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Abstract—Despite significant recent progress toward making
multi-party computation (MPC) practical, no existing MPC
library offers complete robustness—meaning guaranteed output
delivery, including in the offline phase—in a network that
even has intermittent delays. Importantly, several theoretical
MPC constructions already ensure robustness in this setting.
We observe that the key reason for this gap between theory
and practice is the absence of efficient verifiable/complete secret
sharing (VSS/CSS) constructions; existing CSS protocols either
require a) challenging broadcast channels in practice or b)
introducing computation and communication overhead that is
at least quadratic in the number of players.

This work presents hbACSS, a suite of optimal-resilience
asynchronous complete secret sharing protocols that are
(quasi)linear in both computation and communication overhead.
Towards developing hbACSS, we develop hbPolyCommit, an effi-
cient polynomial commitment scheme that is (quasi)linear (in the
polynomial degree) in terms of computation and communication
overhead without requiring a trusted setup. We implement our
hbACSS protocols, extensively analyze their practicality, and
observe that our protocols scale well with an increasing number
of parties. In particular, we use hbACSS to generate MPC
input masks: a useful primitive which had previously only been
calculated nonrobustly in practice.

I. INTRODUCTION

Multiparty Computation (MPC) is a widely useful way
to build confidentiality and privacy-preserving computations
into a distributed system, with applications such as anony-
mous messaging [2], [3], [47], secure auctions and digital
asset exchanges [26], [49], and parameter generation [28].
As such systems grow closer to practice, we also start to
care about robustness, where secrecy and liveness guarantees
hold in spite of intermittent (non-synchronous) networks and a
minority of faulty nodes. While several MPC implementations
and libraries [47], [5], [38], [59], [51], [43] have emerged
over the last decade, it remains an open problem to provide
practical robust MPC in networks without strong synchrony
assumptions.

Recent work shows how to make the online phase of
practical asynchronous MPC robust [47]. However, the pre-
processing phase, which must be run by the servers prior to
receiving input, is much harder to make robust in practice. To
explain the problem we will focus on generating random input
masks, which allow clients to easily contribute secret inputs
to an MPC program. The goal is to produce a random secret
sharing JrKt which satisfies the following: if no more than t of

the N MPC server nodes are corrupted, r is uniformly random,
unknown, and any t+ 1 parties can reconstruct the same r.

The standard way to generate such values is for all the
servers to contribute shares they sample individually, which are
then all combined to extract fully random values, even if some
corrupt parties chose their inputs in a correlated way [11]. This
approach hinges on a protocol that can be used to verify that
the individually chosen shares are chosen correctly. Verifiable
Secret Sharing (VSS) [30], [40], [22] is a natural choice for
this task. In particular, Asynchronous Complete Secret Sharing
(ACSS) [54] provides all the robustness guarantees needed
for the MPC application, since it guarantees not only that the
secret inputs can be reconstructed if necessary, but also that
each of the servers can receive its original share of the secret.
However, existing ACSS protocols introduce a computation
and communication overhead that is quadratic in the number
of parties and cannot scale well beyond a small number of
nodes. This motivates the design of an efficient, scalable ACSS
protocol without compromising the optimal replication factor
of 3t + 1 or the asynchronous communication setting. In
targeting this threat model, we prefix the protocols designed
in this paper with ”hb” as a reference to the honey badger, a
creature known for its resilience in harsh adversarial settings.

A. Challenges and overview of our solution

a) Good performance under worst case conditions: The
asynchronous network setting is fundamentally challenging:
unlike in synchrony, a protocol which waits to hear from
all parties will stall indefinitely. Instead, we must proceed
after hearing from only N − t of the parties, where t is a
bound on the number of parties that can fail. Since crashed
nodes are indistinguishable from slow nodes, it could be that
t parties for which we waited are corrupted, and thus only
N − 2t correct parties received valid shares. To cope with
asynchrony, the most closely related protocol, VSS-R [9],
falls back to an inefficient backup mode with communication
overhead that is quadratic in the number of servers, even after a
brief period of desynchronization. Alternately, Patra et al. give
AVSS protocols with linear communication overhead [53], but
require weakening resilience (t < N/4). We remark, however,
that many t < N/3, AVSS/AVCSS protocols (including ours)
could improve their amortized bandwidth by a factor of O(N)
through the use of Packed Secret Sharing. Consequently, we
focus on the t < N/3 setting, knowing that improvements here
can also lead to improvements in more relaxed settings.

b) Aggressive batching for large secrets: Motivated
by our application of MPC preprocessing, we seek general
efficiency but assume the amount of data that needs to be
shared is large. We focus on the case where each single
dealer needs to deal a large batch of secrets, such as for
precomputation purposes. In doing so, we can amortize away
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one-time startup costs.

The secret share encodings and polynomial commitments
in our work function similar to other VSS-based schemes.
Starting from [40], cryptographic VSS protocols are centered
around broadcasting a polynomial commitment [42] along with
an evaluation proof that enables each server to validate the
share they received. The performance challenge arises when
providing enough redundancy for VSS to recover from missing
or corrupt shares.

Our solution is based on what we call encrypt-then-
disperse, which generalizes a technique from HoneyBad-
gerBFT [50]. Before transmitting the payload of secret shares
and evaluation proofs, the payload is first encrypted using
public-key encryption. Next, the encrypted payload is dis-
persed using an Asynchronous Verifiable Information Disper-
sal (AVID [23]) routine, which can be more efficient because
we do not need to hide the already-encrypted payload. The
use of AVID guarantees that every honest node receives some
data from the dealer, even in the asynchronous setting. If this
data turns out to be invalid, it can be used as evidence to
implicate the dealer. Once the dealer is determined to be faulty,
we enter a share recovery phase, which ensures every correct
party receives their share. The share recovery phase can be
very efficient too, since we do not ensure the confidentiality
of a malicious dealer’s shares.

c) Avoiding Trusted Setup: Our ACSS protocol can
be instantiated with any polynomial commitment scheme,
but we focus on two: first, a state of the art scheme from
Tomescu et al. [57], and second, our own scheme which
avoids trusted setup. Tomescu et al.’s scalable VSS scheme
is built around a polynomial commitment scheme based on
authenticated multipoint evaluation trees (AMTs) that achieves
quasilinear overhead; i.e., for AMT, the resources incurred
at each server—communication and computation—do not in-
crease significantly as the system setup grows. However, a
limitation of this scheme is that it relies on public parameters
that must be generated through a sampling process, where
intermediate values during this process must be securely erased
or else the resulting protocol is insecure. Such ”trusted setups”
are a significant obstacle to deployment of a distributed system,
requiring difficult-to-coordinate setup ceremonies [19], [18]
that need to be repeated if parameters are changed.

Our construction, hbPolyCommit, is based on Bullet-
proofs [21] and achieves similar asymptotic and practical
performance as AMT while requiring only uniform reference
strings and the discrete log assumption. Beyond VSS, polyno-
mial commitments are also widely used in applications such
as SNARKs [29] and may be of independent interest.

To complement our constructions and asymptotic analysis,
we empirically evaluate both hbACSS and hbPolyCommit. We
show that hbPolyCommit is comparable in performance with
AMT, eliminating the need for a trusted setup in practice.
When used to instantiate hbACSS, we find that we can robustly
generate input masks at a rate of ∼39 input masks per CPU-
second when N = 31 and ∼9 per second at N = 127.

d) Contributions: To summarize our contributions: we
design and implement a set of ACSS schemes which si-
multaneously achieve better asymptotic bounds than previ-
ous work as well as demonstrate the growing practicality

of asynchronous, optimally-resilient MPC. We instantiate our
ACSS schemes with a batch-optimized polynomial commit-
ment scheme that achieves similar performance to state-of-
the-art work while negating the need for a trusted setup.
Lastly we use our new constructions to demonstrate the robust
computation of a useful MPC primitive.

II. PRELIMINARIES

A. Threat Model

We assume the standard asynchronous fully-connected net-
work of N parties {P1, ...,PN} [22]. A special party D works
as a dealer, which can either be one of N parties or the N+1th
party. The indices for N parties are chosen from Fp. Without
loss of generality, we assume these to be 1, . . . , N .

Every pair of parties is connected by an authenticated com-
munication channel. The adversary can corrupt and coordinate
the actions of up to t out of N parties (we assume the optimal
asynchronous Byzantine fault tolerance of N = 3t+ 1). If the
dealer D is the N + 1th party, the adversary may additionally
compromise the dealer. The adversary is assumed to be static,
and chooses the parties it wishes to corrupt at the beginning
of the protocol execution. A party is said to be correct if
the adversary has not corrupted it. The adversary controls the
network and may delay messages between any two correct
parties. However, it cannot modify messages, and it also has
to eventually deliver messages from correct parties.

Lastly, we assume the adversary is bounded computation-
ally by security parameter κ such that the adversarial advantage
of breaking the security of the protocol is negligible in κ.

B. Asynchronous Complete Secret Sharing

Here we give our security definition for Asynchronous
Complete Secret Sharing (ACSS). Compared to Asynchronous
Verifiable Secret Sharing (AVSS), which only guarantees that
parties can reconstruct the secret s, ACSS also guarantees that
the parties can reconstruct the entire secret sharing polynomial
φ associated with it, which is necessary when using this
primitive for MPC applications.

Definition 1. (Asynchronous Complete Secret Sharing—
ACSS [52]) In an ACSS protocol, the dealer D receives input
s ∈ Fp, and each party Pi receives a share φ(i) for some
degree-t polynomial φ : Fp → Fp.

The protocol must satisfy the following properties

• Correctness: If the dealer D is correct, then all correct
parties eventually output a share φ(i) where φ is a random
polynomial with φ(0) = s.
• Secrecy: If the dealer D is correct, then a computationally

bounded adversary learns no information about φ except
for the shares of corrupted parties, except with negligible
probability.
• Agreement: If any correct party receives output, then there

exists a unique degree-t polynomial φ′ such that each correct
party Pi eventually outputs φ′(i).

For simplicity, this definition is specific to Shamir shar-
ing, though a more generic definition based on linear secret
sharing is possible. Our agreement property incorporates the
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completeness property of [52], enforcing that all honest parties
must hold a valid share at the end of the sharing phase.

C. Polynomial Commitments

One of the main building blocks we use are Polynomial
Commitment (PolyCommit) schemes. This primitive enables
a committer to commit to a polynomial. The commitment
can be checked by a verifier to assert correctness of claimed
evaluation points on the committed polynomial. We formally
define this primitive as follows:

Definition 2. (Polynomial Commitment—PolyCommit [42])
Let (Fp)κ be a family of finite fields indexed by a security
parameter κ (we typically omit κ and write Fp). A PolyCommit
scheme for Fp consists of the following five algorithms:

• Setup(1κ, t) → SP: generates system parameters SP to
commit to a polynomial over Fp of degree bound t. Setup
is run by a trusted or distributed authority. SP can also be
standardized for repeated use.
• PolyCommit(SP, φ(·)) → (C, aux): outputs a commitment
C to a polynomial φ(·) for system parameters SP and some
associated scheme-specific decommitment information aux.
• VerifyPoly(SP, C, φ(·), aux) → bool : verifies that C is a

commitment to φ(·), created with decommitment information
aux. The algorithm accepts if verification succeeds, and
rejects otherwise.
• ProveEval(SP, φ(·), i, aux) → (i, φ(i), πi): outputs a index
i, evaluation point φ(i), and a proof πi for the evaluation φ(i)
of φ(·) at the index i.
• VerifyEval(SP, C, i, φ(i), πi) → bool : verifies that φ(i) is

indeed the evaluation at index i of the polynomial committed
in C. If verification succeeds, the algorithm accepts, and
otherwise rejects.

We use the functions BatchProveEval and BatchVerifyEval to
allow participants to prove (resp. verify) many evaluations at
once. If specific batch functions are not defined, we use many
invocations of ProveEval and VerifyEval instead.

A valid PolyCommit scheme must satisfy the following:

• Correctness: If C, aux ← Commit(SP, φ(·)) and
πi, auxi ← ProveEval(SP, φ(·), i, aux), then the
correct evaluation of φ(i) is successfully verified by
VerifyEval(SP, C, i, φ(i), πi, auxi).
• Polynomial Binding: If C, aux ← Commit(SP, φ(·)), then

except with negligible probability, an adversary cannot create
a polynomial φ′(·) such that VerifyPoly(SP, C, φ(·)′, aux) =
1 if φ(·) 6= φ′(·).
• Strong Evaluation Binding: Any commitment and evalu-

ation proofs generated by an adversary must be consistent
with some degree-t polynomial. Formally,
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SP← Setup(1κ, t)
(C, {xi, yi, πi}i∈[1..`])← A(SP)
∀i ∈ [1..`].
VerifyEval(SP, C, xi, yi, πi) = 1 ∧
6 ∃ deg-t φ(·) s.t.
∀i ∈ [1..`]. yi = φ(xi)

 ≤ negl(κ)

That is, given
C, aux← Commit(SP, φ(·)), and

πi, auxi ← ProveEval(SP, φ(·), i, aux),

except with negligible probability, an adversary cannot create
an evaluation φ(j), proof πj , and decommitment information
auxj such that VerifyEval(SP, C, i, φ(j), πj , auxj) = 1 if i 6=
j.
• Zero-Knowledge: Informally, the commitment and evalu-

ation proofs should not reveal any information about the
polynomial beyond what is implied by public information.
Formally, there must exist a simulator (Sim1,Sim2), such
that for all adversaries A, the following two distributions
are (computationally or information-theoretically) similar—
we refer to the information-theoretic case as perfect zero-
knowledge. We use this stronger definition in place of the
hiding definition introduced by Kate et al. [42].
Real World:

SP← Setup1(1κ, t)
(φ(·), {xi}i∈[1..`])← A(SP)
(C, aux)← PolyCommit(SP, φ(·))
∀i ∈ [1..`]. πi ← ProveEval(SP, φ(·), xi, aux)
: (C, {xi, yi, πi}i∈[1..`])


Ideal World:

(SP, st)← Sim1(1κ, t)
(φ(·), {xi}i∈[1..`])← A(SP)
(C, {πi})← Sim2(st, {xi, φ(xi)}i∈[1..`])
: (C, {xi, yi, πi}i∈[1..`])


D. Arguments of Knowledge

We make use of zero knowledge proofs in the contruction
of our polynomial commitment scheme. In particular, we start
with public-coin interactive arguments of knowledge, where
the verifier V chooses its messages uniformly at random and
independent of the prior messages sent by P , and apply Fiat-
Shamir as a last step in our construction.

Notation. Let G denote a cyclic group of prime order p. We
use bold font for vectors, i.e. a ∈ Znp is a vector with elements
a1, a2, . . . , an ∈ Zp. For a scalar c ∈ Zp and a vector a ∈ Znp ,
we compute b := c · a ∈ Znp by scaling each element in a
by c, i.e. bi := c · ai for i ∈ [n]. Let 〈a,b〉 :=

∑n
i=1 ai · bi

denote the inner product between two vectors a,b ∈ Zn. Let
ab = a · b := (a1 · b1, a2 · b2, . . . , an · bn) ∈ Znp be the
entry-wise multiplication of two vectors. For a vector g =
(g1, g2, . . . , gn) ∈ Gn and a ∈ Znp we write ga =

∏n
i=1 gi

ai ∈
G. For 0 ≤ i ≤ j ≤ n, we use Python notation to denote slices
of vectors as follows:

a[i:j] = (ai, ai+1, . . . , aj−1) ∈ Zj−ip

where a is an n-length vector and indexing begins with zero.
For some integer i and vector a ∈ Znp , a[i] refers to the (i
mod n)-th entry in a. We often use a[−1] to refer to the last
item in the array. We define az := (za1, za2, . . . , zan) for
a ∈ Znp and z ∈ Zp. Denote the concatenation of two vectors
a ∈ Zip, b ∈ Zjp as a || b ∈ Zi+jp .

Let {R[crs]}crs be a family of polynomial-time decid-
able relations indexed by a string crs. We call w a witness
for a statement stmt with respect to the relation R[crs] if
(stmt, w) ∈ R[crs]. We often use R := R[crs] as shorthand.
We write {Public Input; Witness : Relation} to denote the
relation Relation using the specified Public Input and Witness.

For an interactive proof system 〈Gen(1κ),P,V〉, the fol-
lowing properties must hold:
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Definition 3. Perfect Completeness. For every κ ∈ N, every
crs in the support of Gen(1κ), and every (stmt, w) ∈ R[crs],

Pr[〈P(crs, stmt, w),V(crs, stmt)〉 = 1] = 1.

Definition 4. Knowledge Soundness. For every determin-
istic, polynomial-time prover P∗, there exists an expected
polynomial-time extractor EP∗ , and negligible function negl(·)
such that for every stmt and every z, and every κ ∈ N,

Pr

 crs← Gen(1κ),
tr ← 〈P∗(crs, stmt, z),V(crs, stmt)〉,
w ← EP∗(crs, stmt, z) :
if tr is accepting then (stmt, w) ∈ R

 ≥ 1− negl(κ)

E. Asynchronous Verifiable Information Dispersal

Our protocol relies on an information dispersal proto-
col [23] as specified below. Our definition is for a batch such
that M messages v1, ..., vM are dispersed at once and can be
individually retrieved.

Definition 5. (Asynchronous Verifiable Information
Dispersal—AVID [23]) A (t + 1, N) AVID scheme AVID for
M values is a pair of protocols (Disperse,Retrieve) which
satisfy the following functionality:

• Disperse: A message is split into N blocks, each one being
stored by one of the N protocol participants.

• Retrieve: Message blocks are requested from the other
participants until there is sufficient information to fully re-
construct the original message.

The following properties must be satisfied with high prob-
ability:

• Termination: If the dealer D is correct and initiates
Disperse(v1, ..., vM ), then every correct party eventually
completes Disperse.
• Agreement: If any correct party completes Disperse, all

correct parties eventually complete Disperse.
• Availability: If t + 1 correct parties have completed
Disperse, and some correct party initiates Retrieve(i), then
the party eventually reconstructs a message v′i.
• Correctness: After t + 1 correct parties have completed
Disperse, then for each index i ∈ [M ] there is a value vi
such that if a correct party receives v′i from Retrieve(i), then
v′i = vi. Furthermore, if the dealer is correct, then vi is the
value input by the dealer.

In particular, we use the AVID− H protocol from [23], in
which the total communication complexity is only O(|v|) in
the Disperse phase for a sufficiently large batch v � N logN .
That is, it achieves only constant communication overhead —
this property is essential to reaching our asymptotic goals.

F. Reliable Broadcast

Reliable broadcast [20] allows a dealer D to broadcast a
message v to every party. Regardless of whether the dealer
is correct, if any party receives some output v′, then every
party eventually receives v′. Reliable broadcast is a special
case of information dispersal, where each party simply begins
Retrieve immediately after Disperse completes. In fact, all
efficient protocols we know of, such as [23] or [39], are built

from an AVID protocol. We therefore skip the definition but
use the ReliableBroadcast syntax in our protocol description
as shorthand for Disperse followed by all parties immediately
beginning Retrieve.

G. Public-Key Encryption

We use a semantically secure public-key encryption scheme
(Gen,Enc,Dec), such that EncPK(m) produces a ciphertext
encrypted under public key PK, while DecSK(c) decrypts the
message using secret key SK. We assume a PKI, such that
each party Pi already knows SKi. We also assume that each
public key is a function of the secret key, written PK = gSK.

III. RELATED WORK: THE MANY SETTINGS FOR
VERIFIABLE SECRET SHARING

Verifiable secret sharing (VSS) has been studied in many
different security models. To help place our work in context,
we review the related work in the most relevant settings.

A. Completeness (Share Recovery)

An important design goal for our protocol is Complete-
ness [52], which essentially guarantees that every honest party
receives their share of JvK. While necessary for our target
application of MPC, this property is not needed for all use
cases of VSS, such as the backup storage and key management
of Unbound [46]. In MPC however, share unavailability can
cause the protocol to be aborted.

Although we use the terminology from [31], the complete-
ness property appears earlier in [14] where it is known as
Ultimate Secret Sharing. In this work, an AVSS scheme is
invoked n times to essentially secret-share every individual
share, so that all honest parties can reconstruct their share if
needed. Recently, [9] give a protocol for this setting called
VSS with Share Recovery (VSS-R).

B. Adversarial Assumptions

a) Unconditional vs Computational Security:
The most aggressive adversarial assumption for VSS is
a computationally-unbounded Byzantine adversary, or
information-theoretic security. There are a variety of such VSS
protocols for both the synchronous [13] and asynchronous [25]
network settings. Information-theoretic VSS can tolerate a
maximum of t < bN/3c Byzantine faults (though such an
asynchronous protocol must have a non-zero probability of
failing to terminate[1]). Information-theoretic protocols may
either be perfectly secure [53], [32] (i.e. protocols with zero
failure probability) or statistically secure [52] (with some
failure probability). The best optimally-resilient, statistically
secure ACSS protocol we know of in the information-theoretic
setting [31] has a bandwidth complexity of O(N3).

All of the unconditionally secure VSS protocols require ad-
ditional communication rounds due to the need for interactive
proofs [55]. The use of cryptography based on computational
assumptions can lower communication costs both in round
complexity and total bandwidth [9], [48], [7], [57]. In fact, our
use of such cryptography allows us to improve our amortized
network bandwidth by a factor of at least O(N) over all
information theoretic ACSS protocols we know of.
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C. Network Models

There are various choices of network models which signif-
icantly affect the achievable fault tolerance and performance
of VSS protocols. The most common network assumption is
synchrony (i.e. a strictly bounded network propagation time),
which is useful since nodes can be timed out, allowing for
a fault tolerance of t < bN/2c. The primary drawback
of synchronous networks is that if the network is briefly
unresponsive, it can lower the resulting fault tolerance. A
related drawback of synchronous protocols is the need to tune
the timeout parameter. If this parameter is set too small, it risks
ejecting honest parties. If a timeout parameter is too large,
performance may suffer. Asynchronous protocols avoid this
dilemma.

The protocol from [9] works in a partially synchronous
network setting. Their protocol is safe and live even in an
asynchronous network, but in an asynchronous network it may
fall back to a less-efficient backup mode.

D. Batching

Most VSS protocols are written to share a single secret, and
this is sufficient for many applications such as distributed key
generation or small queries to an MPC-based service. Batched
secret sharing has received comparatively less attention, much
of which has been in Packed Secret Sharing (PSS).

a) Packed Secret Sharing: In PSS, a single polynomial
has multiple evaluation points that correspond to secrets. To
achieve this, the degree of the sharing polynomial must be
t+ b− 1, where t is the fault tolerance threshold and b is the
number of secrets shared.

PSS inherently requires weakening the fault tolerance
threshold as the polynomials must be of a larger degree than
normal, but at the same time, allows for more secrets to be
packed as the number of players increases. For example, using
a fault tolerance of N = 4t + 1 in the asynchronous setting
would allow each polynomial to encode 3 secrets when N = 9,
but 26 secrets when N = 101. Despite this, some recent VSS
schemes leverage PSS [36], [27], [8]. Notably, Patra et al. [54]
use packing to shave off an O(N) factor in their AVSS scheme
in the N = 4t+ 1 setting.

The goal of our work is to optimize the performance
of AVSS at the optimal Byzantine fault tolerance setting.
However, we do feel that lessening the fault tolerance to
increase overall throughput is worth exploring in future work.

b) Dual-Threshold VSS: The work of Kokoris-Kogias
et al [44] introduced the first dual-threshold AVSS scheme,
meaning that the reconstruction threshold can be made larger
than the privacy threshold. The later work of AlHaddad [4] im-
proves upon this by reducing the bandwidth requirements. Both
of these schemes accomplish their dual-threshold property
through the use of bivariate polynomials, which consequently
result in at least O(N2) network bandwidth as N univariate
polynomials need to be sent to N parties. The later work also
proposes a batch optimization in which a large symmetrically-
encrypted message is efficiently broadcasted and the key is
verifiably secret shared. This can trivially batch-amortize any
computational VSS protcol to be O(N) but the shares are
now non-homomorphic fragments of ciphertexts which lack
properties that make them useful for applications such as MPC.

c) Batched Single-Share Polynomials: Batched secret
sharing through the use of many polynomials at once has
been explored in previous research [54], albeit with a differing
end goal. While this work explored batched VSS to improve
the throughput of existing protocols, our end goal is to use
batching to bring down the overhead of asynchronous VSS to
incentivize the development and deployment of network-robust
multiparty protocols.

E. Polynomial Commitments in VSS

The choice of a polynomial commitment scheme used
to instantiate a VSS protocol has large implications for the
overall computational work and bandwidth. While polynomial
commitment schemes have received recent research interest
due to their usefulness in circuit satisfiability arguments,
schemes such as [16], [17] will not be considered in this
analysis, as they are only intended to be used to prove a
polynomial evaluation at a single point. Instead, we will focus
on schemes derived from the original PolyCommit scheme of
Kate, Zaverucha, and Goldberg (KZG)[42] and other schemes
which do not require a structured CRS.

a) KZG-like Schemes: KZG polynomial commitments
are a common first choice due to being both constant-sized
and additively homomorphic. While these properties translate
well to protocols that attempt to achieve new asymptotic
communication bounds, they require O(N) elliptic curve point
multiplications per evaluation proof, which can slow down
actual VSS implementations (both we and the authors of [9]
noticed that O(t)-sized polynomial commitments were faster
in practice because of this).

Fortunately, the recent work of [57] addresses this issue
through the development of authenticated multipoint evalua-
tion trees (AMTs). More specifically, proof computation cost is
lowered considerably at the cost of O(log(t))-sized evaluation
proofs, with the trade-off of the proof size and verification
times becoming logarithmic. We consider this to be the current
state of the art for KZG-style PolyCommit schemes.

b) Schemes with an Unstructured CRS: Furthermore,
KZG-style PolyCommits have other nonideal properties such
as nonstandard hardness assumptions and reliance on trusted
setup. In fact, the authors of CHURP [48] thought that these
problems were significant enough to design their protocol
to have a backup operational mode if it detected that KZG
assumptions were violated. Further, while a trusted setup is
not an unsolved problem [19], [18] it does present a logistical
hurdle to deployment and may need to be redone on protocol
redesign or possibly even an increase in the number of parties.

In contrast, an unstructured CRS does not require trusted
setup and can instead consist of nothing-up-my-sleeve num-
bers. Pedersen’s VSS scheme [55] was the first VSS to
use non-interactive evaluation proofs and also happens to
feature the first polynomial commitment scheme with an
unstructured CRS. While this work predates KZG polynomial
commitments, the cryptography involved can be fit into the
PolyCommit interface to create a scheme with lightweight
operations at the cost of O(N) size and verification, a trade-
off worth making even in recent works [9]. Our PolyCommit
scheme, hbPolyCommit, aims to be similarly useful, but with
improved performance characteristics. We compare hbPoly-
Commit with similar work in Table I.
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Prover
Comp

Verifier
Comp Proof Size

PolyCommitPed [42] O(N) O(1) O(1)
PolyCommitHB O(N) O(N) O(logN)
PolyCommitHB-Batch O(N) O(logN) O(logN)
AMT PolyCommit [57] O(logN) O(logN) O(logN)

TABLE I: Amortized Asymptotic Behaviors of PolyCommit
Schemes

IV. EFFICIENT POLYNOMIAL COMMITMENTS WITHOUT
TRUSTED SETUP

Our ACSS construction uses polynomial commitments to
abstract away the cryptographic components of share vali-
dation. Most polynomial commitment schemes, dating back
to [42] and including state-of-the-art AMTs [57], rely on a
trusted setup. Our goal in this section is to design a polynomial
commitment scheme that can achieve similar performance
to the state-of-the-art, but without requiring a trusted setup
ceremony. The resulting performance of hbACSS largely relies
on the performance of this primitive.

A. Bulletproofs for Polynomial Evaluation

We follow an approach by [58] which is to build poly-
nomial commitments based on Bulletproofs [21], a recent
innovation for proofs involving inner-products that does not
require a trusted setup. To summarize with Camenisch-Stadler
notation [24], a Bulletproof can provide a computationally
sound argument for the following relation:

{(a ∈ Zqp) : A = ga ∧ v = 〈a,y〉} (1)

where g ∈ Gq are public parameters, A ∈ G is a commitment
to a polynomial given by coefficients a, v is the purported
evaluation result, and y = 1, i, ..., iq−1 defines the evaluation
point. Put another way, it proves that v = φ(i) where the
committed polynomial is φ(X) = a0 + a1X + ...aq−1X

q−1.

B. Batching verification of multiple evaluations

Directly using the Bulletproofs inner-product argument
would provide a logarithmic proof size, but without batch
verification, the verification cost would be too high for our
purposes. We can describe the batching needed in our ACSS
setting as follows,

{[P ↔ Vi] (a ∈ ZB×qp ) : A = gaj,: ∧ v = 〈aj,:,y:,i〉}i,j (2)

where i ∈ [1..N ] ranges over the verifiers in the protocol,
and j ∈ [1..B] ranges over all the secrets to be shared. That
is, we are sharing B polynomials {aj}, and each verifier Vi
is responsible for checking all the polynomials at a given
evaluation point yi.

In Figure 7 in the Appendix we give the base protocol for
hbPolyCommit. For readers familiar with Bulletproofs, most of
the protocol is a straightforward adaptation of the inner-product
argument of that work. The protocol is interactive, though Fiat-
Shamir can be applied at a later stage. Similarly the base proof
is not zero-knowledge, although this can be fixed in a layered
way by rerandomizing the polynomial before proving it.

In the inner-product argument protocol, the group element
vector g is folded in half at each recursive step in response to
a challenge. This operation requires 2q group exponentiations

hbPolyCommit-Core (Batch Inner-Product Proof)

Let a be a B × q matrix, and y a q ×N matrix
Each verifier Vi knows the i’th column, y:,i.
batch inner product proof(stmt):

1. Setup. Run G ← G(1κ) and let g := (g0, . . . , gq−1),
and crs := (G,g, h).

2. Input. Both P and Vi know the statement
stmti := (A:,i,y:,i,v:,i) and P knows a witness
a such that v := a · y and Aj,i := gaj,: · hvj,i .

3. let zi = H(stmti)
4. P and Vi compute A′ji := Aji · hzi·vji .

Return batch reduce proof(crs,A′,y, q;a).

batch reduce proof(crs,A,y, q;a):
1. if q = 1:
1.1. P sends a to Vi.
1.2. Vi returns the result of

∧B
j=1(Aji

?
= gaj,; · haj,;·y:,i).

2. if q is odd:
2.1. P sends na := −a:,q to Vi.
2.2. P sets a := a:,1:q .
2.3. P and Vi update A, y, g, and q as follows:

Aji := Aji · g
naji
q · h(naji·yqi)

y := y1:q,:, g := g1:q, q := q − 1

3. Let q′ = q/2 and
aL = a:,1:q′ and aR = a:,q′:q be B × q′ matrices
and yL = y1:q′,: and yR = yq′:q,: be q′ ×N matrices

4. P computes:
cL := aL · yR, cR := aR · yL

Lji := gL
aLj,: · hcLji , Rji := gR

aRj,: · hcRji

and sends {L:,i,R:,i} to Vi.
5. P builds a Merkle Tree over all transcript sets where:

leafi = H(g, q, h,y:,i, A:,i, L:,i, R:,i, na:,i)
6. P sends Vi {z := roothash, bi := MerkleBranch(i)}.
7. Vi calculates leafi and returns False if:

!MerkleVerify(leafi, z, bi)
8. P and Vi both compute:

A′ji := Lz
2

ji ·Aji ·Rz
−2

ji , g′ := gz
−1

L · gzR
y′:,i := z−1 · yL:,i + z1 · yR:,i

9. P computes a′j,: := z1 · aLj,: + z−1 · aRj,:.
10. Return batch reduce proof((G,g′, h), A′,y′, q′;a′).

Fig. 1: A protocol for proving many inner-product evaluations
to many verifiers where the y matrix is public.

overall, and different challenges result in new folding computa-
tions that need to be performed for every proof. However, if we
were able to reuse the set of challenges for a batch of proofs,
then the vector folding would only need to be calculated once
for the whole batch.

The Fiat-Shamir heuristic by itself can accommodate some
degree of parallel challenge reuse. Consider a prover who
wishes to make several simultaneous evaluation proofs to a
verifier. If many proofs are made in parallel, then the transcript
for each could be included in the hash function that maps to
a challenge. This alone reduces the verifier’s amortized total
computation from O(q) to O(log(q)).

We take this idea a step further and use the same set of
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challenges for all proofs for all verifiers. Since we cannot
send every transcript to every verifier, when a challenge is
required, we build a Merkle tree where each leaf contains all
of the transcripts of a given verifier and the roothash serves
as the challenge. Then we send each verifier a Merkle branch,
allowing the verifier to reconstruct the roothash and verify that
it fully incorporates all of the verifier’s transcripts.

We show this modification in Figure 1, where we express
a prover who is providing B different length-q inner product
arguments to N different verifiers as a series of matrix opera-
tions. As this protocol uses extensive matrix slicing, we refer to
Mi,: as the i′th row of a matrix M, M:,j as the j’th column,
M1:k,: as rows 1 to k − 1 and so on, while Mij denotes a
single element.

Using Merkle trees introduces communication and compu-
tation overhead which are amortized away given a linear batch
size (as they are only performed once, regardless of the batch
size). This technique reduces the prover’s group exponentiation
work from O(q) to O(log(q)) per proof. While this does not
reduce the prover’s overall computation complexity (due to the
dot products in part 3 of reduce proof) it does offer a large
practical speed-up due to the remaining O(t) operations being
very fast.

a) Making it zero knowledge: So far the scheme
we have presented is not zero knowledge, and in partic-
ular the statement A itself reveals information about the
witness a. In order to instantiate the PolyCommit, we
need to blind the statement before batch reduce proof
is called. This is achieved by extending the wrapper func-
tion (batch inner product proof) with the following: the
prover must convince the verifier that, in addition proving that
a is a valid opening of A, it knows some u such that u = 〈a,y〉
and U = gu. This enables implicit verification of the original
statement, as it can be instead verified in the exponent. We
give more detail on this technique in Appendix A.

V. THE HBACSS PROTOCOLS

A. Protocol description

We present our main construction in three incremental vari-
ants hbACSS0, hbACSS1, hbACSS2. Our simplest protocol
hbACSS0 can be instantiated with any polynomial commit-
ment scheme that supports at least t + 1 evaluations. This
starting point is asymptotically similar to VSS-R [9] in that it
achieves linear overhead in the optimistic case, but quadratic
overhead in the worst case. The next protocol hbACSS1
achieves better batching in the worst case as well, but relies
on a homomorphic polynomial commitment scheme, which
precludes (among others) our polynomial commitment with
no trusted setup in (see Appendix C1). Finally, hbACSS2
achieves the same asymptotic costs as hbACSS1 but restores
the flexibility to use any polynomial commitment.

All hbACSS protocols closely follow the same main steps:

1) Dealer’s phase: the dealer computes each of the B se-
crets from polynomials and broadcasts the corresponding
polynomial commitments. She then encrypts each party’s
shares and evaluation proofs using their public keys and
verifiably sends them via an AVID scheme.

2) Share validation: each party retrieves their encrypted
payload and attempts to decrypt and validate their shares
against the polynomial commitments. If sufficiently many
parties successfully receive valid shares, then the shares
are output.

3) Implicating a faulty dealer: if any party finds that the
shares they receive are invalid or fail to decrypt, they
reveal their secret key, enabling the other parties to
confirm that the dealer was faulty after retrieving that
party’s payload from the dispersal scheme.

4) Share recovery: once the dealer is implicated as faulty,
the parties who did receive valid shares distribute them
to enable the remaining parties to reconstruct their shares.

We now explain hbACSS0 in more detail, following along
with the protocol pseudocode given in Algorithm 1. Security
analysis and the other variants follow in this section.

1) Sharing and Committing: The protocol shares a
batch of B inputs at a time, {s1, ..., sB}. The dealer creates
a degree-t Shamir sharing φk(·) for each input such that
φk(0) = sk, and each party Pi’s share of sk is φk(i).

The dealer then uses the PolyCommit procedure to create a
commitment Ck to each polynomial φk(·). The commitments
are then broadcasted, ensuring all the parties can validate their
shares against the same set of commitments.

Next, for each party Pi, the dealer creates an encrypted
payload zi, consisting of the shares {φk(i)}k∈[1,B] and the
polynomial evaluation proof πi, encrypted under Pi’s public
key PKi. The dealer then Disperses these encrypted payloads.
With the broadcast and dispersal complete, the dealer’s role
in the protocol is complete—since information dispersal itself
requires only one initial round of messages from the dealer,
the dealer’s entire role is sending messages in the first round.

2) Share Verification: Each party Pi waits for
ReliableBroadcast and Disperse to complete, and then retrieves
their payload {zi}. The party then attempts to decrypt and
validate its shares. If decryption is successful and all the shares
are valid, then Pi signals this by sending an OK message to
the other recipients. The goal of the OK and READY messages
(lines 302-307) is to ensure that if any party outputs a share,
then enough correct parties have shares for share recovery to
succeed if necessary.

3) Implicating a faulty dealer: If any honest party Pi
receives a share that either fails to decrypt or fails verification,
they reveal their secret key by sending (IMPLICATE, SKi, k)
to all, which other parties can use to repeat the decryption and
confirm that the dealer dispersed invalid data.

4) Share Recovery: If an honest party discovers their
shares are faulty after other honest parties have already output,
the protocol must enter Share Recovery. In this phase, parties
with valid shares are presented with evidence that the dealer is
faulty. If convinced, these parties will divulge the keys needed
to decrypt their own shares. To avoid the need for constant
re-keying, we present a practical modification for long-term
keys in Section V-C.

B. Bandwidth-Optimized Failure Recovery

a) hbACSS1: Efficient Recovery for Additively-
Homomorphic PolyCommits: When using an additively
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Algorithm 1 hbACSS0(D,P1, ...,PN ) for dealer D and parties P1, ...,PN
Setup:

1: Each party begins Pi with SKi such that PKi = gSKi

2: The set of all {PKj}j∈[N ] are publicly known
3: Set up the polynomial commitment SP← Setup(1κ, t)

As dealer D with input (s1, ..., sB):

// Secret Share Encoding
101: Sample B random degree-t polynomials φ1(·)...φB(·)

such that each φk(0) = sk and φk(i) is Pi’s share of
sk

// Polynomial Commitment
102: C← {PolyCommit(SP, φk(·))}k∈[B]

103: ReliableBroadcast(C)

// Encrypt and Disperse
104: {πi}i∈[1,N ] ← BatchProveEval(SP,C, {φk(·)}k∈[1,B])
105: for each Pi do
106: zi ← EncPKi(πi‖{φk(i)}k∈[1,B])

107: Disperse({zi}i∈[1,N ])

As receiver Pi:

// Wait for broadcasts
201: Wait to receive C := {Ck}k∈[B] ← ReliableBroadcast
202: Wait for Disperse to complete

// Decrypt and validate
203: zi ← Retrieve(i)
204: {φk(i)}k∈[B], πi ← DecryptSKi(zi)
205: if BatchVerifyEval(C, i, {φk(i)}k∈[1,B], πi) 6= 1 or de-

cryption fails then
206: sendall (IMPLICATE, SKi)
207: otherwise, valid shares are owned, so sendall OK

As receiver Pi (continued)

// Bracha-style agreement
301: On receiving OK from 2t+ 1 parties,
302: sendall READY
303: On receiving READY from t+ 1 parties,
304: sendall READY (if haven’t yet)
305: Wait to receive READY from 2t+ 1 parties,
306: if all owned shares are valid (line 207) then
307: output shares {φk(i)}k∈[B]

// Handling Implication
401: On receiving (IMPLICATE, SKj) from some Pj ,
402: ignore if already in Share Recovery
403: Discard if PKj 6= gSKj

404: zj ← Retrieve(j)
405: if BatchVerifyEval(C, j, {φk(j)}k∈[1,B], πj) 6= 1 or

decryption fails then
406: Proceed to Share Recovery below

// Share Recovery
501: if Pi previously output valid shares (line 307) then

Multicast SKi and return
502: Otherwise, on receiving SKj from Pj ,
503: zj ← Retrieve(j)
504: if BatchVerifyEval(C, j, {φk(j), πj,k}k∈[B]) then
505: Save {φk(j)}k∈[B]

506: On successfully verifying shares from t+ 1 parties
507: Interpolate {φk(i)}k∈[B] from valid shares
508: output shares {φk(i)}k∈[B]

homomorphic PolyCommit scheme (such as AMT proofs
[57]), share recovery can be performed in a more bandwidth-
efficient manner by utilizing the batch reconstruction technique
of [11].

When instantiated with the KZG PolyCommit, our scheme
achieves an improved asymptotic worst-case bandwidth over
previous work, as shown in Table II. However, due to high real-
world proof cost of the KZG scheme, we find that optimizing
for computational efficiency is more important to achieve
network scaling. Nonetheless, we present this optimization as
potential future work.

We show the pseudocode for this optimization in Algo-
rithm 2 and refer to the version of our ACSS scheme which
utilizes additively homomorphic polynomial commitments in
this way as hbACSS1. This algorithm specification assumes
that a single evaluation can be checked without knowledge of
other evaluations, but this is not strictly necessary (as we will
later show).

In the first step of the new share recovery, parties wait
for t + 1 R1 messages from parties that received valid shares
originally. These messages can be checked individually by
making use of homomorphic properties of the PolyCommit
scheme. Every correct party Pj participates in the second phase
of share recovery by reconstructing one column of the bivariate
polynomial φ(·, j).

Algorithm 2 hbACSS1ShareRecovery(P1...PN ) as party Pi

Let φ(x, y) be a degree t, t bivariate polynomial such that
φ(i, k) gives Pi’s share of sk

501: for each set of t+ 1 secrets in B do
502: Interpolate {Ck}k∈[N ] from {Ck}k∈[t+1]

503: if we received valid shares (line 307) then
504: Interpolate {πi,k}k∈[N ] from {πi,k}k∈[t+1]

505: for each Pj do
506: send (R1, φ(i, j), πi,j) to Pj
507: On receiving (R1, φ(k, i), πk,i) from t+1 parties such

that VerifyEval(Ci, k, φ(k, i), πk,i) = 1,

508: Interpolate φ(·, i)
509: for each Pj do
510: send (R2, φ(j, i)) to Pj
511: On receiving (R2, φ(i, k)) from at least 2t+1 parties,
512: Robustly interpolate φ(i, ·)
513: output shares {φ(i, k)}k∈[t+1]

The second step is the transpose, where each party re-
constructs the row polynomial corresponding to its shares.
Since all correct parties send an R2 message, even if they did
not originally receive valid shares, we can interpolate through
ordinary robust decoding rather than using the evaluation
proofs.

b) hbACSS2: Efficient Recovery for any PolyCommits:
We now describe hbACSS2, which achieves the same asymp-
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totic behavior as hbACSS1 with non-homomorphic Poly-
Commits at the practical cost of a ∼3× overhead to computa-
tion and bandwidth.

We again use the batch recovery protocol of [11]. Observe
that this base protocol requires two robust polynomial interpo-
lations (In R1 and R2). In Algorithm 2 we are able to make up
for missing shares by utilizing homomorphic evaluation proofs
to individually validate each point of R1, negating the need to
rely on enough honest points to perform error correction.

Lacking this option, we can instead have the dealer provide
the additional required information. We now require the dealer
to deal BN/(t+1) polynomials to share B secrets, leading to
a ∼3× overhead in the N = 3t+1 setting. In short, the dealer
needs to interpolate polynomials t + 2 through N for every
batch of t + 1 polynomials and provide the necessary proofs
to replace lines 502 and 504 in Algorithm 2. We additionally
can no longer assume that evaluation proofs are separable and
instead require the dealer to split each recipient’s proofs into N
different batch-verifiable sets which themselves can be passed
along into share recovery. We include a complete protocol
description of hbACSS2 in the full version of this paper.

hbACSS2 may be desirable in systems that reach a level of
scaling in which O(N2 log(N)) amortized network bandwidth
is a significant hurdle or where DOS-like behaviour may be
routine. We do note, however, that because all of our hbACSS
protocols provide proof of Byzantine behavior (and share
recovery is only necessary under Byzantine faults), combining
hbACSS0 with malicious player eviction is likely to be more
practical for many settings.

C. Long-Term Key Use

For simplicity, we described hbACSS using a generic
public-key encryption scheme. While easier to explain, this
would lead to suboptimal performance in practice due to (a)
the high concrete complexity of public-key encryption and (b)
the need to refresh keys after dealer implication. This can be
ameliorated with a hybrid encryption scheme with long-term
keys as follows:

At the start of the protocol, the dealer should create an
ephemeral keypair {SKd,PKd = gSKd} and add gSKd to
the ReliableBroadcast message of line 103 in Algorithm 1.
Next, in line 106, the dealer should encrypt Pi’s message
with a symmetric encryption scheme, using the shared key
Ki
d = PKSKd

i . Lastly, in the implicate phase, instead of send-
ing SKi, Pi should instead send Ki

d and the zero knowledge
proof NIZK{(SKi) : gSKi = PKi ∧ PKSKi

d = Ki
d}.

In this way, we avoid the need to use a different PKI for
every hbACSS instance, so long as said PKI is not used in
a different protocol which could compromise the secret keys.
These modifications apply for every version of our scheme.

D. Security Analysis of hbACSS

Theorem 1. The hbACSS protocol (Algorithm 1) satisfies
the requirements of an ACSS protocol (with high probabil-
ity) when instantiated with a polynomial commitment scheme
(Setup,PolyCommit), an AVID protocol (Disperse,Retrieve),
a reliable broadcast protocol ReliableBroadcast, and a seman-
tically public key encryption scheme (Enc,Dec) with a pre-

established PKI such that each party Pi knows their secret
key SKi and the public keys {PKi = gSKi}i∈[N ] are known.

Proof: Correctness. The correctness property follows
easily: If the dealer D is correct, then ReliableBroadcast and
Disperse complete, so each honest party receives their valid
shares and outputs them through the ordinary case (line 307).

Secrecy. We will first consider an honest dealer’s share secrecy
when the Share Recovery phase is not invoked (for simplicity,
we will refer to hbACSS with a batch size of 1). We do
not assume any secrecy property in our AVID protocol, and
therefore assume our adversary can see every message sent
by the dealer: {EncPKi(πi‖{φk(i)}k∈[1,B])}i∈[1,N ], along with
the broadcasted polynomial commitment, the PKI, and its t
decryption keys.

We now design a simulator which can simulate the adver-
sary’s view. The simulator receives as input the t polynomial
shares belonging to corrupted parties. The simulator chooses
a polynomial φ̂ that is consistent with these t shares, and
for simplicity fixes the remaining degree of freedom such
that φ̂(0) = 0. The simulator creates an honest commitment
to φ̂ and creates t honest evaluation proofs, and encrypts
these. Lastly, the simulator generates the adversary’s keypairs,
fills the rest of the PKI with random strings, and generates
the remaining ciphertexts by encrypting zero-strings. More
formally, our indistinguishability argument is:

Real World:
SP← Setup(1κ, t)
C ← PolyCommit(SP, φ(·))
PKi∈[1..N ],SKi∈[1..t] ← GenPKI(1κ, N)
{EncPKi((i, φ(i), πi)← ProveEval(SP, φ(i), aux)}i∈N


Ideal World:

SP
$← Setup(1κ, t)

C ← PolyCommit(SP, φ(i)i∈[1..t]
⋃
φ̂(0)

$← Z∗p )

PKi∈[1..t],SKi∈[1..t]
$← GenPKI(1κ, t)

PKi∈[t+1..N ]
$← U

{EncPKi((i, φ̂(i), πi)← ProveEval(SP, φ̂(i), aux)}i∈[1..t]
{EncPKi(0∗)}i∈[t+1..N ]


In particular, a simulator algorithm that only knows t, N ,

and the adversary’s t shares can create a protocol view that is
computationally indistinguishable from the adversary’s view
in hbACSS, thus proving that our protocol leaks no additional
information about φ.

The other option is for an adversary to attempt to initiate
Share Recovery. However, to get an honest party to divulge
their share, an adversary must present them with a valid
Implication proof. The correctness property of the AVID
scheme ensures that honest parties will retrieve the correct
encrypted shares. Consequently, the use of an incorrect SK
will be rejected (line 402), whereas a correct SK will retrieve
the untampered message, which will verify given an honest
dealer.

Agreement. It is easy to check that parties only output
shares that are consistent with the broadcasted polynomial
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Protocol Best Case Crashes Byzantine
hbACSS0 +HBPC O(N logN) O(N logN) O(N2 logN)
hbACSS2 +HBPC O(N logN) O(N logN) O(N logN)

hbACSS1 +KZG[42] O(N) O(N) O(N)
hbACSS1 +AMT[57] O(N logN) O(N logN) O(N logN)

VSS-R[9] O(N) O(N2) O(N2)
eAVSS-SC[7] O(N2) O(N2) O(N2)

AVSS[22] O(N3) O(N3) O(N3)

TABLE II: Amortized whole-network bandwidth of AVSS
protocols with optimal resilience and share recovery

commitments. The challenge is in showing that if any correct
party outputs a share, then all of them do. In the following,
assume a correct party has output a share, either through the
typical path (line 307) or through share recovery (line 508). In
either case, broadcast and dispersal must have completed and
the party must have received 2t+1 READY messages (line 305).

First, notice the READY-amplification in line 304 plays the
same role as in Bracha broadcast:

Claim 1. If any correct party outputs a share, then all correct
parties eventually receive 2t+ 1 READY messages (line 305).

If any correct party outputs on line 307, they received 2t+ 1
READY messages, meaning at least t + 1 correct parties must
have sent READY messages, which causes all correct parties to
send READY messages.

If any correct party outputs on line 508, they must have
received a share from another correct party which received
2t+ 1 READY messages, per the check on line 501.

Next, the following claim ensures that share recovery can
proceed if necessary:

Claim 2. If any correct party outputs a share, then at least
t+ 1 correct parties receive valid shares.

For READY-amplification to begin, some correct party must
have initially sent READY after receiving 2t + 1 OK messages
(line 302), thus t + 1 correct parties must have successfully
received valid shares (line 207).

Because of the availability and agreement properties of
dispersal, every correct party either receives valid shares (and
by then Claim 1 outputs ordinarily) or else receives an invalid
share and initiates share recovery, which by Claim 2 is able to
proceed.

E. Performance Analysis of hbACSS

Although instantiating hbACSS with KZG PolyCommits
sets a new asymptotic bandwidth record, we focus our analysis
on hbPolyCommit, which we believe to be more practical due
to lower computation costs and the lack of a trusted setup.
Still, we summarize some notable asymptotic results relating
various hbACSS options with other works in Table II.

1) AVID Costs: In order to allow Byzantine parties to al-
ways be identified (a property we refer to as non-repudiation),
we rely on Asynchronous Verifiable Information Dispersal
(AVID). To send a message of size M , our implementation of
AVID in the t < bN/3c setting incurs a bandwidth overhead of
∼3M+N log(N) for the sender and receiver, and an overhead
of ∼M/t + log(N) to be sent and received by each non-
receiving participant. The logarithmic factors of this overhead

are due to the sending of Merkle branches to validate erasure-
codings. We remark that this cost does not depend on the size
of M and is consequently amortized away with a sufficiently
large message. Computational costs related to Merkle trees are
similarly amortized.

In hbACSS, the dealer must use AVID to send N messages
of size M , which incurs a constant factor overhead of 3NM
provided that the messages are at least O(N log(N))-sized,
which is the case given a batch size B of at least O(N) and
logarithmically-sized evaluation proofs. For the purposes of
this analysis, we will be operating under those two assumptions
and therefore write the total dealer bandwidth as ∼3NB logN .

A recipient must use AVID to retrieve one M -sized mes-
sage and aid in the retrieval of N -1 other M -sized messages. In
hbACSS0 and hbACSS1, provided that M is of size B log(N)
as before, this leads to an amortized overhead of ∼3B log(N)
sent and ∼6B log(N) received. In the case of hbACSS2, these
become ∼9B log(N) and ∼18B log(N) respectively.

2) PolyCommit Costs: The computational costs associated
with our ACSS scheme are dominated by the costs of proving
and verifying polynomial evaluations through a PolyCommit
scheme. While many suitable schemes could be used to instan-
tiate hbACSS, here we will analyse the computation involved
when the hbPolyCommit scheme is chosen.

The prover’s most asymptotically significant computations
are the matrix multiplications required to compute cL and
cR. These result in 2t+ 2 field integer multiplications and 2t
additions for every proof in each batch. Thus, the total number
of required field integer operations is ∼4BNt (∼12BNt for
hbACSS2) to calculate BN proofs, leading to an amortized
dealer computation complexity of O(N) per proof. We note
that the O(log(N)) group operations per proof are more
significant at the levels of N where we evaluate our protocol,
as we show by achieving similar performance to a scheme with
O(log(N)) amortized computation in Section VII.

For the verifier, there is no similar O(N) operation that
must be performed for each proof in the batch. Instead, the
most significant part of the verifier’s work is exponentiating the
group elements L and R at each recursive step of the protocol
for each proof. This leads to an amortized O(log(N)) verifier
computation per proof in B.

3) Overall Best Case Performance: hbACSS has favor-
able performance characteristics when equipped with a Poly-
Commit scheme that utilizes batch amortization. In the best
case, the dealer incurs ∼3NB log(N) bandwidth overhead
in sending B logarithmically-sized proofs to N different
receivers. The dealer performs O(N) computation per proof in
field integer operations, and at most O(log(N)) computation
for all other operations. This does not change, regardless of
the failure model.

In the best case, recipients receive and verify B evaluation
proofs and aid in the retrieval of an additional NB proofs.
The amortized computation cost is then O(log(N)) while the
bandwidth is ∼3B log(N) sent and ∼6B log(N) received. All
of these costs increase by a constant factor of 3 in hbACSS2.

4) Crash Fault Performance: As a fully asynchronous
protocol, the performance of hbACSS is minimally affected
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by crashed nodes, network delays, and partitions. The protocol
will progress as quickly as computation and the network allow.

5) Byzantine Fault Performance: If the dealer is Byzantine,
we use our Share Recovery protocol satisfy our agreement
property: if some honest parties output valid shares, all
honest parties do. In hbACSS0, those without valid shares
initially need to download at least t+1 batches of shares
and run BatchVerifyEval on each of them. When using
hbPolyCommit, this requires an additional O(BN log(N))
bandwidth and O(BN log(N)) computation to obtain B valid
shares, while honest parties with valid shares incur an addi-
tional O(B log(N)) computation to check an implication and
O(BN log(N)) bandwidth in assisting AVID retrievals.

In contrast, hbACSS1 and hbACSS2 use a more efficient
share recovery mechanism. In the first round, each honest party
with valid shares sends O(B log(N)) information, followed
by all parties sending O(B) in the second round. The overall
amortized network bandwidth is thus still O(N log(N)). Com-
putationally, nodes need to validate an additional B(t+ 1)/N
shares in round one, but otherwise only need to perform
polynomial interpolations and evaluations.

A Byzantine recipient can attempt to interfere with the
AVID protocol, inaccurately send OK and READY messages,
and attempt to falsely implicate the dealer. Of these, none
impact the security of the protocol and only false implications
affect protocol performance. A Byzantine adversary controlling
t participants could initiate t false IMPLICATE messages,
causing honest parties to retrieve O(BN log(N)) additional
data and run BatchVerifyEval t times.

The Byzantine recipient case can be mitigated against by
using even larger batches: instead of using one O(N)-sized
batch, the dealer should deal N different O(N)-sized sub-
batches, for a total batch size of O(N2). Each sub-batch is
encrypted and dispersed individually and the IMPLICATE mes-
sage is modified to include a block number where an invalid
proof can be found. With this modification, the amortized
computation and communication complexity of an honest party
who receives valid shares is the same as in the best case.

We remark that although our performance can be worsened
by a Byzantine adversary, every Byzantine action leaves behind
a proof of the adversary’s malfeasance. Since Byzantine adver-
saries can be identified and excluded from subsequent protocol
invocations, we do not feel that a performance degradation due
to Byzantine behavior is a significant drawback of our protocol.

6) Recommendations on hbACSS Version Usage: Each
version of hbACSS has its own strengths and weaknesses.
hbACSS0 and hbACSS2 accommodate the widest variety of
polynomial commitment schemes, hbACSS0 and hbACSS1
have the best general performance in situations with minimal
byzantine faults, and hbACSS1 and hbACSS2 best handle
share recovery in the case of many faults.

Generally, we feel that hbACSS0 is the best choice in the
widest variety of applications: all hbACSS versions identify
byzantine players and we suspect that most applications would
not allow byzantine players to participate in the protocol in-
definitely, rendering the relatively inefficient share recovery to
be of minimal concern. As N grows, however, hbACSS1 may

become more preferable for better bandwidth and computation
asymptotics when byzantine faults do occur.

However, a more efficient byzantine failure recovery may
be desirable in decentralized applications where player churn
is high and the barrier to entry is low, or alternatively in
applications where the number of players is large enough
that any Ω(N2) bandwidth operation is infeasible. In these
situations hbACSS1 is likely preferable if it can accommodate
a fast polynomial commitment scheme with tolerable setup
and hardness assumptions, as it has ∼3x smaller constants than
hbACSS2. In contrast, hbACSS2 has a higher base overhead
but is less affected by DOS attempts and may be preferable
for that reason.

VI. USING HBAVSS FOR ROBUST INPUT TO MPC

Recent work [47] has explored the practicality of robust and
asynchronous MPC, but falls short of full robustness, instead
dividing itself into a robust online phase which responds to
client inputs and a non-robust offline phase which performs
input-independent precomputation. One such precomputation
is generating randomized input masks: unknown random val-
ues shared amongst the servers to facilitate easy client input.
When a client wishes to contribute an input m, servers send
the client their shares of the mask r, allowing the client to
privately reconstruct it. The client then broadcasts (r + m)
and servers locally compute JmK = (r +m)− JrK.

Beerliová-Trubı́niová, and Hirt [11] introduced a method
to compute secret-shared random values by using hyper-
invertible matrices to create linear combinations of (non-
verifiably) secret shared locally-random values. However, as
this protocol lacks non-repudiation in the case of faults, its
player elimination protocol proceeds two at a time (where only
one eliminated player is guaranteed to have been malicious),
making it unsuitable for an asynchronous, optimally fault
tolerant setting.

The use of a complete AVSS scheme bypasses this issue
entirely, as it guarantees that all honest parties hold well-
formed shares and no further integrity checking is needed. As
the previous integrity check involved opening some random
values, we also improve input mask yield. Provided that
N − t ≤ j ≤ N parties secret share a random input, the
yield y is given by j − t. An asynchronous common subset
protocol can be used to agree on a j-sized set of inputs to use,
provided parties have access to a random beacon.

Regardless of whether a client uses input masks or acts as
an AVSS dealer to instantiate its inputs, we stress that using an
AVSS with recoverable shares is essential. Once the MPC is
underway, the shares JmK may be used in arithmetic circuits,
depending on the computation. Further, it may be necessary
to reconstruct linear combinations of JmK along with inputs
contributed by other parties.

In our setting, we expect MPC servers to be fairly long-
lasting entities. Because hbACSS provides non-repudiation,
any server acting maliciously will be caught and should be
excluded from subsequent rounds. Consequently, we expect
Byzantine faults to be minimal and therefore use hbACSS0 for
our application as it offers the best performance in scenarios
where such faults are uncommon. We evaluate the performance
of our solution in Section VII.
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VII. IMPLEMENTATION AND EVALUATION

In this section, we evaluate hbPolyCommit and hbACSS
in the N = 3t + 1 setting. In particular, we directly compare
hbPolyCommit with the state-of-the-art AMT polynomial com-
mitments, demonstrate baseline costs of each of our protocols,
show full end-to-end costs of hbACSS0 and hbACSS2 when
instantiated with hbPolyCommit, and demonstrate the resulting
MPC input mask yield.

a) Experimental Setup: We implemented1 hbPoly-
Commit and hbACSS primarily in Python, using a wrapper for
the Zcash team’s Rust pairing library [41], which implements
the bls12-381 elliptic curve. Our benchmarks are all single-
threaded and done inside a docker container for easy replica-
bility. Since the original AMT VSS benchmarks run on Linux,
we created a docker image for the AMT benchmarks so that
container-induced overhead is consistent. We also modified
their code so that it would run in the N = 3t + 1 setting.
Both containers run on our experiment machine which has an
Intel Xeon E5-2620 v4 CPU and 128GB RAM.

All benchmarks are given as a per-share per-user measure-
ment. Unless otherwise specified, our benchmarks are run on a
batch of ∼2N shares, as we found this sufficient to demonstrate
asymptotic behavior. All experiments were run using pytest-
benchmark and were run at least three times.

b) Limitations: We believe the code can be optimized
by moving more of it to Rust and optimizing some algorithms,
such as polynomial interpolation. Our evaluation does not
account for network latency as we estimate network effects to
be relatively insignificant. However, we still serialize messages
and use Asyncio queues to approximate I/O between tasks.

A. Polynomial Commitment Evaluations

a) Proof generation time: In Figure 2, we show the
per-proof generation time of AMT PolyCommits and hbPoly-
Commit. Asymptotically, AMT’s O(log(N)) amortized per-
proof generation time is better than hbPolyCommit’s O(N)
time, but the practical gap between them is small since the only

1code available at github.com/tyurek/hbACSS
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linear component of hbPolyCommit is cheap field operations.
From the graph, the reference implementation for AMTs shows
a spike in costs whenever N crosses a power of 2, whereas
hbPolyCommit shows a jagged-but-gradual increase in cost as
the amount of work required varies based on the number of
1’s in the bit decomposition of t+ 1.

b) Verification time: In Figure 3, we show the per-
proof verification times of both PolyCommit schemes. Both
schemes show a similar O(logN) performance in practice.
hbPolyCommit is jagged for the same reasons as before, while
AMT exhibits spikes when t crosses a power of 2.

c) Proof size: Given N=3t+1 and assuming one
field element takes 32 bytes, hbPolyCommit roughly needs
32+(dlog(t)e+1)*2*32 bytes amortized per proof. In practice,
the length varies slightly since our hbPolyCommit construction
handles odd and even N differently at each recursive step.
AMT PolyCommits need 32+(blog(t+1)c+1)*32 bytes per
proof. Though hbPolyCommit proofs are slightly larger, both
exhibit the same asymptotic behavior.

B. hbACSS Evaluations

We implement our ACSS protocols and evaluate them in
two scenarios: zero faults and t dealer-injected faults (the
most in which the protocol will still complete). We avoid
evaluating Byzantine receivers as all they can do to slow down
the protocol is send false IMPLICATE messages, which are
easily detected and can be mitigated by more batching (as in
Section V-E5). Moreover, DOS-like behavior could easily be
done out-of-band.

Although we do reimplement AMTs in our framework, we
use the performance of their reference implementation to sim-
ulate end-to-end hbACSS evaluation times, thus avoiding bias
from our reimplemention of their protocol being underopti-
mized. However, as the cost of interpolating commitments and
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evaluation proofs is not benchmarked in the AMT reference
implementation, we measure this in our framework to estimate
the costs of share recovery in hbACSS1.

Figure 4 shows our fault-free performance for hbACSS0
instantiated with both hbPolyCommit and AMTs as well
as hbACSS2 with hbPolyCommit. hbACSS1 is merged with
hbACSS0 in this figure, as the protocols are equivalent in the
fault-free case. To see the amortization benefits of hbACSS2,
we ran it with a batch size of ∼N2 (as necessitated by design).

These trends change in Figure 5 where we evaluate the
end-to-end performance when the dealer sends faulty shares
to t different verifiers. Since hbACSS0 needs to verify asymp-
totically more evaluation proofs under maximal Byzantine
faults, its performance relative to hbACSS2 decays as N
grows larger. While hbACSS1 grows quickly in this figure,
the cost is almost entirely attributable to the computational
overhead of interpolating evaluation proofs (we add a line in
which commitment and evaluation proof interpolation costs are
removed to illustrate this point). These costs would be greatly
reduced if AMT evaluation proofs were constant-sized.

While our figures do not include latency and bandwidth,
we estimate that they do not significantly impact our proto-
col’s performance: At the time of this writing, Amazon Web
Services (AWS) has a typical 206 ms inter-region latency
between North Virginia and Sydney [56], [6] with roughly
55 Mbps of bandwidth [35]. hbACSS has a constant round
complexity of four one-way trips in the fault-free case (two
for ReliableBroadcast and AVID in parallel, one for the OK
messages and one for the READY messages), resulting in
roughly 0.8 seconds of cumulative latency per batch.

When N=127 (the largest case we evaluate), the hbPoly-
Commit evaluation proofs are roughly 416 bytes each, which
is far larger than anything else sent in hbACSS. Nonetheless,
after applying the roughly 6x bandwidth penalty for our
method of distributing payloads, recipients could still receive
thousands of shares per second with our scheme if computation
was not an issue.

C. Input Mask Generation

In Section VI we showed how ACSS can be used to
robustly generate input masks in an asynchronous setting.
Moreover, the number of input masks yielded is linear in the
number of total shares dealt. We demonstrate this in Figure 6:
even with t crash faults, the total per-node computation re-
quired is only moderately affected, with roughly 30% overhead
for larger values of N . In the case where all simulated servers

ran a hbACSS instance, we saw yields of ∼39 input masks per
second when N = 31 and ∼9 per second at N = 127.

D. Further Applications

We note that while this paper primarily focuses on one
particular MPC use-case, the tools that we have developed
here are more broadly useful in the MPC space. For example,
many asynchronous MPC protocols [10], [54], [52], [32], [33]
rely on AVSS for robustness, which usually ends up as the
primary bottleneck. The recent work of [31] set a new network
bandwidth record in optimally-resilient information theoretic
ACSS of O(N3), which when combined with the techniques
of [33] achieved an asynchronous MPC with O(N4) bits of
bandwidth per multiplication gate. By using the same tech-
niques from [33] and switching to a computational adversary,
our work could result O(N2) bits per multiplication gate given
trusted setup and O(N2 logN) bits without trusted setup.

Another interesting application of our protocols can be
MPC-based anonymous broadcast [47], [2], [34] that allows
a set of clients to send their messages together such that no
individual message from the broadcast output set can be linked
to its sender client. For example, PowerMix [47] employs
input masks as described above for sending client messages
mi to their MPC system that first securely computes powers
m2
i ,m

3
i , . . . and then computes Newton’s power sums. Here,

our batched ACSS offers an interesting other alternative: every
client itself can send its messages and powers mi,m

2
i ,m

3
i , . . .

using batched ACSS such that the MPC is reduced to perform-
ing secure addition towards creating Newton’s power sums.
Batched ACSS can offer a linear factor improvement over
previous ACSS/AVSS protocols here.

We also remark that our protocols could prove useful in
the construction of a randomness beacon (an input mask is
merely a piece of public randomness), a problem which has
seen a surge of recent interest [15], [37], [27]. However, we
leave such applications to future work.

VIII. CONCLUSION

In this paper, we took a significant step towards closing
the gap between theory and practice in robust and asyn-
chronous multiparty computation. We designed and imple-
mented a batch-efficient ACSS scheme which itself utilizes
batch-efficient polynomial commitment schemes. We created
the first optimally-resilient ACSS protocol with amortized lin-
ear network overhead along the way, but focused our attention
on computational hurdles and trusted setup assumptions that
stand as a barrier to practical deployment (while still achieving
new asymptotic goals). To that end, we developed a polynomial
commitment protocol which performs comparably to peer
constructions while removing the need for trusted setup. Lastly,
we demonstrated the utility of our constructions in robustly
generating MPC input masks.
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[11] Z. Beerliová-Trubı́niová and M. Hirt. Perfectly-secure mpc with linear
communication complexity. In Theory of Cryptography Conference,
2008.

[12] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm
for designing efficient protocols. In ACM conference on Computer and
communications security, 1993.

[13] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation. In ACM
Symposium on Theory of Computing, 1988.

[14] M. Ben-Or, B. Kelmer, and T. Rabin. Asynchronous secure compu-
tations with optimal resilience. In ACM symposium on Principles of
distributed computing, 1994.

[15] A. Bhat, N. Shreshta, A. Kate, and K. Nayak. Randpiper –
reconfiguration-friendly random beacons with quadratic communica-
tion. Cryptology ePrint Archive, Report 2020/1590, 2020.

[16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. Efficient zero-
knowledge arguments for arithmetic circuits in the discrete log setting.
In Annual International Conference on the Theory and Applications of
Cryptographic Techniques, 2016.

[17] J. Bootle and J. Groth. Efficient batch zero-knowledge arguments for
low degree polynomials. In IACR International Workshop on Public
Key Cryptography, 2018.

[18] S. Bowe, A. Gabizon, and M. D. Green. A multi-party protocol
for constructing the public parameters of the pinocchio zk-snark. In
International Conference on Financial Cryptography and Data Security,
2018.

[19] S. Bowe, A. Gabizon, and I. Miers. Scalable multi-party computation
for zk-snark parameters in the random beacon model. Cryptology ePrint
Archive, Report 2017/1050, 2017.

[20] G. Bracha and S. Toueg. Asynchronous consensus and broadcast
protocols. Journal of the ACM (JACM), 1985.

[21] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell.
Bulletproofs: Short proofs for confidential transactions and more. In
IEEE Symposium on Security and Privacy (SP), 2018.

[22] C. Cachin, K. Kursawe, A. Lysyanskaya, and R. Strobl. Asynchronous
verifiable secret sharing and proactive cryptosystems. In ACM Confer-
ence on Computer and Communications Security, 2002.

[23] C. Cachin and S. Tessaro. Asynchronous verifiable information disper-
sal. In IEEE Symposium on Reliable Distributed Systems, 2005.

[24] J. Camenisch and M. Stadler. Efficient group signature schemes for
large groups. In Annual International Cryptology Conference, 1997.

[25] R. Canetti and T. Rabin. Fast asynchronous byzantine agreement with
optimal resilience. In ACM Symposium on Theory of Computing, 1993.

[26] J. Cartlidge, N. P. Smart, and Y. Talibi Alaoui. Mpc joins the dark side.
In ACM Asia Conference on Computer and Communications Security,
2019.

[27] I. Cascudo and B. David. Albatross: publicly attestable batched
randomness based on secret sharing. Cryptology ePrint Archive, Report
2020/644, 2020.

[28] M. Chen, C. Hazay, Y. Ishai, Y. Kashnikov, D. Micciancio, T. Riv-
iere, A. Shelat, M. Venkitasubramaniam, and R. Wang. Diogenes:
Lightweight scalable rsa modulus generation with a dishonest majority.
IACR Cryptol. ePrint Arch., 2020.

[29] A. Chiesa, Y. Hu, M. Maller, P. Mishra, N. Vesely, and N. Ward.
Marlin: Preprocessing zksnarks with universal and updatable srs. In
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, 2020.

[30] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults. In IEEE
FOCS, 1985.

[31] A. Choudhury. Optimally-resilient unconditionally-secure asynchronous
multi-party computation revisited. Cryptology ePrint Archive, Report
2020/906, 2020.

[32] A. Choudhury, M. Hirt, and A. Patra. Asynchronous multiparty
computation with linear communication complexity. In International
Symposium on Distributed Computing, 2013.

[33] A. Choudhury and A. Patra. An efficient framework for unconditionally
secure multiparty computation. IEEE Transactions on Information
Theory, 2016.

[34] H. Corrigan-Gibbs, D. I. Wolinsky, and B. Ford. Proactively accountable
anonymous messaging in verdict. In USENIX Security Symposium,
2013.

[35] B. Cutler. Examining cross-region communication
speeds in aws. https://medium.com/slalom-technology/
examining-cross-region-communication-speeds-in-aws-9a0bee31984f,
2021. Online; accessed 2021.
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APPENDIX

A. Definitions

Definition 6. Discrete Log Relation Assumption. For all prob-
abilistic, polynomial-time adversaries A and for all n ≥ 2
there exists a negligible function negl(κ) such that

Pr

 G = Setup(1κ), g1, . . . , gn
$← G

a1, . . . , an ∈ Zp ← A(G, g1, . . . , gn) :
∃ai 6= 0 ∧

∏n
i=1 gi

ai = 1

 ≤ negl(κ)

We say
∏n
i=1 gi

ai = 1 is a non-trivial discrete log relation
between the generators g1, . . . , gn.

Definition 7. Zero-Knowledge Argument of Knowledge. An
argument of knowledge for R[crs] consists of three probabilis-
tic polynomial-time algorithms: the prover P , verifier V , and
Gen(1κ) which outputs a common reference string crs. The
transcript produced by P and V when interacting on inputs s
and t is denoted by tr ← 〈P(crs, s),V(csr, t)〉. If V outputs 1
we write 〈P(crs, s),V(crs, t)〉 = 1 and say that tr is accepting.
Similarly, if V outputs 0 we write 〈P(crs, s),V(crs, t)〉 = 0 and
say that tr is rejecting.

Definition 8. Perfect Special Honest-Verifier Zero-Knowledge
(PSHVZK). There exists a polynomial-time simulator S such
that for every κ ∈ N, every crs in the support of Gen(1κ),
every (stmt, w) ∈ R[crs] and every z,

{〈P(crs, stmt, w),V(crs, stmt; z)〉} ≡ {S(crs, stmt, z)}.

B. Knowledge Soundness

We will need to apply the following general forking lemma
of Bootle et al. [16], [21] to prove knowledge soundness.

Theorem 2. General forking lemma [16], [21]. Suppose that
there exists a polynomial-time witness extractor E(crs, ·) such
that when given any crs in the support of Gen(1κ) and a
polynomial-size tree of accepting transcripts, E succeeds with
negligible failure in extracting a witness or a non-trivial
discrete logarithm relation between the generators in the crs.

Lemma 1. The protocol presented in Figures 7 satisfies our
definition of knowledge soundness (Definition 4) so long as the
Discrete Log Assumption (Assumption 6) holds in G.

Proof: We will show that if P can succeed in completing
the proof for four different challenges from V for the same
initial statement (g, h, A), E can either extract a witness a, or
find a nontrivial discrete logarithm relation between g and h.
It suffices to show that this holds for one recursive step since
the hardness of finding a discrete logarithm relation between
g′ and h implies the hardness of computing one between g
and h in Protocol 7. The recursive protocol is the case where
the (7a.) branch is ignored in Figure 7.

E works as follows. Suppose that the four provers produce
a′1, a′2, a′3, and a′4 after respectively receiving z1, z2, z3, and
z4 from the same initial statement such that zi 6= zj for 1 ≤
i ≤ j ≤ 4. We have that for i ∈ [4]:

(g
z−1
i

[:n′] · g
z1i
[n′:])

a′i · h〈a
′
i,yi〉 = Lz

2
i ·A ·Rz

−2
i (3)

Now, so long as the following holds

det

z−21 z−22 z−23
1 1 1
z21 z22 z23

 6= 0

we can find coefficients v1, v2, and v3 using z1, z2 and z3:
3∑
i=1

viz
2
i = 1,

3∑
i=1

vi = 0,

3∑
i=1

viz
−2
i = 0.

These coefficients yield a discrete logarithm representation
of L as follows:

3∏
i=1

((gz
−1
i

[:n′] · g
zi
[n′:])

a′i · h〈a
′
i,yi〉)vi =

3∏
i=3

(Lz
2
iARz

−2
i )vi

3∏
i=1

gviz
−1
i a′i

[:n′] · gvizia
′
i

[n′:] · h
vi〈a′i,yi〉 =

3∏
i=3

Lviz
2
i ·Avi ·Rviz

−2
i

g
∑3
i=1 viz

−1
i a′i

[:n′] · g
∑3
i=1 vizia

′
i

[n′:] · h
∑3
i=1 vi〈a

′
i,yi〉 = L

gaL · hvL = L
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Interactive Inner-Product Argument of Knowledge

• inner product proof(stmt):
1. Setup. Run G← G(1κ) and let g0, . . . , gn−1, h be random

generators of G. Let g := (g0, . . . , gn−1) and crs :=
(G,g, h).

2. Input. Both P and V know the statement stmt = (A,y, v)
where y ∈ Znp and P knows a witness a such that v =
〈a,y〉 and ga · hv = A.

3. V challenges P with a uniform sample z $← Z∗p.
4. P and V compute A′ := A · hz·v .

Return reduce proof(crs, A′,y, n;a).
• reduce proof(crs, A,y, n;a):

1. if n = 1:
1.1. P sends a to V .
1.2. V returns the result of A ?

= ga · h〈a,y〉.
2. if n is odd:

2.1. P sends a[−1] to V .
2.2. P sets a := a[:−1].
2.3. P and V update A, y, g, and n as follows:

A := A · g−a[−1]

[−1] · h−(a[−1]·y[−1])

y := y[:−1], g := g[:−1], n := n− 1

3. P computes:
cL := 〈a[:n′],y[n′:]〉, cR := 〈a[n′:],y[:n′]〉
L := g[n′:]

a[:n′] · hcL , R := g[:n′]
a[n′:] · hcR

and sends L and R to V .
4. V challenges P with a uniform sample z $← Z∗p.
5. P and V both compute:

A′ := Lz
2

ARz
−2

, g′ := gz
−1

[:n′] · gz
1

[n′:]

y′ := z−1 · y[:n′] + z1 · y[n′:]

6. P computes a′ := z1 · a[:n′] + z−1 · a[n′:].
7a Recursive option. Return:

reduce proof((G,g′, h), A′,y′, n′;a′).

7b Non-recursive option (just for analysis).
7b.1. P sends a′ to V .
7b.2. V returns the result of the following:

〈a′,y′〉 ?
= cL · z2 + cR · z−2 + v ∧

g′
a′ · hcL·z

2+cR·z−2+v ?
= A′.

Fig. 7: Protocol specification of the (non-zero-knowledge)
inner-product argument. This protocol is optimized for eval-
uation proofs by publicizing the y vector which halves com-
munication complexity with respect to Bulletproofs [21].

where

aL = (

3∑
i=1

viz
−1
i a′i) || (

3∑
i=1

vizia
′
i) ∈ Znp ,

vL =

3∑
i=1

vi〈a′i, yi〉 ∈ Zp.

By computing fresh coefficients to target the A and R terms
respectively, we can obtain discrete logarithm representations
of all three terms:

L = gaL · hvL , A = gaA · hvA , R = gaR · hvR . (4)

Using the equations in (4), we can simplify the equations

in (3):

g
z−1
i a′i

[:n′] ·g
zia
′
i

[n′:] · h
〈a′i,yi〉

= Lz
2
iARz

−2
i

= (gaLhvL)z
2
i · (gahvA) · (gaRhvR)z

−2
i

= gaLz
2
i+aA+aRz

−2
i hvLz

2
i+vA+vRz

−2
i for i ∈ [4].

This implies the following equations for i ∈ [4]:

a′iz
−1
i = aL,[:n′]z

2
i + aA,[:n′] + aR,[:n′]z

−2
i (5)

a′iz
1
i = aL,[n′:]z

2
i + aA,[n′:] + aR,[n′:]z

−2
i (6)

〈a′i,yi〉 = vLz
2
i + vA + vRz

−2
i (7)

Combining equations (5) and (6) above with zi and z−1i as
the respective coefficients, we have that for i ∈ [4],

aL,[:n′]z
3
i + (aA,[:n′] − aL,[n′:])zi (8)

+ (aR,[:n′] − aA,[n′:])z
−1
i − aR,[n′:]z

−3
i = 0. (9)

Now, if the following holds:

det


z−31 z−32 z−33 z−34

z−11 z−12 z−13 z−14

z11 z12 z13 z14
z31 z32 z33 z34

 6= 0

it must be that:

aL,[:n′] = aR,[n′:] = 0,

aA,[:n′] = aL,[n′:], and

aR,[:n′] = aA,[n′:].

We can use these equations to simplify the equations in
(9):

a′i = ziaA,[:n′] + z−1i aA,[n′:] for i ∈ [4].

Thus, E can extract aA knowing z1, z2, a′1, and a′2 by
solving linear equations as long as z21 6= z22 . Finally, since
equation (7) must hold, it must be that for i ∈ [4]:

cLz
2
i + cRz

−2
i + v

= 〈ziaA,[:n′] + z−1i aA,[n′:], z
−1
i y[:n′] + ziy[n′:]〉

= z2i 〈aA,[:n′],y[n′:]〉+ z−2i 〈aA,[n′:],y[:n′]〉+ 〈aA,y〉. (10)

For equation (10) to hold for z1, z2, and z3, it must be that
aA satisfies 〈aA,y〉 = v.

C. Making the Protocol Zero-Knowledge

The protocol presented in Figures 7 and 7 is not zero-
knowledge; we present a modified protocol in Figure 8
which achieves perfect zero-knowledge using the non-zero-
knowledge inner-product argument as a subroutine.
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Zero-Knowledge Argument of Knowledge

inner product proof ZK(s ∈ Zt+1
p , ρ ∈ Zp):

Setup. Run G ← G(1κ) and let g, h, g0, . . . , gt be
random generators of G. Let g := (g0, . . . , gt).
Input. Both P and V know the statement (A,y, U)
where y ∈ Znp and U ∈ G. P additionally knows the
witness a ∈ Zt+1

p and r ∈ Zp satisfying ga · hr = A
and u satisfying gu = U .

1. P computes T := g〈s,y〉 and S := gs · hρ, and sends S
and T to V .

2. V challenges P with a uniform sample z ∈ Z∗p.
3. P computes c := a + z · s, ν := r + z · ρ, t̂ := 〈c,y〉,

and C := gc. It then sends c, ν, t̂, and C to V .
4. V asserts that the following holds:
gt̂

?
= gu · T z ∧ gc · hν ?

= Sz ·A ∧ t̂
?
= 〈c,y〉

5. P and V interactively compute
reduce proof((G,g, h), A,y, t+ 1;a).

6. V outputs success if the inner product proof succeeds.
Fig. 8: Modified wrapper function which first blinds the
statement in order to achieve perfect zero-knowledge.

1) Security Proofs: We now show that our modified pro-
tocol in Figure 8 satisfies our definitions of security.

Lemma 2. The protocol presented in Figure 8 satisfies perfect
special honest-verifier zero-knowledge (Definition 8).

Proof: The simulator S needs to simulate the transcript
between P and V without knowing the witness. Given the V’s
randomness z ∈ Z∗p, S can simulate a protocol transcript for
proving an evaluation at point y as follows:

First, the S chooses c
$← Znp and ν $← Zp and computes:

t̂ := 〈c,y〉, T :=

(
gt̂

gu

)z−1

, S :=

(
gc · hν

A

)z−1

S then runs the non-zero-knowledge protocol to simulate
the remaining transcript messages. It follows that the simulated
transcript are identically distributed to the honestly generated
transcript on randomness z.

Lemma 3. There exists a polynomial-time extractor E such
that given poly(κ) accepting transcripts for the same initial
statement, E either extracts a valid witness to the statement or
a generalized discrete logarithm relation between the genera-
tors (g, g, h) for the protocol presented in Figure 8.

Proof: Given poly(κ) accepting transcripts corresponding
to the same initial statement at Line 5, we use the extractor of
Lemma 1 to extract all witnesses corresponding to the inner-
product proof. We proceed if there are at least two.

Given two accepting transcripts with different (ci, zi, νi, t̂i)
tuples for i ∈ [2], we can compute decommitments for S, A,
and T in the exponent as follows:

S = (gc1−c2 · hν1−ν2)
1

z1−z2 ,

A = gc1− z1(c1−c2)
z1−z2 · hν1−

z1(ν1−ν2)
z1−z2 ,

T = g
t̂1−t̂2
z1−z2

Thus, we define s, ρ, a, r, and t from the exponents as follows:

s := (c1 − c2)(z1 − z2)−1,

ρ := (ν1 − ν2)(z1 − z2)−1,

a := c1 − z1(c1 − c2)(z1 − z2)−1,

r := ν1 − z1(ν1 − ν2)(z1 − z2)−1,

t := (t̂1 − t̂2)(z1 − z2)−1

Now, verification equations (Line 4 in Figure 8) must hold
for the two accepting transcripts. From gt̂i = gu · hνi , we get
u = t̂i − t · zi for i ∈ [2]. Furthermore, from gi

ci · hνi =
Szi · A, it must be that ci = szi + a and νi = ρzi + r for
i ∈ [2] or we would have a generalized discrete logarithm
relation between generators g and h. Hence if we have not
extracted a generalized discrete logarithm relation, we get that
〈szi+a,y〉 = u+tzi for i ∈ [2], which implies that 〈a,y〉 = u.
That is, the extracted components a and u satisfy the statement
being proven.

We can now conclude by proving the following theorem:

Theorem 3. Assuming that discrete-log relation (Definition 6)
holds for the group generator G, the protocol presented in
Figure 8 is a secure zero-knowledge argument of knowledge.

Proof: Perfect completeness follows trivially from the
construction. We have perfect special honest-verifier zero-
knowledge from Lemma 2. Knowledge soundness follows
from Lemma 3 and Theorem 2 of Bootle et al.

Corollary 1. It follows from the witness-extended emulation
lemma of Lindell (Lemma 3.1 of [45]) that the protocol
presented in Figure 8 has witness-extended emulation.

D. Explicit hbPolyCommit Construction

So far, we have presented and proved the security of an
interactive inner-product argument protocol. Since the protocol
is public-coin, we can convert it into a non-interactive protocol
that is secure in the random oracle model using the Fiat-
Shamir heuristic [12]. For each of the verifier’s uniformly
random challenges, we instead use random oracle queries
which depend on a) the current crs and stmt being proven, and
b) the full transcript between the prover and verifier up to the
current point. We use the resulting scheme in hbPolyCommit.

Theorem 4. Assuming that the Discrete Logarithm Relation
Assumption (Definition 6) holds for the group generator G,
the protocol presented in Figure 9 is a secure polynomial
commitment scheme with perfect zero-knowledge.

Proof: Correctness. The verification equations (Step 4
in Figure 8) are easily verified by inspection. Correctness of
ProveInnerProduct and VerifyInnerProduct follow from the
security of the protocol in Figure 8.

Polynomial Binding. To commit to a polynomial with
hbPolyCommit, we commit to the coefficients of the polyno-
mial with a Pedersen vector commitment. Polynomial binding
follows from the computational binding property of Pedersen
commitments—this holds as long as computing discrete loga-
rithms is intractable in G.
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Formal hbPolyCommit Construction

• Setup()→ SP:
Let d be the maximum degree for a polynomial that
can be committed to with SP . Run G ← G, and let
g, h, g0, g1, . . . , gt be random generators of G. Let g :=
(g1, . . . , gd). Output SP := (G, g,g, h)

• PolyCommit(SP, φ(x))→ C:
Sample r $← Zp and let a denote the coefficient vector
for φ(x). Output C = (

∏deg(φ)
i=0 gaii ) · hr

• VerifyPoly(SP,C, φ(x), r):
Output bool := C

?
= (
∏deg(φ)
i=0 gaii ) · hr

• CreateEvalProof(SP,C, i, φ(i))→ πi:
y = (i0, i1, . . . , id), s := (s0, s1, . . . , st)← Zp,
T := g〈s,y〉, ρ ← Zp, S := gshρ, z :=
H(SP,C, S, T ),

b := a+sz, B := Π
deg(φ)
j=0 g

bj
j , ν := r+ρz, t̂ := 〈b,y〉

Output:
πi = (T, S, t̂, ν, B,ProveInnerProduct(SP,b,y, t̂))

• VerifyEval(SP,C, i, φ(i), πi)→ bool:
z := H(SP,C, S, T )

Output bool := gt̂
?
= gφ(i) · T z & B · hν ?

= Sz · C &
VerifyInnerProduct(SP,y, t̂)

Fig. 9: Formal specification of hbPolyCommit. The
PolyCommit and ProveEval procedures in this scheme
are independent since vector commitments are used to
commit to the whole polynomial, but a separate argument of
knowledge (Figure 8) is used to prove an evaluation.

Strong Evaluation Binding. Suppose that for hon-
estly generated system parameters SP, A outputs the tuple
(C, {xi, yi, πi}i∈[`]) for ` ≥ t + 1, where each πi is a proof
that (xi, yi) point lies on the committed polynomial φ(·), and
C is a valid commitment to φ(·).

For any (t+1)-sized subset S ⊆ [`], Lagrange interpolation
guarantees the extraction of a polynomial consistent with
the t + 1 evaluations corresponding to S. We will prove
that regardless of the particular t + 1-sized subset, Lagrange
interpolation will always recover the same polynomial with
overwhelming probability.

It follows from knowledge soundness of the embedded
proof system (Lemma 1) that there exists polynomial-time
extractors EA,i for i ∈ [`] where the i-th extractor extracts
a valid witness of the form (φ′i(·), ri) where φ′i(·) is a degree-
t polynomial and ri is the randomness used in the PolyCommit
procedure to generate C, and φ′i(xi) = yi.

First, fix the randomness consumed by A to z (denote this
byA(z)). Next, give the honest SP toA(z) and, in parallel, run
the extractors EA,i for i ∈ [`] on the same SP and randomness
z. With overwhelming probability, if A outputs a polynomial
commitment and valid evaluation proofs at ` distinct points,
then each extractor extracts a witness (φ′i, ri).

Assume there exists a polynomial µ(κ) such that with
1/µ(κ) probability, when we generate SP and give it to A, the
adversary outputs a polynomial commitment and t + 1 valid
evaluation proofs at distinct points. If this is the case, we say
that A succeeded.

Suppose that for some inverse-polynomial probability, the

above does not hold for infinitely many κ values. WLOG,
assume that p(κ) ≥ κ10 + 10. We use the ` extractors
to construct a polynomial-time algorithm B that with non-
negligible probability finds a commitment with two different
openings when given a random SP.

Once a random SP is generated, B runs A and waits
for its output. B then runs the ` extractors on the same SP
and randomness. For each extractor, B bounds its runtime
with a suitably large polynomial p′(κ). If any extractor fails
to complete in p′(κ) time, it outputs abort. If all extractors
completed their execution, B checks all of the outputs for
a commitment with two openings. WLOG, if A was not
successful, the extractors simply abort.

It suffices to show that there exists a suitable choice
of p′(κ) that depends on q(κ) such that with 1 − 2/p3(κ)
probability, no extractors abort. If true, then the probability
that A is successful, no extractors abort, and the computational
binding of the polynomial commitment scheme is not broken
is at least 1/p(κ)− 2/p3(κ). We prove this as follows:

Let q(κ) denote A’s maximum runtime such that ` ≤ q.
Let p1(κ) = p3(κ) · q(κ) and p′ be a suitable polynomial
such that for each extractor, there can be at most 1/p1(κ)
fraction of bad SP’s where at least one extractor exceeds
its computational bound p′(κ) with probability higher than
1/p1(κ). The total probability mass of bad SP’s is upper
bounded by `/p1(κ) ≤ q(κ)/p1(κ) = 1/p3(κ). Thus, con-
ditioned on a good SP, the probability the extractors do
not abort is at least (1 − 1/p1(κ))` ≥ (1 − 1/p1(κ))q .
Finally, the probability the extractors do not abort is at least
(1− 1/p3(κ)) · (1− 1/p1(κ))q(κ) ≥ 1− 2/p3(κ).

It follows that since ` ≥ t+ 1, the polynomial interpolated
from from the points corresponding to any set S ⊆ [`] results
in the same polynomial with overwhelming probability.

Perfect Zero-Knowledge. We define the simulator S :=
(S1,S2) as follows:

To simulate the Setup procedure, S1 calls the underlying
zero-knowledge argument of knowledge simulator (guaranteed
by Lemma 2) to generate a crs.

S2 honestly commits to a random univariate polynomial.
Whenever the simulator must generate a proof asserting that
the committed polynomial evaluate to y at point x, the simu-
lator of the underlying proof system is called to simulate the
proof. This is possible because the underlying proof system
has PSHVZK (Lemma 2).

We use a simple hybrid argument to prove that the view
of A in the above ideal-world experiment is information-
theoretically indistinguishable to its view in the real-world ex-
periment. Essentially, the adversary is given an honest commit-
ment of the polynomial submitted in the real-world experiment
rather than the random univariate polynomial. Since Peder-
sen vector commitments are information-theoretically hiding,
the hybrid experiment is identically distributed to the ideal-
world experiment. Secondly, since the underlying proof system
provides PSHVZK, the hybrid experiment is information-
theoretically indistinguishable to the real-world experiment.
It follows that any statement passed to the simulator of the
underlying inner-product argument must be a true statement.
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