q19).

Based on the results of our studies, we conclude that
ProvTalk can effectively facilitate the analysis for both expert
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and non-expert users.

TABLE VI: Statements specific to our second study. Scores are
between one and five (score five represents Strongly agree).

Statement Code Score
Live interaction with ProvTalk enabled searching for certain
relationships between nodes (e.g., those satisfying given prop-
erties), which made the analysis easier.

Q14 4.17

Live interaction with ProvTalk enabled highlighting certain
relationships between nodes (e.g., those satisfying given prop-
erties), which made the analysis easier.

Q15 4.17

Hovering over nodes shows all of their properties, which
enables easier access to more information.

Q16 4.23

Zooming feature enhanced the visibility of different nodes. Q17 4.41
Node dragging feature made understanding the relationships
between nodes easier.

Q18 4.35

Aggregation/compression of any node of my choice made the
analysis easier.

Q19 4.37

VI. DISCUSSION

We discuss limitations and future directions of ProvTalk.

Integration with system-level solutions. ProvTalk can po-
tentially be integrated with system-level provenance solutions
to provide mutual benefits (e.g., ProvTalk can guide system-
level solutions to focus on specific resources, whereas the
latter can corroborate the findings of ProvTalk with low-level
details). Moreover, we envision that the system calls captured
within virtual resources (e.g., using SPADE system [52]) can
be integrated with the provenance graph generated by ProvTalk
in a manner consistent with previous works (e.g., [15], [14]).

Other platforms. While we focus on OpenStack-Tacker plat-
form in this work, our approach can be extended to other NFV
platforms with an initial effort of adapting to their management
operations. For instance, in AWS cloud, we could map the
NFV-level of our provenance model to AWS CloudFormation
services [57]. Our model can also be mapped to container-
based platforms such as Kubernetes-Tacker [58]. Additionally,
as we show in Section V-D, the only engineering effort
required for collecting the information of our interest is to
plug in API interceptors suitable for the studied platforms (e.g.,
AWS Lambda in AWS cloud [59]).

More complex modeling approaches. Since ProvTalk focuses
on assisting, instead of replacing human analysts, we are less
concerned with the accuracy of our aggregation approach. Nev-
ertheless, in our future work, we will investigate the effect of
using different learning and embedding techniques (e.g., [60],
[61]) on the reduction power. Moreover, we plan to extend
ProvTalk to automatically detect anomalous behavior [12], [62]
and translate it into a human-readable text [63]. Additionally,
we will apply adversarial machine learning to study potential
attacks (e.g., adversarial event sequences) against our solution.

Limitations around limited coverage and applicability.
ProvTalk does not cover system-level events inside individual
virtual resources, and it can potentially be integrated with
system-level provenance solutions in order to address the
scalability issue of the latter in a complex NFV system. To
maintain the applicability of ProvTalk, analysts will need to
periodically update the models trained by CDM and ABM
modules. Finally, ProvTalk is designed to facilitate the inves-
tigation of management operations by human analysts instead
of replacing them.

VII. RELATED WORK

NFV incident investigation. Existing role/permission-based
techniques (e.g., [64]) focus on incident prevention, and
cannot be applied to investigate the attacks bypassing such
techniques [6]. Several incident investigation solutions have
been proposed for NFV platforms (e.g., [7], [8]) to enable
locating malfunctioning components through alert correlation
techniques. ChainGuard [65] and SFC-Checker [66] verify
the correct forwarding behavior of service function chains.
vSFC [67] enables identifying a wide range of security threats
(e.g., packet injection attacks). Unlike ProvTalk, these solu-
tions do not directly identify the root cause operations.

Provenance-based solutions. Provenance-based security anal-
ysis has been extensively studied in the literature [24], [68],
[28], [69], [70], [15], [62], [18]. The authors in [28], [71], [69]
improve the capture mechanism by building the provenance
graphs based on the information captured by Linux Security
Module hooks. LPM [23] leverages data provenance to en-
sure authenticated system communications. CamQuery [28]
increases the efficiency of provenance analyses through tracing
both userspace and in-kernel executions. As a management-
level solution, ProvTalk may work in tandem and complement
those system-level techniques.

Past frameworks for layered provenance (e.g., [13], [14],
[15]) integrate application logs into the OS-level provenance of
hosts to enable more accurate analysis by removing irrelevant
dependencies. The authors in [70] and [12] leverage OS-
level provenance to triage alerts and detect exploited instances
of a program instead of root cause analysis. There exist
network provenance-based techniques [72], [73] focusing on
network traffic and reference packet events instead of man-
agement operations initiated by users (which is the focus
of ProvTalk). ProvThings [9] proposes a provenance-based
approach for auditing the IoT applications across different
devices. In SDN environments, FORENGUARD [10] provides
flow-level forensics and ProvSDN [16] monitors the access
to sensitive data for unprivileged applications. In [74], the
authors identify the absence of events in distributed systems.
In [62], the authors produce a behavioral model of distributed
applications to identify anomalous events in a cluster. Bates et
al. [75] propose a provenance-based access control mechanism
ensuring cloud storage security. The authors in [76] propose
a tenant-aware solution to enhance OpenStack access control
mechanism. DominoCatcher [11] tracks cloud management
operations in single-level provenance graphs. Our experiments
show that our approach can reduce the size of cloud-level
provenance graphs twice as much as DominoCatcher does
(see Section V-C3 for detailed results). Moreover, unlike our
work, none of these solutions can support tracking information
flow to/from different visualizations of the same resources
that we face in NFV. Finally, summarization solutions (e.g.,
[17]) abstract user behaviors using audit logs. However, such
abstraction is already intrinsically provided by NFV stack.
ProvTalk leverages the distinct visualizations of resources that
already exist at different levels of the NFV stack to infer the
semantics of lower-level events and facilitate the analyses.

VIII. CONCLUSION

In this paper, we presented ProvTalk, the first multi-
level provenance solution for NFV. ProvTalk leveraged data
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provenance concept to find the management operations leading
to attacks in NFV platforms and provided efficient pruning,
aggregation and translation mechanisms for users to pinpoint
the root cause of security incidents. We integrated ProvTalk
to Tacker-OpenStack and demonstrated the efficacy of our
approach based on real attack scenarios. Moreover, based on
our experiments on performance and storage cost, our system
substantially reduces the size of the provenance graph with
insignificant runtime and storage overhead. Finally, our user
studies results show that our approach remarkably facilitates
the identification of root cause of security incidents.
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APPENDIX A
PROVENANCE MODEL

We provide additional description about our model in
Table VII. We show a summary of nodes defined in our prove-
nance model, their related NFV concepts and their mapping
into the PROV-DM model. Subtypes refine nodes classification
with respect to NFV concepts.

APPENDIX B
CROSS-LEVEL DEPENDENCY DISCOVERY

To provide additional detail for our cross-level dependency
discovery, we provide Algorithm 1, which elaborates the steps
of the CDD module. For every NFV-level operation, CDD
identifies and tags the nodes representing its affected resource,
as well as the lower-level node connected through a MappedTo
edge. It also tags the node representing the operation connected
to the lower-level tagged node and removes that operation from
the mined sequence (Line 1-3). Then, it starts an iteration over
the remaining mined operations where it searches for paths of
the type (op2)←(res)←(op1), where op1 is a tagged node and
the operation type stored at node op2 is in the mined sequence.
It tags res and op2 nodes, and removes op2 from the mined
sequence (Line 8-9). At the end of the iteration, based on the
pre-specified threshold values and the number of operations
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TABLE VII: Mapping of the common concepts in NFV stack to the PROV-DM Model.

NFV Concept Description PROV-DM Subtype
NFV Client Customers of network services with specific privileges and service requirements. Agent NFV user admin, other tenants.
Cloud Tenant A group of users owning an isolated set of virtual resources. Agent Tenant Admin, other tenants
NFV Client Operation Management API calls for updating the life-cycle or state of network services. Activity Create-VNF, Update-VNFFG, etc
Cloud Provider Operation Management API calls for updating the life-cycle or state of virtual resources. Activity Create-VM, Update-Port, etc
Network service component The states of individual or chain of services such as IDS. Entity VNF, VNFFG, etc.
Network service configuration The states of a deployed network service configuration, e.g., virtual firewall rules. Entity VNF descriptors, etc.
Cloud Resource The states of a virtual infrastructure resource, e.g., a running/stopped VM. Entity VMs, virtual ports, etc.
Cloud Resource Configuration The states of a virtual infrastructure configuration, e.g., VM virtual hardware. Entity Security groups, Flavors, etc.
Input for changing configurations An input data causing a change to the configuration state. Entity Security group rules, etc.

TABLE VIII: Statements common in our two studies. To quantify the results, we convert participants’ agreement level to scores
between one and five (score five represents Strongly agree). ScoreS and ScoreL represent the scores of our first and second
studies, respectively.

Module Statement Code ScoreS ScoreL

Multi-level Provenance
Given the incident and the provenance graph at each level, it is almost impossible to find the root cause. Q1 4.2 4.41
Given the incident alert and the connections between levels, I could find the path from the incident to the root cause. Q2 3.85 3.94
It is time-consuming to recognize the root cause among all graph nodes. Q3 4.4 4.24

Pruning One-level pruning made it easier to identify the attack-related graph nodes. Q4 2.85 3.71
Multi-level pruning made it easier to identify the attack-related graph nodes (w.r.t one-level pruning). Q5 3.65 3.94

Aggregation

Cross-level aggregation made understanding the relationship between nodes at different levels easier. Q6 4.3 4.11
The graph seems less complex after cross-level aggregation. Q7 4.65 4.41
The labels inside the compound nodes are helpful in understanding the provenance graph. Q8 4.35 4.35
It was easier to find the root cause after aggregating and labeling administrative behavior-related nodes. Q9 3.6 4
Expanding the compound nodes can provide useful details in an on-demand basis. Q10 4.4 4.41

Rule-based Translation
Seeing this generated textual description would have made identifying the root cause much easier. Q11 4.3 4.58
The generated text is similar to what was described about the attack story in the beginning. Q12 4.15 4.52
It is easy to map the summary with the provenance graph. Q13 4.25 4.23

remaining in the sequence, CDD aggregates the tagged nodes
while labeling them with either the corresponding NFV-level
operation (line 10-11), or adding partially-mismatched prefix
to the label (line 12-13), or it does not aggregate them (line 14-
15). Note that the analyst can configure the threshold values
based on their platform. For instance, environments with a
higher variety of services would have more various sets of
lower-level operations, and therefore, he/she should provide
higher threshold values in those cases.

Algorithm 1 Cross-level Dependency Discovery
       Inputs:

graph ← Multi-level Provenance Graph

MinedOps ← Mined Sequences of Operations

nfvAPIs ← NFV API Calls

Thl, Thh ← High and Low Threshold Values

       Outputs:

Provenance graph with aggregated nodes

 1:   foreach    nfvAPIi ∈ nfvAPIs    do 

               %the resource and operation connected with MappedTo edge

 2:    First_Operations,graph ← MapTagger(graph, nfvAPIi)

 3:    LeftOps ← OperationRemover(MinedOps, first_Operations)

 4:   while    iteration < MinedOps_len    do

 5:           if    iteration > MinedOps_len then

 6:                 break

 7:                   else 

         %tagging other connected operations and resources

  8:         graph, FoundOperations ← Tagger(graph, LeftOps)

  9:         LeftOps ← OperationRemover(LeftOps, FoundOperations)

        %finalizing or removing tags from aggregation candidates

10: if    LeftOps_len < Mined_len*Thl then

11:          graph←Aggregator(graph)

12: if    LeftOps_len ∈ [MinedOps_len*Thl, MinedOps_len*Thh] then

13:          graph ← MismatchAggregator(graph)

14: if    LeftOps_len> MinedOps_len*Thh then

15:          graph←TagUndoer(graph)

16:  return graph

APPENDIX C
GRAPHICAL USER INTERFACE

We show a screenshot of our interface with the magnified
excerpt of a provenance graph in Fig. 22. A brief summary of
recent incident alerts is displayed in our interface (not shown
in Fig. 22). By selecting each incident, users can see the
provenance graph corresponding to each incident, and then
invoke the pruning and aggregation options. Users can click
on the compound nodes (blue hexagon in Fig 22) to expand
them and visualize the aggregated nodes (appeared in the blue
rectangle). Users can also examine the information about the
operations and affected resources (the green box in Fig. 22),
by hovering over their corresponding nodes.

APPENDIX D
LOG PROCESSOR

To demonstrate that our approach can potentially be applied
to environments where intercepting API calls may not be
feasible, we implement a log processor for extending ProvTalk
to work with infrastructure logs (e.g., logs generated by
Neutron-Server services by default). A challenge is that some
details of the API calls are not captured by their corresponding
log entries [54]. For instance, Neutron-Server does not log
all resources affected by most API calls such as the virtual
subnet attached to a created port. To collect some missing
details, we devise methods for automatically inferring them
through correlating the log entries of different services based
on the ID of resources as index. For example, by correlating
Neutron-Server and DHCP-agent logs, we extract the virtual
subnet that is attached to a port. We implement this method as
a log processor module using Python to automatically extract
and correlate our required information from different services’
logs. This additional module can potentially extend the scope

17



of application for ProvTalk to cover other virtual environments
as long as there exists the logging capability.

NFV

Cloud

ML-based Aggregation: Aggregate AllExpand All

DeployVNFFG

UpdatePort

CreateVNF CreateVNF

CreateVNFFG

VM

VM

VM

Port

UpdateVNFFG

DeployVNF

Aggregate All

VNFVNF

VM

{"eventName":"CreateVNFFG", "reqid": "212dqe", 

"timestamp": "2021-01-10 21:44:07.769", "userID”: "23w2r"}

Fig. 22: Example screenshot of ProvTalk showing the aggre-
gated and expanded cloud-level nodes and the information
shown while hovering a node.

APPENDIX E
DETAILED USER PERCEPTION

Table VIII shows the list of the statements common be-
tween our two user studies as well as the average quantified
agreement level of participants with each statement.
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