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Abstract—Deep neural networks have achieved remarkable
success on a variety of mission-critical tasks. However, recent
studies show that deep neural networks are vulnerable to backdoor
attacks, where the attacker releases backdoored models that behave
normally on benign samples but misclassify any trigger-imposed
samples to a target label. Unlike adversarial examples, backdoor
attacks manipulate both the inputs and the model, perturbing
samples with the trigger and injecting backdoors into the model.
In this paper, we propose a novel attention-based evasive backdoor
attack, dubbed ATTEQ-NN. Different from existing works that
arbitrarily set the trigger mask, we carefully design an attention-
based trigger mask determination framework, which places the
trigger at the crucial region with the most significant influence on
the prediction results. To make the trigger-imposed samples appear
more natural and imperceptible to human inspectors, we introduce
a Quality-of-Experience (QoE) term into the loss function of trigger
generation and carefully adjust the transparency of the trigger.
During the process of iteratively optimizing the trigger generation
and the backdoor injection components, we propose an alternating
retraining strategy, which is shown to be effective in improving
the clean data accuracy and evading some model-based defense
approaches.

We evaluate ATTEQ-NN with extensive experiments on VGG-
Flower, CIFAR-10, GTSRB, CIFAR-100, and ImageNette datasets.
The results show that ATTEQ-NN can increase the attack success
rate by as much as 82% over baselines when the poison ratio is
low while achieving a high QoE of the backdoored samples. We
demonstrate that ATTEQ-NN reaches an attack success rate of
more than 37.78% in the physical world under different lighting
conditions and shooting angles. ATTEQ-NN preserves an attack
success rate of more than 92.5% even if the original backdoored
model is fine-tuned with clean data. It is shown that ATTEQ-NN
is also effective in transfer learning scenarios. Our user studies
show that the backdoored samples generated by ATTEQ-NN are
indiscernible under visual inspections. ATTEQ-NN is shown to
be evasive to state-of-the-art defense methods, including model
pruning, NAD, STRIP, NC, and MNTD. We will open-source our
codes upon publication.

I. INTRODUCTION

Deep neural network (DNN) has made tremendous progress
in recent years, being applied to a variety of real-world

applications, such as face recognition [62], automatic driving
[51], natural language processing [50], and object detection
[58]. DNN models are used to characterize the complicated
relationship between the input and the output. In order to reach
high prediction accuracy for difficult tasks, DNNs need to learn
from a massive amount of data and tune millions of parameters.
The training process of DNNs is prohibitive for resource-limited
users, who are unable to collect and annotate a great many
training data samples or undertake the exorbitant computation
and storage burdens of training. To enjoy the benefits of
DNNs in an affordable manner, users either outsource the
model training process to powerful cloud service providers
[13] such as Google’s Cloud Machine Learning Engine [18],
or download models from model-sharing platforms such as
BigML [1], Caffe Model Zoo [2], and ModelDepot model
market [3]. Unfortunately, this renders users vulnerable to
potential backdoor attacks.

A backdoored model acts normally when the inputs are
benign, but yields targeted or untargeted misclassification
results when activated by a special trigger [13], [23], [40].
Without knowing the trigger, it is hard for users to detect
backdoors in the model with only a clean validation dataset,
and the emergence of invisible triggers makes it difficult to
inspect abnormalities in input samples [59]. When adopted for
mission-critical tasks, backdoored models may incur severe
consequences. For example, a backdoored facial recognition
system may misclassify any person with a special pair of
eyeglasses as an authorized employee and grant the access to
confidential documents. Backdoor attacks are not confined to
the vision domain, but have been extended to other domains,
e.g., video [85], audio [31], and text [11].

There is a long line of works on backdoor attacks, and we
focus on backdoor attacks in the outsourcing scenario with
existing works listed in Table I. In the outsourcing scenario [20],
the user outsources the training of DNN models to an untrusted
third party (e.g., a cloud service provider) due to a lack of
expert knowledge or resources. The user defines the model
structure, the learning task and optionally provides the training
data. The malicious cloud service provider trains and returns
a backdoored model to the user. As shown in Table I, a good
many works [23], [12], [60], [38], [40], [54] choose random
triggers, which are simple but have a loose connection with the
backdoor in the model compared with model-dependent triggers
[45], [22]. The trigger mask, which determines the shape and
the location of the trigger, is usually set arbitrarily. A visible
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Attack Trigger design Trigger mask Invisible trigger? Co-optimization? Defense-resistant?Trigger shape Trigger location

[23] random random random × × -
[12] random random random × × -
[60] random random multi-location

√
×

√

[38] random random multi-location
√

×
√

[40] random random multi-location × ×
√

[54] random random multi-location × ×
√

[45] model-dependent random random × × -
[22] model-dependent random multi-location × ×

√

[56] model-dependent random random ×
√ √

ATTEQ-NN model-dependent attention-based attention-based
√ √ √

TABLE I. A COMPARISON OF STUDIES ON BACKDOOR ATTACKS IN THE OUTSOURCING SCENARIO.

trigger [23], [12], [40], [54], [45], [22], [56] may be identified
by visual inspection, but invisible triggers usually yield a low
attack success rate [59]. Moreover, most of the existing works
[23], [45], [59], [28], [27], [38], [60], [74] decouple the trigger
generation and the backdoor injection processes, which may
lead to sub-optimal attack performance. A feasible attack has to
be defense-resistant. Although various existing works claimed
to be defense-resistant [22], they can still be detected by the
latest defenses, such as NAD [36] and MNTD [80].

In this paper, we propose a novel attention-based QoE-
aware backdoor attack, named ATTEQ-NN, which leverages
the attention mechanism to generate the trigger mask and
imposes QoE constraint on trigger generation. To achieve ideal
attack performance while evading both visual and algorithmic
inspections, we address the following challenges:

C1. How to generate a trigger that can effectively excite
the backdoor in the model?

Existing works on model-dependent triggers did not fully
exploit the design space of the trigger to intensify the attack
effect. More specifically, the trigger mask, which constrains the
trigger shape and the trigger location, is arbitrarily determined,
e.g., a square at the bottom right corner of the image. To
address this issue, we propose a new attention-based trigger
mask determination approach. Due to the fact that a DNN
model attends to the important region of an image (e.g., the
face) and filters out irrelevant regions of the image (e.g.,
the background) to make a more robust judgment, different
regions in the image have different degrees of influence on
the prediction results. Therefore, we carefully compute the
trigger mask based on attention maps of samples belonging
to the target misclassification label. In this way, the generated
trigger can strongly drive the model output towards the target
label. Moreover, inspired by the co-optimization strategy [56],
we jointly optimize the backdoor trigger and the backdoored
model. In this way, the trigger and the backdoored model can
boost each other until convergence, thus further improving the
attack success rate. The experiments show that ATTEQ-NN
can achieve a significantly higher attack success rate than the
baselines especially with smaller trigger and complex datasets.

C2. How to naturalize the trigger to evade visual inspec-
tions?

The generated trigger is placed at the critical region of
the image that attracts intensive attention both from the
model and the human eyes, thus being vulnerable to visual
inspections. To tackle this problem, we introduce a Quality-

of-Experience (QoE) term into the loss function of trigger
generation. QoE measures the perceptual quality of images
according to subjective opinions of users [14]. Specifically, we
leverage the Structural Similarity Index (SSIM) to quantify
QoE, which assesses the structural similarities between the
original image and the distorted image. In addition, we adjust
the transparency of the trigger attached to samples. Our user
study verifies that the backdoored samples appear to be similar
to benign samples by human inspectors.

C3. How to inject the backdoor to realize effective and
evasive attacks?

Given the generated trigger, the backdoor is injected by
retraining the model with trigger-poisoned samples and clean
samples. In most cases, a high poison ratio (the ratio of poisoned
samples to all retraining samples) leads to a high attack success
rate but may twist the decision boundary in a way that makes it
possible for a meta-classifier to distinguish benign models and
backdoored models [80]. Therefore, we design an alternating
retraining strategy, which improves clean data accuracy and is
surprisingly helpful in evading model-based defense strategies,
e.g., MNTD [80].

We have conducted extensive experiments on VGG-Flower,
CIFAR-10, GTSRB, CIFAR-100, and ImageNette to compare
the performance of ATTEQ-NN with state-of-the-art backdoor
attacks including BadNets [23], TrojanNN [45], HB [59], and
RobNet [22]. The results show that ATTEQ-NN outperforms
baselines in both attack success rate and clean data accuracy,
especially when the poison ratio is low. We have carried out
ablations studies to confirm that the attention-based trigger
generation framework can increase the attack success rate by
more than 10%. We carry out attacks in the physical world
and show that the attack success rate of ATTEQ-NN is more
than 37.78% under different lighting conditions and shooting
angles. We demonstrate that ATTEQ-NN can maintain an attack
success rate of more than 92.5% even if the user retrains the
backdoored model using clean data. The user study confirms
that the backdoored samples are indistinguishable from the clean
samples by human inspections. Compared with the baselines,
ATTEQ-NN is also shown to be more resistant to state-of-the-
art defense approaches including model pruning [41], NAD
[36], STRIP [21], NC [71], and MNTD [80]. Moreover, it is
shown that ATTEQ-NN is robust to transfer learning.

To conclude, we make the following key contributions:

• We develop an attention-based trigger optimization
framework for backdoor attacks, which determines the
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trigger shape and the trigger location according to the
focal area of the model to intensify the influence of
the trigger on the prediction results, while existing
works all used a random fixed trigger mask. With the
optimized trigger mask, ATTEQ-NN achieves a high
attack success rate with a smaller trigger.

• We propose a QoE-aware trigger generation method
by introducing the QoE loss in the loss function to
constrain the perceptual quality loss caused by the
trigger.

• We design an alternating retraining method for back-
door injection to alleviate the decline of clean data
prediction accuracy, which also helps resist state-of-
the-art defenses, such as MNTD.

• Extensive experiments show that ATTEQ-NN outper-
forms state-of-the-art backdoor attacks, especially when
the trigger size is small or the poison ratio is low.
Moreover, ATTEQ-NN achieves higher evasiveness
than baselines in terms of both human visual inspection
and defense strategies.

II. BACKGROUND AND RELATED WORK

A. Deep Neural Network

Deep neural network (DNN) is a class of machine learning
models that use serial stacked processing layers to capture and
model complex nonlinear relationships. DNN can be used for
classification or regression tasks. In the context of backdoor
attacks, we focus on classification tasks. A DNN encodes a
function fθ : X → Y , where θ is the set of parameters of f .
Given an input sample x ∈ X , the DNN model fθ outputs a
probability vector over a set of possible classes Y . The DNN
model is usually trained by supervised learning. The training
dataset D consists of samples (x, y) ∈ D ⊂ X × Y , where
y is the ground-truth label of input x. The parameters θ are
determined through optimizing the loss function L(f(x; θ), y)
by stochastic gradient descent [5], [86].

Although DNN has shown great performance in many
applications, the training of DNN models is prohibitive for
resource-limited users. Firstly, the training process is data-
hungry. To train a reliable prediction model, millions of
training samples are needed. For instance, DeepFace [66], a
face recognition model developed by Facebook, is trained by
4.4 million labeled photos from 4,030 people. Collecting and
annotating such a huge dataset is difficult (if not impossible)
for small companies. Secondly, expert knowledge is required
to decide the most suitable model architecture, and massive
computation and storage resources are needed to optimize
millions of parameters.

Due to these hindrances, users are prone to outsource the
training process to the cloud or download pre-trained models
from the internet. For instance, Amazon Web Service (AWS)
has launched a series of AI services to help with data processing,
features extraction, and training of machine learning models.
There are also many free pre-trained models on open-source
platforms, e.g., Caffe Model Zoo [2]. Some popular models
are downloaded in huge numbers. However, in these scenarios,
by manipulating the training process, attackers may develop
and distribute backdoored models to unsuspecting users.

B. Backdoor Attacks

Adversarial attacks against deep neural networks can be
divided into two main categories according to attack phases:
training-phase attacks and inference-phase attacks. Training-
phase attacks actively interfere with the training process, while
inference-phase attacks try to deceive or obtain private infor-
mation of the trained model at the inference phase. Adversarial
examples are typical inference-phase attacks, where seemingly
innocent samples are constructed to mislead models into
misclassification [7], [43], [63], [79]. Membership inference and
model inversion attacks are also inference-phase attacks, where
the attacker tries to infer private information of the training
dataset [64], [61], [83], [49], [9]. Backdoor attacks are training-
phase attacks, where the attacker injects backdoors into the
model during training such that the backdoored model correctly
classifies clean inputs but misclassifies inputs with a special
trigger into a target label (targeted attacks) or any wrong label
(untargeted attacks). Backdoor attacks can be characterized
from four aspects: the attacker role, the trigger design, the
trigger visibility, and the learning scenario.

Attacker role. The attacker can be a data vendor or a model
vendor. The data vendor attacker publishes poisoned data for
victim users to download but does not control the training
process [12], [59]. The model vendor directly provides the
model to victim users, e.g., the user outsources the model
training to a malicious cloud or downloads a model from an
untrusted source. Unlike the data vendor scenario, the attacker
controls the training process, and can embed a backdoor into
the model more effectively [23], [40], [24].

Trigger design. An effective trigger is the key to the success
of backdoor attacks. Triggers can be designed as model-
independent triggers or model-dependent triggers. Model-
independent triggers, a.k.a. random triggers, are randomly
chosen, e.g., a logo or a sticker, which are unrelated to the
model. Early works on backdoor attacks [23], [12] mostly adopt
random triggers. Model-dependent triggers are specifically
generated based on the model [45], [74], [22]. The normal
way to generate model-dependent triggers is first to select a
neuron or a subset of neurons according to a certain criterion
and then produce a trigger that can strongly excite the neuron(s).
TrojanNN [45] selected the neuron with the largest sum of
weights to the preceding layer. Wang et al. [74] put forward
a ranking-based neuron selection method to choose neuron(s)
that are difficult to be pruned and whose weights change little
during retraining. Gong et al. [22] selected the neuron that
can be most activated by the samples of the target label to
evade pruning defenses and improve the attack performance.
After neuron selection, the trigger is generated to maximize
the activation of the selected neuron by gradient descent.

Trigger visibility. Early works of backdoor attacks do not pay
much attention to trigger visibility on the ground that the trigger
is confined to a small region of the image and can take the
form of watermarks or trademarks to look natural. However, the
defense strategy NeuralCleanse (NC) [71] specifically targets
small-sized triggers, and model-dependent triggers do look
unnatural and suspicious. To address this problem, a line of
works have been devoted to studying invisible triggers. Saha
et al. proposed hidden backdoor attacks [59] for data vendor
attackers who provide poisoned data samples but do not control
the labeling process. The poisoned samples look similar to

3



the samples of the target label in the pixel space, but are
similar to the trigger-imposed samples of the source label in
the feature space. Liao et al. [39] generated an adversarial
example for a clean sample and then used the pixel difference
between the clean sample and the adversarial example as the
trigger. Li et al. [35] formulated the trigger generation as a
bilevel optimization problem, where the trigger is generated
to maximize the activation of a group of neurons through Lp-
regularization to achieve invisibility. [39] and [35] are designed
for model vendor attackers.

Learning scenario. Backdoor attacks can be launched both
in the centralized learning scenario and the federated learning
scenario [78], [6], [42], [53], [73]. In the federated learning
scenario, the attacker can control the central aggregator or the
participants. If the attacker can control the central aggregator,
the scenario is similar to that of centralized learning. If the
attacker can control the participants, one or multiple malicious
participants controlled by the attacker aim to inject backdoors
into the global model via manipulating local models. The main
challenge is that the trigger will be diluted by the updates from
benign participants. Therefore, it is important for participants
to coordinate the trigger generation and backdoor injection in
order to maximize the effect of the backdoor in the global
model.

Compared with state-of-the-art backdoor attacks [23], [45],
[74], [22], [60], [59], ATTEQ-NN features the following
distinctions. First, we optimize the trigger mask using an
attention mechanism, which locates the most influential areas
in the data sample to amplify the impact of the trigger on
the prediction results. As far as we know, all existing works
chose a fixed mask with a random trigger shape (e.g., square)
at a random location (e.g., right bottom corner). With trigger
mask optimization, ATTEQ-NN is able to achieve a high attack
success rate with a smaller trigger. Second, we consider QoE
loss during trigger generation. In almost all existing works that
generate model-dependent triggers, the generation process only
targets at high activation of neurons in the model, producing
triggers with abnormal and conspicuous patterns. We constrain
the perceptual quality loss in trigger generation, yielding more
stealthy and indiscernible trigger patterns. Last but not least, we
design an alternating retraining strategy to improve clean data
prediction accuracy after backdoor injection. The experiments
show that this strategy assists ATTEQ-NN in resisting the state-
of-the-art defense MNTD, while most of the existing attacks
[23], [45], [74], [22], [60], [59] will be detected by MNTD.
We adopt generic methods for neuron selection [22] and trigger
concealment, i.e., adjust the trigger transparency.

C. Backdoor Defenses

In the face of rapidly-evolving backdoor attacks and
their severe consequences, many defense strategies have been
proposed. Since backdoor attacks tweak both the input (via
the trigger) and the model, defenses can be categorized into
data-based defenses [21], [15], [81], [68], [8], [69] and model-
based defenses [71], [44], [8], [26], [10], [37]. Defenses may be
conducted in the online phase (during run-time) [13], [21], [15],
[81], [44], [48], [69] or the offline defense (before deployment)
[68], [8], [71], [26], [10].

Data-based defense. Data-based defenses check whether an
input sample contains a trigger or not. STRIP [21] is an online

data-based defense that copies an input sample for multiple
times and combines each copy with a different sample to
generate a set of perturbed samples. If the sample is benign,
the prediction results of the perturbed samples are expected to
be random, i.e., have a high entropy. Otherwise, the perturbed
samples are more likely to be classified as the target label, i.e.,
the entropy is low. Chen et al. proposed an offline data-based
defense named activation clustering (AC) [8]. It is assumed
that the activation of the last hidden layer, which reflects the
high-level features used by a DNN model for prediction, is
different for benign samples and malicious samples. If the
samples belonging to a certain label can be clustered into two
groups, the label is deemed as the target label in the backdoor
attack. Tran et al. [68] investigated spectral signature based on
statistical analysis to detect and eradicate malicious samples
from a potentially poisoned dataset.

Model-based defense. Model-based defenses examine whether
a model contains backdoors or not. Liu et al. [44] proposed
Artificial Brain Stimulation (ABS), an online model-based
defense, which leverages Electrical Brain Stimulation (EBS) to
scan the target model to determine whether it is backdoored or
not. Ma et al. [48] proposed NIC, another online model-based
defense based on value invariant (VI) and provenance invariant
(PI) analysis. Wang et al. [71] proposed NeuralCleanse (NC)
to inspect the model in the offline phase. In the case of a back-
doored model, it is assumed that a much smaller modification
is needed to make input samples to be misclassified as the
target label than any other benign label. NC checks whether
there exists a label that satisfies this assumption to determine
whether the model is backdoored. Huang et al. [26] proposed
NeuronInspect that integrates output explanation with outlier
detection to reduce computation cost. Chen et al. [10] proposed
DeepInspect that utilizes reverse engineering to reverse the
training data and then use a conditional generative model
to get the probabilistic distribution of potentially backdoor
triggers. More recently, Xu et al. proposed a Meta Neural
Trojan Detection (MNTD) [80] pipeline that trains a meta-
classifier to predict the existence of backdoors. Tang et al.
proposed [67] statistical contamination analyzer (SCAn) to
detect backdoors based on statistical properties of the features
generated by backdoored models.

III. PROBLEM SCOPE AND THREAT MODEL

Problem scope. In this paper, we consider targeted backdoor
attacks launched by a model vendor attacker in a centralized
learning scenario.

Threat model. We adopt the same threat model as state-
of-the-art backdoor attacks in the same problem scope [23],
[40], [60]. The attacker is a malicious model vendor who can
access the training dataset and train a backdoored model. The
backdoored model is returned to a client or published online
for users to download.

Attacker capability. The attacker controls the training pro-
cess, knowing the model structure, parameters, and hyperparam-
eters. The attacker has no knowledge of the validation dataset
used by the client to test the received model, so that the model
should have high clean data accuracy to pass the test.

Attack goal. The attacker’s goal is to have the backdoored
model resemble a benign model towards clean samples, but
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Fig. 1. Overview of ATTEQ-NN. ATTEQ-NN features an attention-based QoE-aware backdoor attack. We use the attention mechanism to pinpoint the critical
region of the image as the trigger mask, introduce a QoE term in trigger generation and adjust transparency to evade human inspection, propose an alternating
retraining strategy to improve the clean data accuracy and evade some model-based defenses.

make targeted false predictions in the presence of triggers.

FA(x) = FV (x),

FA(x+ δ) = yt,

where FA is the backdoored model, FV is a benign model,
x is a clean sample, δ is the trigger, and yt is the target
misclassification label.

IV. ATTACK METHODOLOGY

In this section, we first present the general attack framework,
then describe key components in the framework, including
attention-based mask determination, QoE-based trigger gen-
eration, and alternating retraining strategy. The overview of
ATTEQ-NN is shown in Fig. 1.

A. Backdoor Attack Framework

The two key components of backdoor attacks are trigger
generation and backdoor injection. Firstly, a model-dependent
trigger is generated according to the clean model. Then, the
backdoor is injected by retraining the model with data samples
poisoned by the trigger. Given the trigger mask M , the process
of trigger generation is equal to seeking the optimal value
assignments in the mask. The idea of trigger generation is to
find a neuron in the clean model FV as a bridge between the
input trigger and the target output. To find the neuron, we
first determine the proper layer at which the neuron should
reside and then pinpoint the specific neuron. We do not select
convolutional layers or pooling layers since the neurons in
these layers only link to a small number of neurons in the
preceding layer and the succeeding layer, thus having a weak
response to the input trigger and a small influence on the
output results. Therefore, we select the first fully-connected
layer. Given the first fully-connected layer, we aim to find
the neuron that is strongly associated with both the backdoor
trigger and the target label. To evade pruning-based defenses,
the selected neuron should be duly activated by benign samples.
Therefore, following [22], we choose the neuron that has the
highest number of activations when the model takes a set of
N samples of the target label. Given the selected neuron, the
trigger is generated by maximizing the activation value of the
selected neuron through gradient descent [22]. After obtaining
the backdoor trigger δ, a subset of samples from the training
dataset is chosen. For each chosen sample (x, y), a poisoned
sample (xt, yt) is constructed, where xt = x⊗ (1−M) + δ⊗
M , ⊗ denotes the element-wise product, and yt is the target
label. The poisoned samples are mixed with benign samples
to retrain the clean model FV for backdoor injection to obtain
the backdoored model FA.

Fig. 2. The structure of RAN. In each attention module, the hyperparameter
p represents the number of pre-processing residual units, and t represents the
number of residual units in the trunk branch.

Since the attacker is capable of manipulating both the
trigger and the model, we can formulate backdoor attacks
as an optimization problem [56].

min
δ,FA

L(x, FV (x);FA) + λL(xt, yt;FA) + ωLδ(xt, x). (1)

where L(∗) denotes the loss function and we have Lδ(xt, x) =
||xt−x||∞ = ||δ||∞. ω and λ are constant parameters to balance
the clean data accuracy and the attack success rate. The first
term optimizes the prediction accuracy of clean samples. The
second and the third terms optimize the attack success rate of
trigger-imposed samples while constraining trigger visibility.

Optimizing (1) is difficult since the backdoor trigger δ
and the backdoored model FA are co-dependent. Therefore,
we partition the optimization problem (1) into two sub-
problems, and solve the two sub-problems by alternately
updating the backdoor trigger δ and the backdoored model
FA until convergence. We update the trigger and the model in
the k + 1-th iteration as

δk+1 = argmin
δ

(
L(xt, F

k
A) + ωLδ(xt, x)

)
,

F k+1
A = argmin

FA

(
L(xk+1

t , FA) + λL(x, FV (x);FA)
)
.

(2)

Given the current model F k
A, we first optimize the trigger δk+1

using Adam optimizer [29], which will be elaborated in the
following sections. Then, given the optimized trigger δk+1, we
obtain the optimized model F k+1

A by retraining the model F k
A

with poisoned samples using δk+1. We summarize the algorithm
of the co-optimization attack framework in Algorithm 1.

B. Attention-based Mask Determination

Before generating the trigger to activate the selected neuron,
we need to construct an appropriate trigger mask, which
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Algorithm 1 Attention-based QoE-aware backdoor attack
Require: Pre-trained benign deep neural network FV , trigger

size l2, target label yt, training samples D, parameters
λ, ω.

Ensure: Trigger δ, backdoored model FA.
1: // Attention-based mask generation
2: Hopt(x) = RAN(Xt).
3: Select l2 pixels with the highest weight in Hopt(x) to form

M .
4: // Initialize the trigger and the model
5: k = 0.
6: δk = Mask Initialize(M).
7: F k

A = FV .
8: while not convergence do
9: k = k + 1.

10: // QoE-aware trigger generation
11: δk = Trigger Optimize(F k−1

A , λ,D, SSIM).
12: // Alternating retraining for backdoor injection
13: The retraining dataset Dr = Alt Retrain(k,D, δk).
14: F k

A = Model Retrain(F k−1
A , δk, ω,Dr).

15: end while
16: return δk and F k

A.

Algorithm 2 Alternating retraining
Require: Training dataset D, the number of iteration k, the

trigger δ.
Ensure: Retraining dataset Dr.

1: Randomly select a subset of samples Ds ⊂ D.
2: if k is odd then
3: Dr = Ds.
4: else
5: Randomly select a subset of samples D′

s ⊂ Ds.
6: for all (x, y) ∈ D′

s do
7: Construct a poisoned sample (x+ δ, yt).
8: Ds = Ds

⋃
{(x+ δ, yt)}.

9: end for
10: Dr = Ds.
11: end if
12: return Dr.

constrains the shape, size, and position of the trigger. The mask
is a matrix with the number of rows and columns consistent
with the height and the width of the original image sample.
The elements in the matrix have a value of either 1 (denoting
the trigger region) or 0 (denoting the non-trigger region).

In existing backdoor attacks, the triggers usually take the
shape of a rectangular, a logo (e.g., apple logo), or watermarks
[45], and the trigger location is usually set as the right/left
bottom/up corners of the image [23], [45]. A larger trigger
yields a higher attack success rate but is more visible and easier
to be detected. Therefore, the trigger size is usually set as a
small percentage of the size of the entire image. Unfortunately,
such an arbitrary way of trigger mask determination may limit
the effectiveness of the trigger [76].

In classification tasks, the classification model pays attention
to different parts of the input image, similar to the human
visual system. For a specific class (e.g., deer), most of the
well-performed classification models of different structures

usually pay attention to the same key features (e.g., antlers), as
shown by many research works on explaining machine learning
models using attention networks [70], [25], [16]. Manipulating
the pixels of high importance is more likely to divert the
classification results. Therefore, we propose an attention-based
trigger mask determination method to select the most significant
pixels as the trigger mask, based on which we generate a
powerful trigger that achieves better attack performance.

In this paper, we utilize a residual attention network (RAN)
[72] to obtain attention maps. As shown in Fig. 2, RAN is a feed-
forward CNN with stacks of attention modules to extract the
features for classification in the residual network. Each attention
module consists of a trunk branch T and a soft mask branch S.
The trunk branch processes features of neural networks, and the
soft mask branch selects features by imitating the human cortex
path [52]. RAN combines bottom-up and top-down learning
methods to realize fast feed-forward processing and top-down
attention feedback in one feed-forward procedure.

An input sample xi first passes through a residual units to
get x1

i as the input to the first attention module. In a RAN with
L attention modules, the output of the l-th attention module is

Hl,c(x
l
i) = (1 + Sl,c(x

l
i)) · Tl,c(x

l
i), c ∈ [1, 2, ..., Cl], (3)

where Sl,c(·) and Tl,c(·) are the c-th channel of the mask branch
and the trunk branch of the l-th attention module respectively,
and Cl is the number of channels in the l-th attention module.
The output Hl,c will be fed into the l + 1-th attention module
after a residual unit.

In RAN, different attention modules play different roles.
Low-level attention modules reduce the influence of unim-
portant features of the background, and high-level attention
modules pick up important features that enhance classification
performance. The output of the final attention module is the
attention map with attention weights for corresponding pixels.
The attention weights represent the degree of attention the
model pays to each pixel, reflecting the contribution of each
pixel to driving the prediction results of the image into a certain
class.

The size of the obtained attention map is the same as the
size of the output of RAN, which may be different from the size
of the input. For instance, in our experiments, given a 32× 32
image, the size of the output of the last attention module is 8×8,
which is smaller than the input size. We upscale the attention
maps to the same size of the input by bilinear interpolation
[30]. We use H(xi) to denote the upscaled attention map of
sample xi.

We randomly select N clean samples of the target class yt
and attain N attention maps {H(xi)}Ni=1. Assuming that each
sample has the same probability of occurrence, we choose the
attention map that is closest to the average attention map for
generality.

Hopt(x) = arg min
xi∈Xt

||H̄(x)−H(xi)||2, (4)

where Xt is the set of samples of the target label yt, and

H̄(x) =
∑j=N

j=1 H(xj)

N is the average attention map.

Considering that most existing works use a contiguous
square trigger of size l× l (l is the number of pixels), we also

6



TABLE II. COMPARISON OF ATTEQ-NN WITH BADNETS [23],
TROJANNN [45], HB [59], AND ROBNET [22].

VGG-Flower-l

Ratio BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

10% 22.00% 96.0% 21.00% 94.50% 19.00% 94.0% 82.50% 95.50% 94.50% 97.00%
15% 22.50% 95.00% 22.00% 95.50% 24.00% 93.50% 80.50% 92.50% 99.00% 96.00%
20% 22.50% 96.50% 23.00% 96.50% 22.00% 94.50% 89.50% 91.50% 99.00% 97.50%
25% 24.50% 94.50% 27.00% 93.00% 33.00% 95.00% 91.00% 96.00% 100.0% 98.00%
30% 26.50% 97.00% 27.50% 94.00% 36.50% 95.00% 99.50% 95.00% 100.0% 98.50%

CIFAR-10

Ratio BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

1% 10.00% 87.98% 11.82% 85.95% 27.83% 88.02% 32.7% 87.92% 44.69% 88.98%
3% 10.34% 90.92% 12.28% 90.99% 31.24% 87.55% 65.79% 88.23% 86.84% 88.35%
5% 93.93% 90.02% 97.09% 89.87% 30.07% 90.03% 95.62% 88.39% 97.29% 88.90%
10% 95.43% 88.90% 98.05% 89.67% 29.07% 85.22% 95.06% 87.84% 99.26% 90.10%
15% 97.06% 88.32% 98.77% 87.69% 44.74% 84.89% 96.30% 87.65% 99.33% 89.12%
20% 98.06% 89.54% 99.75% 85.20% 60.08% 86.07% 96.93% 87.64% 99.01% 90.07%

GTSRB

Ratio BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

0.3% 22.01% 92.57% 25.55% 94.14% 8.01% 89.43% 26.81% 96.60% 90.88% 97.15%
0.5% 46.52% 94.09% 47.50% 95.38% 12.01% 90.08% 56.99% 96.89% 93.30% 97.08%
1% 96.25% 94.46% 96.65% 94.98% 23.60% 89.07% 98.84% 95.53% 96.75% 96.94%
3% 97.81% 95.00% 97.93% 94.46% 77.25% 89.67% 99.95% 96.80% 99.39% 97.11%
5% 98.08% 96.22% 98.10% 96.25% 77.74% 88.10% 99.51% 97.36% 99.97% 97.19%
7% 98.91% 96.54% 98.97% 95.76% 78.27% 88.31% 99.20% 96.04% 99.91% 96.81%

CIFAR-100

Ratio BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

0.1% 1.29% 73.57% 1.61% 74.66% 3.04% 68.79% 17.01% 73.02% 96.53% 74.55%
0.3% 2.52% 73.48% 2.25% 74.28% 3.88% 69.52% 98.01% 71.45% 98.66% 75.06%
0.5% 2.47% 73.08% 2.5% 73.62% 3.68% 67.03% 97.33% 71.67% 99.94% 74.91%
1% 2.56% 73.36% 3.27% 72.99% 7.44% 69.94% 98.66% 71.72% 99.78% 74.64%
3% 90.38% 71.59% 95.61% 73.13% 62.73% 70.28% 99.49% 72.44% 99.84% 75.44%

ImageNette

Ratio BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

5% 11.52% 91.49% 11.41% 91.77% 10.60% 91.40% 60.31% 88.96% 88.82% 91.95%
10% 13.45% 90.50% 14.15% 90.24% 11.81% 89.93% 68.78% 86.42% 90.83% 90.59%
15% 14.26% 89.00% 15.28% 88.14% 14.42% 91.40% 81.98% 88.82% 92.16% 92.40%
20% 21.53% 86.50% 24.89% 85.83% 15.34% 88.27% 85.50% 88.16% 95.01% 91.57%
30% 35.13% 71.28% 37.83% 70.54% 18.81% 85.32% 92.92% 84.87% 97.58% 91.46%

VGG-Flower-h

Ratio BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

10% 11.00% 95.50% 12.50% 95.50% 5.50% 96.00% 34.50% 95.00% 40.00% 98.50%
15% 15.50% 95.50% 16.50% 95.00% 6.50% 95.00% 58.50% 95.00% 83.00% 96.00%
20% 20.00% 94.00% 23.00% 96.50% 15.50% 95.50% 60.00% 97.00% 92.50% 97.50%
25% 28.00% 96.50% 27.00% 94.50% 19.50% 94.50% 73.00% 94.00% 98.50% 97.50%
30% 30.00% 95.50% 29.00% 95.50% 21.50% 93.00% 76.50% 95.50% 100.0% 97.00%

use the conventional expression l× l to denote the trigger size.
To make a fair comparison, we choose the top l2 pixels with
the highest attention values as the trigger region, i.e., trigger
mask M in our attack for evaluation. Note that triggers in
backdoor attacks are not required to be contiguous, and the
most important pixels we choose according to the attention
maps may not be contiguous. We can constrain the selected
important pixels to be continuous, and ATTEQ-NN will still
be effective.

C. QoE-based Trigger Generation

Although the model-dependent trigger generated by Algo-
rithm 1 can achieve a high attack success rate, the trigger may
be conspicuous and easily detected by human visual inspection.
Therefore, the invisibility of the trigger is crucial for successful
backdoor attacks. Unfortunately, only a few existing works
consider invisible triggers [59], [39], [35], and they usually
achieve a subpar attack success rate.

We propose a QoE-aware trigger generation method by
introducing Structural Similarity Index Measure (SSIM) [75] to
the loss function and adjusting the transparency of the backdoor
trigger. SSIM is a commonly-used Quality-of-Experience (QoE)
metric [14] that quantifies the differences in luminance, contrast,
and structure between the original image and the distorted
image.

SSIM = A(x, x′)αB(x, x′)βC(x, x′)γ , (5)

where A(x, x′), B(x, x′), and C(x, x′) quantify the luminance
similarity, contrast similarity and structure similarity between
the original image x and the distorted image x′. α, β, and γ
are parameters. We introduce SSIM into the loss function to
optimize the trigger.

δ∗ = argmin
δ

(
L(xt, FA) + λLδ(xt, x) + ηSSIM

)
, (6)

where η balances the attack success rate and the QoE of
poisoned images. According to our extensive experiments, we
empirically set η as 0.1.

We adjust the transparency of the backdoor trigger when
added to clean samples to further hide the backdoor trigger. A
higher transparency value yields a more imperceptible trigger
but a lower attack success rate. Setting a proper transparency
value is a trade-off between the attack success rate and the
concealment of the attack. We will evaluate the impact of
transparency on the attack performance in Section V.

D. Alternating Retraining

The conventional backdoor injection approach is to retrain
the model with both clean and poisoned samples. However, we
find by experiments that even if the poison ratio is as small
as 0.3%, the drop of clean data accuracy can be as high as
7.82% (HB [59] attacks on the GTSRB dataset as shown in
Table II). The user may reject the backdoored model due to
this performance degradation on the clean validation dataset.
Moreover, the decision boundaries may be twisted too much
by poisoned samples such that the backdoored models may be
separated from benign models by a meta-classifier [80].

To tackle these problems, we propose an alternating
retraining strategy, which alleviates the decline of clean data
prediction accuracy and makes the backdoored model more
resistant to defenses [80]. As shown in Algorithm 2, during the
process of iterative update, if the iteration index k is an even
number, we update (retrain) the model using both poisoned
samples and clean samples. Otherwise, we only retrain the
model using clean samples. An intuitive question is whether
the attack success rate will decrease due to such a retraining
strategy. Our experiments show that the attack success rate will
have a slight drop or even slight augmentation while the clean
data accuracy has an appreciable improvement. For instance,
on the CIFAR-10 dataset with a trigger size of 3× 3 (Table V),
the traditional retraining method yields a clean data accuracy
of 89.07% and an attack success rate of 99.62%, while the
alternation retraining strategy achieves a prediction accuracy of
90.23% and an attack success rate of 99.56%. Interestingly, we
discover that the alternating retraining strategy is also helpful
for evading model-based defenses, such as MNTD [80], as
verified in Section V-G. We attribute it to the fact that the
alternating retraining strategy narrows the gap between the
backdoored model and the benign model. Note that multiple
triggers targeting different labels can be injected into a model
by repeating the above steps.

V. IMPLEMENTATION AND EVALUATION

We compare the attack performance of ATTEQ-NN with
state-of-the-art attacks to verify its effectiveness. Then, we
conduct an ablation study to evaluate the usefulness of different
components in the attack framework. After that, we examine the
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TABLE III. IMPACT OF DIFFERENT TARGET LABELS. DEFAULT TRIGGER SIZE AND POISON RATE EXCEPT FOR CIFAR-100 (POISON RATE 2%) AND
VGG-FLOWER-H (POISON RATE 30%)

Label 1 Label 3 Label 5 Label 7 Label 9 Mean
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

VGG-Flower-l 99.00% 96.00% 99.00% 97.00% 98.00% 97.00% 99.00% 97.50% 99.50% 97.50% 98.90% 97.00%
CIFAR-10 97.95% 88.96% 97.90% 88.44% 97.95% 88.45% 97.92% 88.95% 97.95% 88.56% 97.93% 88.67%
GTSRB 99.83% 97.68% 99.45% 97.24% 99.26% 97.59% 98.74% 96.41% 99.52% 97.80% 99.36% 97.34%
CIFAR-100 99.98% 76.50% 99.77% 76.59% 99.92% 76.97% 99.72% 76.93% 99.17% 76.80% 99.71% 76.76%

Label 0 Label 2 Label 4 Label 6 Label 8 Mean
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

ImageNette 91.82% 92.56% 91.41% 92.36% 91.41% 91.95% 91.73% 91.85% 91.77% 91.52% 91.63% 92.05%
VGG-Flower-h 99.50% 97.50% 99.50% 98.00% 99.00% 98.50% 98.50% 98.50% 99.50% 98.00% 99.20% 98.10%

TABLE IV. THE PERFORMANCE OF ATTEQ-NN WHEN EXTENDED TO
MULTI-TRIGGER BACKDOOR ATTACKS. NOTE THAT ASR IS THE MEAN ASR

OF DIFFERENT TARGET LABELS.

# of triggers 3 5 7
ASR CDA ASR CDA ASR CDA

VGG-Flower-l 92.17% 96.50% 92.00% 96.00% 90.14% 97.00%
CIFAR-10 95.68% 90.62% 95.48% 90.86% 95.77% 90.62%
GTSRB 94.14% 96.93% 93.16% 96.37% 95.73% 96.45%

CIFAR-100 99.56% 75.67% 99.72% 75.63% 99.66% 76.07%
ImageNette 90.10% 90.31% 90.48% 90.01% 90.07% 90.83%

VGG-Flower-h 74.17% 95.00% 74.10% 95.50% 74.00% 95.50%

practicality of the attack in the physical world. We demonstrate
the viability of the attack when the user fine-tunes the model
with clean data. We evaluate whether ATTEQ-NN is robust
to transfer learning. We verify the evasiveness of ATTEQ-NN
under state-of-the-art defense strategies. Finally, we present the
user study to assess the visibility of the backdoored samples
under visual inspection. All experiments are implemented in
Python and run on a 14 core Intel(R) Xeon(R) Gold 5117 CPU
@2.00GHz and NVIDIA GeForce RTX 2080 Ti GPU machine
running Ubuntu 18.04 system.

We conduct experiments on various machine learning tasks,
covering different datasets and DNN architectures. Specifically,
we use six image datasets, including VGG-Flower (VGG-
Flower-l (32∗32) and VGG-Flower-h (224∗224)) [55], CIFAR-
10 [33], GTSRB [65], CIFAR-100 [33], and ImageNette [19].
We utilize VGG-16, ResNet-18, VGG-16, ResNet-34, ResNet-
50, and ResNet-18 structures to train models for these six
datasets, respectively. The default target label is label 0 for
VGG-Flower-l, label 3 for VGG-Flower-h, label 2 for CIFAR-
10, label 10 for GTSRB, label 0 for CIFAR-100, and label 3 for
ImageNette. The default poison ratio is 20% for VGG-Flower-l,
15% for VGG-Flower-h, 5% for CIFAR-10, 5% for GTSRB,
0.5% for CIFAR-100, and 15% for ImageNette. The default
trigger size is 4×4 for VGG-Flower-l, 8×8 for VGG-Flower-h,
4× 4 for CIFAR-10, 3× 3 for GTSRB, 2× 2 for CIFAR-100,
and 8×8 for ImageNette. The default transparency value is 0.4
for VGG-Flower-l, CIFAR-10, GTSRB, CIFAR-100 and 0.7
for ImageNette and VGG-Flower-h. Note that the baselines and
ATTEQ-NN have the same experiment settings (e.g., trigger size,
poison ratio, epoch, learning rate) in the attack performance
comparison. The evaluation of the high-resolution datasets is
based on the open-source tool TROJAN ZOO [57].

We utilize two evaluation metrics, i.e., attack success rate
(ASR) and clean data accuracy (CDA). We choose four state-
of-the-art backdoor attacks as the baselines, i.e., BadNets [23],
TrojanNN [45], HB [59], and RobNet [22]. We adopt a 92-

layer RAN with 6 attention modules. We set C1 = 128, C2 =
256, C3 = 256 following the original RAN model [72], and
C4 = C5 = C6 = 1 to aggregate all information into a single
attention map.

More details of datasets, DNN models, evaluation metrics,
and the baselines are shown in the Appendix.

A. Evaluation Results

We first present the comparison results of ATTEQ-NN and
baselines, then evaluate the impact of target label, trigger size,
transparency, and trigger contiguity on the performance of
ATTEQ-NN.

1) Comparison with Baselines: As shown in Table II,
ATTEQ-NN has higher ASR than the baselines for all six
datasets, especially when the poison ratio is small. For exam-
ple, ATTEQ-NN achieves ASR of 94.5%, 44.69%, 90.88%,
96.53% on VGG-Flower-l, CIFAR-10, GTSRB, CIFAR-100
models at poison ratios of 10%, 1%, 0.3%, 0.1% respectively,
while BadNets only reaches ASR of 22.0% (VGG-Flower-l),
10.00% (CIFAR-10), 22.01% (GTSRB), 1.29% (CIFAR-100).
Compared with HB that uses invisible triggers, ATTEQ-NN
achieves a significantly higher ASR across all datasets at all
poison ratios. For the high-resolution datasets, ATTEQ-NN
achieves an ASR of 88.82% and 83.00% on VGG-Flower-h
and ImageNette at only 5% and 15% poison ratio, which is
much higher than the baselines, especially BadNets, TrojanNN,
and HB. Moreover, ATTEQ-NN can maintain a high CDA.
For GTSRB and CIFAR-10, the ASR of ATTEQ-NN is lower
than RobNet and TrojanNN by less than 1% in only 3 cases.
This is because RobNet and TrojanNN use visible triggers,
which are more effective but more conspicuous. In comparison,
ATTEQ-NN implements invisible triggers, which achieve higher
or comparable ASR by leveraging the attention mechanism.
As the poison ratio increases, the ASR will increase, but the
CDA of ATTEQ-NN will fluctuate (either increase or decrease).
Therefore, the poison ratio needs to be adjusted according to
the attack goal. The success of ATTEQ-NN can be attributed to
the proposed components that improve the performance of the
backdoor attacks, especially attention-based mask determination
approach.

We compare the invisibility of the backdoored samples
across all attacks, as shown in Fig. 8 and Fig. 9 (Appendix).
We can see that except for HB and ATTEQ-NN, the triggers
of all other baselines are conspicuous and easily detected by
human eyes. Compared with HB, ATTEQ-NN produces more
indiscernible triggers in some cases. HB can not achieve a high
ASR as ATTEQ-NN.
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(a) Impact of lighting intensity (b) Impact of shooting angles

Fig. 3. Effectiveness of attacks in the physical world under different lighting
intensity and shooting angles.

2) Impact of Target Label: We then explore whether the
target label will impact the attack performance of ATTEQ-NN.
Table III shows that the attack performance of ATTEQ-NN is
robust under different target labels.

3) Impact of Trigger Size: Trigger size plays a vital role in
backdoor attacks. In ATTEQ-NN, the pixels of the trigger are
selected by the attention mechanism, thus are not necessarily
contiguous. As shown in Table X, Table VIII, and Table IX
(Appendix). We can see that as the trigger size increases, the
ASR will also increase but the SSIM value of the backdoored
samples will decrease.

4) Impact of Transparency Value: The higher the trans-
parency value is, the more imperceptible the trigger is. As
shown in Fig. 7 (Appendix) and Table XI (Appendix), ATTEQ-
NN achieves the highest ASR when the transparency value is
0 (i.e., completely opaque), but such triggers are visible and
easy to be detected. As the transparency increases, the ASR
will decrease, but the concealment and QoE of the backdoored
images will increase. When the transparency value is set as
0.4∼0.5 for VGG-Flower-l, CIFAR-10, GTSRB, and CIFAR-
100 or 0.6∼0.7 for ImageNette and VGG-Flower-h, the human
eyes can hardly discern the trigger (according to the user study).
Thus in the experiments, we set the transparency value as 0.4
or 0.7 by default.

B. Ablation Study

In this section, we conduct an ablation study to exam-
ine the necessity of attention-based mask determination, co-
optimization, and alternating retraining strategies. The results
are shown in shown in TableV. The “Base” attack is a tra-
ditional backdoor attack with square-shaped model-dependent
triggers placed at the bottom right corner of the image.
The “Base+Attention” attack uses the attention mechanism
to determine the trigger mask. The “Base+Attention+Iter”
attack iteratively updates the trigger and the backdoored model.
The “All” attack is the complete attack with attention-based
mask determination, co-optimization, and alternating retraining
strategies. In this section, we set the transparency value as 0.

1) Attention-based Mask Determination: Comparing “Base”
and “Base+Attention”, we can observe that the attention
mechanism can significantly improve ASR, especially when
the trigger is very small. For example, when the trigger size
is 1×1, the ASR is 18.5% for VGG-Flower-l using the “Base”
attack, but reaches as high as 29.0% using the “Base+Attention”
attack. The increment is more than 10%. Similarity, for CIFAR-
10, the improvement in ASR when the trigger size is 1×1 is
more than 10% with the attention mechanism. As the trigger
size becomes larger, the difference in ASR between the “Base”
attack and the “Base+Attention” attack shrinks as the “Base”

TABLE V. THE IMPACT OF ATTENTION-BASED MASK DETERMINATION,
ITERATIVE UPDATE, AND ALTERNATING RETRAINING ON THE

PERFORMANCE OF ATTEQ-NN. THE “BASE” ATTACK IS A TRADITIONAL
BACKDOOR ATTACK WITH MODEL-DEPENDENT TRIGGERS. THE “BASE +

ATTN” ATTACK USES ATTENTION MECHANISM TO DETERMINE THE TRIGGER
MASK. THE “BASE+ATTN+ITER” ITERATIVELY UPDATES THE TRIGGER AND
THE BACKDOORED MODEL. THE “ALL’ ATTACK IS THE COMPLETE ATTACK

OF ATTEQ-NN APART FROM THE TRANSPARENCY SETTING.

Size
VGG-Flower-l

Base Base+Attn Base+Attn+Iter All
ASR CDA ASR CDA ASR CDA ASR CDA

1 × 1 18.50% 93.50% 29.00% 92.50% 34.50% 94.50% 35.00% 94.50%
2 × 2 32.00% 96.00% 42.00% 95.50% 60.00% 97.00% 71.50% 97.00%
3 × 3 48.50% 93.50% 74.50% 94.50% 100.0% 95.50% 99.50% 96.00%
4 × 4 51.00% 94.50% 98.00% 95.50% 100.0% 96.50% 100.0% 98.00%

Size
CIFAR-10

Base Base+Attn Base+Attn+Iter All
ASR CDA ASR CDA ASR CDA ASR CDA

1 × 1 44.89% 87.22% 55.63% 86.66% 81.33% 87.71% 80.33% 87.94%
2 × 2 58.26% 87.94% 95.60% 87.88% 99.44% 89.28% 99.14% 90.07%
3 × 3 91.01% 87.55% 97.70% 88.43% 99.62% 89.07% 99.56% 90.23%
4 × 4 95.62% 88.39% 98.10% 88.76% 99.77% 89.35% 97.55% 89.91%

Size
GTSRB

Base Base+Attn Base+Attn+Iter All
ASR CDA ASR CDA ASR CDA ASR CDA

1 × 1 78.67% 93.29% 87.67% 96.06% 97.98% 96.67% 98.78% 97.03%
2 × 2 75.01% 95.52% 97.01% 95.25% 99.73% 97.14% 99.00% 97.38%
3 × 3 93.49% 96.75% 94.72% 96.81% 98.97% 96.69% 99.98% 97.00%
4 × 4 91.74% 96.89% 93.40% 97.74% 99.80% 97.50% 99.87% 97.78%

Size
CIFAR-100

Base Base+Attn Base+Attn+Iter All
ASR CDA ASR CDA ASR CDA ASR CDA

1 × 1 93.54% 71.84% 95.41% 72.69% 97.33% 74.61% 97.61% 74.66%
2 × 2 97.33% 71.67% 99.56% 71.60% 99.95% 74.22% 99.71% 75.07%
3 × 3 99.39% 72.08% 99.81% 72.64% 99.98% 75.31% 99.71% 75.34%
4 × 4 99.19% 72.96% 99.28% 73.76% 99.71% 73.80% 99.64% 75.23%

Size
ImageNette

Base Base+Attn Base+Attn+Iter All
ASR CDA ASR CDA ASR CDA ASR CDA

2 × 2 51.69% 88.14% 78.62% 88.76% 82.91% 88.73% 90.94% 91.26%
4 × 4 69.83% 82.22% 86.57% 83.39% 89.88% 88.79% 90.57% 90.32%
8 × 8 79.11% 83.54% 88.10% 86.14% 92.51% 86.14% 98.39% 90.93%

12 × 12 80.05% 82.50% 90.33% 83.18% 92.20% 87.77% 99.57% 88.59%

Size
VGG-Flower-h

Base Base+Attn Base+Attn+Iter All
ASR CDA ASR CDA ASR CDA ASR CDA

8 × 8 46.50% 94.50% 69.00% 94.50% 74.50% 94.00% 98.50% 97.00%
12 × 12 47.00% 94.50% 77.00% 95.50% 93.00% 95.50% 98.50% 95.50%
16 × 16 51.00% 95.50% 85.50% 96.50% 94.50% 96.50% 99.00% 97.00%
20 × 20 56.50% 96.00% 86.00% 95.00% 95.00% 96.00% 99.50% 97.00%

attack has more chance to select the pixels of high importance.

2) Co-optimization: Compared with the “Base+Attention”
attack, the “Base+Attention+Iter” attack further increases ASR.
We can observe that co-optimization improves both ASR and
CDA.

3) Alternating Retraining: The alternating retraining strat-
egy mainly improves the prediction accuracy of the clean
samples, while slightly decreasing the attack success rate in
certain cases. The following experiments will show that the
alternating retraining strategy helps bypass model-based defense
approaches, such as MNTD.

4) Convergence: By adopting the co-optimization and
alternating retraining strategies, the complexity of the trigger
injection process of ATTEQ-NN is relatively higher than
conventional backdoor attacks. According to our experiments
on the six datasets, the average number of epochs needed for
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Fig. 4. The attack performance after applying model pruning to baseline attacks and ATTEQ-NN.

the convergence of ATTEQ-NN is approximately 300, which is
slightly higher but on the same order of magnitude as BadNets
[23] (average 125), TrojanNN [45] (average 125), HB [59]
(average 100), and RobNet [22] (average 70).

C. Physical World

Apart from the digital domain, we also explore whether
ATTEQ-NN is effective in the physical world. For instance, the
attacker may print the trigger and attach it to traffic signs to
mislead automatic vehicles. We randomly select 50 samples
from each dataset, resulting in a total of 300 samples. We print
out each sample of VGG-Flower-l, CIFAR-10, GTSRB, and
CIFAR-100 as 4cm × 4cm and each sample of ImageNette
and VGG-Flower-h as 6cm × 6cm on a white paper. We take a
photo of the printed sample using a smartphone with Samsung
ISOCELL Bright HMX camera 30cm away from the sample.
Then, we digitally crop each image to remove the edges of the
white paper and resize it to 32× 32 (VGG-Flower-l, CIFAR-
10, GTSRB, and CIFAR-100) or 224× 224 (ImageNette and
VGG-Flower-h). Finally, we feed the images to the model for
prediction. Since the lighting condition may affect the attack
performance in the physical world, we take photos of each
sample under strong lighting intensity (approximately 1200
Lux), medium lighting intensity (approximately 300 Lux), and
low lighting intensity (approximately 20 Lux). Moreover, we

take photos of each sample at 0◦ and 15◦ (up and down) under
medium lighting intensity. The transparency value is set as 0.

For lighting conditions, as shown in Fig. 3(a), the ASR
of ATTEQ-NN is the highest under medium lighting intensity
in most cases. Strong light will cause over-exposure, which
degrades the attack performance, and under low lighting
intensity, the mobile phone camera will automatically increase
the saturation of the photo and change its color tone, which
alters the trigger and weakens the attack performance. In terms
of the shooting angles, as shown in Fig. 3(b), the ASR decreases
at oblique angles as the trigger will be distorted. Although the
trigger is small enough to evade human eyes inspections, it can
be captured by a high-end camera (e.g., a resolution of 108
million pixels), making ATTEQ-NN effective in the physical
world.

D. Extension to Multi-trigger Backdoor Attacks

We extend ATTEQ-NN to multi-trigger backdoor attacks
by repeating the trigger generation and the backdoor injection
process, where each trigger targets a different target label.
Table IV shows that the extended ATTEQ-NN can maintain
high ASR and CDA in multi-trigger backdoor attacks.
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TABLE VI. THE COMPARISON OF THE ORIGINAL BACKDOORED MODEL AND THE MODEL AFTER APPLYING NAD TO BASELINE ATTACKS AND ATTEQ-NN.

Datasets BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

VGG-Flower-l Original 26.50% 97.00% 27.50% 94.00% 36.50% 95.00% 99.50% 95.00% 99.50% 97.50%
NAD [36] 3.50% 93.50% 15.00% 93.00% 18.40% 95.00% 29.00% 96.00% 92.50% 97.00%

CIFAR-10 Original 93.93% 90.02% 97.90% 89.87% 60.08% 86.07% 95.62% 88.39% 99.76% 89.46%
NAD [36] 10.06% 90.97% 23.07% 88.67% 15.33% 83.80% 10.83% 87.31% 99.19% 88.31%

GTSRB Original 98.08% 96.22% 98.10% 96.25% 77.74% 88.10% 99.51% 97.36% 99.75% 97.17%
NAD [36] 13.08% 96.39% 7.32% 95.78% 2.34% 88.00% 5.36% 96.31% 90.14% 96.69%

CIAFR-100 Original 90.38% 71.59% 95.61% 73.13% 62.73% 70.28% 99.49% 72.44% 99.58% 74.62%
NAD [36] 6.09% 67.05% 16.71% 67.57% 3.28% 68.87% 9.47% 69.86% 94.23% 73.92%

ImageNette Original 35.13% 71.28% 37.83% 70.54% 18.81% 85.32% 81.98% 88.82% 92.16% 92.40%
NAD [36] 4.58% 72.15% 1.01% 74.76% 9.60% 85.40% 7.05% 84.24% 90.56% 92.31%

VGG-Flower-h Original 30.00% 95.50% 29.00% 95.50% 21.50% 93.00% 76.50% 95.50% 83.00% 96.00%
NAD [36] 9.50% 95.00% 10.50% 94.00% 8.50% 95.50% 16.00% 92.50% 80.00% 94.00%

TABLE VII. THE PERFORMANCE OF ATTEQ-NN IN TRANSFER
LEARNING SCENARIOS.

Source dataset Transfer dataset CDA ASR Baseline CDA

CIFAR-10 CIFAR-100 87.50% 99.30% 88.10%
CIFAR-10 GTSRB 94.32% 99.02% 96.75%
CIFAR-10 VGG-Flower-l 90.00% 99.50% 91.00%

VGG-Flower-l CIFAR-100 83.80% 65.22% 91.41%
VGG-Flower-l GTSRB 93.59% 78.30% 98.04%

ImageNette VGG-Flower-h 95.65% 90.00% 96.52%

E. Robustness to Fine-tuning

Fine-tuning is a commonly-used technique to refine a
pre-trained DNN model, which is much faster and cheaper
than training a complex DNN model from scratch. Recently,
researchers discovered that fine-tuning might also be used to
erase the backdoor in models [41], [45], [36].

We fine-tune the backdoored models of ATTEQ-NN and the
baselines across six datasets. The maximum number of frozen
layers is determined by the model structure. The number of
epochs is set as 50. The learning rate of CIFAR-10, CIFAR-
100, ImageNette, and VGG-Flower-h is set as 10−3, and the
learning rate of GTSRB and VGG-Flower-l is set as 10−4.
Following [36], we fine-tune the original backdoored model on
10% benign samples of the original training dataset. As shown
in Table XIII (Appendix) and Table XII (Appendix), when all
the layers of the backdoored model are fine-tuned (i.e., the
number of frozen layers is 0), we can see that all the baselines
are ineffective while ATTEQ-NN can still maintain a high ASR.
As the number of frozen layers increases, more weights of
the original backdoored model will be kept, and the attack
performance will be better. The robustness of ATTEQ-NN to
fine-tuning is due to the alternating retraining process, which
makes the backdoored model more similar to the benign model
and is less changed in the fine-tuning process.

F. Robustness to Transfer Learning

We investigate whether ATTEQ-NN is effective in transfer
learning scenarios. We construct six transfer learning scenarios
in Table VII. The attacker trains a teacher model with P
layers on the source dataset with the backdoor. The student
model is trained by the user based on the teacher model. More
specifically, the student model copies the first N layer of the
teacher model and retrains the last P − N layers with the
transfer dataset. Note that the student model keeps the target

label of the backdoor attacks [82]. We also train a student
model based on a clean teacher model in the same settings for
comparison, which provides the baseline of clean data accuracy
in the transfer learning scenario.

As shown in Table VII, the CDA of the student model
transferred from the backdoored teacher model is similar to
that of the student model transferred from the clean teacher
model. Meanwhile, the ASR of the student model transferred
from the backdoored teacher model is high, indicating that
the backdoor has been preserved in the student model. This
demonstrates that ATTEQ-NN is robust to transfer learning.

G. Evading State-of-the-Art Defenses

In this section, we explore whether ATTEQ-NN can evade
state-of-the-art backdoor defenses, including model pruning,
NAD [36], STRIP [21], NC [71], and MNTD [80]. For baseline
attacks, we adjust the poison ratio as the default poison ratio is
ineffective in certain cases. In particular, we set the poison ratio
as 30% in all baselines for VGG-Flower-l and VGG-Flower-h.
We set the poison ratio as 20% in HB for CIFAR-10. We
set the poison ratio as 3% in BadNets, TrojanNN, and HB
for CIFAR-100, and 30% in BadNets, TrojanNN, and HB for
ImageNette. Others adopt the default poison ratio.

1) Model Pruning: Existing studies [41] have shown that
model pruning is helpful to disable a backdoor. The defender
first ranks neurons in the ascending order according to the
average activation by clean samples. Then, the defender
sequentially prunes neurons until the accuracy of the validation
dataset drops below a predetermined threshold. As shown
in Fig. 4, the ASR of BadNets, TrojanNN, and HB drops
significantly after model pruning, which means that model
pruning can successfully defend against these baselines. In
contrast, ATTEQ-NN and RobNet can still achieve high ASR
after pruning. Given a threshold of 80% for CDA, ATTEQ-
NN can preserve an ASR of more than 82% for all datasets.
The reason why ATTEQ-NN is resistant to model pruning is
the same as RobNet. ATTEQ-NN selects the neuron with a
high activation to benign samples, thus the selected neuron is
more likely to be preserved during model pruning. In terms of
BadNets, TrojanNN, and HB, we can observe that the CDA and
ASR first drop slowly and then quickly with the pruning rate
in most cases. The possible reason is that the neurons inactive
to both benign and malicious samples are pruned first, thus
having no impact on either ASR or CDA. Then the neurons
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Fig. 5. The distribution of the entropy prediction results of clean samples and backdoored samples after applying STRIP to baseline attacks and ATTEQ-NN.

(a) Similarity test (b) Inspection test

Fig. 6. User study results.

activated mostly by backdoored samples are pruned, leading to
downward ASR but relatively steady CDA. Finally, the neurons
activated by benign samples are pruned, which reduces the
CDA.

2) NAD: Neural Attention Distillation (NAD) [36] aims
to erase the backdoor from the model. In NAD, the defender
first fine-tunes the backdoored model on a small set of benign
samples and uses the fine-tuned model as a teacher model.
Then, NAD uses the teacher model to distill the backdoored
model (student model) through an attention distillation. In
this way, the neurons of the backdoor will be aligned with
benign neurons associated with meaningful representations. As
shown in Table VI, after applying NAD, the ASR of baselines

decreases significantly, while the ASR of ATTEQ-NN only
slightly decreases. The possible reason is that the gap between
the backdoored model of ATTEQ-NN and the benign model
has been narrowed through alternating retraining.

3) STRIP: STRIP [21] is a widely-used data-based defense
strategy, which detects whether an input sample is backdoored
or not. STRIP is an online method that examines arriving
samples after the backdoored model has been deployed. In
STRIP, the defender has no knowledge about the backdoored
model (black-box) and can only observe the model outputs.
The defender duplicates an input sample for many times and
merges each copy with a different sample to generate a set of
perturbed samples. The distribution of the prediction results of
the perturb samples is used to detect backdoored samples. It
is assumed that the prediction results of the disturbed samples
have a high entropy if the sample is clean and a low entropy
if the sample contains the trigger as the trigger strongly drives
the prediction results towards the target label.

As shown in Fig. 5, for ATTEQ-NN and RobNet, the predic-
tion results of the backdoored samples have a similar entropy
distribution to benign samples for all datasets, making it difficult
to differentiate the backdoored samples and the benign samples.
For BadNets, TrojanNN, and HB, the entropy distributions of
clean and backdoored samples are well separated for CIFAR-
10, GTSRB, and CIFAR-100 but have a large overlap for
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VGG-Flower-l, ImageNette, and VGG-Flower-h. The possible
reason that these baselines are not easily detected by STRIP on
these datasets is that their ASR is quite low for VGG-Flower-l,
ImageNette, and VGG-Flower-h, as shown in Table II.

We attribute the evasiveness of ATTEQ-NN against STRIP
to the attention-based mask determination strategy and the
transparency value adjustment. The attention-based mask de-
termination strategy yields a non-continuous trigger area, and
the transparency value adjustment further conceals the trigger.
Both approaches make the backdoored samples more stealthy
and behave more like benign samples under the inspection of
STRIP.

4) NC: NeuralCleanse (NC) [71] is a model-based defense
strategy. NC tries to recover the trigger by computing the
perturbation needed for a sample of the source label to be
misclassified into the target label. The target label that requires
a much smaller perturbation is deemed as the actual target
label, and the perturbation is considered as the trigger. NC
leverages MAD (Median Absolute Deviation) for anomaly
detection with a threshold of 2. Experiments show that the
MAD of our target class is always below this threshold (0.5415
for VGG-Flower-l, 0.0920 for CIFAR-10, 0.5040 for GTSRB,
1.0672 for CIFAR-100, 0.8313 for ImageNette, and 1.7584 for
VGG-Flower-h). The success of ATTEQ-NN may be due to
transparency adjustment, as a low-magnitude trigger is harder
to recover. For the baseline models, the abnormal indexes of
BadNets, TrojanNN, and HB are all greater than 2.3, except for
the scenarios where the attack fails. RobNet can also escape
the defense of NC due to its multi-trigger setting. We also
find that the triggers reversed by NC on high-resolution data
samples are more dispersed and more difficult to identify.

5) MNTD: MNTD [80] is a model-based defense based on
a binary meta-classifier. To train the meta-model, the defender
builds a large number of benign and backdoored shadow models
as training samples. Since the defender has no knowledge of
the specific backdoor attack methods, MNTD adopts jumbo
learning to generate a variety of backdoored models. In this
way, MNTD is generic and can detect most state-of-the-art
backdoor attacks. To apply MNTD to baselines and ATTEQ-
NN, for each dataset, we generate 2,048 benign models and
2,048 backdoored models to train a well-performed meta-
classifier. The meta-classifier achieves a modification attack
accuracy of 84.80% for VGG-Flower-l, 89.21% for CIFAR-
10, 91.02% for GTSRB, 90.62% for CIFAR-100, 91.02% for
ImageNette, and 91.41% for VGG-Flower-h. The blending
attack accuracy of the meta-classifier is 83.20% for VGG-
Flower-l, 85.57% for CIFAR-10, 86.72% for GTSRB, 93.75%
for CIFAR-100, 86.72% for ImageNette, and 90.23% for
VGG-Flower-h. Modification attack accuracy measures the
effectiveness in detecting modification attacks [80]. Blending
attack accuracy measures the effectiveness in detecting blending
attacks [80]. When we feed the backdoored models of ATTEQ-
NN to the meta-classifier, it is shown that ATTEQ-NN can
evade the inspection of MNTD in some cases. In comparison,
when we feed the backdoored models of the baselines to the
meta-classifier, they are all detected by MNTD. The success
in evading the detection of MNTD is possibly due to the
alternating retraining strategy of ATTEQ-NN that makes the
backdoored models behave like the benign ones. To verify this
hypothesis, we construct backdoored models without using

the alternating retraining method and feed the models into the
meta-classifier of MNTD. The results show that MNTD can
successfully detect these backdoored models.

H. User Study

We have conducted three sets of user studies to evaluate
the concealment of the backdoored samples of ATTEQ-NN
and all baselines. We have recruited 50 volunteers aged
20∼30 who are college students and faculty members. Before
the tests, we explained the basics of ATTEQ-NN and the
baselines to the volunteers and sought for their confirmation of
understanding the attacks. We randomly select 55 benign images
from VGG-Flower-l, CIFAR-10, GTSRB, and CIFAR-100 and
generate their backdoored versions based on ATTEQ-NN and
all baselines for test.

1) Similarity Test: In the first set of tests, we place benign
samples and the corresponding backdoored samples side-by-side
(the benign samples on the left and the backdoored samples
on the right) for volunteers to judge how similar the two
samples are. The similarity score ranges from 1 to 5, where 5
represents “look exactly the same”, 4 represents “very similar”,
3 represents “a little similar”, 2 represents “not very similar”,
and 1 represents “very different”. We have collected a total
of 50 ∗ 55 ∗ 4 = 11, 000 answers. The cumulative distribution
function (CDF) of the similarity score is shown in Fig. 6(a).
We can observe that more than 50% of the samples of ATTEQ-
NN have a similarity score of more than 4.84, while BadNets,
RobNet, and TrojanNN have a median similarity score of less
than 3.5. HB has a slightly lower similarity score than ATTEQ-
NN, and the ASR of HB is much lower than ATTEQ-NN.

2) Inspection Test: In the second set of tests, we place
benign samples and the corresponding backdoored samples
side-by-side for volunteers to choose which one is the back-
doored sample. We shuffle each pair of samples such that
the backdoored sample is not necessarily on the right of the
benign sample. We calculate the percentage of correct answers
as the identification rate. The CDF of the identification rate
is shown in Fig. 6(b). We can observe that more than 50%
of the samples of ATTEQ-NN have an identification rate of
less than 0.58 (approximately random guess), while BadNets,
TrojanNN, and RobNet have a median identification rate of
more than 90%. HB has a slightly higher identification rate
than ATTEQ-NN since some backdoored samples of HB have
obvious degradation in quality (blur).

3) Detection Test: In the third set of tests, we present
random pairs of samples (two benign samples or one benign
sample and one backdoored sample) for volunteers to judge
whether each pair contains a backdoored sample or not. We
calculate the percentage of correct answers as the detection
rate. ATTEQ-NN achieves an average detection rate of 0.45
(approximately random guess), while the average detection rate
of the baselines is 0.56 for HB, 0.9 for TrojanNN, 0.93 for
RobNet, and 0.93 for BadNets.

VI. CONCLUSION AND FUTURE WORK

This paper presents an effective and evasive backdoor attack
against deep neural networks. To intensify the attack perfor-
mance, we propose a novel attention-based mask determination
strategy to place the trigger at the most influential area of an
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image. To achieve the evasiveness goal, we carefully adjust the
trigger transparency and add a QoE term to the loss function.
Extensive experiments verify the superiority of the proposed
attack compared with baseline backdoor attacks. To improve
the clean data accuracy, we propose an alternating retraining
strategy, which is also shown to be effective in evading MNTD
defense method. We show that our proposed attack can evade
both human visual inspections and state-of-the-art defenses. It
is shown that ATTEQ-NN is also robust to transfer learning
scenarios.

There are various potential spaces worthy of exploring in
the future. First, it is possible to generalize ATTEQ-NN beyond
the vision domain as attention mechanisms have been designed
for the voice [84], [46], text [17], and video [34] domains.
The main challenge may be how to generate model-dependent
triggers in different domains. Second, effective defense against
ATTEQ-NN is necessary to reduce the potential risks of such
attacks.
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[15] Edward Chou, Florian Tramèr, Giancarlo Pellegrino, and Dan Boneh.
Sentinet: Detecting physical attacks against deep learning systems. arXiv
preprint arXiv:1812.00292, 2018.

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16
words: Transformers for image recognition at scale. In International
Conference on Learning Representations. OpenReview.net, 2021.

[17] Jiachen Du, Lin Gui, Ruifeng Xu, and Yulan He. A convolutional
attention model for text classification. In National CCF Conference on
Natural Language Processing and Chinese Computing, pages 183–195.
Springer, 2017.

[18] Predictive Analytics-Cloud Machine Learning Engine. Google cloud.
Google, [Online]. Available: https://cloud. google. com/appengine/.

[19] fast.ai. Imagenette: A smaller subset of 10 easily classified classes from
imagenet. Available: https://github.com/fastai/imagenette.

[20] Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang Zhang,
Anmin Fu, Surya Nepal, and Hyoungshick Kim. Backdoor attacks and
countermeasures on deep learning: A comprehensive review. arXiv
preprint arXiv:2007.10760, 2020.

[21] Yansong Gao, Chang Xu, Derui Wang, Shiping Chen, Damith C
Ranasinghe, and Surya Nepal. STRIP: A defence against trojan attacks on
deep neural networks. In IEEE Annual Computer Security Applications
Conference, pages 113–125, 2019.

[22] Xueluan Gong, Yanjiao Chen, Qian Wang, Huayang Huang, Lingshuo
Meng, Chao Shen, and Qian Zhang. Defense-resistant backdoor attacks
against deep neural networks in outsourced cloud environment. IEEE
Journal on Selected Areas in Communications, 39(8):2617–2631, 2021.

[23] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg.
BadNets: Evaluating backdooring attacks on deep neural networks. IEEE
Access, 7:47230–47244, 2019.

[24] Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin. Handcrafted
backdoors in deep neural networks. arXiv preprint arXiv:2106.04690,
2021.

[25] Siteng Huang, Min Zhang, Yachen Kang, and Donglin Wang. Attributes-
guided and pure-visual attention alignment for few-shot recognition. In
AAAI Conference on Artificial Intelligence, pages 7840–7847. AAAI
Press, 2021.

[26] Xijie Huang, Moustafa Alzantot, and Mani Srivastava. NeuronInspect:
Detecting backdoors in neural networks via output explanations. arXiv
preprint arXiv:1911.07399, 2019.

[27] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting Wang.
Model-reuse attacks on deep learning systems. In SIGSAC Conference
on Computer and Communications Security, pages 349–363. ACM,
2018.

[28] Yujie Ji, Xinyang Zhang, and Ting Wang. Backdoor attacks against
learning systems. In Conference on Communications and Network
Security, pages 1–9. IEEE, 2017.

[29] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In International Conference on Learning Representations,
2015.

[30] Earl J Kirkland. Bilinear interpolation. In Advanced Computing in
Electron Microscopy, pages 261–263. Springer, 2010.

[31] Yehao Kong and Jiliang Zhang. Adversarial audio: A new information
hiding method and backdoor for dnn-based speech recognition models.
arXiv preprint arXiv:1904.03829, 2019.

[32] Brett Koonce. Resnet 34. In Convolutional Neural Networks with Swift
for Tensorflow, pages 51–61. Springer, 2021.

[33] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of
features from tiny images. 2009.

[34] Junnan Li, Yongkang Wong, Qi Zhao, and Mohan S Kankanhalli.
Attention transfer from web images for video recognition. In ACM
International Conference on Multimedia, pages 1–9, 2017.

[35] Shaofeng Li, Minhui Xue, Benjamin Zi Hao Zhao, Haojin Zhu, and
Xinpeng Zhang. Invisible backdoor attacks on deep neural networks
via steganography and regularization. arXiv preprint arXiv:1909.02742,
2019.

[36] Yige Li, Nodens Koren, Lingjuan Lyu, Xixiang Lyu, Bo Li, and
Xingjun Ma. Neural attention distillation: Erasing backdoor triggers

14



from deep neural networks. In International Conference on Learning
Representations. OpenReview.net, 2021.

[37] Yige Li, Xixiang Lyu, Nodens Koren, Lingjuan Lyu, Bo Li, and Xingjun
Ma. Neural attention distillation: Erasing backdoor triggers from deep
neural networks. arXiv preprint arXiv:2101.05930, 2021.

[38] Yiming Li, Tongqing Zhai, Baoyuan Wu, Yong Jiang, Zhifeng Li, and
Shutao Xia. Rethinking the trigger of backdoor attack. arXiv preprint
arXiv:2004.04692, 2020.

[39] Cong Liao, Haoti Zhong, Anna Squicciarini, Sencun Zhu, and David
Miller. Backdoor embedding in convolutional neural network models
via invisible perturbation. arXiv preprint arXiv:1808.10307, 2018.

[40] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang. Composite backdoor
attack for deep neural network by mixing existing benign features. In
ACM SIGSAC Conference on Computer and Communications Security,
pages 113–131, 2020.

[41] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning:
Defending against backdooring attacks on deep neural networks. In
International Symposium on Research in Attacks, Intrusions, and
Defenses, pages 273–294. Springer, 2018.

[42] Yang Liu, Zhihao Yi, and Tianjian Chen. Backdoor attacks and
defenses in feature-partitioned collaborative learning. arXiv preprint
arXiv:2007.03608, 2020.

[43] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into
transferable adversarial examples and black-box attacks. In International
Conference on Learning Representations. OpenReview.net, 2017.

[44] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer,
and Xiangyu Zhang. ABS: Scanning neural networks for backdoors by
artificial brain stimulation. In ACM SIGSAC Conference on Computer
and Communications Security, pages 1265–1282, 2019.

[45] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and Xiangyu Zhang. Trojaning attack on neural networks.
In Annual Network and Distributed System Security Symposium. The
Internet Society, 2018.

[46] Yu Liu, Cong Zhang, Bo Hang, Song Wang, and Han-Chieh Chao. An
audio attention computational model based on information entropy of two
channels and exponential moving average. Human-centric Computing
and Information Sciences, 9(1):1–16, 2019.

[47] Shaohao Lu, Yuqiao Xian, Ke Yan, Yi Hu, Xing Sun, Xiaowei Guo,
Feiyue Huang, and Wei-Shi Zheng. Discriminator-free generative
adversarial attack. In ACM International Conference on Multimedia,
pages 1544–1552, 2021.

[48] Shiqing Ma, Yingqi Liu, Guanhong Tao, Wen-Chuan Lee, and Xiangyu
Zhang. NIC: Detecting adversarial samples with neural network
invariant checking. In Annual Network and Distributed System Security
Symposium. The Internet Society, 2019.

[49] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Exploiting
unintended feature leakage in collaborative learning. In IEEE Symposium
on Security and Privacy, pages 691–706, 2019.

[50] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey
Dean. Distributed representations of words and phrases and their com-
positionality. In Annual Conference on Neural Information Processing
Systems, pages 3111–3119, 2013.

[51] Stefan Milz, Georg Arbeiter, Christian Witt, Bassam Abdallah, and
Senthil Yogamani. Visual slam for automated driving: Exploring the
applications of deep learning. In IEEE Conference on Computer Vision
and Pattern Recognition Workshops, pages 247–257, 2018.

[52] Volodymyr Mnih, Nicolas Heess, Alex Graves, and Koray Kavukcuoglu.
Recurrent models of visual attention. arXiv preprint arXiv:1406.6247,
2014.

[53] Milad Nasr, Reza Shokri, and Amir Houmansadr. Machine learning with
membership privacy using adversarial regularization. In ACM SIGSAC
Conference on Computer and Communications Security, page 634–646,
2018.

[54] Anh Nguyen and Anh Tran. Input-aware dynamic backdoor attack. In
Annual Conference on Neural Information Processing Systems, 2020.

[55] Maria-Elena Nilsback and Andrew Zisserman. 102 category flower
dataset. http://www.robots.ox.ac.uk/ vgg/data/flowers/102, 2008.

[56] Ren Pang, Hua Shen, Xinyang Zhang, Shouling Ji, Yevgeniy Vorob-
eychik, Xiapu Luo, Alex Liu, and Ting Wang. A tale of evil twins:

Adversarial inputs versus poisoned models. In ACM SIGSAC Conference
on Computer and Communications Security, pages 85–99, 2020.

[57] Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling Ji,
Peng Cheng, and Ting Wang. Trojanzoo: Everything you ever wanted
to know about neural backdoors (but were afraid to ask). arXiv preprint
arXiv:2012.09302, 2020.

[58] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In IEEE conference
on computer vision and pattern recognition, pages 779–788, 2016.

[59] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash.
Hidden trigger backdoor attacks. In AAAI Conference on Artificial
Intelligence, pages 11957–11965. AAAI Press, 2020.

[60] Ahmed Salem, Rui Wen, Michael Backes, Shiqing Ma, and Yang Zhang.
Dynamic backdoor attacks against machine learning models. arXiv
preprint arXiv:2003.03675, 2020.

[61] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario
Fritz, and Michael Backes. Ml-leaks: Model and data independent
membership inference attacks and defenses on machine learning models.
In Annual Network and Distributed System Security Symposium. The
Internet Society, 2019.

[62] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet:
A unified embedding for face recognition and clustering. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 815–
823, 2015.

[63] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter.
Accessorize to a crime: Real and stealthy attacks on state-of-the-art
face recognition. In ACM SIGSAC Conference on Computer and
Communications Security, pages 1528–1540, 2016.

[64] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. Membership
inference attacks against machine learning models. In IEEE Symposium
on Security and Privacy, pages 3–18, 2017.

[65] Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel.
Man vs. Computer: Benchmarking machine learning algorithms for
traffic sign recognition. Neural Networks, 32:323–332, 2012.

[66] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf.
Deepface: Closing the gap to human-level performance in face verifica-
tion. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 1701–1708, 2014.

[67] Di Tang, XiaoFeng Wang, Haixu Tang, and Kehuan Zhang. Demon in
the variant: Statistical analysis of dnns for robust backdoor contamination
detection. In USENIX Security Symposium, 2021.

[68] Brandon Tran, Jerry Li, and Aleksander Madry. Spectral signatures
in backdoor attacks. In Advances in Neural Information Processing
Systems, pages 8000–8010, 2018.

[69] Sakshi Udeshi, Shanshan Peng, Gerald Woo, Lionell Loh, Louth
Rawshan, and Sudipta Chattopadhyay. Model agnostic defence against
backdoor attacks in machine learning. arXiv preprint arXiv:1908.02203,
2019.

[70] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention
is all you need. In Advances in Neural Information Processing Systems,
pages 5998–6008, 2017.

[71] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath,
Haitao Zheng, and Ben Y Zhao. Neural cleanse: Identifying and
mitigating backdoor attacks in neural networks. In IEEE Symposium on
Security and Privacy, pages 707–723, 2019.

[72] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang
Zhang, Xiaogang Wang, and Xiaoou Tang. Residual attention network
for image classification. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 3156–3164, 2017.

[73] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma,
Saurabh Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris S.
Papailiopoulos. Attack of the tails: Yes, you really can backdoor federated
learning. In Annual Conference on Neural Information Processing
Systems, 2020.

[74] Shuo Wang, Surya Nepal, Carsten Rudolph, Marthie Grobler, Shangyu
Chen, and Tianle Chen. Backdoor attacks against transfer learning
with pre-trained deep learning models. IEEE Transactions on Services
Computing, 2020.

15



[75] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli.
Image quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing, 13(4):600–612, 2004.

[76] Emily Wenger, Josephine Passananti, Yuanshun Yao, Haitao Zheng, and
Ben Y Zhao. Backdoor attacks on facial recognition in the physical
world. arXiv preprint arXiv:2006.14580, 2020.

[77] Chong Xiang, Arjun Nitin Bhagoji, Vikash Sehwag, and Prateek Mittal.
Patchguard: A provably robust defense against adversarial patches via
small receptive fields and masking. In 30th USENIX Security Symposium,
2021.

[78] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. DBA: Distributed
backdoor attacks against federated learning. In International Conference
on Learning Representations, 2019.

[79] Weilin Xu, Yanjun Qi, and David Evans. Automatically evading
classifiers. In Annual Network and Distributed System Security
Symposium. The Internet Society, 2016.

[80] Xiaojun Xu, Qi Wang, Huichen Li, Nikita Borisov, Carl A Gunter,
and Bo Li. Detecting ai trojans using meta neural analysis. In IEEE
Symposium on Security and Privacy, 2021.

[81] Zhaoyuan Yang, Nurali Virani, and Naresh S Iyer. Countermeasure
against backdoor attacks using epistemic classifiers. In Artificial Intelli-
gence and Machine Learning for Multi-domain Operations Applications
II, volume 11413, page 114130P. International Society for Optics and
Photonics, 2020.

[82] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. Latent
backdoor attacks on deep neural networks. In ACM SIGSAC Conference
on Computer and Communications Security, pages 2041–2055, 2019.

[83] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha.
Privacy risk in machine learning: Analyzing the connection to overfitting.
In IEEE Computer Security Foundations Symposium, pages 268–282,
2018.

[84] Zhichao Zhang, Shugong Xu, Shunqing Zhang, Tianhao Qiao, and
Shan Cao. Attention based convolutional recurrent neural network
for environmental sound classification. Neurocomputing, 453:896–903,
2021.

[85] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen,
and Yu-Gang Jiang. Clean-label backdoor attacks on video recognition
models. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 14443–14452, 2020.

[86] Martin Zinkevich, Markus Weimer, Alexander J Smola, and Lihong
Li. Parallelized stochastic gradient descent. In Annual Conference on
Neural Information Processing Systems, pages 2595–2603, 2010.

APPENDIX

A. DATASETS AND MODELS

VGG-Flower. VGG-Flower [55] includes 6,146 images
belonging to 102 flower categories. Each class contains 40∼258
image samples. We randomly select 10 classes with 1,673
training images and 200 test images. For VGG-Flower-l, the
selected images are uniformly resized to 32 × 32. We train a
VGG-16 [4] model with 3 fully-connected layers and a RAN-92
model for 600 epochs. We set the learning rate as 0.001, the
batch size as 512, the momentum of stochastic gradient descent
as 0.9, and weight decay as 0.0005. The trained benign model
has a prediction accuracy of 98.5% on the test set. The trained
RAN model has a prediction accuracy of 94.5% on the test set.
For VGG-Flower-h, the selected images are uniformly resized
to 224 × 224. We train a ResNet-18 network and a RAN-92
model for 150 epochs. We set the learning rate as 0.0001, the
batch size as 32, the momentum of stochastic gradient descent
as 0.95, and weight decay as 0.0005. The trained benign model
has a prediction accuracy of 97.5% on the test set. The trained
RAN model has a prediction accuracy of 98.5% on the test set.

CIFAR-10. CIFAR-10 [33] contains 60,000 images belong-
ing to 10 classes. Each class includes 6,000 images, and each

sample has a dimension of 32 × 32. We randomly select 50,000
samples as the training set, and the remaining 10,000 samples
as the test set. We train a VGG-16 [4] model with one fully-
connected layer and a RAN-92 model on the training set for
300 epochs. The learning rate is 0.001. The batch size is 512.
The momentum of stochastic gradient descent is 0.9. A StepLR
scheduler is used in the training process, with a step size of
100 and γ = 0.33. The trained benign model has a prediction
accuracy of 91.94% on the test set. The trained RAN model
has a prediction accuracy of 95.4% on the test set.

GTSRB. GTSRB [65] contains images of German traffic
signs that belong to 43 classes. The dataset is divided into
39,209 training samples and 12,630 testing samples. Using
annotated information, we cropped each image to its core area
and resized each image to 32 × 32. We train a traffic sign
classifier and a RAN-92 model using the ResNet-34 network
[32] on the training set. With a base learning rate at 0.001, a
batch size at 512, a momentum of 0.9, and a decay factor of
0.2 per 60 epochs, we train the model for 300 epochs. The
trained benign model has a prediction accuracy of 97.25% on
the test set. The trained RAN model has a prediction accuracy
of 94.61% on the test set.

CIFAR-100. CIFAR-100 [33] includes 600,000 images that
belong to 100 classes. Each class has 500 training samples and
100 testing images, and each sample has a dimension of 32
× 32. We train a ResNet-50 model and a RAN-92 model on
the training set for 200 epochs. We set the learning rate as
0.1, the batch size as 512, and the momentum of stochastic
gradient descent as 0.9. To further improve its performance, a
MultiStepLR scheduler with a γ of 0.2 is used at the 60-th, the
120-th, and the 160-th epochs. The trained benign model has
a prediction accuracy of 79.09% on the test set. The trained
RAN model has a prediction accuracy of 78.68% on the test
set.

ImageNette. ImageNette [19] is a subset of ImageNet,
widely used in the research community [77], [47]. ImageNette
includes 9,469 training samples and 3,925 test samples. Each
image has a high resolution with a dimension of 224 × 224.
We train a ResNet-18 network and a RAN-92 model for 150
epochs. We set the learning rate as 0.001, the batch size as 16
(due to the limited GPU source), the momentum of stochastic
gradient descent as 0.95, and weight decay as 0.0005. The
trained benign model has a prediction accuracy of 92.43% on
the test set. The trained RAN model has a prediction accuracy
of 90.62% on the test set.

B. EVALUATION METRICS

ASR. ASR measures the effectiveness of the backdoor
attacks, computed as the probability that a trigger-imposed
sample is misclassified to the target label.

ASR(FA,X ) =
1

|X |
∑
x∈X

I[FA(x+δ)=yt]. (7)

CDA. CDA measures whether the backdoored model can
maintain prediction accuracy of clean input samples.

CDA(FA,X ) =
1

|X |
∑
x∈X

I[FA(x)=y], (8)

where y is the ground-truth label of x.
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TABLE VIII. THE IMPACT OF TRIGGER SIZE ON THE PERFORMANCE OF
ATTEQ-NN.

Trigger size ImageNette
ASR CDA SSIM

4× 4 88.91% 90.88% 0.9992
8× 8 92.16% 92.40% 0.9979

12× 12 93.00% 89.60% 0.9953
16× 16 94.19% 89.89% 0.9927

TABLE IX. THE IMPACT OF TRIGGER SIZE ON THE PERFORMANCE OF
ATTEQ-NN.

Trigger size VGG-Flower-h
ASR CDA SSIM

8× 8 83.00% 96.00% 0.9973
12× 12 85.50% 97.00% 0.9946
16× 16 88.00% 94.50% 0.9912
20× 20 91.50% 96.00% 0.9862

C. STATE-OF-THE-ART BASELINES

BadNets. BadNets [23] is one of the most widely used
backdoor attacks. BadNets uses a visible random trigger (a
white square) at the bottom right corner of the image.

TrojanNN. TrojanNN [45] is the first backdoor attack that
uses model-dependent triggers, but the trigger is visible. It is
assumed that the attacker cannot access the training datasets
and use reverse engineering to recover the training samples
before the attacks. For a fair comparison, we directly use the
original training dataset in TrojanNN.

Hidden Backdoor. Hidden Backdoor (HB) [59] is a state-
of-the-art backdoor attack based on invisible random triggers.
Note that HB considers a data vendor attacker. We adapt the
HB to the model vendor scenario for a fair comparison.

RobNet. RobNet [22] is a recent backdoor attack based
on model-dependent triggers, but the trigger is visible. Unlike
TrojanNN [45] that selects the neuron based on weights, RobNet
selects the neuron according to both activation and weights.

Fig. 7. The backdoored samples of ATTEQ-NN under different transparency
values. The 1st column is the original benign samples. A lower transparency
value indicates a stronger imposition of the trigger. A transparency value of
zero means the imposed trigger completely blocks the original pixel.

(a) VGG-Flower-l (b) CIFAR-10

(c) GTSRB (d) CIFAR-100

Fig. 8. Comparison of backdoored samples of BadNets [23], TrojanNN [45],
HB [59], RobNet [22] and ATTEQ-NN.

(e) ImageNette (f) VGG-Flower-h

Fig. 9. Comparison of backdoored samples of BadNets [23], TrojanNN [45],
HB [59], RobNet [22] and ATTEQ-NN.
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TABLE X. THE IMPACT OF TRIGGER SIZE ON THE PERFORMANCE OF ATTEQ-NN.

Trigger size VGG-Flower-l CIFAR-10 GTSRB CIFAR-100
ASR CDA SSIM ASR CDA SSIM ASR CDA SSIM ASR CDA SSIM

1× 1 19.50% 95.00% 0.9943 15.47% 85.61% 0.9959 91.14% 95.16% 0.9909 93.50% 74.00% 0.9988
2× 2 51.00% 95.50% 0.9821 95.56% 89.04% 0.9874 96.92% 96.80% 0.9740 99.94% 74.91% 0.9943
3× 3 94.50% 95.50% 0.9540 95.62% 88.90% 0.9758 99.97% 97.19% 0.9616 99.17% 74.50% 0.9848
4× 4 99.00% 97.50% 0.9329 97.29% 88.90% 0.9690 99.70% 96.79% 0.9414 99.79% 73.85% 0.9612

TABLE XI. THE IMPACT OF TRANSPARENCY VALUE ON THE
PERFORMANCE OF ATTEQ-NN.

#value VGG-Flower-l CIFAR-10 GTSRB
ASR CDA SSIM ASR CDA SSIM ASR CDA SSIM

0 100.0% 98.00% 0.8974 97.55% 89.91% 0.9438 99.98% 97.00% 0.9470
0.1 100.0% 97.50% 0.9042 97.14% 88.68% 0.9487 99.91% 96.34% 0.9506
0.2 99.00% 96.50% 0.9108 97.81% 89.22% 0.9526 99.61% 97.26% 0.9560
0.3 100.0% 98.00% 0.9276 97.52% 89.92% 0.9600 99.11% 97.16% 0.9615
0.4 99.00% 97.50% 0.9329 97.29% 88.90% 0.9690 99.97% 97.19% 0.9616
0.5 97.50% 95.00% 0.9552 88.86% 87.56% 0.9770 97.49% 96.43% 0.9713
0.6 93.50% 96.50% 0.9557 79.28% 87.26% 0.9812 96.29% 97.01% 0.9766
0.7 67.50% 96.00% 0.9708 78.95% 87.06% 0.9886 85.54% 97.06% 0.9821
0.8 25.00% 97.50% 0.9890 18.54% 83.58% 0.9934 75.73% 96.67% 0.9906
0.9 15.50% 95.50% 0.9971 14.54% 85.07% 0.9980 43.52% 96.76% 0.9964

#value CIFAR-100 ImageNette VGG-Flower-h
ASR CDA SSIM ASR CDA SSIM ASR CDA SSIM

0 99.71% 75.07% 0.9924 98.19% 90.93% 0.9944 98.50% 97.00% 0.9952
0.1 99.62% 74.98% 0.9925 97.78% 91.41% 0.9946 97.00% 96.00% 0.9956
0.2 99.70% 75.14% 0.9934 97.99% 91.01% 0.9950 96.50% 96.50% 0.9953
0.3 99.52% 74.38% 0.9952 97.94% 91.90% 0.9953 96.00% 95.50% 0.9954
0.4 99.94% 74.91% 0.9943 97.45% 91.72% 0.9958 91.00% 96.50% 0.9957
0.5 99.00% 74.51% 0.9971 97.36% 91.64% 0.9961 88.00% 97.00% 0.9961
0.6 97.24% 73.96% 0.9978 95.03% 90.80% 0.9967 86.00% 95.00% 0.9966
0.7 94.32% 74.64% 0.9984 92.16% 92.40% 0.9979 83.00% 96.00% 0.9973
0.8 84.60% 73.40% 0.9992 84.94% 92.31% 0.9986 77.00% 97.00% 0.9975
0.9 1.24% 73.98% 0.9996 72.48% 90.88% 0.9995 22.00% 97.00% 0.9987

TABLE XII. THE IMPACT OF FINE-TUNING ON BASELINES AND
ATTEQ-NN ON CIFAR-100, IMAGENETTE, AND VGG-FLOWER-H. NOTE
THAT THE POISON RATE IS 30% FOR IMAGENETTE AND VGG-FLOWER-H.

CIFAR-100

Number BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

0 64.33% 75.37% 83.62% 74.10% 27.91% 69.27% 87.05% 71.37% 99.60% 73.91%
2 64.43% 75.26% 83.32% 74.03% 26.48% 69.21% 90.36% 71.90% 99.71% 73.79%
10 57.08% 75.74% 82.49% 74.00% 27.04% 69.33% 90.37% 70.43% 99.71% 73.97%
16 73.13% 75.65% 83.99% 74.02% 27.09% 70.15% 89.68% 71.40% 99.80% 73.86%
22 72.04% 75.57% 94.99% 74.09% 26.47% 69.30% 91.84% 71.85% 99.86% 74.14%
30 73.75% 75.40% 84.44% 74.09% 28.31% 70.06% 94.64% 71.84% 99.72% 73.66%
36 76.03% 75.52% 85.72% 73.93% 28.19% 69.88% 98.18% 72.06% 99.90% 74.30%
42 69.02% 75.26% 86.72% 74.03% 27.96% 69.53% 97.24% 72.29% 99.78% 74.01%
48 67.80% 75.18% 86.77% 74.07% 29.34% 69.34% 98.44% 72.54% 99.88% 74.02%
56 71.71% 75.23% 88.72% 74.11% 30.04% 69.77% 94.84% 71.73% 99.95% 74.44%
62 71.35% 75.16% 88.59% 74.07% 30.82% 70.29% 99.21% 71.89% 99.88% 74.08%
68 77.96% 75.06% 88.68% 74.02% 30.67% 70.41% 97.25% 72.49% 99.87% 74.80%
74 65.41% 75.11% 88.92% 73.99% 34.79% 69.83% 99.40% 72.21% 99.94% 74.44%
80 79.33% 74.93% 89.67% 73.96% 35.90% 69.51% 98.47% 72.07% 99.83% 74.76%
86 80.15% 74.74% 92.45% 74.09% 37.27% 68.93% 99.25% 72.86% 99.89% 74.55%
94 82.43% 74.47% 94.03% 74.01% 45.26% 69.30% 98.37% 72.78% 99.83% 75.35%
100 86.61% 74.04% 95.03% 73.90% 55.87% 69.84% 99.44% 73.26% 99.95% 75.25%
106 89.86% 73.55% 96.28% 73.95% 70.94% 70.04% 99.54% 73.45% 99.88% 75.33%

107 (all) 88.09% 72.88% 95.14% 73.71% 74.21% 69.87% 99.35% 72.51% 99.70% 75.14%

ImageNette

Number BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

0 24.68% 76.84% 25.80% 76.66% 7.34% 90.07% 33.32% 83.92% 97.02% 92.76%
2 28.00% 75.97% 27.54% 75.57% 9.46% 88.65% 33.57% 83.57% 97.02% 92.41%
6 28.53% 76.00% 27.82% 76.10% 10.73% 88.15% 69.38% 84.43% 96.20% 92.61%
10 28.15% 76.07% 28.50% 76.05% 11.02% 88.41% 70.34% 82.19% 96.03% 92.38%
16 28.43% 75.94% 28.91% 75.89% 12.62% 87.58% 71.69% 83.74% 94.06% 91.33%
20 28.94% 76.07% 29.17% 75.69% 13.01% 87.69% 75.73% 84.38% 96.21% 91.18%
26 29.19% 75.97% 29.42% 75.74% 13.27% 87.17% 76.28% 85.20% 92.94% 91.92%
30 30.36% 74.85% 32.28% 73.19% 15.28% 86.49% 84.20% 84.53% 94.54% 91.64%
36 31.85% 73.32% 33.60% 71.82% 16.99% 86.91% 86.98% 85.17% 96.74% 91.90%
40 33.61% 72.62% 35.89% 71.38% 18.06% 85.38% 90.42% 84.68% 96.33% 91.41%
41 35.13% 71.28% 37.83% 70.54% 18.81% 85.32% 92.92% 84.87% 97.58% 91.46%

VGG-Flower-h

Number BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

0 21.00% 98.00% 21.50% 97.50% 5.50% 96.50% 9.50% 92.00% 99.50% 97.00%
2 22.00% 97.50% 23.50% 98.00% 5.50% 97.00% 12.00% 89.50% 99.00% 97.50%
6 23.00% 97.50% 25.50% 97.00% 7.50% 96.00% 10.50% 90.50% 100.0% 98.00%
10 26.50% 97.50% 26.00% 97.00% 7.50% 96.00% 11.50% 89.50% 99.50% 97.00%
16 27.50% 97.00% 27.00% 97.50% 10.50% 95.50% 18.00% 90.50% 98.00% 97.00%
20 28.00% 97.00% 27.00% 97.50% 10.50% 96.00% 16.00% 92.00% 99.50% 97.50%
26 28.50% 97.00% 27.50% 97.50% 13.00% 95.50% 16.50% 91.50% 98.50% 97.50%
30 29.00% 97.50% 28.00% 97.00% 13.00% 94.50% 15.00% 90.00% 99.50% 97.50%
36 29.00% 97.50% 28.50% 95.50% 15.50% 95.00% 23.50% 92.00% 99.00% 98.00%
40 29.50% 96.50% 29.00% 95.00% 18.50% 94.00% 41.00% 94.50% 99.00% 98.00%
41 30.00% 95.50% 29.00% 95.50% 21.50% 93.00% 76.50% 95.50% 100.0% 97.00%

TABLE XIII. THE IMPACT OF FINE-TUNING ON BASELINES AND
ATTEQ-NN ON VGG-FLOWER-L, CIFAR-10, AND GTSRB. WHEN THE
NUMBER OF THE FROZEN LAYERS IS 0, WE FINE-TUNE THE WEIGHTS OF

THE ENTIRE BACKDOORED MODEL.

VGG-Flower-l

Number BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

0 10.50% 96.50% 11.00% 97.00% 21.00% 94.00% 66.50% 94.50% 91.50% 97.00%
2 10.00% 97.00% 10.50% 96.50% 20.50% 94.50% 74.50% 95.50% 89.00% 97.00%
4 10.50% 96.50% 11.50% 97.00% 20.00% 94.50% 76.00% 95.00% 93.50% 97.50%
6 11.50% 96.00% 12.00% 96.50% 21.00% 95.00% 75.50% 96.00% 91.50% 96.50%
8 11.00% 97.00% 11.50% 97.50% 20.50% 95.00% 79.50% 95.50% 91.00% 97.00%
10 11.50% 97.00% 12.00% 96.50% 21.00% 95.00% 86.00% 96.00% 92.00% 97.50%
12 11.00% 97.50% 12.00% 97.00% 21.00% 94.50% 85.00% 94.00% 90.00% 97.50%
14 12.50% 96.50% 13.00% 97.00% 21.00% 95.00% 87.00% 94.00% 89.00% 97.50%
16 13.50% 96.50% 14.50% 97.00% 21.00% 95.00% 83.50% 95.50% 92.50% 97.00%
18 13.00% 97.00% 14.00% 96.00% 22.00% 94.00% 91.00% 95.50% 90.50% 97.50%
20 14.50% 96.50% 14.50% 97.00% 22.50% 95.00% 89.00% 96.00% 90.50% 97.50%
22 14.00% 97.00% 14.50% 96.50% 24.00% 94.50% 90.50% 95.50% 90.50% 97.50%
24 15.50% 97.00% 13.50% 96.50% 21.00% 95.00% 84.50% 95.00% 91.50% 97.50%
26 15.00% 97.00% 14.00% 97.00% 21.00% 94.50% 83.00% 92.00% 92.00% 98.00%
27 17.00% 96.50% 19.00% 95.50% 26.50% 94.50% 92.00% 95.00% 91.00% 97.50%
28 17.50% 96.50% 20.50% 95.50% 29.00% 95.50% 93.00% 94.00% 93.00% 97.00%

29 (all) 22.50% 96.50% 23.00% 96.50% 33.00% 95.00% 94.50% 98.00% 94.50% 97.00%
CIFAR-10

Number BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

0 37.24% 88.95% 26.04% 89.22% 2.88% 85.73% 25.43% 91.09% 99.82% 89.96%
2 36.58% 89.06% 31.24% 89.57% 3.03% 86.09% 25.43% 90.24% 99.82% 90.11%
4 39.51% 88.77% 35.79% 90.00% 3.05% 85.47% 27.38% 91.21% 98.04% 89.82%
6 39.81% 88.89% 40.62% 89.98% 2.98% 85.18% 27.94% 90.15% 99.15% 89.91%
8 35.28% 89.04% 48.51% 89.62% 3.27% 86.41% 25.95% 90.46% 99.83% 89.84%
10 35.75% 88.60% 58.39% 89.94% 3.21% 85.51% 27.10% 90.51% 99.76% 89.74%
12 36.23% 89.43% 67.79% 89.57% 3.97% 85.19% 27.37% 90.07% 99.86% 88.91%
14 38.23% 88.61% 74.13% 90.12% 3.77% 85.08% 27.02% 90.12% 99.94% 88.70%
16 33.06% 89.37% 80.12% 89.64% 2.93% 84.73% 50.44% 89.38% 99.94% 88.44%
18 33.99% 89.06% 85.37% 89.79% 3.34% 85.62% 54.32% 88.99% 99.95% 87.83%
20 37.29% 88.77% 90.31% 89.50% 3.77% 85.28% 67.83% 88.73% 99.94% 87.29%
22 41.74% 88.90% 92.42% 89.79% 5.39% 86.01% 77.05% 88.36% 99.14% 89.58%
24 59.23% 90.05% 95.71% 89.58% 13.78% 85.15% 79.67% 88.21% 99.93% 87.15%
26 75.07% 87.83% 97.76% 89.70% 19.33% 85.15% 90.00% 88.08% 99.94% 87.55%

27 (all) 89.80% 90.28% 97.90% 89.87% 29.80% 85.91% 88.39% 95.62% 99.93% 89.66%
GTSRB

Number BadNets [23] TrojanNN [45] HB [59] RobNet [22] ATTEQ-NN
ASR CDA ASR CDA ASR CDA ASR CDA ASR CDA

0 2.42% 96.14% 2.61% 96.10% 5.97% 89.79% 5.17% 93.61% 92.03% 97.36%
2 2.95% 95.27% 3.31% 95.65% 6.03% 89.71% 5.19% 93.54% 93.65% 97.38%
6 3.39% 96.17% 3.42% 96.53% 6.01% 89.88% 5.08% 93.35% 94.39% 97.01%
10 3.78% 96.17% 3.93% 96.18% 5.86% 89.29% 5.29% 93.72% 94.35% 97.39%
14 5.62% 96.44% 5.54% 96.16% 6.25% 89.33% 5.24% 93.90% 95.16% 97.17%
18 5.72% 96.19% 6.13% 95.82% 6.32% 89.98% 5.24% 94.77% 93.58% 97.36%
20 10.38% 96.05% 5.00% 96.32% 6.09% 89.76% 5.21% 94.08% 94.85% 97.28%
24 10.96% 96.22% 14.66% 95.88% 7.84% 89.45% 5.28% 94.25% 93.43% 97.30%
28 11.88% 96.07% 17.36% 95.68% 7.59% 90.22% 5.36% 94.36% 96.05% 97.24%
32 12.24% 96.08% 22.34% 96.49% 9.07% 89.32% 5.23% 94.71% 95.22% 97.12%
36 17.37% 95.72% 21.10% 96.16% 13.39% 90.14% 59.62% 95.08% 97.04% 97.11%
38 30.44% 96.61% 32.45% 96.23% 25.33% 89.74% 34.96% 94.92% 95.84% 97.14%
42 37.40% 95.49% 45.10% 95.98% 40.52% 89.57% 53.47% 95.61% 94.49% 97.15%
46 42.39% 95.97% 45.02% 96.22% 40.70% 89.62% 60.34% 96.02% 97.19% 97.10%
50 43.52% 96.03% 49.52% 96.33% 39.23% 89.93% 57.68% 95.96% 97.43% 97.10%
54 44.47% 95.99% 52.55% 96.12% 41.72% 89.48% 53.46% 96.38% 97.85% 97.09%
58 61.27% 95.99% 65.99% 96.33% 51.28% 89.44% 70.26% 96.10% 99.33% 97.15%
62 61.10% 95.80% 65.99% 96.33% 50.08% 90.06% 71.03% 96.29% 99.65% 97.13%
64 75.93% 95.83% 77.34% 96.16% 57.41% 89.38% 80.41% 96.53% 99.90% 97.17%
68 78.80% 95.38% 84.54% 95.82% 58.85% 89.99% 78.59% 96.84% 99.75% 97.12%
72 95.98% 95.77% 95.19% 96.16% 64.77% 89.84% 91.09% 96.87% 99.56% 97.17%

73 (all) 98.08% 96.25% 98.10% 96.25% 75.93% 89.54% 93.67% 96.80% 99.51% 97.36%
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