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Abstract—Companies providing services like cab sharing, e-
commerce logistics and food delivery are willing to instrument
their vehicles for scaling up measurements of traffic congestion,
travel time, road surface quality, air quality, etc. [1]. Analyzing
fine-grained sensors data from such large fleets can be highly
beneficial; however, this sensor information reveals the locations
and the number of vehicles in the deployed fleet. This sensitive
data is of high business value to rival companies in the same
business domain, e.g., Uber vs. Ola, Uber vs. Lyft in cab sharing,
or Amazon vs. Alibaba in the e-commerce domain. This paper
provides privacy guarantees for the scenario mentioned above
using Gaussian Process Regression (GPR) based interpolation,
Differential Privacy (DP), and Secure two-party computations
(2PC). The sensed values from instrumented vehicle fleets are
made available preserving fleet and client privacy, along with
client utility. Our system has efficient latency and bandwidth
overheads, even for resource-constrained mobile clients. To
demonstrate our end-to-end system, we build a sample Android
application that gives the least polluted route alternatives given
a source-destination pair in a privacy preserved manner.

I. INTRODUCTION

Urban sustainability problems like traffic congestion, poor
road surface quality, life-threatening levels of air pollution need
scalable measurements for appropriate policy design and daily
decision making such as which route to take to minimize con-
gestion delays or pollution exposure. Vehicle-mounted sensing
holds great promise to scale up urban measurements. Figure 1
shows an example of the spatial coverage by three public
bus routes in New Delhi, India, where we instrument the
buses with air pollution monitoring sensors. The government
deployed static pollution sensors, marked as landmark icons in
the same figure, show significantly lower spatial coverage than
bus-mounted sensors. Increasing bus count along some routes
further increases the temporal granularity of sensed values, as
each bus remains active for 16-18 hours per day. While public
buses cover the main arterial roads in a city, other vehicle fleets
like cab sharing services, food, and essential goods delivery
services cover a much wider area. Urban sensing, therefore,
can see a dramatic shift leveraging thousands of mobile probes

Fig. 1: Coverage with 3 routes where we instrument buses
with air pollution sensors in Delhi. Government deployed static
pollution sensors are shown with landmark icons.

in cities, in the form of cab fleets [2], [3], e-commerce, or
food delivery vehicles. Fleet owners are themselves realizing
this potential of scalable urban sensing. They are willing to
instrument their vehicles for applications like environmental
monitoring [1], primarily as part of their corporate social
responsibility, to aid more data-driven environmental policy.

The recent trend of urban sensing with instrumented fleets
has given rise to a novel privacy problem. During discussions
with cab-sharing companies to extend our bus-based pollution
sensing in Delhi, fleet owners have expressed concerns about
revealing their fleet size and locations. It is somewhat different
from privacy problems solved in recent years. Existing liter-
ature on location privacy focuses on protecting the location
of individual mobile users [4], [5], [6], [7] and not on fleet
companies’ privacy.

Figure 1 shows the exact trajectories of our instrumented
buses. Such instrumented vehicle trajectories can become
publicly available for any company which participates in urban
sensing and publishes collected sensor data. Publishing sensor
data tagged with time and location of data collection violates
privacy. Rival companies, e.g., Lyft vs. Uber, can use the
spatial distribution information of the instrumented fleet for
better placement and routing of their competing fleets. Given
the high competition among rival companies in a city [8],
[9], these privacy concerns about losing business advantage
are not overly pessimistic but pragmatic. On the other hand,
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sensor data clients termed as clients henceforth1 also want
to preserve the location privacy for their sensor data query.
For example, ordinary citizens query pollution information for
their residential, office locations, or their daily trajectories.
They might not feel comfortable sharing these details with
arbitrary pollution data providers. Environmental agencies, for
example, often also have to query pollution values of regions
being considered for ‘unpopular’ policy enforcement, such
as shutting down a particular industry or disallowing crop
burning. Such decisions are highly contested, often leading
to long-drawn court cases. Thus, these agencies have a strong
motivation to keep their query locations private, to conduct
spatio-temporal monitoring of pollution sources without undue
pressure. This motivates us to keep client locations private.

This paper presents an end-to-end system for preserving the
privacy of both fleet owners and data clients while maintaining
the utility of the sensed data. Unlike [10], [11], we don’t
release raw trajectory data. We interpolate the sensed data
at periodic intervals. Interpolation computes missing values
at uniformly sampled grid points in the city. This step hides
locations where vehicles are missing. Interpolation is necessary
for fleet privacy to hide where vehicles are present vs. absent
and for the improved utility to give a reasonable response at
locations without vehicles. However, we show in Section V,
there can be privacy leaks from the interpolation results. The
location and density of vehicles in the sensing fleet can be
inferred even from uniformly sampled grid points. We then
explore Differential Privacy (DP) [12] to publicly release the
interpolated maps with DP guarantee. It allows full privacy
to clients who can ask any query, with minimal overhead, on
the public maps without revealing query locations. However,
the DP scheme gives questionable DP privacy to fleet owners
due to inherent correlations in pollution values among nearby
areas. Since DP adds noise to interpolated output for privacy,
it reduces the utility of the sensed and interpolated values for
clients. We show this with real air pollution datasets from
Beijing, Zurich, and Delhi. The two metrics of fleet privacy
and sensor data utility have an inherent trade-off – more noise
added to improve fleet privacy degrades utility and vice versa.
We discuss the DP scheme and its limitations in balancing the
privacy-utility trade-off in Section VI.

Our final end-to-end system answers client queries on
interpolated maps, privately held by a fleet owner, through
secure 2-party computation (2PC) [13] mechanisms. The client
obfuscates query location within a larger geographical area
to preserve its privacy. In order to maintain fleet privacy and
prevent fine-grained fleet information leakage per grid cells,
the fleet server only answers queries that have been aggregated
over more than a threshold number of grid cells. We give ε-DP
guarantee to the aggregated response by adding noise. This DP
further protects fleet privacy against smartly crafted series of
2PC queries intersecting at one grid location, whose privacy
can be compromised otherwise. Since information release is
changed from per grid fine-grained values to coarse-grained
server’s aggregation threshold number of grids, the DP noise
needed for the aggregate answers is less than the DP noise
needed per grid. Hence, data utility is maintained at the server’s
grid aggregation level. We describe this 2PC based query-

1not to be confused with regular application clients of the fleet companies,
like people ordering food and other commodities or hailing shared cabs

response system termed Prac2PC, in Sections VII and IX.

The main contributions of this paper are as follows:

• We define a real-life privacy-vs-utility trade-off prob-
lem for air pollution monitoring based on anecdotal
discussions. Servers and clients each have critical
privacy requirements. The utility of reporting accurate
pollution values and associated measurement errors
is also necessary, as the whole effort of scalable
pollution measurement using instrumented vehicles
will be pointless otherwise. Based on our real-world
deployment experience for pollution measurement, we
use air pollution monitoring as a use case in our
paper. However, any crowd-sourced or fleet-based
system for scaling measurements (e.g., road surface
quality monitoring for potholes, noise pollution, traffic
congestion information, and cellular measurements for
4G signal coverage in urban areas) can use our system
to preserve fleet and client privacy.

• Through careful empirical analyses, we show that the
privacy requirements of server as well as client, and
client utility, cannot all be simultaneously maximized
in presence of inherent trade-offs. The trade-offs are
evaluated using various real datasets and careful ex-
perimental designs.

• Besides the extensive micro-benchmarks to quantify
privacy-vs-utility trade-off for each mechanism, we
also build an end-to-end system. It demonstrates the
practical impact Prac2PC can have, by showing how
the system can support pollution-aware route planning
queries in a university campus, in a privacy preserving
manner, at acceptable latency, bandwidth and energy
overheads.

II. BACKGROUND

In this section, we briefly describe the key techniques
used in our system: namely Gaussian Process Regression,
Differential Privacy, and Secure two-party computation.
Gaussian Process Regression(GPR) is a non-parametric
Bayesian regression approach that uses sampled data (training)
to provide interpolation estimates. A Gaussian Process is a
stochastic process which can be described by its mean µ(x)
and covariance function k(x, x′) [14]. For a known training
input-output pair (X, y), GPR predicts the values of the un-
derlying latent (unobserved) function, f∗. This generates the
test output, y∗, on the set of input test points, X∗. Considering
Gaussian noise with zero mean and σ2

n variance, the posterior
distribution for interpolating attribute is given by:

f∗|X, y,X∗ ∼ N (µ,Σ) (1)

where,
µ = k(X∗, X)(k(X,X) + σ2

nI)−1y (2)

Σ = k(X∗, X∗)−k(X∗, X)(k(X,X)+σ2
nI)−1k(X,X∗) (3)

Σii gives the posterior variance values of test points

Differential Privacy (DP) is a standard privacy technique
for statistical analysis with provable guarantees. According
to [12], an algorithm M is ε-differential private if, for all
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databases, D and D′, which differ on a single row and for
each query output m,

P (M(D) ∈ m) ≤ eεP (M(D′) ∈ m) + δ

where, ε is known as privacy budget. The smaller the value
of ε, the more is the privacy. The above equation implies that
the output of the query should not change much if we change
a single row of the database. If δ = 0, then the algorithm
M is ε-differential private. Laplace mechanism is the most
commonly used mechanism that satisfies ε-differential privacy
in which a random noise drawn from the Laplace distribution
is added to the output of the query function. By the definition
in [12], the Laplace mechanism satisfies ε-DP if:

f̃(D) = f(D) + Lap(∆f/ε)

where D is the database over which the function f is defined,
ε is known as privacy budget and ∆f is the sensitivity of
a function f . The global sensitivity of a function f can be
computed as:

∆f = max
D'D′

|f(D′)− f(D)|

where D and D’ differs in atmost one record.

Secure Two-Party Computation (2PC) is a special case
of Secure Multiparty Computation (SMC) that allows two
parties to compute a function on their private inputs jointly.
The function output is revealed to either or both parties. Yao’s
Garbled Circuit (GC) is a 2PC protocol where a server (garbler
or creator) generates a Boolean circuit corresponding to any
desired function. For each gate, it garbles the truth table using
symmetric encryption (mainly, AES). The garbler then sends
the circuit, the garbled truth tables and its encrypted input
to the client (evaluator). The evaluator is then engaged in
oblivious transfer (OT) [15], [16] to get its garbled inputs from
the garbler. Once the evaluator receives both its and server’s
inputs, it will compute the function and get the decrypted
output. In recent years, several enhancements have been done
in GC to make it faster such as Free-XOR [17], Halfgates [18],
pipelining [19] and maliciously secured [20], [21].

Mixed protocol (MP) is a relatively new circuit-based 2PC
protocol that combines GC with either Homomorphic Encryp-
tion (HE) [22], [23] or Secret Sharing schemes [24], [25]. This
combination supposedly allows more efficient computations
of particular functions. In this, each party has its own input
share of a secret defined over a field. The parties can recover
the secret only when they combine their shares. Secret shares
can be Arithmetic or Boolean. To hide intermediate results, it
utilizes OT or Beaver multiplication triples for Boolean share
and Arithmetic share, respectively.

III. RELATED WORK

In preserving privacy of raw location data (trajectories),
several works add noise to location coordinates using DP [10],
[11], [26], [27], [28], or add dummy trajectories to actual
trajectories [29], [30], or use chaff vehicles for variable traffic
density [31]. Our system also preserves the privacy of fleet
trajectories while answering queries on pollution or some other
sensor value for a city. Instead of adding noise to trajectories
using DP, we add it to our query outputs. It will allow trajectory
information to remain clean for any further processing. In [32],

the user locations are obfuscated before sending the data to
the server using an obfuscation matrix, learning which has
a high overhead. It applies compression sensing to solve data
sparsity for temperature sensors. In our work, we employ GPR
for interpolating sensed raw trajectory data to alleviate data
sparsity and provide basic privacy of hiding locations without
vehicles.

In addition to DP, Secure MultiParty Computation (SMC)
has been extensively used to preserve privacy, specifically lo-
cation privacy, viz. detecting proximate users without revealing
individual locations [4], [33], detecting users with overlapping
trajectories without revealing individual trajectories in ride
sharing [5], [34], [35]. These works have only location sensor
values and do not have utility concerns (e.g., pollution sensor
values). Hence the problem formulations and solutions for
Prac2PC are disjoint. Works like [19], [36], [37], [38], [39]
specifically explore SMC for mobile applications with different
optimizations like an extra server for outsourcing garbled
operations or using a dedicated compiler. We also thoroughly
evaluate the latency and bandwidth requirements of Prac2PC
with real datasets and laptops and smartphone clients through
careful implementations and system optimizations.

Our system is related to the wide literature of Mobile
Crowd Sensing (MCS), where typically mobile clients are data
providers requiring privacy [6], [7], [40]. Servers, aggregating
the data, act as data consumers, requiring little to no privacy.
In our system, the roles of data consumers and providers are
reversed, and both the server and client have a set of privacy
requirements. Kong et al. [41] provides location privacy in a
sensing environment to both server and client for an average
query using Homomorphic Encryption (HE) under the semi-
honest assumption. Their solution requires a trusted third party
and also reveals the fleet size. HE will only be able to support
a limited subset like sum/average computations and is thus not
practical for our queries. In comparison to [41], we support a
wide variety of queries in this paper (Table I), and successfully
hide both fleet size and location under semi-honest as well as
malicious threat models.

We first use GPR to hide locations without vehicles. The
GPR output still leaks fleet density. We then use 2PC to answer
queries with GPR output at low latency and bandwidth for
mobile clients. It preserves client privacy and fleet privacy
with reasonable data utility. We additionally use DP on the
2PC results to protect against smartly crafted queries. We
empirically motivate 2PC, showing only DP after GPR may
not balance the fleet privacy vs. data utility trade-off. GPR, DP,
and 2PC are all well-known methods. The novelty of this paper
lies in applying them in an appropriate combination for an
important privacy and sustainability problem, with empirical
utility and performance trade-off analyses on real-world air
pollution and trajectory datasets.

IV. SYSTEM ARCHITECTURE

Figure 2(a) shows the architecture for the system satisfying
the privacy and utility requirements of the server and the
client. The vehicle fleet of a company is instrumented for
data collection. Collected data is sent to the private server
of the company. For the sample use case of air pollution
measurement, a server can either release public pollution
maps or respond to different client queries on its private
data (Prac2PC). When clients use public pollution maps, they
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Fig. 2: a) System architecture preserving privacy for server and client with different privacy, utility, and overhead. b) City A
divided into squares with blue squares representing the client’s area of interest and red/green rectangles representing the client’s
preferred obfuscation levels.

Query function Client Input Output
Average cells of interest average µp and propagated error σ2

p, for average function over those grid cells
Minimum cells of interest minimum µp and propagated error σ2

p, for minimum function over those grid cells
Maximum cells of interest maximum µp and propagated error σ2

p, for maximum function over those grid cells
Count threshold θ, count of grid cells and their locations, having µp > θ and propagated error σ2

p

cells of interest for count function
Range thresholds θ1, θ2, count of grid cells and their locations, having θ1 < µp < θ2 and propagated error σ2

p

cells of interest for range function

TABLE I: Prac2PC supported queries, with client inputs and outputs. Propagated error discussed in Section VII-C

see minimal overhead in latency and network bandwidth in
getting a response. In Prac2PC, they will see some overhead
(evaluation in Section X) as they have to participate in secure
computation. Our system ensures that rival companies faking
as ordinary clients do not get privacy-sensitive information
in both schemes. However, the privacy-utility trade-offs vary
across schemes as analyzed in subsequent sections.

Query Granularity: The queries and responses for sensor
data occur at the granularity of square grids, motivated by
the methods in [41], [42], [43]. Consider a city A be enclosed
by a large rectangle of side l and b. The large rectangle is
divided into small squares of side z meters (Figure 2(b)). Each
square is labeled with a unique id i for referencing. Individual
square’s property (air pollution, traffic density) is represented
by its centroid. A universal mapping of the coordinate system
in terms of <LAT,LON> to grid reference id i is known to all
the parties involved. Each query’s location data is in terms of
i and all the parties convert the <LAT,LON> to i beforehand.
To map the coordinate (xi, yi) to the square i, we compute

bxi − x0
z
c+ byi − y0

z
c · l
z

where (x0, y0) is the leftmost vertex in Figure 2(b). Smaller
grid cells mean more granular spatial information, resulting
in longer queries comprising more grid cells for a given
client trajectory length. Longer queries would, in turn, have
more computation and communication in 2PC. We experiment
with different query lengths in Section X, based on real
cab trajectory data, to analyze these query length-dependent
overheads in Prac2PC.

Query types and output: While queries are at the granu-
larity of grid cells, vehicles can be randomly distributed in

those cells in the course of their natural movement across
the city. Fleet companies need to periodically run spatio-
temporal interpolation, through which each grid cell will get
a < µp, σ

2
p > tuple, µp denoting the interpolated sensor value

and σ2
p, the interpolated variance indicating confidence. When

the pollution information is available publicly as pollution
maps (interpolated or DP), clients can ask any query. However,
Prac2PC’s secure 2PC computation supports the queries in
Table I, computing not only the µp, but also σ2

p. The client can
accept or reject the output if σ2

p is low or high, respectively.
Computing σ2

p for different mathematical functions (average,
minimum, maximum, count, range) over a grid, combining
different interpolation variance values for each individual grid
cell, is non-trivial in secure 2PC ( detailed later in Table III).
These wide range of queries and error functions, which might
not have homomorphic properties, make HE less suitable.
Instead, we use circuit-based 2PC methods with the flexibility
to handle any function, as described in Section VII.

Threat Model and Privacy Policy: The adversary can be data
consumers, i.e., a rival company that wants to learn about the
distribution of cabs in the city and their fleet size. The other
type of adversary is the data provider, i.e., cab server, which
wants to learn about the behavioral preferences of the querier.
We assume server and client to be both semi-honest (follows
protocol) and malicious (can modify protocol).

For client’s location privacy, suppose the client wishes to
query a function on the blue squares in Figure 2(b). These
blue squares might denote a route from her home to office.
In public pollution maps, she can select the values of blue
squares without any privacy concerns and then locally compute
the required function. However, in Prac2PC, the client intelli-
gently obfuscates the blue squares with a larger rectangle (red
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Method RMSE σ2
p

GPR 32.89 yes
GraphSAGE [44] 34.85 no

ANN [45] 41.03 no

TABLE II: Interpolation techniques comparison

rectangle in Figure 2(b)). The client is comfortable in revealing
that she is present somewhere inside this rectangular region.
A more privacy-seeking client will create a larger obfuscation
rectangle to query the server by padding more small squares
(green rectangle in Figure 2(b)). Prac2PC does not reveal
which squares are blue within the client’s obfuscation rectangle
to the server. The server applies interpolation to generate
uniformly distributed pollution values on the map for the
server’s fleet privacy. Before releasing the interpolated values,
the server can apply either DP to preserve privacy or use
Prac2PC to reveal aggregated < µp, σ

2
p > to the client only

if the number of blue squares in a query is greater than the
threshold. The server decides this threshold based on grid cell
size and dataset. Companies can set this threshold larger for
better privacy protection.

V. INTERPOLATION WITH GAUSSIAN PROCESS
REGRESSION

To select the best method for interpolation, we evaluate
three different techniques i.e. Gaussian Process Regression
(GPR) [14], GraphSAGE [44] and Artificial Neural Network
(ANN) [45]. For evaluation, we select five random days from
the Delhi dataset. Delhi Dataset is collected by fitting pollution
measuring units by us in 10 DIMTS buses of Delhi. These
buses collect spatiotemporally dense PM1, PM2.5, and PM10
values along with other meteorological factors while roaming
around the city (routes shown in Figure 1). We separate out
the data hour-wise from 9:00 AM to 9:00 PM and then split
the data randomly into train and test using 80:20 ratio for each
day. We further split the train data into training and validation
sets using the same ratio. Table II reports the root mean square
error (RMSE) on the test data compared to the ground truth
PM2.5 values and also whether the method outputs posterior
variance,σ2

p. Low RMSE means better client utility. Posterior
variance provides a sense of confidence in the predicted value,
which aids in statistical analysis. Furthermore, in real-world
deployments, data is expected to arrive in a streaming manner.
Hence we trained the models for 100 epochs only to check
whether a model can be trained to achieve low error rates
within a short period of time. In this paper, we select GPR for
interpolation based on its low RMSE (as shown in Table II)
as well as the additional posterior variance output associated
with each interpolated value.

In GPR, we do not consider the full covariance matrix
(Eq 3) and only focus on the diagonal entries of the matrix
(variance model). The diagonal elements of Eq 3 give the
pointwise posterior variances at the testpoints. For a single test
point x∗ specified as centroids of the grid cells, the equation
for posterior mean and the equation for posterior variance are
rewritten as:

µp = kT∗ A
−1y (4)

σ2
p = k(x∗, x∗)− kT∗ A−1k∗ (5)

where A−1 = (K + σ2
nI)−1, y is the set of known pollution

values at trajectory locations X , µp is the predicted pollution

value at test point x∗, σ2
p is the associated uncertainty with

our mean prediction i.e. posterior variance, k(x∗, x∗) is the
test point’s prior variance, k∗ denotes the vector of covariances
between the test point and the training points and K denotes
covariance matrix between training points.

The covariance or kernel function k captures the relation-
ship between the pollution attribute and how it varies with
change in distance between different trajectory points. The
most common kernels used in GP are RBF, Matern32, and
Matern52 [14]. The kernel function has some hyperparameters
that were learned while optimizing the GP model. These
hyperparameters are the variance and the lengthscale of the
kernel and the variance of the noise. We used Matern32
kernel based on the accuracy comparison of different kernels
(Appendix A). The training time for one hour data, i.e. 1400
samples takes around 1.2min (details in Appendix B).

A. GPR Output

Using GPR, the data server computes an interpolated value
of the air pollution attribute and variance < µp, σ

2
p >, a

tuple for each grid cell’s centroid. If more than one pollution
attribute is measured and interpolated, there will be more than
two elements in the tuple per centroid. To analyze performance
and privacy mechanisms, we consider one tuple representing
one pollution attribute along with its posterior variance, which
can be easily generalized to include more attributes if needed.
Both elements of the tuple < µp, σ

2
p > are important. The

first gives the actual pollution estimate, while the second
tells us how much confidence the model has in predicting
that particular pollution value. It also gives the estimate of
maximum and minimum of < µp, σ

2
p > of a grid. A client

interested in pollution information can easily work with this
data by selecting the µp values for their region of interest. The
client can also accept or reject the predicted value based on
the magnitude of the corresponding σ2

p.

B. Privacy Guarantees with GPR

In the absence of interpolation, specific grid cells without
vehicles would give a “no measurement available” response.
Having access to such information could give competitive
advantage to a rival cab company, which can route more vacant
cabs to that area, increasing revenue. Interpolation preserves
basic server privacy, against revealing cells without vehicles,
as all cells respond uniformly with interpolated values. The
location of specific vehicles also remain hidden with interpo-
lation, as queries and responses are in terms of grid centroids,
each of which subsumes all individual vehicles within that
cell (contrast Figure 3 on left with Figure 3 on right where
the former reveals the exact trajectory, and the latter shows
only grid based interpolated values). Thus, interpolation itself
gives some privacy guarantees for raw trajectories. However,
as we will see next, there can be some location information
leakage from interpolation outputs that needs further handling
for stronger privacy guarantees.

C. GPR Output Leaks Information

Posterior mean µp (Eq 4), depends on both training input
variables (i.e. instrumented vehicle location in our application)
and the training output variable (i.e. measured pollution val-
ues). The magnitude of µp is more dependent on the output
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Fig. 3: Trajectory shows every vehicle locations (left side),
Interpolation subsumes individual vehicle location in a grid
cell (right side)

variable than the input variable as the kernel function, which is
applied on the latter, results in terms that are generally smaller
in magnitude than the output variable values.

However, the posterior variance, σ2
p in Eq 5 does not

depend on the training output variable (pollution values) but
only on the training input (sensor locations). σ2

p will be high
for a test point that has less or far-off neighboring sensors when
compared to a point having more or nearer neighbor sensors.
Thus, unlike µp, σ2

p is more closely related to training sample
locations. For sensors shown in Figure 4(a), we see a contour
plot of σ2

p in Figure 4(c). We can clearly make out regions with
cabs as they have low posterior variances (darker regions).

Thus, given this correlation between σ2
p values of grid cells

and the location of vehicles in those grid cells (as shown in
Figure 4), taxi companies would likely not want to share σ2

p
information. This is problematic for environmental agencies
who will have no clue about the confidence of the model in
the interpolated values. We explore how to balance this trade-
off between fleet privacy and client utility using DP and 2PC
in subsequent sections.

VI. DIFFERENTIALLY PRIVATE POLLUTION MAPS

After interpolating the grid, < µp, σ
2
p > for individual grid

cells are released by the cab fleet owning company as a web
map. The σ2

p values taken together may leak the trajectories
of the vehicles, compromising server privacy (Figure 4(c)).
In this section, we use Differential Privacy to add noise to
σ2
p, which we refer to as DP noise henceforth, so that no

original σ2
p value can be computed from the noisy result and

no trajectories may be discerned. Smith et al. [46] apply DP to
GPR posterior mean, µp. It considers the training output to be
private while training input to be public. This simplifies the
sensitivity calculation for µp. However, in our system, only
training input is private, so we cannot apply the same method
of sensitivity calculation for σ2

p. To the best of our knowledge,
we are the first to apply DP to GPR posterior variance. We
calculate the sensitivity for σ2

p as follows.

A. Sensitivity Calculation for σ2
p

We have to calculate the sensitivity of the σ2
p before

applying DP. To compute the sensitivity, consider a database
D containing the location, µp, and σ2

p as rows. The equation
of σ2

p for Database D and D′ which differ at row j is:

f(D) = k(x∗, x∗)− kT∗, D A−1D k∗, D (6)

f(D′) = k(x∗, x∗)− kT∗, D′ A
−1
D′ k∗, D′ (7)

f(D′)− f(D) = kT∗, D A−1D k∗, D − kT∗, D′ A
−1
D′ k∗, D′ (8)

In our sensitivity calculation, A−1 is private. Using the positive
semidefinite property of A−1, we know that kT∗ A

−1k∗ > 0.
Therefore Eq 8 reduces to the following equation:

|f(D′)− f(D)| < kT∗, D A−1D k∗, D (9)

Since kT∗ A
−1k∗ < k(x∗, x∗), as σ2

p ≥ 0 , the up-
per bound of |f(D′) − f(D)| comes out as k(x∗, x∗).
For selected kernel i.e. Matern32, k(x, x∗) is defined as
σ2
f

(
1 +

√
3d
l

)
exp

(
−
√
3d
l

)
, where d = ||x − x∗|| i.e. the

distance between x and x∗, and l is the length-scale of the
kernel. When x = x∗, k(x, x∗) = σ2

f as d = 0. The sensitivity
of posterior variance i.e. k(x∗, x∗), has a maximum value of
1 if we take variance of the kernel (σ2

f ) equals to one (works
well for simple kernel like RBF or Matern32 and standardized
data [46]).

As the support of the Laplace function is unbounded, the
random noise added to the output function could be arbitrarily
large and negative. To avoid the negative and large variance
value, we applied the bounded Laplace mechanism [47]. This
works on the principle of rejection sampling and adds Laplace
noise such that the noisy posterior variance values fall within
a specified range. We take the upper and lower bounds to be
0 and σ2

f .

B. DP Pollution Maps Output

Figure 4(c) highlights the area where the density of vehicles
is more (darker color implies lower σ2

p implies more vehicle
density). To prevent this leakage, we add bounded noise to
σ2
p. Figure 5(a) shows the contour plots after adding noise

with privacy budget ε = 10. We can see that, though the
contour looks more spread out here than Figure 4(c), the area
with no cabs can still easily be discerned. The trace of actual
trajectories is completely removed from the plots when we add
noise with ε = 0.5 (Figure 5(b)). Since the plot for σ2

p looks
very chaotic for ε = 0.5, we need to measure the utility for the
dataset. As adding more noise degrades utility, the noisy σ2

p
values might not be too useful for the environmental analysts.
We analyze this privacy vs. utility trade-off with different
values of ε next.

C. Air Pollution Datasets to Evaluate Client Utility

We consider three different datasets for evaluation. The first
dataset is our Delhi Dataset (description in Section V). Our
second dataset is the Opensense Zurich dataset, collected by
fitting environmental sensor boxes on top of trams. These trams
roam in the city of Zurich. We take O3 as a pollution attribute
collected by a tram [48]. We also generate a third dataset using
Bejing’s open-source datasets for realistic cab trajectories. The
Taxi Beijing dataset [49], [50] contains all the trips taken by
24 drivers from 2 February 2008 to 8 February 2008 across
Beijing. This dataset only has GPS coordinates vs. time and
does not contain pollution values. So, to construct a dataset that
has pollution values corresponding to real cab trajectories, we
interpolate PM2.5 along each cab’s location using a separate
air pollution dataset [51], which has PM2.5 values measured
at different static pollution sensors. The newly interpolated
dataset is the one we use for experimentation (referred to as
Taxi-Pol dataset henceforth). The Taxi-Pol dataset consists of
latitude, longitude, time, and PM2.5 values. We divide the

6



39.8 40.0 40.2 40.4

116.0

116.2

116.4

116.6

116.8

117.0

25.0

25.5

26.0

26.5

27.0

27.5

28.0

Latitude

Lo
n
g
it
u
d
e

(a) Trajectories of different cabs
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(b) Posterior mean
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(c) Posterior variance without DP

Fig. 4: Interpolation output for the case where trajectory can be seen in the posterior variance contour plot

dataset into 150 windows of 1 hour each and apply GPR on
each window separately to predict the < µp, σ

2
p > of a grid.

D. Balancing Client Utility vs. Fleet Privacy

In this section, we discuss the effect of applying DP on
utility. Our utility metric is the RMSE of σ2

p as environmental
analysts need accurate values of σ2

p. RMSE is calculated
between the values of differentially private posterior variance
(σ2
p + BoundedLap(σ2

f , ε, δ), where we fix δ = 0, σ2
f = 1)

and the original posterior variance (σ2
p) for the whole grid.

This metric shows how far σ2
p values are from the original

σ2
p values after applying DP. This metric measures variance

change due to DP noise. Lower RMSE means higher utility
for environmentalists. Since we are not applying DP on µp,
the accuracy of the posterior mean will remain unaffected.

In Figure 6, we plotted the CDF of the calculated RMSE of
different hours for the three different datasets. It also includes
the CDF of the maximum value of the original σ2

p of the grid
for every hour of the day. This is to give an idea of the range
of the original σ2

p. In Figure 6(a)-(b), the RMSE for most of
the hours lies below 1 for ε = 10. This gives very good utility
in comparison to ε = 1 and ε = 0.5 for both Beijing and
Zurich datasets. However, as seen in Figure 5(a), we can still
predict the areas where there are no cabs with ε = 10, which
is not the case for ε = 0.5. Once we start reducing the privacy
budget,ε, the percentage of hours that have low RMSE values
start reducing (shown as y-axis in Figure 6). For Beijing and
Zurich datasets, the DP-based method gives low RMSE at a
low ε value, and hence the utility remains high.

In contrast, Figure 6(c), shows the utility-privacy trade-off
CDF for PM2.5 data collected by 10 buses on 13 Nov 2020
in New Delhi, India. The trends for the three datasets are very
similar. However, there is a huge difference in the range of
RMSE of posterior variance for the Delhi Dataset. The RMSE
and the actual posterior variances of the grid are dependent
on the standard deviation of training data (effect of reversing
the standardization of data before publishing pollution maps).
If the standard deviation of training data is high, as is in the
case of Delhi, the resultant RMSE gets high. Thus data utility
for DP based method is low for the Delhi dataset.

E. Further Fleet Privacy Concerns with DP

If the adversary has strong computation power, she can
launch Machine Learning based attacks on the released µp,
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(a) Posterior variance for ε = 10
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(b) Posterior variance for ε = 0.5

Fig. 5: DP plots corresponding to different ε for the case where
trajectory can be seen in the posterior variance contour plot

as it is published without applying DP. In this case, the server
may want to apply DP on µp along with σ2

p to preserve its fleet
locations. This, however, degrades the accuracy of air pollution
values, and the client might not want to use the system. Air
pollution datasets also have correlations among nearby areas.
This correlation may reduce the ε-DP guarantee. An adversary
can try to learn it and may launch a correlation-based attack.
To prevent this, a server can define the correlation between
different data points as a Correlation Matrix, M . This increases
the sensitivity of the dataset by a factor of the correlation
matrix (|M f(D′) − f(D)|). Hence, the Laplace noise to be
added in the σ2

p values will also increase.
In the cases where noise added in σ2

p is too high or required
noise addition to µp as well, achieving the good utility with
strong privacy will be difficult. In such cases, DP pollution
maps cannot be made public as noise added will be too high
for meaningful utility. As an alternative solution, 2PC based
query response system, namely Prac2PC, has been designed,
implemented, and evaluated next.

Differentially Private pollution maps provide absolute pri-
vacy to clients. Clients can compute any function locally
with minimal overhead using the released data. However,
balancing fleet privacy and client utility at the same time seems
impossible for pollution datasets.

VII. QUERY RESPONSE SYSTEM USING SECURE 2PC

Query Response system uses information aggregation for
server privacy and location obfuscation for client privacy. It
reveals σ2

p aggregated over at least α blue squares to the client,
to maintain server location privacy. This α is decided by the
server based on grid cell size and dataset.
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Fig. 6: Utility-vs-Privacy for different cities in terms of CDF of RMSE for different hours.
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Fig. 7: Circuit details of Prac2PC

A. Prac2PC- Secure 2PC Protocol

Prac2PC is a circuit-based secure computation protocol
between two parties. It comprises the following six steps
between a client and a server (shown in Figure 2). Steps
2, 4 and 5 require server-client communication (shown in
Figure 7(a) bottom). Steps 1 and 6 require computations on
the client, and step 3 requires computations on the server. We
present the generic protocol in this section. Implementation
details, and evaluations of communication and computation
overheads, will be presented in subsequent sections.
[1] Private input generation: Client maps each grid cell
inside her obfuscation rectangle to either one or zero. If client
is interested in a particular grid cell (blue color in Figure 2(b)),
she sets υi = 1, otherwise, υi = 0. She generates a bit vector
υ (sample shown in Figure 7(a) top) but does not send this
vector to the server. The size of the bit vector (represented
by n) is equal to the number of grid cells in the obfuscation
rectangle.
[2] Query request: Client sends a query to the server. The
query consists of the type of function (one of the functions
defined in Table I), represented as Query Type. It also has
coordinates of the diagonal vertices a and c of the obfuscation
rectangle.

Request ← {Query Type||lats||lons||late||lone}

where, lats and lons are the coordinates of vertex a, and late
and lone are the coordinates of vertex c.
[3] Circuit generation: Both client and server have the
mapping of coordinate to grid id. On receiving the query, the
server performs coordinate to grid id conversion and gets the

Fig. 8: Smartly crafted queries where subsequent queries
overlap by a single grid square (marked in red).

obfuscation rectangle. Server then selects < µp, σ
2
p > tuples

which are inside the obfuscation rectangle. These tuples form
the server’s input in the secure computation. The server also
prepares the circuit (different circuits for each query type) for
the requested function. The circuit components will be detailed
in Section VII-B.
[4] Circuit and garbled values transfer: Server sends this
generated circuit in an encrypted format to the client. It also
sends the garbled values of its input < µp, σ

2
p >.

[5] Oblivious Transfer: Client engages in Oblivious Transfer
(OT) [15], [16] with server to get garbled values of the client
inputs (υ). Oblivious transfer ensures that the server does not
get to know the client’s inputs.
[6] Circuit Evaluation: Once the client receives all the garbled
inputs, it evaluates the circuit on its own. The client does not
know the intermediate results of the circuit. It only gets to
know the output of the requested function at the end. The
circuit evaluation on the client is shown in Figure 7(b). Details
of the circuit (red rectangle) will be discussed next.

Protection against smartly crafted queries By restricting
computations over at least α grid cells, Prac2PC makes loca-
tion or fleet size information retrieval significantly hard. Still,
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if client queries are smartly crafted, for example, subsequent
queries differ by a single square, then the σ2

p value of that
square might be computed using two queries (shown in Fig-
ure 8). The correlation between location information and σ2

p
is much higher than that between location and µp. Thus, to
protect against smart queries, the server adds Laplacian noise
[52] to the output of the error propagation function by applying
ε-DP [12], [53]. It ensures that no individual σ2

p value can be
computed from the noisy result. It is done by extending the
circuit in Figure 7(b). Prac2PC database comprises grid cell
and their σ2

p values, and f is the error propagation function.

B. Circuit Components

Prac2PC has been carefully designed to handle different
query functions, as well as the privacy requirements of server
and client. Following are the different sub-circuits of Prac2PC:
(1) Private thresholding, (2) Private set selection, (3)Private
statistical query function computation with error propagation.

(a) Private thresholding: To compute results over at least
α grid cells and prevent σ2

p information leakage, the server
imposes a restriction on the minimum number of υi = 1 in
a query. To count ones in υ and compare it to α, a circuit is
created for the following function:

β =

{
1 if

∑n
j=1 υj ≥ α

0 Otherwise
(10)

The output of the threshold circuit is represented by β, which
is fed to the next stage of the circuit. All later stages of the
circuit will result in zero if the number of squares in the query
vector is less than α.

(b) Private set selection. Once the thresholding is done, the
next part of the circuit is to select all the < µp, σ

2
p > pairs

corresponding to the blue squares in Figure 2(b). The blue
squares correspond to the locations in which the client is
interested (υ has ones only in these places). Based on the υ
vector, we select locations’ property (< µp, σ

2
p >) stored at

the server’s side obliviously such that:

yi = β ∧ υi ∧ µpi , i ∈ [1, n] (11)

σ2
i = β ∧ υi ∧ σ2

pi , i ∈ [1, n] (12)

(c) Private statistical query function computation with
error propagation: The final sub-circuit changes based on
the query function. Prac2PC supports a variety of realistic
functions as listed in Table I. These functions are computed
on the client over the blue squares, for which υ = 1 and
the client gets the output. The server has < µp, σ

2
p > tuple

for each square in the obfuscation rectangle, which is sent in
the garbled form to the client. The circuit should compute
the necessary function on the µp values for those tuples,
where υ = 1. In addition, each µp estimate in the different
tuples is associated with a different interpolation variance σ2

p.
For a function computed with µp from different tuples, the
circuit needs to compute the cumulative variance of the result,
combining the errors of the individual µp values. This process
is called error propagation in mathematics [54]. Without error
propagation, the client would not know how much confidence
to have in the query result. We detail these query functions
and their error propagation functions next, in Section VII-C.

C. Query function with error propagation

For each query, a separate circuit is invoked based on
Query Type. The functions to compute each query and the
corresponding error propagation are listed in Table III. For any
function f , error propagation function [54] is derived from the
normally distributed errors. It can be represented as:

E(x) = σfi =

√√√√ n∑
i=1

(
∂f

∂xi

)2

σ2
i (13)

where σf represents the standard deviation of function f , σi
is the standard deviation of xi.
Error propagation for a mathematical function requires the
function to be differentiable. Among the query function
supported by Prac2PC, only the average function is
differentiable. We estimate the remaining logical functions,
i.e., minimum, maximum, count, and range, with a
differentiable alternative. The differentiable function has
been selected based on the accuracy of the approximation.
Furthermore, we also ensure that the function does not result
in overflow while implementing the circuit. We describe
below how the query functions listed in Table III are mapped
to their differential counterpart.

1. Average: The server and the client obliviously compute the
sum of the pollution values and the number of the locations
in which the client is interested. Both the parameters are then
used to evaluate average function(Eq 14) as follows:

f =
Σni=1yi
Σni=1υi

(14)

To calculate the error propagation of average function, we
compute the partial derivative of the average (given in Eq 15)
and then substitute the partial derivative of f and posterior
variance < σ2

p > of the blue squares (represented by σi), in
the Eq 13, we get Eq 16:

∂f

∂yi
=

1

Σni=1υi
(15)

E(y) =

√
σ2
1 + σ2

2 . . . σ
2
n

Σni=1υi
(16)

2. Minimum or maximum: For minimum or maximum, we
use the LogSumExp function. LogSumExp is a popular smooth
approximation of maximum function used in ML [55].

f = y∗ +
1

ρ
log (Σni=1 exp(ρ(yi − y∗))), ρ ≤ 0 (17)

where y∗ = max {y1, .., yn}, ρ characterises the behavior of f ,
if ρ ≤ 0, then the function calculates minimum else maximum.
The following equation shows the partial derivative of Eq 17:

∂f

∂yi
=

exp(ρ(yi − y∗))
(Σni=1 exp(ρ(yi − y∗)))

(18)

Similar to average error propagation function, we get the
following equation for error propagation of Minimum function:

E(y) =

√√√√√√√√
(

exp(ρ(y1 − y∗))
(Σni=1 exp(ρ(yi − y∗))

)2

σ2
1+(

exp(ρ(y2 − y∗))
(Σni=1 exp(ρ(yi − y∗))

)2

σ2
2 + . . .

(19)
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Query Function (f ) Function Formula Propagated Error

Average Σn
i=1yi

Σn
i=1υi

√
σ2
1+σ2

2 ...σ
2
n

Σn
i=1υi

Max or Min y∗ + 1
ρ

log (Σni=1 exp(ρ(yi − y∗)))

√∑n
j=1

(
exp(ρ(yj−y∗))

Σn
i=1 exp(ρ(yi−y∗))

σj
)2

(Max ρ→∞, Min ρ→ −∞)

Count
∑n
i=1 S(yi, θ)

√∑n
j=1 (S(yj , θ)(1− S(yj , θ))σj)

2

Range
∑n
i=1(S(yi, θ1) - S(yi, θ2)), θ1 < θ2

√∑n
j=1 (S(yj , θ1)(1− S(yj , θ1))− S(yj , θ2)(1− S(yj , θ2)))2 σ2

j

TABLE III: Query function and error propagation formulae, implemented in the Garbled Circuit where S(yi, θ)= 1
1+exp(−(yi−θ))

3. Count or range: To calculate the count of grid cells which
have the pollution level less than the set threshold θ, we use
Sigmoid as the approximation function. Sigmoid function has a
property of limiting its output to 0 and 1 when the input value
is less than zero and greater than zero, respectively. By utilizing
this property, we use shifted Sigmoid to compute the number of
locations that have pollution greater than some threshold. The
total count of such locations are calculated using a summation
over all the region of interest, represented by the following
equation:

f =

n∑
i=1

1

1 + exp(−(yi − θ))
=

n∑
i=1

S(yi, θ) (20)

The partial derivative and propagation of error function can be
represented mathematically as follows:

∂f

∂yi
= S(yi, θ)(1− S(yi, θ)) (21)

E(y) =

√√√√ n∑
j=1

(S(yj , θ)(1− S(yj , θ))σj)
2 (22)

For the range query, where the client requests for the number of
locations having pollution in the range of [θ1, θ2], we compute
the count function on both θ1 and θ2 independently and then
take the difference of the count returned by it. This function
has the most complicated circuit as for a single element in υ
vector, it requires two exponential computations.

Finally, the circuit also supports the query in which the
client asks the location for which air pollution is greater
than some threshold within the obfuscation rectangle. Unlike
previous queries, which return a pollution value with an error,
this query needs a location as an answer. In this case, the
circuit returns a bit vector of length n, where any 1 at index j
will represent the pollution value at square j to be greater than
the threshold. Returning the index of maximum and minimum
pollution will be a special case of these queries. To preserve
the client’s location privacy, the response to all these queries
will be available to only the client.

D. Adding Differential Privacy

The server gets an estimate of sensitivity (∆f ) from
interpolation variance values. We take the average query as
an example to describe the sever side computation. The global
sensitivity for the corresponding error propagation function is
defined as ∆f = σ2

max − σ2
min. The error propagation for

average query over n squares is represented as E(y) from
Eq 16. Based on the algorithm discussed in [12], to satisfy
ε-DP the noise equivalent to (Lap(σ2

max − σ2
min/ε))/n

2 is

added to E(y)2. We apply the bounding Laplace [12] to restrict
the unbounded Laplace. The server assigns the value of σ2

min
to E(y)2, if E(y)2 < σ2

min. Similarly, if E(y)2 is greater
than σ2

max, the server assigns σ2
max. The σ2

min and σ2
max are

known after GPR modeling. Prac2PC circuit is modified to
accommodate the DP operations. Comparison with σ2

min or
σ2
max and assignment, if needed to bound the DP output, are

all done within the 2PC circuit. Since the server knows the
sensitivity of the error function, it maintains a table of random
numbers drawn from the Laplace distribution. When the client
query arrives, the server selects at random a number from the
table and sends it to the client along with the server’s private
input < µp, σ

2
p >. This number is the noise fed to the circuit

to be added to E(y)2.

VIII. END-TO-END SECURITY ANALYSIS

As discussed in Section IV, we seek to protect three pieces
of information (a) server’s fleet location, (b) server’s fleet size,
and (c) client’s query location. We use GPR, 2PC, and DP in
succession to provide end-to-end privacy guarantees.

The primary privacy property that we offer is for the data
providers - hiding fleet size and location information. It is
provided by GPR as a first step. GPR is performed on the data
obtained from different vehicles. Once the tuple < µp, σ

2
p >

for each grid cell is obtained, any query is computed on the
interpolated grid cells. GPR subsumes any vehicle information
present in the grid cell by a single centroid tuple; thus, one
cannot correlate it to the number of vehicles present in a
grid. We also do not use fleet size to calculate any query
response. This prevents the client from getting any idea of
the fleet size or location of individual vehicles in a grid. We
have empirically evaluated the privacy of this step (in Section
V). It is strictly better than having no GPR. However, as
shown in the information leakage through the variance plots
in Figure 4, server privacy cannot be maintained by GPR
alone, and we need 2PC+DP in addition to GPR to prevent
information leakage through per-grid variance.

Next, 2PC checks that the client’s query vector υ always
contains more than α bits set to 1. Here α is the threshold
on the minimum number of grid cells required for answering
a 2PC query. This threshold is a privacy knob for the server
leading to a trade-off with client utility. A higher aggregation
threshold indicates more server privacy and less client utility
as the client gets less granular information. Server privacy
then boils down to the server using 2PC to securely compute
the query’s result using the output of GPR and then adding
differentially private (DP) Laplacian noise in the aggregated
result of propagation error. The 2PC protocol simply computes
a deterministic function securely (i.e., without revealing the
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inputs of one party to the other). It does not negate or undo
the privacy preserved by GPR or DP techniques. Based on the
threat model (semi-honest vs. malicious), the corresponding
2PC protocol is used.

The Laplacian noise (based on the sensitivity) reduces the
possibility of leaking the location of vehicles via the propa-
gated error in the query output. Propagated error combines the
GPR variance across the α threshold grids. Adding DP noise
is especially important if subsequent 2PC queries overlap in
a single grid cell, and the 2PC answers are aggregated across
subsequent queries to reveal per grid GPR variance. This noise
addition takes place within the garbled circuit, and the client
gets to know the output only after noise addition. Even though
we use the bounded Laplace mechanism for DP, it still provides
ε-DP as shown in [47], [12]. Thus, the client can only obtain
the aggregated results for its region of interest, but it cannot
recover the value of each individual sensed data.

For the client’s privacy, the client first identifies an ob-
fuscation rectangle to construct the grid cell mapping of
<LAT,LON>. That is, clients’ two-dimensional location vec-
tor is converted to a single υ vector. This obfuscation rectangle
contains the client’s region of interest, i.e., wherever υi = 1.
Based on the υ vector, nothing could be learned about the
client’s region of interest besides the fact that the client is
interested in α or more grid cells in the defined rectangle. The
client does not send her υ vector in the query requests. Since
the output of the query is only revealed to the client, the server
cannot reverse map the υ vector at any time.

IX. PRAC2PC IMPLEMENTATION

To use our designed Prac2PC protocol in an end-to-end
system, we need to implement the circuits described. As
discussed in Section III, GC and mixed protocols are circuit-
based 2PC alternatives. We use an empirical system design
approach here – implement different Prac2PC versions using
both circuit alternatives, and then compare their performance
using real datasets.

A. Prac2PC Variants

We list below our different Prac2PC implementations.
[1] Prac2PC-GC: We implement the Prac2PC GC version
using a C++ framework, EMP-toolkit [56]. It provides se-
cure data types and operators for integer and floating-point
(FP) numbers. Prac2PC uses an exponential function in some
queries, which can only be implemented using 32-bit FP
numbers in EMP. Hence, the server’s input tuple < µp, σ

2
p >

is represented by two 32-bit floating-point numbers, whereas
the client’s input υ is represented by a bit vector.
[2] Prac2PC-MP: We cannot implement Mixed Protocol in
EMP. So instead, we use ABY, another C++ MPC framework.
It allows the implementation of the Arithmetic (A) circuit,
Boolean (B) circuit, and Yao’s (Y) GC or a combination of
these. As of now, ABY’s arithmetic circuits do not support
FP operations fully. To perform FP operations, we have
used Boolean circuits. This constraint leads us to implement
Prac2PC using a B+Y mixed protocol instead of A+B+Y.
[3] Prac2PC-Malicious The above variants are secure against
a semi-honest adversary. To handle the case when both parties
(malicious) might not follow the correct protocol, we imple-
ment Prac2PC in EMP using authenticated garbling [21]. It
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dently. Blue boxes represent computation at only the server-
side, and blue arrows represent data coming from the server.
Similarly green boxes and arrows are for Client (subscript s
denotes server share and subscript c denotes client share, υ,
µ, σ2 are inputs as discussed in VII).

Configuration Client Server
Processor C1: Intel(R) Core(TM) Intel(R) Xeon(R)

i7-4790 CPU E5-2698 v4
C2: ARM Cortex-A73 & A53

Memory C1: 16GB 256GB
C2: 6GB

Frequency C1: 3.60GHz 2.20GHz
C2: 4@2.3 GHz& 4@1.7 GHz

No. of Cores C1:8, C2: 8 40
OS C1: Ubuntu 18.04 Ubuntu 18.04

C2: Android 11

TABLE IV: Client-Server configuration

is based on the combination of GMW Protocol based secret
sharing and Yao’s garbled circuit.

Figure 9 shows the server and client interactions, who
have their own secret share for the input and output wires.
To protect against the malicious server, (1) MAC is generated
to authenticate secret shares, and (2) the garbled truth tables
are secretly shared between client and server, unlike Prac2PC-
GC. A party can learn that the other party is cheating if,
at any stage, the MAC sent by the other party does not
match with the share sent. The overall protocol is divided
into two phases for efficiency, i.e., preprocessing and online.
The preprocessing phase needs the Query Type and the υ
size to be decided. It will generate the information needed
to construct the authenticated garbled circuit. The inputs to
the circuit (which bits of υ are 1, and the < µp, σ

2
p > values)

and authenticated garbled circuit are needed only in the online
phase to evaluate a particular query.

B. Experimental Setup For Evaluations

Server and client machines: The client will run one circuit
for each query, whereas the server has to run as many circuits
as there are simultaneous client requests. We use the system
configurations given in Table IV for server and client. We also
use the Android phone as a client (represented by C2 in table)
by porting the Prac2PC C++ library to ARM.
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Fig. 10: (a) Trip length vs. υ size for 7500 trips. (b)-(d) Runtimes for different query types and Prac2PC versions

Datasets: Beijing Taxi dataset lack start and endpoints of a
trajectory, and hence, we use the Porto Taxi Trajectory dataset
[57] to evaluate the practicality of Prac2PC and compare its
variants. The Porto dataset contains trip data of 441 taxis
running across Porto, Portugal, for around nine months. Each
trip is represented by a set of <LAT,LON> pairs with time.
Prac2PC efficiency is entirely dependent on υ, and not on
< µp, σ

2
p >. So this trip dataset is important to test Prac2PC

with realistic υ vectors, based on actual commuter trips. We
use random float values as < µp, σ

2
p > in these experiments.

To evaluate DP’s utility, we need real interpolation variance
values as random < µp, σ

2
p > values will not be useful to

analyze the privacy-utility trade-offs. We use the Opensense
Zurich dataset [58] and the Delhi dataset we collected (Fig-
ure 1) in our DP evaluations.

X. PRAC2PC EVALUATION

Prac2PC is secure by design, but it is important to evaluate
how practical its different variants are. For extensive evalua-
tions, we divide the different queries described in Table I into
three categories: average, minimum, and range. It is because
the maximum query function and its error propagation are very
similar to a minimum query. The count function and its error
propagation are a subset of the range query.

A. Realistic υ sizes

The size of the client’s private input (υ vector) depends
on the actual trajectory length and the size of the obfuscation
rectangle chosen by her, which is proportional to her privacy
concern. For our 7500 trajectories, we choose the bounding
rectangle of each trajectory as its obfuscation rectangle. Our
grid square size is 500m. Figure 10 (a) shows the trip lengths
along x-axis, with obfuscation rectangle sizes along left y-axis.
From the right y-axis, 80% of the taxi trajectories are less than
15 km (intuitive as cabs are too costly for higher distances).
The obfuscation rectangle for 15 km is less than 100 km or 200
grids. We present results till 400 grids in subsequent sections,
highlighting the overheads for 100-200 grids, which are more
realistic for commuters.

B. Prac2PC Runtimes and CPU Utilization

As described earlier, each client encodes her location range
in the υ vector, the size of which is equal to the number

Latency(s) CPU
Query υ Usage

10 50 100 (%)
Average 0.57 1.50 2.67 10.27

Min 3.56 16.02 31.18 11
Range 6.03 29.38 57.5 12.3

TABLE V: Latency and CPU utilization for Android as client
with ping latency of 20ms ∼ 80ms

of squares in the obfuscation rectangle. Squares of interest
are set to bit value 1, and extra squares in the obfuscation
rectangle are set to bit value 0. An increase in the size of
υ implies a larger circuit size. Figure 10 (b)-(d) show the
circuit generation and evaluation times in seconds on the right
and left y-axis, respectively. The x-axis denotes increasing
υ lengths, and the different curves denote different Prac2PC
versions. Latency (including computation and communication
time) shows the following trends – (a) higher values for higher
υ lengths and (b) average, minimum, and range query functions
having increasing values (c) Prac2PC-GC performing better
than Prac2PC-MP in each case. As network conditions might
have changed during the course of these experiments, we also
record the server-client average ping latencies, which is around
0.56ms-1.71ms.

In addition to latency trends that increase based on query
function complexity and υ length, it is also important to look at
the absolute latency values. As described above, the x-axis in
Figure 10(b) denotes the υ lengths for the 7500 trips selected
from the Porto dataset. The left y-axis in Figure 10(b) denotes
the percentage frequency of each υ length in the dataset. Based
on the x-axis and the left y-axis, we see that most υ vectors
are smaller than 100 grid cells. For the vectors less than 100
grid cells predominant in the dataset, latencies for any query
(average, max, or range) vary between a few milliseconds to
seconds. For longer values of υ, the average query takes at
most 0.5 seconds, the max query at most 3 seconds, and the
range query at most 6 seconds for Prac2PC-GC.

Table V shows the latency trends for different queries and
υ on Samsung Galaxy M21 as the client. The trend is similar
to a laptop client. However, the absolute values are higher due
to computational limitations and higher ping latencies than
the laptop client experiments. Average CPU usage is given
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Fig. 11: Average CPU Usage for different query

in Figure 11 (for server and laptop client and Table V (for
Android phone client). The low CPU usage value for any
version of Prac2PC on the 40 core server guarantees that
scaling to many clients will not be an issue for a fleet company.
Similarly, the client CPU usage is quite low. To increase CPU
utilization on the client and reduce query latency, we have
implemented a multi-threaded version of Prac2PC-GC for X86
(details in Appendix D). We will extend this implementation to
ARM in the future to further reduce query latencies on mobile
devices, which are also quad-core or octa-core now and can
take advantage of thread-based parallelism.

Prac2PC query times are very practical, as most com-
muters with real-time requirements will ask the average query
with small to moderate trajectory lengths and get the response
within sub-second for laptop users to a few seconds for mobile
users. Environmental analysts asking the more varied minimum
or range queries using a laptop can wait up to a few seconds,
even with very long query lengths covering large city areas.

In addition to Prac2PC’s low runtime overhead, another
interesting takeaway here is GC outperforming MP implemen-
tation. MP is a very recent and exciting cryptographic research
domain [25] and we expected to see a huge performance
benefit by implementing Prac2PC using the state-of-the-art
ABY framework. However, we get far better performance
with GC protocol! One reason is recent optimization in GC
(pipelining, half gate optimizations). Mixed Protocols have
high conversion overheads, e.g., B to Y. This shows the
importance of implementation and empirical analysis-based
system design, which brings out surprising results.

C. Prac2PC Bandwidth

We capture the data packets transferred over a socket con-
nection from the client to the server using tcpdump. Figure 12
plots the data transferred for different queries and υ lengths for
Prac2PC-GC and Prac2PC-MP. In Prac2PC-GC, the number
of bytes the server receives is equal, for any query type, for a
particular υ length, too negligible to be visible (lower part
of left bars in Figure 12). It is due to the same υ vector
for all the queries for a given trip. Thus, the client sends the
same amount of data in OT to get garbled input in GC. While
in Prac2PC-MP, the input is divided into Boolean and Yao’s
shares, the Boolean shares are shared using XOR-based secret
sharing, and Yao share is shared using OT. Range query with
two exponential operations per <LAT,LON> pair has around
twice the amount of data transferred for Min query (requires

only one exponential per <LAT,LON> pair). Average having
the simplest and smallest circuit requires the least bandwidth.
As the size of the client’s input increases, the data transfer
increases, which can be seen across all the queries and for all
the protocol. It gives us an estimate of the network bandwidth
requirement for a particular υ length and query type. One thing
to note is that the data transfer between the server and laptop
as the client; and between the server and mobile phone as the
client is the same.

Commuters would typically query average values using
smartphones with network bandwidth constraints. Environ-
mentalists might query all different statistics, possibly using
laptops with wired connections, and care less about bandwidth.
Prac2PC-GC shows the most practical bandwidth requirement
(few KB to MB) irrespective of query size and type.

D. Prac2PC-Malicious

Rival business companies posing as clients will follow the
Prac2PC protocol correctly while querying a server (semi-
honest threat model) is too optimistic to assume. Hence it is
vital to evaluate Prac2PC-Malicious, as described in Figure 9.
Figure 13(a) shows the total latency for different queries and
different υ. Figure 13(b) shows the online phase latency.

Based on the total latency values, along the right y-axis
in Figure 13(a), it is clear that Prac2PC-Malicious indeed
needs a two-phase protocol. Preprocessing will be too slow
when a client needs an answer from the server in real-time.
Preprocessing also has bandwidth requirements in MBs. Thus,
it needs to run as a background operation whenever the client
device is connected to a wired or WiFi network and keep the
client application ready with preprocessed values to be used
in the online phase of the next query. The subsequent online
phase will then require a few KBs and milliseconds, for most
practical υ sizes, as seen from the right y-axis in Figure 13(b).

Preprocessing phase needs only the Query Type and the
υ size, which the client app can choose offline based on
her interests and obfuscation rectangle. When her trajectory
becomes known, she can input the actual 1 and 0 bits in the υ
vector in the online phase. This real-time input will not change
the Prac2PC circuit computed in the preprocessing phase. The
server needs to store the preprocessed values to be used in the
online phase, with its most recent < p, s2 > values for the
relevant obfuscation rectangle input during the online phase.
So there needs to be a client record at the server for the two-
phase Prac2PC-Malicious protocol to maintain preprocessing
state. For further optimizations, the same preprocessing can
be amortized over many online queries – in case the client
repeatedly uses the same Query Type and the υ size. For
example, an ordinary citizen checks average travel time or
pollution for her work-home-work trajectories every day, or
an environmental analyst asks bulk queries for pollution levels
in different areas of a city, for many of which Query Type
and the υ sizes remain the same. The application can purge
the preprocessed data after an appropriate timeout.

E. Server Privacy vs. Client Utility

Finally, we evaluate the effect of adding Laplace noise to
protect against smartly crafted queries. The privacy budget
parameter ε balances the privacy-utility trade-off. Figure 14
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Fig. 12: Data transfer between server and client for different query types and Prac2PC versions. Here, the number of bytes server
received in Prac2PC-GC is negligible enough to be visible in plots.
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Fig. 13: Query latency for Prac2PC-Malicious

(a) and (b) show the effect of choosing different ε on the
output of the error propagation function of the average query.
As ε increases, the utility increases (line becomes closer to
the actual line), with highest value at ε = 1. However, the
smaller the ε, the better the privacy. As ε becomes smaller,
more random noise is added to E(y) in Eq 16. E(y) represents
the output of the statistical query function given to the client in
an end-to-end system. The selection of ε to optimally balance
this privacy-utility trade-off depends on the dataset. It can be
seen from Figure 14 that the best choice for the values of ε,
which balance privacy and utility, are 0.5 and 1 for Zurich
and Delhi, respectively. These provide ε-DP guarantees with a
small deviation from the actual output.

XI. END-TO-END SYSTEM WITH GPR AND PRAC2PC

We implement an end-to-end system to demonstrate a
use case that Prac2PC can support. We deploy 40 stationary
PMS7003 sensors in a university campus (Figure 15(c)), which
measure PM 2.5 and PM 10 values and send the measurements
every 30 seconds to a university server over Wi-Fi. The
server computes spatio-temporal interpolated values for the
grid spanning the whole campus using GPR (Figure 15(b)).
Campus residents, if they, input source and destination in our
Android application, can see color-coded route choices based
on average PM 2.5 values for each route, received through
Prac2PC-GC secure computations (Figure 15(a)).

The Android app takes in source and destination from the
user and calls Google Map API to get route alternatives. Each
route, augmented with obfuscation rectangle, is then repre-
sented in-terms of campus grid cells and passed to Prac2PC-
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Fig. 14: Privacy-utility trade-off

GC (C++ library ported to ARM by us) through JNI. The C++
library communicates with the campus PM server over WiFi
or 4G and gets the average PM2.5 values for the different
routes through the Prac2PC-GC protocol. The averages are
passed back from C++ to the Java code, which then displays
the color-coded routes based on PM2.5 values.

The median time taken for querying and rendering two
paths having 150-190 elements each in the υ vector on 100m
x 100 m grid cell are a few seconds on WiFi and 4G. We
also monitor the average power and energy consumption for
the heaviest range query for υ = 100 using Battery Historian
and Android Studio, respectively. Figure 16 shows the energy
profile monitored using Android Studio; this accounts for about
0.24% of the total device power usage. Based on low CPU
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(a)
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Fig. 15: Privacy-aware Pollution Route App

Fig. 16: Energy profile monitored using Android Studio for
range query with υ = 100. Both network and CPU energy
usage profiles are low.

and power usage, we can optimize these latencies further by
carefully separating the preprocessing and online phases; and
extending our ARM library with multi-threading, which are
shown to give good results on a laptop (results for multi-
threading is shown in Appendix D). This application can
be extended to city-scale when pollution measurements scale
up with private fleet companies, as the private companies
become more confident about location privacy with Prac2PC
like systems.

XII. CONCLUSION AND FUTURE WORK

Private companies with large fleets are promising partners
for vehicle-mounted scalable sensing. This paper presents a
privacy-vs-utility trade-off study for fleet companies and sensor
data clients. We first use GPR to hide locations without
vehicles. The GPR output still leaks fleet location information.
We then use 2PC to answer queries with the GPR output at
low latency and bandwidth for mobile clients, preserving client
privacy, fleet privacy at perfect data utility. We additionally use
DP on the 2PC results to protect against smartly crafted 2PC
queries. We empirically motivate 2PC, showing only DP after
GPR cannot balance the fleet privacy vs. data utility trade-
off. Our pollution-aware Android route app shows a glimpse
of how scalable data sharing can aid citizens to make more
informed choices in reducing personal pollution exposure.

In the future, we will further optimize smartphone query

latencies porting our multi-threaded Prac2PC implementation
for X86 (Appendix D) to ARM. Secondly, we will add
support for multiple private fleet companies [1] to collaborate
and publish sensed data. Different fleet companies can have
geographical coverage in different parts of a city at different
times of the day, and interpolating using sensor data from
many such companies will invariably improve the prediction
for unseen locations and times. Privacy-Preserving Machine
Learning (PPML) methods [59], [60] can be explored in this
context, with the machine learning problem being spatio-
temporal interpolation (Gaussian Process, Graph Convolutional
Networks, etc.). We will also explore extending our DP pro-
tocol under the pay-as-you-go scenario for a stronger privacy
guarantee [61], [62], [63].
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APPENDIX

A. Accuracy of Posterior Mean µp

For measuring the accuracy of Gaussian Process Regres-
sion, we use 5-Fold cross-validation with five random restarts
in GPy [64]. In each fold, out of the different random restarts,
the objective function with a minimum value is selected. The
accuracy of GPR is measured in terms of root mean squared
error (RMSE) of the predicted pollution value on the Beijing
dataset. Out of the different kernels available in GPy, we tested
three kernels’ performance, i.e., RBF, Matern32, Matern52.
Matern32 kernel gives out the best RMSE among the three for
the dataset (Figure 17). This is the kernel we use in subsequent
analyses.
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Fig. 17: RMSE of Posterior mean (µp) vs. Different Kernels
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Fig. 18: (a) Time taken for training different number of sample
locations sensed by the 24 cabs in 24 hours for 7 days.
(b) Prediction Time vs Number of grid cells

B. Computational Complexity of GPR

We evaluate the cost of training the GP model. When GPS
values are sampled by the cabs every minute and a window
of one hour is selected for training, the maximum and the
minimum number of GPS training samples come out to be
around 1400 and 300, respectively. The maximum number of
GPS locations are sensed in the evening when the movement of
each cab is high. However, at night, we have fewer samples as
fewer people are commuting. The training for 1400 samples
takes around 1.2min, as can be seen from Figure 18(a). As
the number of training samples increases, the training time
increases by order of O(N3) as matrix inversion required in
GPR is O(N3).
After fitting the Gaussian Process on the training set, we
measure the time taken to predict each grid cell centroid. We
create a bounding box around the trips taken by all the drivers
in a given hour and then select all the cells which are inside
and intersect the bounding box for prediction.

The number of grid cells varies with grid cell size. As the
size of grid cells increases, the number of grid cells decreases.
Hence, the time taken to predict the grid also decreases. Figure
18(b) shows the time taken to compute < µp, σ

2
p > for

different number of grid cells. The plot follows a somewhat
linear trend as we predict each centroid sequentially. This
time can easily be reduced by parallelizing the prediction
process for the centroids using multiple processor cores, as
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the prediction of these centroids is independent of each other.

C. Computation Time for DP
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Fig. 19: DP time vs Number of Grid cells

Figure 19 shows that the cost of applying DP (around 65
ms) is negligible in comparison to prediction time (around 7s).
Similar to prediction time, the DP time also scales linearly
with respect to the number of grid cells. It is also easily
parallelizable. Figure 19 has some outliers at the starting of the
curve. This could be either due to running the experiments on
the shared server (waiting for CPU cycles) or because of using
the bounding Laplace mechanism. The bounding mechanism
employs rejection sampling when noise is added to σ2

p. So
unless and until the σ2

p becomes positive and within a bound,
we reject the addition of noise to the sample σ2

p, thereby
increasing runtime.

D. Prac2PC-threaded vs Sequential:

Laptops and mobile platforms come with multi-core CPU
processors these days, which our client software should exploit
for efficiency. We have implemented Prac2PC-threaded using
pthreads. For server-client communications, we open as many
ports as there are threads. We divide the input of client and
server into equal parts and assign them to separate threads
on both client and server, respectively. In the threaded imple-
mentation, the set-thresholding circuit will always output 0 as
counting of 1’s in υ vector is distributed over the multiple
threads. To prevent this, we define a local threshold such that
each thread must get at least a local threshold number of 1’s
in its corresponding part of υ. The client must also set at
least a global threshold of 1’s in the υ vector. We ensure the
synchronization of communication between client and server
using mutex locks. The number of threads is decided by OS
configuration.

We run an experiment omitting network latency to see the
actual overhead/ benefit of multi-threaded implementation. We
run server and client on the same machine.

Figure 20(a) and (b) show the latency when the client and
server are running on the same machine, which has six cores.
The improvement of latency is significant with multi-threading
when one has a large input vector. This is the direct effect
of dividing the workload among the threads. Management of
threads in a small υ vector overshadows the benefit of using
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Fig. 20: Query latency for Prac2PC-threaded

it in the Average query. The υ vector depends on the size of
the individual grid cell (500m X 500m chosen for the Porto
dataset) and the obfuscation rectangle selected for a trip. If
the client is more conscious of its privacy, it can choose a
bigger obfuscation rectangle and hence a large υ vector. In
such cases, the client can set a threshold on the size of υ
to select between sequential and parallel configurations. This
will smartly minimize the latency for any type of query. The
server can also use the Prac2PC-threaded in the pollution-
aware route-based apps( Section XI), where multiple color-
coded paths are returned. In this case, the server can run one
thread per path to optimize the latency.
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