
CHUNKED-CACHE: On-Demand and Scalable
Cache Isolation for Security Architectures

Ghada Dessouky, Alexander Gruler, Pouya Mahmoody, Ahmad-Reza Sadeghi, Emmanuel Stapf
Technical University of Darmstadt, Germany

{ghada.dessouky, pouya.mahmoody, ahmad.sadeghi, emmanuel.stapf}@trust.tu-darmstadt.de

different cores and share the LLC, cache side channels can
be exploited by the adversary to leak sensitive information,
such as private keys. The timing difference between a cache
hit and miss – which is why caches are used in the first place
– is the most commonly exploited side channel to infer the
memory access patterns of a victim application [38], [99], [35],
[44], [34], [43], [46], [64], [32], [71], [36], [37], [98], [91].
In typical side-channel attacks [71], [43], [46], [64], [38], [99]
the adversary deduces the victim’s memory access patterns
by exploiting that both the victim and adversary compete for
shared set-associative cache resources, which are designed in
such a way that a larger number of memory lines are mapped
to a smaller number of cache ways/entries in each cache set.

Besides compromising cryptographic implementations [7],
[64], [71], [99], more recent attacks have had even stealthier
impact such as bypassing address space layout randomization
(ASLR) or leaking privacy-sensitive human genome index-
ing computation [34], [32], [14], [35], [36], leaving millions
of platforms vulnerable. Even trusted execution environment
(TEE) security architectures which aim to protect sensitive
services by compartmentalizing them in isolated execution
contexts, called enclaves, e.g., Intel SGX [41], [21] or ARM
TrustZone [5], have been shown vulnerable to these attacks,
thereby undermining their acclaimed privacy and isolation
guarantees [14], [83], [69], [30], [59], [101]. This is alarming
since TEE architectures are now widely deployed by major
cloud providers, e.g., Microsoft Azure, Google Cloud, Alibaba
Cloud and IBM Cloud, to offer confidential computing, where
sensitive workloads are protected in enclaves.

The Problem with Recent Cache Defenses. To mitigate
cache side-channel attacks, various approaches have been
proposed over the years. These solutions range from time-
constant cryptographic implementations [26], [25], [55] to
software- and hardware-based approaches that modify the
cache organization itself. The latter can be broadly classified
into either cache partitioning [29], [94], [51], [61], [23], [51]
or randomization-based techniques [63], [89], [77], [78], [96],
[87] that attempt to obfuscate the relationship between the
memory address and the cache location to which it is mapped.

More recently, various schemes for a randomized memory-
to-LLC mapping, such as CEASER, ScatterCache, and
Phantom-Cache [89], [77], [78], [96], [87] have been proposed
to mitigate these attacks by obfuscating the adversary’s view of
which cache lines actually get evicted. However, such defenses
continue to evict cache lines from a small number of locations
in a shared cache, thus cache set-based conflicts essentially
still occur. While these defenses were shown effective against
the eviction set construction algorithms and techniques at
the time, subsequent more efficient eviction set construction
algorithms [78] were able to undermine them. Consequently,

Abstract— Shared cache resources in multi-core processors
are vulnerable to cache side-channel attacks. Recently proposed
defenses such as randomized mapping of addresses to cache
lines or well-known cache partitioning have their own caveats:
Randomization-based defenses have been shown vulnerable to
newer attack algorithms besides relying on weak cryptographic
primitives. They do not fundamentally address the root cause for
cache side-channel attacks, namely, mutually distrusting codes
sharing cache resources. Cache partitioning defenses provide
the strict resource partitioning required to effectively block all
side-channel threats. However, they usually rely on way-based
partitioning which is not fine-grained and cannot scale to support
a larger number of protection domains, e.g., in trusted execution
environment (TEE) security architectures, besides degrading
performance and often resulting in cache underutilization.

To overcome the shortcomings of both approaches, we present
a novel and flexible set-associative cache partitioning design for
TEE architectures, called CHUNKED-CACHE. The core idea of
CHUNKED-CACHE is to enable an execution context to “carve”
out an exclusive configurable chunk of the cache if the execu-
tion requires side-channel resilience. If side-channel resilience
is not required, mainstream cache resources can be freely
utilized. Hence, our proposed cache design addresses the security-
performance trade-off practically by enabling efficient selec-
tive and on-demand utilization of side-channel-resilient caches,
while providing well-grounded future-proof security guarantees.
We show that CHUNKED-CACHE provides side-channel-resilient
cache utilization for sensitive code execution, with small hardware
overhead, while incurring no performance overhead on the OS.
We also show that it outperforms conventional way-based cache
partitioning by 43%, while scaling significantly better to support
a larger number of protection domains.

I. INTRODUCTION

The outbreak of micro-architectural attacks has demon-
strated the crucial implications of performance-boosting pro-
cessor optimizations on the security of our computing plat-
forms [54], [1], [60], [56], [52], [65], [100], [31], [28], [27],
[58], [4], [3], [88], [68], [90], [92], [16], [17], [81], [15]. One
of the most popular features, and also the subject of many
recent attacks, are shared resources such as caches. Caches
provide orders-of-magnitude faster memory accesses and large
last-level-caches (LLCs) are usually shared across multiple
processor cores to maximize utilization.

The Problem with Caches. When a sensitive (victim)
and malicious (adversary) application run simultaneously on

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.23110
www.ndss-symposium.org

enhancements to these defenses were proposed [78], only to
be rendered ineffective again by yet another attack vector, e.g.,
weak low-latency cryptographic primitives [74], [10], or alter-
native attack techniques that exploited design/implementation
flaws in the proposed defenses [86].

Caught in an arms race, randomization-based defenses
remain as good as the best known attack technique at the time
and are constructed to mitigate very specific side channels
and attack strategies [12], with no future-proof and well-
grounded security guarantees. They only make the attacks
computationally more difficult, but do not address their fun-
damental root cause, i.e., sharing set-associative caches across
mutually distrusting processes. These schemes also assume that
all execution contexts require side-channel resilience without
providing mechanisms for a selective configuration of side-
channel-resilience, thus, taxing the entire system with the
resulting performance impact. In practice, however, only a
small portion of the workload is usually security-/privacy-
sensitive and requires this sophisticated security guarantee.

On the other hand, strict partitioning approaches promise
well-grounded security guarantees due to their cache isolation
across different execution contexts. However, these approaches
usually rely on conventional way-based partitioning [6], [57],
[94], [51], [23], and thus, are not fine-grained, cannot scale
with an increasing number of execution contexts and large
LLCs, or do not provide support for shared memory.

With these limitations in mind, we argue that a more
future-proof and practical approach for side-channel resilient
cache computing is to address the root cause of these at-
tacks, namely, sharing set-associative cache structures across
mutually distrusting execution contexts. Meanwhile, perfor-
mance, usability, flexibility and scalability should still be
preserved. We further observe that, in practice, cache side-
channel resilience is most prominently a concern in dedicated
security architectures, e.g., TEE security architectures. Thus,
it is crucial to develop side-channel-resilient cache designs
that cater for the security/functionality requirements of these
architectures, e.g., with integrated support for enabling the
side-channel resilience (and the performance cost) only for
specific execution contexts that require it.

Our Goals. In this work, we aim to selectively enforce
clean partitioning of the cache resources across mutually dis-
trusting execution contexts that require side-channel resilience,
such that all side channels are blocked (including stealthy
cache occupancy channels [84] which are not mitigated by
recent works [96], [23]), while maintaining the desired perfor-
mance requirements.

To address this performance-security trade-off, we propose
a new cache design for TEE security architectures, which we
call CHUNKED-CACHE, that enables each execution context or
domain to “carve” out its exclusive cache sets, if desired. These
sets essentially constitute an independent set-associative cache,
which we call the domain’s cache chunk, that this domain can
utilize exclusively but fully and efficiently, unlike in cache
partitioning, e.g., way-based partitioning. A domain can flexi-
bly request and configure 1.) whether it requires side-channel-
resilient cache utilization, 2.) for which memory regions, and
3.) the required capacity of this exclusive side-channel-resilient
cache chunk. Memory accesses by a domain that requires side-

channel-resilient cache utilization are mapped exclusively to
its cache chunk, while mainstream cache resources are freely
and conventionally utilized whenever side-channel-resilience is
not required. Enabling this on-demand flexibility per domain
practically requires addressing multiple key challenges. Firstly,
efficient design mechanisms are required to configure the
memory-to-set mapping at runtime for each domain depending
on its chunk capacity, while preserving conventional cache
behavior for the rest of the execution. Secondly, it must be
ensured that the operating system performance is not degraded
as cache sets get allocated exclusively to domains. Finally,
seamless support must be provided for shared memory between
domains to meet the security and functionality requirements of
different sensitive applications.

Our Contributions. Our main contributions are as follows:

• We present CHUNKED-CACHE, a novel cache architecture
for TEE security architectures, which enables a selec-
tive, flexible and scalable configuration of side-channel
resilient caches for execution domains, without degrading
the OS performance.

• We address the performance-security trade-off by enforc-
ing clean cache partitioning that blocks all cache side
channels by allocating exclusive cache chunks for differ-
ent domains. In doing so, future-proof and solid security
assurances are guaranteed, while still preserving perfor-
mance, functionality and compatibility requirements.

• We extensively evaluate the cycle-accurate performance
overhead of CHUNKED-CACHE for compute-intensive
SPEC CPU2017 workloads and I/O-intensive real-world
applications. We show that it outperforms shared cache
utilization in some cases, that the OS performance even
improves owing to CHUNKED-CACHE’s flexible cache
utilization, and that CHUNKED-CACHE outperforms par-
titioning (way-based) by 43% while also scaling better to
support a larger number of protection domains.

• We implement and evaluate a hardware prototype of
CHUNKED-CACHE. We show that it incurs a minimal
2.3% memory overhead relative to a 16 MB LLC, 1.6%
logic overhead relative to a single-core RISC-V processor,
and 12.3% LLC power consumption overhead.

II. CACHE ATTACKS & DEFENSES

Next, we briefly introduce recent cache side-channel at-
tacks that are relevant for our work and a summary of the
shortcomings of recent defenses that our work overcomes.

A. Cache Side-Channel Attacks

Cache side-channel attacks have been shown to consti-
tute a profound threat that underlies popular attacks such as
Spectre [54] and Meltdown [60], besides threatening a wide
spectrum of platforms and architectures [59], [64], [43], [102],
and even TEE architectures [14], [83], [69], [30], [59], [101].
The attacks usually work by provoking controlled evictions
of the victim’s cache line, such that the inherent information
leakage from the access-timing difference between cache hits
and misses can be exploited by the adversary. This can be
achieved using three main approaches:

• Access-based approaches where the target address is
explicitly accessed and flushed [38], [99], [35], [44], [34].

2

• Conflict-based approaches where the adversary triggers
a controlled cache contention in the same cache set of
the target address to evict the corresponding victim cache
lines [71], [43], [46], [99], [64], [98], [24], [32], [71],
[37], [91], [7], [11].

• Occupancy-based approaches [84] where the adversary
observes an eviction of its own cache lines and uses this
information to infer the size of the victim’s working set.

B. Recent Defenses and their Shortcomings

Various defenses against side-channel attacks have been
proposed, focusing on access-based and conflict-based attacks.

Side-channel Resilient Implementation. This aims at
implementing algorithms, e.g. cryptographic algorithms, in
a time-constant (thus side-channel-resilient) fashion [42],
[8]. Time-constant algorithms vary between hardware plat-
forms [19] and require considerable effort that is not general-
izable and scalable for all software.

Attack Detection. Other approaches aim to detect attacks
in progress by observing hardware performance counters (e.g.,
on cache miss rates) [18], [72] and killing the suspicious
process. However, being based on heuristics, attacks can only
be discovered with a certain probability and no guaranteed
protection is provided. Moreover, some attacks have been
shown to not cause an abnormal cache behavior [35].

Noisy Measurements. Another group of defenses aims to
impede a successful attack by preventing the adversary from
performing precise time measurements, e.g., by restricting the
access to timers [71], [73], [66], by injecting noise into the
system [93], [40] or deliberately slowing down the system
clock [39], [67]. However, workarounds have been found to
create timers [82] or to perform attacks without relying on
timers [24]. Moreover, such defenses cannot protect TEE
architectures since they assume a strong adversary that can
compromise the OS kernel and circumvent such restrictions.

Cache-level Defenses. Other approaches tackle the side-
channel problem directly where it originates, i.e., at the cache
level. These defenses fall under one of two paradigms: 1.) ran-
domized cache line mapping to make the attacks computation-
ally impractical [89], [77], [78], [96], [87], [95], [63], [62]
or 2.) cache partitioning to provide strict isolation [29], [50],
[101], [61], [22], [33], [103], [47], [97], [57], [6], [94], [51],
[95], [23]. We discuss the works most related to CHUNKED-
CACHE in more detail in Section VII.

Randomization-based defenses cannot provide comprehen-
sive future-proof security guarantees, e.g., advances in attack
strategies and minimal eviction set construction techniques,
besides alternative attack techniques have been shown to
undermine such defenses [78], [12], [75], [74], [86]. Moreover,
many rely on cryptographic primitives which have been shown
vulnerable to cryptanalysis, while deploying more secure prim-
itives would further degrade performance [10], [74].

Cache partitioning defenses provide strict resource isola-
tion which allows to give solid security guarantees on side-
channel protection. However, existing partitioning defenses
suffer from high performance penalties, restrictive and in-
flexible cache utilization [95] and their inability to scale
with a larger number of protection domains [94], [51], [33].

Several approaches do not directly cater for the use of shared
libraries [29], [94], are architecture-specific [47], [97] or do
not defend against occupancy-based attacks. Memory page
coloring approaches [22], [50], [29] are impractical since they
require invasive modifications of the memory management of
commodity software and cannot sufficiently support Direct
Memory Access (DMA). Most importantly, existing partition-
ing defenses to date apply their side-channel cache protection
for the entire execution workload, impacting overall system
performance, which is not even required in most scenarios.

To fundamentally address all these shortcomings, we
propose a modified cache microarchitecture, which we call
CHUNKED-CACHE, that provides strict, yet configurable par-
titioning across the mutually distrusting execution domains.
For each domain, CHUNKED-CACHE carves out and iso-
lates an exclusive cache share only as the domain requires.
This effectively mitigates all interference across domains,
thus, defending against even stealthy cache occupancy attacks
unlike recent cache defenses, while activating side-channel
resilience only for sensitive execution domains that require
it. All other execution domains can freely utilize mainstream
cache resources at the same performance or even improved
performance than conventional non-secure cache sharing.

III. SYSTEM & ADVERSARY MODEL

In the following section, we describe our assumptions
regarding the system and adversary model.

A. System Model

CHUNKED-CACHE targets computing systems which im-
plement a TEE security architecture and contain a set-
associative cache architecture. In the following, we first present
our standard assumptions regarding the cache architecture,
followed by our assumptions on the TEE security architecture
which are aligned with existing academic [22], [57], [13], [6]
and industry solutions [41], [45], [5].

Cache Architecture. In CHUNKED-CACHE, we assume a
typical modern set-associative cache architecture with multiple
cache levels, where some cache levels are core exclusive
(typically L1 and L2) and others shared between multiple cores
(L3), whereby the L3 can be a sliced cache, e.g., sliced Intel
LLCs. While CHUNKED-CACHE can be deployed to provide
partitioning for smaller L1 and L2 caches in principle, we
assume, however, that core-exclusive caches are flushed at
context switching (similar to most recent TEE architectures [6],
[22], [57]), and thus, that CHUNKED-CACHE is deployed
for the last-level L3 cache. Moreover, we assume that the
cache controller can be configured via dedicated configuration
registers, in line with typical platforms.

TEE Architecture. We assume that the computing systems
which deploy CHUNKED-CACHE implement a TEE architec-
ture. TEE architectures already have established mechanisms
for protecting sensitive code in compartmentalized execution
contexts called enclaves or Isolated Domains (I-Domain), as
we refer to them in this work. All non-sensitive code which
does not require enhanced protection is consolidated in a
Non-Isolated Domain (NI-Domain). The domains are also
each assigned a unique identifier (domain ID). The separation
between the I-Domains and the NI-Domain is enforced by

3

access control mechanisms already implemented in the TEE
architectures, e.g., at the MMU in Intel SGX [41] or Sanc-
tum [41], at the system bus in CURE [6] or by the Physical
Memory Protection (PMP) unit in Keystone [57]. The access
control mechanisms are either configured by microcode [41],
[45] or by a small software component which consists only
of a few thousand lines of code (to be formally verifiable)
and which runs in the highest software privilege level of the
system [22], [57], [13], [6], [5]. We refer to this component as
a trusted software component. The trusted software component
is also responsible for all other security-sensitive operations,
e.g., assigning the domain IDs, and, in the case of CHUNKED-
CACHE, configuring our novel protection mechanisms in the
cache controller which we describe in detail in Section IV.

Although I-Domains are security-sensitive, they might still
require to share data with another domain, e.g., to enable com-
munication with the operating system. Thus, TEE architectures
typically provide the possibility to mark parts of an I-Domain’s
memory as shared, whereby this information is again managed
by the trusted software component. In many TEE architectures,
e.g., TrustZone [5], CURE [6] or AMD SEV [45], security-
relevant metadata, which is required to perform access control,
is sent as part of every memory request. For CHUNKED-
CACHE we assume the same, namely, that the domain ID of the
domain issuing a memory access request and the information
whether the requested memory address is shared or non-
shared, are sent within the memory request.

B. Adversary Model

Since we focus on the deployment of CHUNKED-CACHE
on systems with TEE architectures, we assume the same
strong adversary model where the operating system kernel and
hypervisor are untrusted [22], [57], [13], [6], [41], [45], [5].

With regard to cache side-channel attacks, we assume the
adversary has access to the CHUNKED-CACHE specification
and is able to mount access-based and conflict-based side-
channel attacks, which are the most sophisticated and applica-
ble cache attacks (cf. Section II-A), to leak information about
a sensitive execution domain (I-Domain). Since the adversary
is also able to control the OS kernel, we assume a worst-case
scenario where an adversary can easily mount the described at-
tacks, i.e., has knowledge about the CHUNKED-CACHE design
and specs, and knows the virtual to physical address mapping
of the victim domain. Moreover, the adversary can mount
attacks from all privilege levels (except the highest privilege
level that contains the trusted software component), has access
to precise timing measurements and eviction instructions (e.g.,
clflush), can attack from the same CPU core executing
the victim domain or a different core (cross-core), freely
interrupt the victim domain and even keep the system noise to
a minimum. In contrast to related work [89], [77], [78], [96],
[87], we also consider the stealthier cache occupancy-based
attacks (cf. Section II-A). Collision-based attacks [11], which
exploit cache collisions at the victim caused by the victim’s
own cache utilization, are, aligned with related work, kept out
of scope. Collision-based attacks have not been widely shown
and are very specific to particular software implementations
(e.g., table-based).

Apart from cache side-channel attacks, an adversary who
compromises the OS kernel has full control over the memory

management and thus, can easily map physical memory pages
of a victim domain into its own memory. This allows an
adversary to perform rogue cache accesses to sensitive data
directly without the need of a cache side channel.

In line with related work [29], [94], [51], [61], [23], [95],
[63], [89], [77], [78], [96], [87], we do not consider physical
attacks on caches, e.g., physical side-channel attacks [53],
fault injection attacks [9], and attacks that exploit hardware
flaws [88], [48], [76]. We do not consider denial-of-service
attacks from a security point of view. However, to avoid the
performance impact on the OS, CHUNKED-CACHE ensures
that a certain amount of cache resources are always available
to the OS (described in Section IV). Based on our system
model (Section III-A) , we assume that the adversary cannot
compromise the trusted software component.

IV. CHUNKED-CACHE DESIGN

We first describe the high-level idea of CHUNKED-CACHE,
a novel cache microarchitecture that provides flexible and on-
demand assignment of cache resources to execution domains
(Section IV-A). We follow with a detailed explanation of our
design (Section IV-B) and the required cache tag store and
cache controller modifications (Section IV-C).

Fig. 1. Computing system with TEE architecture and CHUNKED-
CACHE as the shared last-level cache.

A. High-Level Design

In Figure 1, we show how CHUNKED-CACHE is inte-
grated as the last-level cache in a computing system which
implements a TEE architecture, aligned with our system
model detailed in Section III-A. Figure 2 steers the focus
to the design of CHUNKED-CACHE itself and illustrates its
architecture abstractly. As described in Section III-A, all TEE
architectures provide built-in mechanisms to protect sensitive
code in Isolated Domains (I-Domains), whereas non-sensitive
code is running in a Non-Isolated Domain (NI-Domain).

Each active domain (NI-Domain and I-Domains) is
uniquely identified by an ID: DID. The operating system
(OS) and all workloads which do not require protection (and
are combined in the NI-Domain) are assigned the DID 0 by
default. Every I-Domain can request exclusive cache resources

4

Fig. 2. CHUNKED-CACHE high-level design: each domain gets an
exclusive cache chunk allocated on-demand.

of desirable capacity, forming the domain’s exclusive cache
chunk, that is only utilized by the owner domain. The NI-
Domain utilizes the cache sets which are not exclusively
allocated to I-Domains, which we call mainstream cache sets.

Each I-Domain requests its dedicated cache chunk con-
sisting of the required number of cache sets, e.g., I-Domain 1
in Figure 2 requested 4 sets. Thus, at I-Domain 1 setup, 4 avail-
able (unallocated) sets are located in the cache (sets with global
IDs 8-11 here) and allocated to I-Domain 1 such that they form
its cache chunk. The allocated sets are mapped to I-Domain 1’s
chunk set IDs 0-3, and they are used to exclusively cache all
and only memory accesses issued by I-Domain 1. Enabling
each I-Domain to request its desired cache chunk capacity
exclusively provides strict partitioning and completely isolates
its cache utilization on-demand. Besides enabling selective
cache-based side-channel resilience, this also allows that each
I-Domain acquires the performance that corresponds to the
cache capacity it has requested, without any competition from
other workload. In contrast to partitioning schemes [61], [57],
[6], [94], [51] that provide each domain with only 1 or 2 ways
within each set of the full cache structure, CHUNKED-CACHE
also partitions the cache but more efficiently. CHUNKED-
CACHE carves out a full cache chunk (with all its ways per
set) of configurable capacity for the I-Domain and configures
all its memory accesses to be mapped to the cache chunk, thus
promising maximum and unshared utilization of the allocated
cache chunk. We show in Section VI that CHUNKED-CACHE
provides better performance and enhanced scalability than
partitioning schemes.

By allowing each I-Domain a custom and configurable
cache chunk capacity on-demand, in contrast to fixed al-
location, CHUNKED-CACHE enables an adaptive security-
performance trade-off in the cache microarchitecture. On one
hand, non-sensitive workload can be allowed to freely utilize
the shared mainstream cache resources. On the other hand,
if side-channel resilience is a concern, a cache chunk with
default capacity can be allocated to each I-Domain without any
further intervention from the developer. Only if the developer
requires to further optimize the performance of the workload

in a particular I-Domain, then the cache chunk capacity (its
number of sets) can be accordingly calibrated, i.e., assigning
an I-Domain more cache resources if affordable/available.

B. Design Details of CHUNKED-CACHE

In the following, we discuss the key design goals and
challenges of CHUNKED-CACHE, and the mechanisms we
propose to achieve them.

Configurable Per-Domain Isolation Modes. One of our
key design goals for CHUNKED-CACHE is to support config-
urable cache isolation modes that provide different security
guarantees, thus catering for different use cases and their
requirements. In line with the design paradigm of TEEs, it
is not reasonable to assume that all workloads require cache
isolation and side-channel resilience. Thus, in CHUNKED-
CACHE, we provide 2 different ISOLATION MODES that each
I-Domain can selectively configure for the workload it protects:
1.) MAINSTREAM-CACHE MODE: where cache isolation and
side-channel resilience is not a security requirement, and thus,
the I-Domain can utilize the mainstream cache. However,
the cached I-Domain data must still be protected from ma-
licious OS accesses. 2.) EXCLUSIVE-CACHE MODE: where
cache isolation is required since side-channel resilience is a
security requirement and thus, an exclusive cache chunk is
required by this I-Domain. The latter mode is configured for
I-Domain 1 and I-Domain 2 shown in Figure 2. In addition
to the ISOLATION MODE, the I-Domain can also configure its
SHARED MEMORY settings, i.e., if it requires to share memory
regions (and thus cache lines) with the OS, e.g., when using
OS services. To cache shared memory, the mainstream cache
that the OS uses is utilized. Typically, the developer of the
workload decides which ISOLATION MODE an I-Domain uses
and identifies which memory regions need to be shared, which
is on par with the requirement in TEE architectures where the
developer must identify the security-sensitive parts of the over-
all workload [41], [5], [22]. If a developer is not sure whether
cache side-channel attacks are a threat, the EXCLUSIVE-
CACHE MODE should be selected out of caution. At setup,
an I-Domain configures: 1.) the desired ISOLATION MODE for
its cache utilization and 2.) its SHARED MEMORY regions if
required. This metadata is securely configured by the trusted
component (as shown in Figure 1). The ISOLATION MODE
is communicated to the cache controller at domain setup,
whereas the SHARED MEMORY information is transmitted at
every memory request, aligned with our assumed system model
(Section III-A).

Mainstream Cache vs. Shared Memory Support. When
an I-Domain is in MAINSTREAM-CACHE MODE, it uses the
mainstream cache sets also used by the OS (DID 0). To prevent
a malicious OS from mapping the memory of an I-Domain in
its own memory space and accessing it directly in the cache,
CHUNKED-CACHE requires that cache lines are tagged with
the domain ID DID. The hardware mechanisms integrated into
the CHUNKED-CACHE controller enforce this tagging when
caching the data, and that only the owner domain which cached
the data can access it. Being hardware managed, the OS has
no means to modify the DID stored in the cache lines.

When an I-Domain is also sharing memory with the OS, the
corresponding cache lines for the defined SHARED MEMORY

5

regions are cached in the mainstream cache sets, and are to be
accessed by both the owner domain and the OS. To support
that, cache lines need to be tagged with an additional SHARED
flag that indicates whether the cache line is shared with the OS.
For typical TEE architectures, the developer of the workload
protected in the I-Domain configures which of its memory
regions are to be shared.

EXCLUSIVE-CACHE MODE Chunk Set Indexing. The
index bits of a memory address are used to locate the cache set
to which it is mapped. In a conventional cache, the number of
index bits is fixed and depends on the number of sets the cache
supports. However, for CHUNKED-CACHE to support cache
chunks of different sizes for different domains, configurable
set indexing is required.

When an I-Domain is in EXCLUSIVE-CACHE MODE and
requests a number of cache sets for its cache chunk, the number
of set index bits that will be used to map its memory lines has
to be computed individually for this domain. Therefore, the
cache controller keeps track of the global IDs of sets which
constitute the cache chunk (Figure 2), and the index bits for
each domain. When a memory access is issued by a domain,
this metadata is looked up, and the pertinent cache chunk
sets correctly indexed. Moreover, when an I-Domain is torn
down and its sets are de-allocated, the relevant metadata needs
to be updated accordingly, besides flushing and invalidating
the cache lines. CHUNKED-CACHE also enables support for
dynamic cache allocation, i.e., allocating additional cache sets
to an I-Domain’s cache chunk at runtime and reconfiguring the
index bits accordingly. In Section IV-C, we describe how the
cache microarchitecture and controller are modified to enable
this configurability efficiently.

NI-Domain Chunk Set Indexing. Another design chal-
lenge in CHUNKED-CACHE is managing the sets allocated to
the OS, which represents the NI-Domain with DID 0, such
that both flexibility as well as maximum utilization (as in
an unmodified insecure cache architecture) are preserved. At
bootup, when no domains are set up yet besides the OS, the OS
should ideally be able to utilize all the available cache capacity,
i.e., all cache sets are allocated to the OS by default. We refer
to these as the mainstream cache sets. Then, once domains are
set up and request exclusive cache sets, these get “torn away”
from the OS’s cache and are allocated to the domains. This
would, however, incur an impractical performance degradation
for the OS since every time some of the OS’s cache resources
are allocated to another domain, its own capacity is changed,
and so would its set indexing. This renders all memory lines
already cached by the OS inaccessible unless complicated
remapping is performed. Essentially, the OS would need to
cache these memory addresses once again, thus suffering a
high number of cold misses every time a new domain is set
up and subjecting the OS to an unreasonably high performance
overhead.

To avoid this performance penalty on the OS, the OS is
allocated a fixed (sufficiently large) number of the cache sets
in CHUNKED-CACHE which remain always dedicated to the
OS, while still allowing it to utilize the other cache sets so long
as they remain unallocated. We demonstrate this in Figure 3
where the OS is always allocated a fixed number of 8 sets
(0-7) which form its principal cache chunk. Since the 8 sets
are always available for the OS, the memory address indexing

Fig. 3. CHUNKED-CACHE OS-specific chunk set indexing.

and the number of index bits do not change at runtime. In
other words, no OS memory lines cached in this principal
cache chunk must ever be flushed out when any other domain
requests to allocate additional cache sets, since the OS cache
chunk sets are never torn away from the OS. However, the OS
can still utilize unallocated sets (sets 12-15) in parallel until
they get allocated to another domain, thus also guaranteeing
maximum utilization of the available cache resources. This
works by indexing cache sets in parallel which are congruent
to the set to which a memory address is mapped. In Figure 3, 3
index bits are required to map a memory address to the correct
set for a cache chunk of size 8 sets. Thus, if the index bits,
e.g., map to set 4, then set 12 can also be utilized by the OS
(set ID + OS cache chunk size) to cache that memory line. The
same applies for memory lines that are mapped to sets 5, 6 and
7; they also map to sets 13, 14 and 15, respectively. However,
memory lines mapped to sets 0-3 cannot utilize the congruent
sets 8-11 because these are already allocated to I-Domain 1.

C. Cache Tag Store & Cache Controller

Cache lines need to be additionally tagged with the domain
ID (DID) bits as well as a 1-bit SHARED flag bit to enforce
access control and moderate sharing with the NI-Domain. For
instance, to support 16 parallel active domains, we require to
extend the cache tag store with 4 bits to represent the DID.
We emphasize that the CHUNKED-CACHE design does not
limit the number of parallel domains to 16; a larger number is
possible but increases the hardware overhead of CHUNKED-
CACHE (but only linearly). Moreover, the number of domains
only limits how many domains can be simultaneously active
on the system. It does not limit how many applications can be
protected in I-Domains on the system in general.

To support the configurable set indexing, the allocation/de-
allocation of cache sets to different I-Domains and to differ-
entiate between OS (NI-Domain) cache accesses vs. I-Domain
accesses, 2 table structures are required by the CHUNKED-
CACHE controller which are shown in Figure 5. The CACHE
SET STATUS TABLE (CST) is a 1-bit vector that is indexed by
the global set ID (SID) and that stores the status of each set,
i.e., whether it is allocated to a domain. The CST is used to
query the status of a set when searching for free cache sets to
allocate to an I-Domain.

6

Fig. 4. CHUNKED-CACHE controller operations for cache chunk allocation, de-allocation and access control.

Fig. 5. CHUNKED-CACHE table structures.

The DOMAIN CACHE ALLOCATION TABLE (DCAT) is
indexed by the domain ID DID. It maintains whether this
domain is configured by the cache controller (ALLOC), a
vector of the global set IDs that form its cache chunk (SID-
VEC), and the corresponding number of index bits (INDEX)
required to map a memory line to the correct set (log2(number
of sets in the cache chunk)), as shown in Figure 5.

We describe next how the CHUNKED-CACHE controller
performs these cache management operations, i.e., allocation,
de-allocation and access control and represent this in Figure 4.
The description in Figure 4 only represents the sequence of
operations for understanding, but does not reflect the temporal
nature of the operations, i.e., whether they occur sequentially
or in parallel.

Cache Allocation & De-allocation. When an I-Domain
requests to allocate exclusive cache sets, this request (DID, the
number of sets (CH-NUM) requested, and the corresponding
number of INDEX bits (log2 CH-NUM) is securely commu-
nicated from the trusted component to the cache controller via
configuration registers of the cache controller (Section III-A).
The DID is looked up in the DCAT to check if it is already
allocated and that the maximum sets number allowed per I-
Domain is not exceeded. The maximum/minimum limits for
I-Domains are configured by the trusted software component,
while ensuring that each I-Domain is always assigned at least
a minimum cache chunk size.

The CST is queried to locate free sets and to allocate
them to the I-Domain by flipping the ALLOC bit, until CH-
NUM sets are allocated. If CST runs out of free sets, this is
communicated back to the trusted component to modify the
cache request. Next, the DCAT is indexed with the DID and
its metadata updated by updating the INDEX bits and the
SID-VEC with the global IDs of the allocated sets.

If a domain requests to de-allocate its cache sets, DCAT is
indexed with DID, ALLOC reset and the SID-VEC read out.
Next, the CST is indexed with each set ID in SID-VEC and
de-allocated. For both allocation and de-allocation, the cached
memory lines in the relevant sets are invalidated and flushed
(if dirty) to remove potentially malicious data in the allocation
case and prevent information leakage in the de-allocation case.

The number of cache sets which are always assigned to the
NI-Domain are hardwired, since the circuitry for the parallel
tag lookup (described below) must be hardwired.

Cache Access Management. The DID of an incoming
cache access request indicates whether it is an access by the
NI-Domain (OS domain with DID 0) or an I-Domain. If it is
an OS access, then the index bits are fixed, since its number of
cache sets are hardwired (no need to look its INDEX bits up
in the DCAT). The OS domain is assigned the least significant
cache sets by default, thus the SID-VEC is also not needed.
The correct set index in the principal chunk is computed from
the memory address in the request. Because it is an OS access,
congruent cache sets that are not allocated can also be utilized
(see Section IV-A). Thus, they are also computed and their
ALLOC status queried in the CST to locate the unallocated
sets. The tag store of the ways in the principal as well as
the congruent sets are looked up in parallel to locate a tag
bit match (cache hit), thus, neither impacting performance nor
routing delay especially since a large number of principal sets
are usually allocated to the NI-Domain which minimizes the
number of congruent sets that are looked up in parallel (1 or
2 more sets). The DID and SHARED tag bits are also checked
in parallel. If the cache line belongs to a non-zero DID (I-
Domain), the SHARED tag bit should be 1 to allow the OS to
access it.

7

For an I-Domain (non-zero DID), if access is requested
to a SHARED MEMORY region or if the I-Domain is in
MAINSTREAM-CACHE MODE, then the access is treated by
the controller as a NI-Domain access where the mainstream
and congruent cache sets are accessed. However, at the tag
comparison, the issuing DID is checked against the cache
line DID to verify that only the owner domain accesses it.
If the access is performed in EXCLUSIVE-CACHE MODE, the
exclusive cache chunk of the domain is accessed. The DCAT
is indexed with the DID and the SID-VEC and INDEX bits
are read out. The chunk set index is computed and used to
index into the SID-VEC to map to the correct global set ID.
Then, the tag store is accessed for a tag bits comparison.

CHUNKED-CACHE’s design is independent from the im-
plemented cache replacement policy and thus, does not require
additional modifications to it. On every cache miss experienced
by an I-Domain in EXCLUSIVE-CACHE MODE, a cache line
in the corresponding set in the domain’s exclusive cache chunk
is selected for eviction. On cache misses by an I-Domain
in MAINSTREAM-CACHE MODE or when accessing SHARED
MEMORY, and for all misses by the NI-Domain, a cache line
in the corresponding set from the mainstream cache is selected.

V. SECURITY CONSIDERATIONS

In this section, we discuss how CHUNKED-CACHE protects
from the adversary described in Section III-B. One key aspect
of CHUNKED-CACHE is that its protection capabilities rely
on a strict partitioning of cache resources. Thus, in contrast
to related work, which rely on probabilistic defenses (e.g.,
randomized cache line mappings [89], [77], [78], [96], [87]),
CHUNKED-CACHE provides certainty that the attacker cannot
infer the cache accesses of a victim, if the partitioning is
correctly implemented. The main security goals of CHUNKED-
CACHE are to prevent an adversary from accessing (read/write)
data in the exclusive cache chunk of an I-Domain and to
prevent eviction interference between the adversary and victim
domain. In the following, we show how CHUNKED-CACHE
achieves these goals with strict cache partitioning and we
discuss why CHUNKED-CACHE’s security guarantees even
hold in the event of a strong adversary that compromised the
operating system kernel. Besides these security considerations,
we verified the correctness of our implemented CHUNKED-
CACHE prototype by explicitly issuing memory requests which
try to read, write and evict cached data of I-Domains.

Strict Partitioning of I-Domain Cache Chunks. As
described in Section IV, the trusted software component
communicates the number of chunk sets which should be
assigned to an I-Domain to the CHUNKED-CACHE cache
controller which configures the DCAT and verifies that each
cache chunk set is only assigned to a single I-Domain. At
every cache memory access, the cache controller uses the
domain ID to index the DCAT and to retrieve the list of
assigned sets (SID-VEC). Since the assignment of domain
IDs and configuration of the DCAT can only be performed
by the trusted software component, the indexing logic of the
cache controller will never return a cache set which does
not belong to the issuer of the memory request. Thus, an
adversary is never able to read an I-Domain’s exclusive sets
(cache chunk), write to them or evict them. As a result,
CHUNKED-CACHE protects from access-based attacks, which

require the adversary to flush memory out of the victim’s sets,
and conflict-based attacks, which require to fill the victim’s
sets and thus, evicting its cache lines. Moreover, CHUNKED-
CACHE’s strict cache resource separation prevents an adversary
from observing evictions of its own sets caused by the victim,
which protects from occupancy-based attacks, and also strictly
prevents the sharing of replacement policy metadata, which
has been shown exploitable [51]. In general, the adversary
can only infer how many cache sets are assigned to an I-
Domain but cannot infer which sets (and therefore which
memory addresses) are accessed at which point in time. As
described in Section III-B, collision-based attacks are not
considered. Defending against them architecturally requires
locking the victim cache lines. CHUNKED-CACHE could be
extended to integrate this, though mitigating an attack which is
very specific to particular software implementations and is not
widely shown does not justify the resulting large performance
overhead.

CHUNKED-CACHE allows for a dynamic assignment of
cache sets to I-Domains. Whenever the cache chunk capacity
of an I-Domain is modified, all assigned chunk sets are
invalidated. This prevents leakage of sensitive I-Domain data
when chunk sets are reassigned to another execution domain,
and prevents an adversary from injecting malicious data into
a set, when additional sets are assigned to an I-Domain. The
invalidation is however only required for the I-Domain whose
cache chunk is resized; all other I-Domains do not need to be
modified and thus, their cache lines do not need to be flushed.
The same applies when the cache chunk for an I-Domain is
completely de-allocated. An adversary could also try to trick
an I-Domain into storing sensitive data in a mainstream cache
line that is accessible for the adversary (SHARED flag bit set).
CHUNKED-CACHE prevents this by checking the metadata
on every memory request of an I-Domain to verify that the
memory region was indeed configured as shared.

Protecting from Compromised NI-Domain. As described
in Section III-B, in the adversary model of TEE architectures,
the OS (and therefore the NI-Domain) is not trusted, allowing
an adversary to map physical memory pages of a victim I-
Domain to its own memory space and to directly access it in
the cache. If an I-Domain (represented by an enclave) demands
side-channel protection (EXCLUSIVE-CACHE MODE), all data
is cached in the exclusive cache chunk and thus, not accessible
for the adversary. However, if an I-Domain is not concerned
about cache side channels (MAINSTREAM-CACHE MODE),
the data is cached in the shared mainstream sets and thus, must
still be protected from malicious direct accesses. CHUNKED-
CACHE prevents those attacks with the domain ID tag which
is added to every cache line. On every cache write, the domain
ID tag is set to the ID of the write request issuer. Subsequently,
on every read request, the ID of the issuer is compared to the
stored ID and the request only permitted if both IDs match.
Evictions are permitted for every domain to achieve a perfect
utilization of the shared cache sets. This is, however, not a
security concern since an I-Domain’s data will only be cached
in the shared sets if the I-Domain is in MAINSTREAM-CACHE
MODE or if the data is explicitly shared with the NI-Domain.

8

VI. IMPLEMENTATION & EVALUATION

To evaluate CHUNKED-CACHE with respect to its hardware
footprint, power consumption overheads, and performance
impact, we implemented our design in hardware and on an
architectural cycle-accurate simulator.

Methodology. We implemented a hardware RTL model
of CHUNKED-CACHE to extend an open-source RISC-V pro-
cessor and synthesized it to evaluate the storage and logic
overhead incurred. We use our hardware implementation to
extract the additional cycle latencies incurred by CHUNKED-
CACHE due to individual cache management and access opera-
tions. Then, to evaluate the performance impact of CHUNKED-
CACHE on large mixed workloads, we extend an architectural
cycle-accurate simulator, the gem5 simulator, with CHUNKED-
CACHE and configure it to model a multi-core architecture
with a 3-level cache hierarchy which matches our system
assumptions (Section III-A). We incorporate the cycle latencies
derived from our hardware implementation into our gem5 setup
and use it to collect performance measurements on the standard
SPEC CPU2017 [20] benchmarks suite (aligned with related
work [77], [78], [96], [87]) to evaluate the overall performance
impact of CHUNKED-CACHE. Complementary to the compute-
intensive SPEC benchmarks, we also evaluate CHUNKED-
CACHE on the I/O-intensive web server nginx. In order to
achieve the most realistic results, we conduct our experiments
in the full-system simulation mode of gem5 which simulates
the user- and kernel-space software and also I/O devices.

We describe next our hardware implementation (Sec-
tion VI-A), performance evaluation (Section VI-B), and our
hardware an power overhead evaluation (Section VI-C).

A. Hardware Implementation

In our hardware model, we extended the cache tag store
with a 4-bit DID and a 1-bit SHARED bit to tag the owner
domain of each cache line and whether it is shared with the
NI-Domain (OS), respectively. We also extended the cache
controller with the table structures shown in Figure 5. To
track the status of the 16,384 sets of a 16 MB LLC with 16-
ways, the CST is implemented as a 16,384-bit register that
is indexed by the set ID to read out the corresponding 1-
bit ALLOC flag. To support set allocation for 16 domains
in parallel, the DCAT is implemented as a 16-row DID-
indexed vector structure. We decided for 16 parallel domains in
our hardware implementation since this is also the maximum
number of enclaves supported by multiple TEE architectures
in parallel [57], [6]. We define for our implementation that the
maximum number of sets that can be allocated to any domain is
8,192 sets. Thus, we reserve 4 bits to represent the set INDEX
bits number (to index into one of 8,192 sets), 114,688 bits
(8,192 sets × 14 bits to represent each set’s global ID) for the
SID-VEC, and 1 bit ALLOC flag per domain. We discuss
the storage overheads incurred by the tables in Section VI-C.

We implement the control finite-state-machines (FSMs)
that receive cache allocation and de-allocation requests and
perform the necessary management. For allocation, the FSM
controls cycling through the sets sequentially to allocate free
ones to the requesting I-Domain, updating their status in the
CST and updating the corresponding domain status in the

DCAT. For de-allocation, another FSM controls that the SID-
VEC of the pertinent I-Domain is read from the DCAT, its
ALLOC flag reset, and then, all sets of that I-Domain de-
allocated (by sequentially indexing through the CST with the
respective set IDs from the SID-VEC). Both allocation and de-
allocation occur in powers-of-2 set numbers in our prototype.
This is only an implementation decision in our prototype to
minimize the logic complexity and overhead.

The cache access mechanisms are extended to include
the DCAT lookup required for CHUNKED-CACHE to identify
which global set IDs belong to the issuing domain and to map
the access to the correct set prior to tag lookup. Additionally,
for NI-Domain accesses, after mapping to the correct set ID,
concurrent sets are computed and looked up in the CST in
parallel to identify which ones are unallocated.

B. Performance Evaluation

In this section, we first describe the latencies from our
RTL model which we incorporate into our gem5 implementa-
tion. Next, we provide an evaluation of CHUNKED-CACHE’s
performance impact using the gem5 implementation.

Cycle Latencies. As described in Section IV, CHUNKED-
CACHE introduces a new indexing policy. For I-Domain
memory requests in EXCLUSIVE-CACHE MODE, a lookup
in the DCAT is required. For requests in MAINSTREAM-
CACHE MODE and all NI-Domain (OS) memory requests, the
mainstream sets must be looked up. The comparison of the
stored DID with the requester DID is done in parallel with the
address tag comparison and thus, does not introduce additional
latency. For I-Domain requests in EXCLUSIVE-CACHE MODE,
we measure an additional latency of 1 cycle and for NI-Domain
requests and I-Domain requests in MAINSTREAM-CACHE
MODE of an additional 2 cycles. For the access latencies of
modern LLCs on multi-core systems, we estimate a baseline
of 80 cycles in line with vendor multi-core processors [2].

Whenever an I-Domain gets sets allocated, unallocated sets
are looked up and the DCAT updated. At de-allocation, sets
of the I-Domain must be invalidated (and possibly flushed)
and the CST and DCAT updated. For allocation, the overall
latency incurred is variable and is a function of: 1.) how many
sets CH-NUM are requested for allocation, and 2.) how many
sets have to be looked up in the CST. At the worst case,
this incurs a latency of 16,384 cycles and at the best case,
CH-NUM cycles. An additional 1 cycle is incurred to update
the DCAT subsequently. The INDEX is computed and com-
municated already by the trusted component in the allocation
request, thus it does not contribute additional latency.

For de-allocation, we measure an overall latency of CH-
NUM + 2 cycles, where 1 cycle is required to look up the
DCAT, and another cycle to update it, followed by CH-NUM
cycles to de-allocate each set in the CST. At worst case, a
latency of 8,194 cycles is incurred (assuming a maximum of
8,192 sets per domain). However, de-allocating the sets in CST
is done in parallel to invalidating (and possibly flushing if
dirty) the respective cache lines.

We emphasize that allocating new sets to any I-Domain
does not require invalidating or flushing any other sets of

9

Parameters L1 L2 L3 L3
(I&D) (gem5) (CHUNKED-CACHE)

size 64 KB 512 KB 16 MB 16 MB& 32 KB
of sets 128 & 64 512 16,384 16,384

associativity 8-way 16-way 16-way 16-way
access latency 4 14 80 81 / 82(in cycles)

TABLE I. CACHE CONFIGURATION ON OUR GEM5 EVALUATION
SETUP WITH AN INCLUSIVE 3-LEVEL CACHE HIERARCHY.

the NI-Domain or other I-Domains which would require re-
caching them. This is one key design goal of CHUNKED-
CACHE since it eliminates this performance overhead on other
domains, particularly the NI-Domain. The allocation of sets
either happens only once during the I-Domain setup or occa-
sionally when the number of assigned sets is modified at run-
time which requires a context switch out of the I-Domain. The
CHUNKED-CACHE allocation/de-allocation overheads induced
remain negligible when compared with the general overheads
of TEE architectures [22], [13], [57], [6]. Therefore, we do
not invest in increased logic complexity to optimize the cycle
overheads incurred for allocation and de-allocation, since they
are not in the critical path, i.e., LLC accesses.

Mixed-Workload Cycle-Accurate Evaluation. We im-
plement CHUNKED-CACHE on the cycle-accurate gem5 sim-
ulator and construct a multi-core system which resembles a
modern computing system with an inclusive 3-level cache
hierarchy. Each core has access to a core-exclusive L1 and L2
cache, and an L3 LLC shared among all cores. For the L1 and
L2, we use the unmodified cache implementation provided by
gem5, whereas we use our CHUNKED-CACHE implementation
for the L3 cache. The configuration parameters of each cache
level are shown in Table I. We derive realistic values for the
cache sizes, number of cache sets, associativity and access
latency in line with modern caches. For the CHUNKED-CACHE
L3 cache, we add our induced latencies collected from our
hardware implementation. Constructing a gem5-based multi-
core system with 3-level cache hierarchy in full-system simu-
lation mode to collect representative cycle-accurate traces for
large workloads involved significant engineering challenges, as
also evident by recent works that rely on trace-based simulators
for their evaluation with SPEC workloads [77], [78], [96], [87].

We measure the performance impact of CHUNKED-CACHE
on real-world workloads by using the standard SPEC CPU2017
benchmarks with both the SPECspeed 2017 Integer and SPEC-
speed 2017 Floating Point suites which represent a wide
range of compute-intensive applications such as compilers,
video compression, machine learning or modeling tasks. Since
running all of the benchmarks on our full-system cycle-
accurate gem5-based simulation setup would be very costly
in terms of memory and time, we selected benchmarks from
the different application domains and different working set
sizes, guided by this memory-centric characterization of the
SPEC CPU2017 benchmarks [85]. Moreover, to also cover
I/O-intensive workloads, we evaluate the impact of CHUNKED-
CACHE on the widely used web server nginx. We run
our experiments for 1 trillion instructions before we start to
collect measurements, in order to boot the system, start the
benchmarks and collect more representative metrics. We run
all our experiments for a total of 1 billion instructions in the

8192

512

512
512

256

256

1024

512

-80

-55

-30

-5

20

45

70

95

O
ve

ra
ll

 m
is

s
ra

te

co
m

pa
re

d

w
it

h
ba

se
li

ne
 (

sh
ar

ed
 L

3)
 i

n
%

Overall Miss Rate varying sets)

Fig. 6. Cache miss rate impact of CHUNKED-CACHE for SPEC
benchmarks on a 8-domain setup; compared to a shared L3 cache.

full-system mode of gem5 and collect statistics to compute
the Cycles Per Instruction (CPI) metric, in order to capture
the additional latency effect, and the L3 cache miss rates for
the reduced cache capacity effects. If not stated otherwise
for single experiments, the miss rates are calculated as the
geometric mean over the instruction and data miss rates of
the page table walker and core. We compare CHUNKED-
CACHE to 1.) a baseline system with an unmodified insecure
L3 cache and to 2.) an L3 cache which implements a way-
based partitioning scheme in which cache ways are assigned
to I-Domains as provided, e.g., by CATalyst [61] which uses
Intel CAT [49], SecDCP [94], DAWG [51], Keystone [57] or
CURE [6]. We evaluate CHUNKED-CACHE with a set of exper-
iments which investigate different computing scenarios. First,
we show how CHUNKED-CACHE’s partitioning influences the
performance of mixed workloads when encapsulated in I-
Domains (in EXCLUSIVE-CACHE MODE). Then, we evaluate
CHUNKED-CACHE’s impact on the NI-Domain (OS-domain)
and compare against way-based partitioned cache schemes.
We conclude our evaluation with a set of experiments which
show the scalability of CHUNKED-CACHE. In general, when
comparing to the baseline (unpartitioned L3 cache shared by
the same workload), our experiments show a negative effect of
CHUNKED-CACHE on the performance of a benchmark when
only a small cache chunk size is assigned to it. However, when
increasing the cache chunk size this effect vanishes. At some
point, depending on the specific characteristics of a benchmark,
the exclusive cache chunk assigned by CHUNKED-CACHE
leads to a positive effect on its performance as we show in the
following experiments. This gives the developer some degree
of freedom to calibrate the performance of the workload by
distributing the cache resources accordingly, e.g., to optimize
the performance of a particular benchmark if desired given that
the cache resources are available/affordable. All experiments
were conducted on an x86 platform equipped with an Intel
Xeon Silver 4215 CPU (2.50 GHz) and 186 GB RAM.

I-Domain Performance Impact. In the first set of ex-
periments, we evaluate the performance impact CHUNKED-
CACHE has on mixed workloads when protected in I-Domains
in EXCLUSIVE-CACHE MODE. We run 7 randomly se-
lected SPEC benchmarks in I-Domains and show our re-

10

-90

-40

10

60

110

160

D6 (omnetpp) D7 (xz) D3 (deepsjeng)

O
ve

ra
ll

 m
is

s
ra

te

co
m

pa
re

d

w
it

h
b

as
el

in
e

(s
ha

re
d

L
3)

 i
n

%

512 sets 1024 sets 2048 sets

Fig. 7. Cache miss rate impact of CHUNKED-CACHE for SPEC
CPU2017 benchmarks (varying sets); compared to a shared L3 cache.

sults in Figure 6. The NI-Domain (D0) runs Linux (kernel
version 4.19.83) and 2 benchmarks with large working sets
(600.perlbench_s and 602.gcc_s). In this experiment,
we assign 8,192 sets to the NI-Domain and a varying number
of sets to each I-Domain as indicated in the plot. We chose
the number of sets by briefly analyzing the working set size
of the benchmark running in each I-Domain, and assigning
bigger working sets to more cache sets. This is only required
when optimizing for performance, otherwise a default number
of sets can be assigned to each benchmark. We observe in the
experiment that the overall miss rate significantly decreases
for most benchmarks when compared to sharing the L3 cache.
This shows that the assignment of a smaller but exclusive
cache portion can even reduce the cache miss rates of a
workload. Moreover, our results indicate that the number of
cache sets required to reduce or completely avoid the impact
of CHUNKED-CACHE heavily depends on the characteristics of
the workload. In our experiment, the benchmarks 605.mcf_s
and 620.omnetpp_s would require more cache sets than the
assigned 512 and 1024 sets to avoid an impact on the cache
miss rates. We investigate this in another experiment where
we customize the number of sets allocated to an I-Domain for
some of the benchmarks and show how the miss rate decreases
significantly when increasing the chunk size (Figure 7). In
another experiment (Figure 8), we show how the varying chunk
sizes also influence the CPI values. As for the miss rates, the
CPI decreases in general. We observe, however, some outliers
with the CPI metrics collected, owing to the complexity of a
full-system multi-core simulation on gem5 which also includes
unpredictable kernel runtime behavior into the statistics.

Additionally, to evaluate the impact of CHUNKED-CACHE
on I/O-intensive workloads, we conduct experiments in which
we run the nginx web server in one I-Domain and the HTTP
benchmarking tool wrk in another I-Domain, whereas we keep
the NI-Domain unmodified. We then use wrk to send HTTP
requests to the web server using 12 threads and 400 open
connections. In Figure 9, the miss rate impact of CHUNKED-
CACHE on nginx and wrk is shown when increasing the
number of sets from 128 to 2048. The results show, in line
with our results on SPEC, how the increase of cache sets
leads to a decrease in the overall miss rate. The decrease is
already noticeable for a relatively small number of sets since
the exclusive assignment of the cache sets prevents nginx

-8

-6

-4

-2

0

2

4

6

8

D6 (omnetpp) D7 (xz) D3 (deepsjeng)

C
P

I
co

m
pa

re
d

w
it

h
 b

as
el

in
e

(s
h

ar
ed

 L
3)

 i
n

 %

512 sets 1024 sets 2048 sets

Fig. 8. CPI impact of CHUNKED-CACHE for SPEC CPU2017
benchmarks (increasing sets); compared to a shared L3 cache.

and wrk from evicting the sets from one another.

-100

-80

-60

-40

-20

0

20

nginx (server) wrk (client)

O
ve

ra
ll

 m
is

s
ra

te

co
m

pa
re

d

w
it

h
ba

se
li

ne
 (

sh
ar

ed
 L

3)
 i

n
%

128 sets 256 sets 512 sets 1024 sets 2048 sets

Fig. 9. Cache miss rate impact of CHUNKED-CACHE for nginx and
wrk (increasing sets); compared to a shared L3 cache.

NI-Domain Performance Impact. In the second set of ex-
periments, we focus on the performance impact of CHUNKED-
CACHE on workloads executing in the NI-Domain. We again
run mixed workloads from the SPEC benchmarks in I-
Domains, while running Linux and the 2 memory-intensive
benchmarks 600.perlbench_s and 602.gcc_s in the
NI-Domain. In Figure 10, we vary the number of sets allocated
to the NI-Domain from 2,084 to 8,192 while keeping the sets
for the other domains unchanged. For these experiments, we
show all 4 miss rate metrics over which we average in the other
experiments, the data and instruction miss rates of the page
table walker (DTB MR and ITB MR, respectively), and the
data and instruction miss rates of the core (Data MR and Instr.
MR, respectively). While in general, all miss rates and CPI
metrics decrease compared to the baseline, we only observe
a slight improvement when increasing the chunk size from
2,084 to 4,096 and 8,192 sets. This is because even when
the number of statically allocated sets to the NI-Domain is
rather small, the unallocated sets in the system (mainstream
sets) remain available for the NI-Domain. Thus, performance
is not significantly impacted for the NI-Domain and maximum
utilization of the available resources (as in an unmodified
insecure cache architecture) is preserved which was one of
the key design goals of CHUNKED-CACHE.

To investigate this, we run experiments (same setup) in

11

-80

-60

-40

-20

0

2048 4096 8192

M
is

s
ra

te
 c

om
p

ar
ed

 w
it

h

ba
se

li
ne

 (
sh

ar
ed

 L
3)

 i
n

%

assigned sets

DTB MR ITB MR Instr. MR

Data MR CPI

Fig. 10. Miss rate & CPI impact of CHUNKED-CACHE on the NI-
Domain (increasing sets); compared to a shared L3 cache.

which we assign 1,024 sets to the NI-Domain and vary the
number of unassigned sets. In the first run, all cache sets are
allocated in our system, while in the second run, 4,096 sets
remain unallocated and available for the NI-Domain. Figure 11
shows how the miss rates significantly decrease when 4,096
sets remain unallocated which demonstrates how CHUNKED-
CACHE enables the NI-Domain to utilize unused cache sets.

-60

-50

-40

-30

-20

-10

0

10

20

30

40

0 4096

M
is

s
ra

te
 c

om
pa

re
d

w
it

h

ba
se

li
ne

 (
sh

ar
ed

 L
3)

 i
n

%

unassigned sets

DTB MR ITB MR Instr. MR Data MR

Fig. 11. Miss rate of CHUNKED-CACHE on the NI-Domain with
varying number of unassigned sets; compared to a shared L3 cache.

Comparison with Partitioning-based Schemes. We com-
pare CHUNKED-CACHE to a cache partitioning scheme which
we implement on gem5, specifically way-based partitioning,
being the only other strict cache partitioning approach. We
run a number of experiments with a 5-domain setup where
we assign the same cache capacity to the same benchmark
in both, the CHUNKED-CACHE and way-partitioned cache –
1,024 or 2,048 sets in CHUNKED-CACHE and equivalently
1 way or 2 ways, respectively, in the way-partitioned setup.
We show in Figure 12 how for the same cache capacity,
CHUNKED-CACHE outperforms way-based partitioning for
randomly selected benchmarks. In fact, for some benchmarks
such as 625.x264_s and 644.nab_s, allocating 1,024 sets
even outperforms 2 ways (double the cache capacity) on a way-
partitioned cache. We calculate an average decrease of 43% in
the miss rate for CHUNKED-CACHE vs. the way-partitioned
cache for a 1 MB cache capacity (1024 sets) and a 39%
decrease for 2 MB (2048 sets).

Scalability and Dynamic Cache Allocation. In Ap-

pendix A, we additionally evaluate CHUNKED-CACHE’s abil-
ity to scale and support 32 I-Domains in parallel without
degrading the performance of the NI-Domain (OS) and we also
demonstrate how CHUNKED-CACHE supports the dynamic
allocation of cache sets to an I-Domain during runtime.

0

25

50

75

100

O
ve

ra
ll

 m
is

s
ra

te
 i

n
%

Way-based (1 way) Chunk-based (1024 sets)

Way-based (2 ways) Chunk-based (2048 sets)

Fig. 12. Overall miss rate for SPEC CPU2017 benchmarks with
CHUNKED-CACHE; compared to a way-partitioned cache.

C. Hardware Footprint and Power Consumption Evaluation

To evaluate the storage and logic overhead incurred by
CHUNKED-CACHE, we synthesize our implementation target-
ing a single-issue single-core RISC-V processor [79] using
Xilinx Vivado tools. While this processor does not provide
an LLC, this is not necessary since we can still extend the
existing simple cache controller to implement CHUNKED-
CACHE, verify its functionality in cycle-accurate RTL-level
simulations and evaluate its overheads.

Storage/Memory Overhead. The main contribution to the
hardware area overhead of CHUNKED-CACHE is the extra
storage required, rather than the logic itself, since that requires
the fabrication of memory which consumes more gates than
hardware logic. The extra storage is needed for the additional
tag bits required per cache line (4-bit DID and 1-bit SHARED
flag), the CST and DCAT. In our current prototype imple-
mentation targeting 16 domains, 16 MB LLC with 16-ways
and 16,384 sets, and an allowed maximum of 8,192 sets per
domain, the CST consumes 2 KB, the DCAT ≈ 224 KB,
and the additional tag storage 160 KB, totaling 386 KB.
This amounts to a negligible 2.3% storage overhead relative
to a 16 MB LLC which would consume approximately an
additional 2.7% area in fabrication.

The capacity of these tables and the consequent stor-
age area overheads are directly impacted by how the vari-
ous design/implementation trade-offs involved are configured
in different implementations of CHUNKED-CACHE, namely
1) the number of active parallel domains supported (overhead
increases only linearly) 2.) the total L3 cache capacity and its
number of sets, and 3.) the maximum number of sets that can
be allocated to a domain. For example, to support 32 domains,
one more tag store bit is required costing an additional 0.25KB,
relative to the overhead incurred for 16 domains as described
above. The CST capacity is unaffected, while the DCAT
capacity doubles to 448KB. The power consumption (evaluated
below) would increase proportionally.

12

Logic Overhead. CHUNKED-CACHE requires extra hard-
ware logic for the FSMs that handle the cache de-/allocation,
and look up the tables prior to cache accesses (Section VI-A).
We synthesize our hardware implementation using Xilinx
Vivado targeting a ZedBoard Zynq-7000 FPGA board, and
estimate a logic overhead of ≈ 1.6% relative to the single-
core RISC-V processor that we extend. This would diminish
relative to a significantly more complex multi-billion-transistor
processor with a 3-level cache hierarchy which is the intended
platform for CHUNKED-CACHE. Furthermore, this overhead
does not increase as the number of domains supported by
CHUNKED-CACHE increases.

Power Consumption Overhead. We focus here on the
power consumption overheads incurred by the extended tag
store and CST and DCAT tables, since the extra hardware
added is dominated by them, and they contribute the most
to the additional power consumption (static and dynamic)
overheads. Besides, power consumption by cache memories
is significantly more than logic, and is usually the largest
contributor to the total power consumed by a chip. We estimate
the power consumption overheads of CHUNKED-CACHE in
22nm technology using the CACTI-6.0 tool [70]. For a 16-
way 16 MB cache with 64 B cache line size, the total leakage
power increases from 5056.57 mW (baseline) to 5313.83 mW.
The CST and DCAT incur an additional 365 mW, amounting
to a total of 12.3% increase in the LLC power consumption. To
support OS-specific chunk set indexing, the power consump-
tion increases accordingly. If 2 sets are looked up in parallel
(when 8,192 sets are allocated to the OS), the penalty on
power consumption is negligibly minimal. When 4 or 8 sets
are looked up in parallel, the power consumption overhead
additionally increases by 5.5% and 27.1% relative to the
baseline of 5056.57 mW, respectively. Relative to the overall
chip power consumption of modern multi-core processors (90-
150W), the LLC power consumption increases incurred by
CHUNKED-CACHE remain reasonable.

VII. RELATED WORK

We categorize cache side-channel defenses which tackle
the problem directly in the cache into two broad classes:
partitioning-based and randomization-based. We focus in this
section only on the most relevant works to CHUNKED-CACHE,
which all propose hardware changes at the cache architecture.

A. Partitioning-based Microarchitectures

The partitioning-based defenses most related to
CHUNKED-CACHE propose new cache architectures that
assign cache resources (cache lines or ways) exclusively to
protected domains. The TEE architectures Keystone [57] and
CURE [6] implement way-based partitioning to assign cache
ways exclusively to enclaves. SecDCP [94] forms security
classes of applications with similar security requirements and
assigns cache ways to them. DAWG [51] provides way-based
cache partitioning in the context of speculative execution
attacks. The main limitation of way-based partitioning is its
inability to support a large number of protected domains in
parallel since even large LLCs only comprise a small number
of cache ways (up to 16). Moreover, these defenses lead to
cache underutilization when assigned cache ways are not

evenly utilized by a protected domain since the unused cache
lines are blocked for all other domains on the system.

CHUNKED-CACHE, besides other approaches [95], [23],
is more flexible since it partitions the cache on a cache-
line basis. PLcache [95] assigns cache lines exclusively to
processes which allows for a strict and fine-grained partitioning
of cache resources. However, PLcache’s strict isolation does
not allow for caching data shared between processes and
strongly impacts the overall system performance and fairness
of the cache utilization. Moreover, PLcache does not protect
against occupancy-based attacks since the adversary can still
infer the victim’s memory accesses by observing that the
victim is unable to access/evict cache lines.

HybCache [23] assigns cache ways to protected domains
(or enclaves) by providing a fully-associative mapping with
random replacement for the ways to overcome the cache
underutilization problem of way-based partitioning schemes.
In contrast to PLcache, HybCache assigns only a subset of
the cache resources to the protected domains which can be
reclaimed by non-sensitive domains and thus, a fairer cache
utilization is achieved which does not heavily degrade the
overall system performance. However, HybCache does not
scale practically with large LLCs since it would incur high
power consumption overheads. Moreover, HybCache does not
provide strong security guarantees against occupancy-based
attacks since it does not enforce a strict partitioning.

In memory page-coloring schemes [29], [50], [101], [61],
[22], the mapping from physical memory addresses to cache
lines is utilized to ensure that the cache lines used from
sensitive applications do not overlap. One problem with page-
coloring is its high impact on the software memory layout. It
cannot fully support DMA and requires modifying the memory
management (OS or hypervisor). Moreover, the assignment of
cache lines is static, i.e., modifying the number of assigned
cache lines during runtime would require to alter the physical
memory layout of the software which is highly impractical.

CHUNKED-CACHE, however, provides flexible cache-line
partitioning that can scale to support a larger number of
protection domains than the number of cache ways. It addition-
ally overcomes the limitations of other cache-line partitioning
techniques by providing support for shared memory and by
scaling to large LLCs while still providing strict isolation. In
contrast to page coloring schemes, CHUNKED-CACHE does
not influence the memory layout, is compatible with com-
modity memory management software, and allows dynamic
modification of the chunk sizes during runtime.

B. Cryptographic Randomization Defenses

These randomization techniques attempt to avoid the stor-
age overhead of large randomized mapping tables that are
deployed by earlier defenses [95], [63], [62] by relying on
cryptographic primitives to reproducibly generate the random-
ized mapping. Time-Secure Cache [89] uses a set-associative
cache indexed with a keyed function using the cache line
address and process ID as its input. However, a weak low-
entropy indexing function is used, thus, frequent re-keying and
cache flushing must be performed which increases complexity
and performance impact.

13

CEASER [77] also uses a keyed indexing function but
without process ID. It also requires frequent re-keying of its
index derivation function and re-mapping to limit the time
interval available for an attacker to reconstruct the eviction set.
Under a minimal eviction set construction algorithm of O(E2)
complexity, CEASER has been shown able to withstand attacks
with a re-keying rate of 1%. However, under eviction set con-
struction techniques with O(E) complexity [78], the re-keying
rate needs to increase to 35%-100%, which incurs prohibitively
high performance overheads. To resist these improved attacks,
a skewed variant of CEASER, CEASER-S [78] was proposed
that divides the cache ways into multiple partitions (skews),
with different encryption keys used for each partition. A cache
line maps to a different set in each partition, where one of the
partitions is chosen randomly for the line placement, making
the minimal eviction set construction more difficult.

ScatterCache [96] also uses keyed cryptographic indexing
where cache set indexing is different and pseudo-random for
every protected domain but consistent for any given key.
Thus, re-keying is still required at time intervals to hinder the
profiling and minimal eviction set construction efforts.

Phantom-Cache [87] relies on a set of hardware-efficient
hash function and XOR operations to map a cache line to 1 of
8 randomly chosen sets in the cache, each with 16 ways, thus,
increasing the associativity to 128. This requires accessing 128
locations on each cache access to check if an address is cached,
resulting in a high power overhead of 67%.

Defenses based on cryptographic primitives have multiple
weaknesses: 1.) These defenses remain only as secure as
the best/fastest known attack strategy/minimal set eviction
construction algorithm [12], [75] with no solid future-proof
security guarantees. In fact, a recent work [86] has further
shown that other attack techniques and workarounds can be
used to exploit certain flaws in ScatterCache and CEASER-S
to completely undermine them and their security guarantees.
2.) Their promised security guarantees often rely on the
alleged, yet not thoroughly investigated unpredictability of
low-latency cryptographic primitives. The primitives deployed
by CEASER, CEASER-S and ScatterCache have been shown
vulnerable to cryptanalysis which enables the construction
of eviction sets without even accessing memory [74], [10].
Deploying primitives that resist formal cryptanalysis is also not
practical since it would incur increased latency, thus, further
degrading performance in the cache’s critical path. 3.) If the re-
keying rate is increased to mitigate novel attacks, the induced
performance overhead renders these defenses impractical.

Mirage, a concurrent work, attempts to overcome the vul-
nerability to newer faster eviction-set construction algorithms,
by eliminating set-associative eviction altogether [80]. How-
ever, besides still being vulnerable to occupancy-based attacks,
Mirage does not support selectively enabling side-channel
resilience only for execution domains that require it, thus,
incurring a performance slowdown on the entire workload.

CHUNKED-CACHE, in contrast, eliminates the described
unreliability and inflexibility fundamentally by providing strict,
yet perfectly configurable and selective, partitioning across
the execution domains. This enables each domain to allo-
cate the cache capacity it requires and thus, experience the
performance that it has opted to tolerate accordingly. This

different paradigm provides well-grounded security assurances
that stand the test of advances in cache side-channel attacks
and different attack methodologies and complexities, without
sacrificing performance. Instead, it provides by-design the
possibility to tune the security-performance trade-off for each
domain as desired, without overtaxing the OS either.

VIII. CONCLUSION

In this paper, we presented a novel side-channel-resilient
cache microarchitecture, CHUNKED-CACHE, for TEE archi-
tectures, that enables each execution domain to flexibly and
selectively configure its exclusive cache sets only when
cache isolation and side-channel resilience is required. Un-
like randomization-based cache microarchitectures recently
proposed, CHUNKED-CACHE fundamentally mitigates side-
channel attacks by enforcing strict cache partitioning, thus
providing future-proof and solid security guarantees. It also
outperforms way-based partitioning and scales to support a
larger number of execution domains, without degrading the
performance of the OS. In this work, we show how CHUNKED-
CACHE incorporates this configurable performance-security
trade-off by design in the cache microarchitecture to cater most
optimally for TEE architectures. Through our security analysis
and evaluation, we also show how on-demand sophisticated
side-channel security, as well as performance, functionality and
usability requirements are preserved in CHUNKED-CACHE,
with small hardware and memory costs.

ACKNOWLEDGEMENT

We thank our anonymous reviewers for their valuable
and constructive feedback. This work was funded by the
Deutsche Forschungsgemeinschaft (DFG) – SFB 1119 –
CROSSING/236615297.

APPENDIX

A. I-Domain Scalability

We also demonstrate how CHUNKED-CACHE scales for a
larger number of parallel domains. As described in Section IV,
the design of CHUNKED-CACHE allows to support more
domains in parallel than the 16 domains we choose for our
hardware implementation. Thus, we conduct scaling experi-
ments where we run the 619.lbm_s benchmark on every
I-Domain and we increase the number of I-Domains from 4
to 8, 16 and up to 32. Running more I-Domains in parallel
is not possible on our evaluation platform since the gem5
full-system simulation with 32 I-Domains already consumes
the complete 186 GB of available RAM which unavoidably
imposes certain limitations on our experiments. Given these
constraints, we selected 619.lbm_s as a benchmark because
of its relatively small working set. Throughout these experi-
ments, the NI-Domain (which runs the Linux kernel and one
instance of 619.lbm_s) gets 8,192 sets assigned. The overall
miss rates for the NI-Domain, when scaling from 4 to 32 I-
Domains, are stable, reaching 71.45%, 71.64%, 72.06% and
71.75%, respectively. Thus, with CHUNKED-CACHE, also a
high number of I-Domains can be supported without degrading
the performance of the NI-Domain (OS). Running even more
domains was only limited by the memory constraints of our
evaluation platform.

14

B. Dynamic Set Allocation

In another experiment, we analyze how the dynamic set
allocation capabilities of CHUNKED-CACHE impact the NI-
Domain and I-Domains during runtime. For this, we select
a SPEC benchmark (631.deepsjeng_s) which achieves a
relatively small average cache miss rate, when enough cache
sets are available, in order to better demonstrate the behavior
of the dynamic set allocation. We run the benchmark in 4
distinct I-Domains and as part of the NI-Domain. We simulate
24 billion cycles on our evaluation platform which corresponds
to 12s worth of computing (given that we simulate processors
with a clock frequency of 2 GHz). At the beginning of the
experiment, the NI-Domain (D0) gets 8,192 sets assigned, the
I-Domains D1-D3 512 sets each and the I-Domain D4 only 1
set. Then, during runtime, the size of D4’s chunk is modified.
After 3s, the chunk size is increased to 512 sets, after 6s to
2048 sets and after 9s decreased to 1 set. The chunk sizes of
the domains D0, D1, D2 and D3 are kept constant throughout
the duration of the experiment. We collect miss rate statistics
for all domains every 75ms (150,000,000 cycles) and compute
the arithmetic mean over the instruction and data miss rates of
the page table walker and core.

The results of the experiment are shown in Figure 13,
whereby we only show the miss rates for D0, D1 and D4
since the results of D2 and D3 are very similar to those of
D1. The plot clearly shows how the increase and decrease of
the chunks size affects the miss rate of D4. At the beginning,
when only 1 set is assigned to D4, the miss rate fluctuates
heavily around a value of 80%. At the time point 3s, when
511 additional sets are assigned to D4, the miss rate almost
immediately drops to around 60%, thereby catching up with
the miss rates achieved by D1. After another 3s, when D4’s
chunk size is increased to 2048, a low and stable miss rate of
20% is achieved. The fact that D0 experiences the same miss
rate with 8,192 sets shows that applications are not always
benefiting from an increased chunk size and thus, available sets
are better redistributed to other benefiting domains to improve
the overall system performance. After 9s, the chunk size is
decreased to 1 set which again leads to a heavily fluctuating
miss rate of around 80%.

Another interesting take-way from Figure 13 is that the
flushing of all chunk sets, which happens after 6s, does not
negatively influence the miss rate of D4, at least not when
collecting the miss rate statistics at intervals of 75ms.

REFERENCES

[1] Reading privileged memory with a side-channel. https:
//googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html, 2018.

[2] Intel Skylake X. https://www.7-cpu.com/cpu/Skylake X.html, 2020.
[3] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power

of simple branch prediction analysis. ACM Symposium on Information,
computer and communications security, pages 312–320, 2007.

[4] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. Cryptographers’ Track at the RSA
Conference, pages 225–242, 2007.

[5] ARM Limited. ARM Security Technology – Building a Secure
System using TrustZone Technology. http://infocenter.arm.
com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-
009492C trustzone security whitepaper.pdf, 2009.

0

20

40

60

80

100

0 1 2 3 4 5 6 7 8 9 10 11 12

O
v

er
al

l
m

is
s

ra
te

(a
ri

th
. m

ea
n)

 i
n

%

simulated seconds

D0 (OS) D1 (deepsjeng) D4 (deepsjeng)

Fig. 13. Cache miss rate impact of CHUNKED-CACHE on the NI-
Domain (D0) and I-Domains (D1, D4) when dynamically modifying
the size of the cache chunk assigned to D1.

[6] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, Patrick Jauernig,
Matthias Klimmek, Ahmad-Reza Sadeghi, and Emmanuel Stapf.
CURE: A Security Architecture with CUstomizable and Resilient
Enclaves. In USENIX Security Symposium, 2021.

[7] Daniel J Bernstein. Cache-timing attacks on AES. 2005.
[8] Daniel J Bernstein, Tanja Lange, and Peter Schwabe. The security

impact of a new cryptographic library. In International Conference
on Cryptology and Information Security in Latin America, pages 159–
176. Springer, 2012.

[9] Ingrid Biehl, Bernd Meyer, and Volker Müller. Differential fault attacks
on elliptic curve cryptosystem. In CRYPTO, 2000.

[10] R. Bodduna, V. Ganesan, P. SLPSK, K. Veezhinathan, and C. Rebeiro.
Brutus: Refuting the Security Claims of the Cache Timing Ran-
domization Countermeasure Proposed in CEASER. IEEE Computer
Architecture Letters, 2020.

[11] Joseph Bonneau and Ilya Mironov. Cache-collision Timing Attacks
Against AES. In International Conference on Cryptographic Hard-
ware and Embedded Systems (CHES). Springer-Verlag, 2006.

[12] Thomas Bourgeat, Jules Drean, Yuheng Yang, Lillian Tsai, Joel Emer,
and Mengjia Yan. End-to-end Quantitative Security Analysis of
Randomly Mapped Caches. In Micro, 2020.

[13] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza
Sadeghi, and Emmanuel Stapf. SANCTUARY: ARMing TrustZone
with User-space Enclaves. In Annual Network and Distributed System
Security Symposium (NDSS), 2019.

[14] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kosti-
ainen, Srdjan Capkun, and Ahmad-Reza Sadeghi. Software Grand
Exposure: SGX Cache Attacks Are Practical. In USENIX Workshop
on Offensive Technologies (WOOT). USENIX Association, 2017.

[15] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi,
Marina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel
Gruss, and Frank Piessens. LVI: Hijacking Transient Execution
through Microarchitectural Load Value Injection. In IEEE Symposium
on Security and Privacy, 2020.

[16] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leak-
ing Data on Meltdown-resistant CPUs. In ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 2019.

[17] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. SgxPectre:
Stealing Intel Secrets from SGX Enclaves Via Speculative Execution.
In IEEE European Symposium on Security and Privacy, 2019.

[18] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detec-
tion of cache-based side-channel attacks using hardware performance
counters. Applied Soft Computing, 49:1162–1174, 2016.

[19] David Cock, Qian Ge, Toby Murray, and Gernot Heiser. The last mile:
An empirical study of timing channels on seL4. In CCS, 2014.

[20] Standard Performance Evaluation Corporation. SPEC CPU 2017.
https://www.spec.org/cpu2017, 2017.

15

https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://www.7-cpu.com/cpu/Skylake_X.html
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
https://www.spec.org/cpu2017

[21] Victor Costan and Srinivas Devadas. Intel SGX Explained. Technical
report, Cryptology ePrint Archive. Report 2016/086, 2016. https://
eprint.iacr.org/2016/086.pdf.

[22] Victor Costan, Ilia A Lebedev, and Srinivas Devadas. Sanctum:
Minimal Hardware Extensions for Strong Software Isolation. In
USENIX Security Symposium, 2016.

[23] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza Sadeghi. Hy-
bCache: Hybrid Side-Channel-Resilient Caches for Trusted Execution
Environments. In USENIX Security Symposium, 2020.

[24] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen.
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using
Intel TSX. In 26th USENIX Security Symposium (USENIX Security
17), pages 51–67, 2017.

[25] Goran Doychev and Boris Köpf. Rigorous Analysis of Software
Countermeasures Against Cache Attacks. In SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). ACM,
2017.

[26] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan Reineke.
CacheAudit: A Tool for the Static Analysis of Cache Side Channels.
In USENIX Security Symposium. ACM, 2013.

[27] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh.
Jump over ASLR: Attacking branch predictors to bypass ASLR.
IEEE/ACM International Symposium on Microarchitecture, 2016.

[28] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, Dmitry
Ponomarev, et al. BranchScope: A New Side-Channel Attack on
Directional Branch Predictor. ACM Conference on Architectural
Support for Programming Languages and Operating Systems, pages
693–707, 2018.

[29] Michael Godfrey. On The Prevention of Cache-Based Side-Channel
Attacks in a Cloud Environment. Master’s thesis, Queen’s University,
Ontario, Canada, 2013.

[30] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo
Müller. Cache Attacks on Intel SGX. In European Workshop on
Systems Security, 2017.

[31] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation Leak-aside Buffer: Defeating Cache Side-channel Protections
with TLB Attacks. In USENIX Security Symposium, 2018.

[32] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano
Giuffrida. ASLR on the Line: Practical Cache Attacks on the MMU. In
Annual Network and Distributed System Security Symposium (NDSS),
2017.

[33] Daniel Gruss, Julian Lettner, Felix Schuster, Olga Ohrimenko, Istvan
Haller, and Manuel Costa. Strong and Efficient Cache Side-channel
Protection Using Hardware Transactional Memory. In USENIX Secu-
rity Symposium. USENIX Association, 2017.

[34] Daniel Gruss, Clémentine Maurice, Anders Fogh, Moritz Lipp, and
Stefan Mangard. Prefetch Side-Channel Attacks: Bypassing SMAP
and Kernel ASLR. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2016.

[35] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+Flush: A Fast and Stealthy Cache Attack. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA). Springer-Verlag, 2016.

[36] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache Template
Attacks: Automating Attacks on Inclusive Last-level Caches. In
USENIX Security Symposium, 2015.

[37] Roberto Guanciale, Hamed Nemati, Christoph Baumann, and Mads
Dam. Cache Storage Channels: Alias-Driven Attacks and Verified
Countermeasures. In IEEE Symposium on Security & Privacy (IEEE
S&P), 2016.

[38] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache Games
– Bringing Access-Based Cache Attacks on AES to Practice. In IEEE
Symposium on Security & Privacy (IEEE S&P), 2011.

[39] Wei-Ming Hu. Reducing Timing Channels with Fuzzy Time. In IEEE
Computer Society Symposium on Research in Security and Privacy,
1991.

[40] Wei-Ming Hu. Reducing timing channels with fuzzy time. Journal of
computer security, 1(3-4):233–254, 1992.

[41] Intel. Intel Software Guard Extensions. Tutorial slides. https://

software.intel.com/sites/default/files/332680-002.pdf. Reference Num-
ber: 332680-002, revision 1.1.

[42] Intel. Intel Integrated Performance Primitives Cryptography Developer
Reference. 2019.

[43] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. S$A: A Shared
Cache Attack That Works across Cores and Defies VM Sandboxing
– and Its Application to AES. In IEEE Symposium on Security &
Privacy (IEEE S&P), 2015.

[44] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross Processor
Cache Attacks. In ACM Symposium on Information, Computer and
Communications Security (ASIACCS). ACM, 2016.

[45] Kaplan et al. AMD memory encryption. https://developer.amd.com/
wordpress/media/2013/12/AMD Memory Encryption Whitepaper
v7-Public.pdf, 2016.

[46] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A High-resolution Side-channel Attack on Last-level Cache. In
IEEE/ACM Design Automation Conference (DAC). ACM, 2016.

[47] Mehmet Kayaalp, Khaled N. Khasawneh, Hodjat Asghari Esfeden,
Jesse Elwell, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. RIC: Relaxed Inclusion Caches for mitigating LLC side-channel
attacks. In IEEE/ACM Design Automation Conference (DAC), 2017.

[48] Zijo Kenjar, Tommaso Frassetto, David Gens, Michael Franz, and
Ahmad-Reza Sadeghi. V0LTpwn: Attacking x86 Processor Integrity
from Software. In 29th USENIX Security Symposium (USENIX
Security 20), 2020.

[49] Khang T Nguyen. Introduction to Cache Allocation Technology in the
Intel Xeon Processor E5 v4 Family. https://software.intel.com/articles/
introduction-to-cache-allocation-technology, 2016.

[50] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. STEALTH-
MEM: System-level Protection Against Cache-based Side Channel
Attacks in the Cloud. In USENIX Security Symposium. USENIX
Association, 2012.

[51] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas De-
vadas, and Joel Emer. DAWG: A Defense Against Cache Timing
Attacks in Speculative Execution Processors. In IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), 2018.

[52] Vladimir Kiriansky and Carl Waldspurger. Speculative Buffer Over-
flows: Attacks and defenses. arXiv preprint arXiv:1807.03757, 2018.

[53] Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In CRYPTO, 1996.

[54] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1–19.
IEEE, 2019.

[55] Boris Köpf, Laurent Mauborgne, and Martı́n Ochoa. Automatic
Quantification of Cache Side-channels. In International Conference
on Computer Aided Verification (CAV). Springer-Verlag, 2012.

[56] Esmaeil Mohammadian Koruyeh, Khaled N Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre Returns! Speculation Attacks
using the Return Stack Buffer. In USENIX Security Symposium, 2018.

[57] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanović,
and Dawn Song. Keystone: An Open Framework for Architecting
Trusted Execution Environments. In Proceedings of the Fifteenth
European Conference on Computer Systems (EuroSys). Association
for Computing Machinery, 2020.

[58] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim,
and Marcus Peinado. Inferring fine-grained control flow inside SGX
enclaves with branch shadowing. USENIX Security Symposium, pages
16–18, 2017.

[59] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice,
and Stefan Mangard. ARMageddon: Cache Attacks on Mobile
Devices. In USENIX Security Symposium, 2016.

[60] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher,
Daniel Genkin, et al. Meltdown: Reading kernel memory from user
space. In 27th USENIX Security Symposium (USENIX Security 18),
pages 973–990, 2018.

[61] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas,
Gernot Heiser, and Ruby B. Lee. CATalyst: Defeating Last-Level

16

https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2016/086.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
https://software.intel.com/articles/introduction-to-cache-allocation-technology
https://software.intel.com/articles/introduction-to-cache-allocation-technology

Cache Side Channel Attacks in Cloud Computing. In IEEE In-
ternational Symposium on High Performance Computer Architecture
(HPCA), 2016.

[62] Fangfei Liu and Ruby B. Lee. Random Fill Cache Architecture. In
IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE Computer Society, 2014.

[63] Fangfei Liu, Hao Wu, Kenneth Mai, and Ruby B. Lee. Newcache:
Secure Cache Architecture Thwarting Cache Side-Channel Attacks. In
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2016.

[64] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-Level Cache Side-Channel Attacks Are Practical. In IEEE
Symposium on Security & Privacy (IEEE S&P), 2015.

[65] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative
execution using Return Stack Buffers. In ACM SIGSAC Conference
on Computer and Communications Security (CCS), 2018.

[66] Robert Martin, John Demme, and Simha Sethumadhavan. Timewarp:
Rethinking timekeeping and performance monitoring mechanisms to
mitigate side-channel attacks. In 2012 39th Annual International
Symposium on Computer Architecture (ISCA), pages 118–129. IEEE,
2012.

[67] Robert Martin, John Demme, and Simha Sethumadhavan. TimeWarp:
Rethinking Timekeeping and Performance Monitoring Mechanisms
to Mitigate Side-channel Attacks. In International Symposium on
Computer Architecture (ISCA). IEEE Computer Society, 2012.

[68] Ahmad Moghimi, Thomas Eisenbarth, and Berk Sunar. MemJam: A
false dependency attack against constant-time crypto implementations
in SGX. Cryptographers’ Track at the RSA Conference, pages 21–44,
2018. 10.1007/978-3-319-76953-0 2.

[69] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth.
Cachezoom: How SGX amplifies the power of cache attacks.
In International Conference on Cryptographic Hardware and
Embedded Systems, pages 69–90. Springer, 2017.

[70] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P
Jouppi. Cacti 6.0: A tool to model large caches. https://www.hpl.
hp.com/techreports/2009/HPL-2009-85.pdf, 2009.

[71] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks and
Countermeasures: The Case of AES. In The Cryptographers’ Track
at the RSA Conference on Topics in Cryptology (CT-RSA), 2006.

[72] Mathias Payer. Hexpads: a platform to detect “stealth” attacks.
In International Symposium on Engineering Secure Software and
Systems, pages 138–154. Springer, 2016.

[73] Colin Percival. Cache missing for fun and profit, 2005.
[74] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Verbauwhede.

Systematic Analysis of Randomization-based Protected Cache Archi-
tectures. In IEEE Symposium on Security and Privacy, 2021.

[75] Antoon Purnal and Ingrid Verbauwhede. Advanced profiling for
probabilistic Prime+Probe attacks and covert channels in ScatterCache.
arXiv preprint arXiv:1908.03383, 2019.

[76] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
Voltjockey: Breaching trustzone by software-controlled voltage ma-
nipulation over multi-core frequencies. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security,
pages 195–209, 2019.

[77] Moinuddin K. Qureshi. Ceaser: Mitigating Conflict-based Cache
Attacks via Encrypted-Address and Remapping. In IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), 2018.

[78] Moinuddin K. Qureshi. New Attacks and Defense for Encrypted-
Address Cache. In International Symposium on Computer Architecture
(ISCA). ACM, 2019.

[79] Roa Logic BV. RV12. https://github.com/RoaLogic/RV12, 2020.
[80] Gururaj Saileshwar and Moinuddin Qureshi. MIRAGE: Mitigating

Conflict-Based Cache Attacks with a Practical Fully-Associative De-
sign. In USENIX Security Symposium, 2021.

[81] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
Privilege-Boundary Data Sampling. In ACM SIGSAC Conference
on Computer and Communications Security (CCS). Association for
Computing Machinery, 2019.

[82] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan
Mangard. Fantastic timers and where to find them: High-resolution
microarchitectural attacks in javascript. In International Conference on
Financial Cryptography and Data Security, pages 247–267. Springer,
2017.

[83] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware Guard Extension: Using SGX to
Conceal Cache Attacks. In Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2017.

[84] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser,
Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust website
fingerprinting through the cache occupancy channel. In 28th USENIX
Security Symposium (USENIX Security 19), pages 639–656, 2019.

[85] Sarabjeet Singh and Manu Awasthi. Memory Centric Character-
ization and Analysis of SPEC CPU2017 Suite. arXiv preprint
arXiv:1910.00651, 2019.

[86] Wei Song, Boya Li, Zihan Xue, Zhenzhen Li, Wenhao Wang, and
Peng Liu. Randomized Last-Level Caches Are Still Vulnerable to
Cache Side-Channel Attacks! But We Can Fix It. In IEEE Symposium
on Security & Privacy (IEEE S&P), 2021.

[87] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. PhantomCache:
Obfuscating Cache Conflicts with Localized Randomization. In NDSS,
2020.

[88] Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo.
CLKSCREW: exposing the perils of security-oblivious energy
management. In USENIX Security Symposium, 2017.

[89] David Trilla, Carles Hernandez, Jaume Abella, and Francisco J.
Cazorla. Cache Side-channel Attacks and Time-predictability in
High-performance Critical Real-time Systems. In IEEE/ACM Design
Automation Conference (DAC). ACM, 2018.

[90] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Foreshadow:
Extracting the Keys to the Intel SGX Kingdom with Transient Out-
of-Order Execution. USENIX Security Symposium, 2018.

[91] Stephan Van Schaik, Cristiano Giuffrida, Herbert Bos, and Kaveh
Razavi. Malicious Management Unit: Why Stopping Cache Attacks in
Software is Harder Than You Think. In USENIX Security Symposium,
2018.

[92] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro
Frigo, Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. RIDL: Rogue In-flight Data Load. In IEEE Symposium on
Security and Privacy, 2019.

[93] Bhanu C Vattikonda, Sambit Das, and Hovav Shacham. Eliminating
fine grained timers in Xen. In Proceedings of the 3rd ACM workshop
on Cloud computing security workshop, pages 41–46, 2011.

[94] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers,
and G. Edward Suh. SecDCP: Secure Dynamic Cache Partitioning
for Efficient Timing Channel Protection. In IEEE/ACM Design
Automation Conference (DAC). ACM, 2016.

[95] Zhenghong Wang and Ruby B. Lee. New Cache Designs for Thwarting
Software Cache-based Side Channel Attacks. In International Sympo-
sium on Computer Architecture (ISCA). ACM, 2007.

[96] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, and Stefan Mangard. ScatterCache: Thwarting Cache
Attacks via Cache Set Randomization. In USENIX Security Sympo-
sium, 2019.

[97] Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas.
Secure Hierarchy-Aware Cache Replacement Policy (SHARP): De-
fending Against Cache-Based Side Channel Atacks. In International
Symposium on Computer Architecture (ISCA). ACM, 2017.

[98] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher W.
Fletcher, Roy Campbell, and Josep Torrellas. Attack Directories, Not
Caches: Side Channel Attacks in a Non-Inclusive World. To appear in
the Proceedings of the IEEE Symposium on Security & Privacy (IEEE
S&P), May 2019.

[99] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A High
Resolution, Low Noise, L3 Cache Side-channel Attack. In USENIX
Security Symposium, 2014.

[100] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: a
timing attack on OpenSSL constant-time RSA. volume 7, pages 99–
112. Springer, 2017.

17

10.1007/978-3-319-76953-0_2
https://www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf
https://www.hpl.hp.com/techreports/2009/HPL-2009-85.pdf
https://github.com/RoaLogic/RV12

[101] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y. Thomas
Hou. TruSpy: Cache Side-Channel Information Leakage from the
Secure World on ARM Devices. Cryptology ePrint Archive, Report
2016/980, 2016. https://eprint.iacr.org/2016/980.

[102] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart.
Cross-VM Side Channels and Their Use to Extract Private Keys. In
ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM, 2012.

[103] Shijun Zhao, Qianying Zhang, Yu Qin, Wei Feng, and Dengguo Feng.
SecTEE: A Software-based Approach to Secure Enclave Architecture
Using TEE. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1723–1740, 2019.

18

https://eprint.iacr.org/2016/980

	Introduction
	Cache Attacks & Defenses
	Cache Side-Channel Attacks
	Recent Defenses and their Shortcomings

	System & Adversary Model
	System Model
	Adversary Model

	Chunked-Cache Design
	High-Level Design
	Design Details of Chunked-Cache
	Cache Tag Store & Cache Controller

	Security Considerations
	Implementation & Evaluation
	Hardware Implementation
	Performance Evaluation
	Hardware Footprint and Power Consumption Evaluation

	Related Work
	Partitioning-based Microarchitectures
	Cryptographic Randomization Defenses

	Conclusion
	Appendix
	I-Domain Scalability
	Dynamic Set Allocation

	References

