The Truth Shall Set Thee Free: Enabling Practical
Forensic Capabilities in Smart Environments

Leonardo Babun, Amit Kumar Sikder, Abbas Acar, and A. Selcuk Uluagac
Cyber-Physical Systems Security Lab
Department of Electrical & Computer Engineering, Florida International University
Email: {lbabu002, asikd003, aacar001, suluagac}@fiu.edu

Abstract—In smart environments such as smart homes
and offices, the interaction between devices, users, and apps
generate abundant data. Such data contain valuable forensic
information about events and activities occurring in the smart
environment. Nonetheless, current smart platforms do not
provide any digital forensic capability to identify, trace, store,
and analyze the data produced in these environments. To fill
this gap, in this paper, we introduce VERITAS, a novel and
practical digital forensic capability for the smart environment.
VERITAS has two main components: Collector and Analyzer.
The Collector implements mechanisms to automatically collect
forensically-relevant data from the smart environment. Then, in
the event of a forensic investigation, the Analyzer uses a First
Order Markov Chain model to extract valuable and usable
forensic information from the collected data. VERITAS then
uses the forensic information to infer activities and behaviors
from users, devices, and apps that violate the security policies
defined for the environment. We implemented and tested
VERITAS in a realistic smart office environment with 22 smart
devices and sensors that generated 84209 forensically-valuable
incidents. The evaluation shows that VERITAS achieves over
95% of accuracy in inferring different anomalous activities
and forensic behaviors within the smart environment. Finally,
VERITAS is extremely lightweight, yielding no overhead on the
devices and minimal overhead in the backend resources (i.e.,
the cloud servers).

I. INTRODUCTION

Modern technology has quickly evolved as a network of
Internet-enabled (i.e., smart) devices. These smart devices,
such as smart lights and smart thermostats, communicate
with each other and interact with the users’ day-to-day activ-
ities through sensors (e.g., motion and temperature sensors)
to enable the concept of the smart environment. Such an
environment improves the quality of life of the people while
handling a new set of data previously untapped [1]-[3] and
with tremendous forensic value [4]—-[7]. For instance, in a
smart office setup containing motion sensors, forensic evi-
dence extracted from the state of the sensors may reveal the
presence of individuals at unauthorized hours. On a larger

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA

ISBN 1-891562-74-6

https://dx.doi.org/10.14722/ndss.2022.24133
www.ndss-symposium.org

scale, the analysis performed on data collected from multiple
devices may reveal substantially more forensic details about
the activities occurring in the smart environment at any time.
In fact, in some countries, insurance companies have started
giving incentives to customers if they install measures like
smart lighting, smart energy management systems, smart
fire, or water monitoring devices [8].

Nonetheless, current smart home/office platforms do not
provide any means for forensic analysis. Indeed, the limi-
tation of available computing resources in the majority of
the smart devices [9]-[14] and the distinctive cloud-based
architecture of most smart home/office platforms [15] make
it very challenging to store data inside these devices [16]—
[19], rendering traditional forensic analysis unsuitable for
the smart environment. Additionally, the most popular plat-
forms (e.g., Samsung SmartThings, Apple HomeKit) do not
provide any mechanisms to access and indefinitely store
smart data in the cloud [20]. Prior research works have
proposed logging techniques to collect data from smart
apps and devices [21], [22] to implement, for instance,
IoT data provenance analysis [23]. However, these works
either (1) do not specifically focus on utilizing the data
collected from the smart environment to implement foren-
sic solutions; (2) assume trusted devices which may be
unrealistic nowadays [24]; or (3) do not directly consider
forensically-relevant activities and behaviors in their threat
models. In addition, traditional forensic solutions targeting
smart systems only focus on specific data formats (e.g.,
video streaming extracted from a smart camera) to perform
their analysis [25], which are not always available in every
forensic evaluation.

To overcome these limitations, we introduce VERITAS!,
a novel and practical forensic analysis framework that
uses data collected from the smart environment to support
traditional forensic investigations. With VERITAS, we aim to
fill the gap between current digital forensics and the unique
data-rich characteristics of modern smart environments, pro-
viding a forensic solution that considers data from every
device and app used in the smart environment for a more
comprehensive analysis. VERITAS has two main components:
the VERITAS Collector (VC) and the VERITAS Analyzer
(VA). The VC automatically analyzes and modifies smart

'In Roman mythology, VERITAS is the goddess of truth.

applications to flag and collect forensically-relevant data
at runtime. Then, in the event of a forensic investigation,
the VA applies a First Order Markov Chain models on
the collected data to infer the forensically-relevant activi-
ties and behaviors that occurred in the smart environment.
VERITAS considers these activities and behaviors, and the
security policies defined for the smart environment to detect
security violations from users, devices, or smart apps. We
evaluate VERITAS in a real-life smart environment with 22
smart devices and sensors that generated 84209 forensically-
valuable incidents. Our experimental results demonstrate that
VERITAS achieves over 95% accuracy in inferring anomalous
activities and detecting malicious forensic behaviors. Finally,
VERITAS yields minimal overhead to smart devices, apps,
and the cloud servers.

Summary of Contributions. This work has both conceptual
and methodological novel contributions:

e Conceptual: We propose an end-to-end forensic frame-
work, VERITAS, that matches the activities and behaviors
of users, devices, and apps within a smart environment
against security policies to support traditional forensic
investigations.

e Methodological-1: We design and implement a source
code analysis tool that identifies and extracts, via au-
tomatic app instrumentation, forensically-relevant data
from smart apps (i.e., VERITAS Collector). We made
the Collector freely available online at https://iotdots-
modifier.appspot.com/.

e Methodological-2: We build a First Order Markov-Chain
model that analyzes the data collected from the smart
environment to infer the activities and behaviors that
potentially violate the security policies.

e Methodological-3: We evaluate the effectiveness of VERI-
TAS in a realistic smart office environment with 22 devices
and sensors. VERITAS is effective in inferring anomalous
user activities with a minimum 95.4% accuracy. Also,
the framework detects forensic behaviors that violate the
security policies in place in at least 95.3% of the cases.

Organization. In Section II, we present the background
information. In Section III, we introduce the problem and
the threat model. Section IV details the architecture of
VERITAS and the analysis techniques used to extract forensic
information from the smart environment. The evaluation
results are detailed in Section V and Section VI discusses
security aspects of VERITAS. The related work is discussed
in Section VII and Section VIII concludes the paper.

II. FROM TRADITIONAL TO SMART FORENSICS

Traditional digital forensics refers to the investigation
and the uncovering of any digital evidence (i.e., data) from
electronic devices like computers and cellphones [26]-[32].
The most basic application of digital forensic investigations
is to either support or oppose the hypothesis proposed in a
criminal case before a court. Frequently, digital forensics
require the analysis of physical evidence directly related
to people’s presence in the crime scene such as an audio
or video file. In other cases, a more in-depth investiga-
tion of scientific evidence such as network data or mobile

device data may be required. Complex cases may require
a combination of both types of analysis. Although there
are different approaches, a standard digital forensic process
can be structured in five different stages [33], [34]: (1)
Identification, (2) Preservation, (3) Recovery, (4) Analysis,
and (5) Presentation. During the identification stage, the
investigator marks and identifies the relevant digital media
(e.g., computer hard drive) containing the forensic data to be
retrieved. Then, she takes the necessary steps to guarantee
that such data is preserved and no action is performed on
the selected media that could jeopardize the relevant forensic
data. Further, during recovery, different techniques are ap-
plied to the media to extract the data from the digital media
without modifying it. Finally, the extracted data is analyzed
and the forensic findings are reported using predetermined
report formats. Depending on the type of device analyzed
and the source of the evidence, the methodology used and
the type of evidence extracted may differ. For instance, while
a mobile device is a good source of information for tracking
the location of a person, a computer may have the capability
to provide more detailed and varied intelligence.

Smart Forensics. We use the term smart forensics to
refer to the traditional forensic analysis performed on data
extracted from a smart environment. With the growth of
smart home and smart office solutions, digital forensics is
not anymore limited to storage devices like hard drives,
USB drives, computers, or smartphones [35]. Now, the data
from devices like smart locks and motion sensors may also
be used for forensic purposes [36], [37]. These devices
generate and handle a very diverse set of heterogeneous
data from their interaction with users’ day-to-day activities
and other devices. For example, a smart lock can reveal
when someone entered the building, or a smart speaker may
reveal the exact location of its user at the time of a forensic
incident. However, the use of data from smart devices is not
a straightforward exercise due to some unique challenges
present in the smart environment:

Limited Computing Resources: Most of the smart devices are
both computational and storage resource-limited [10], [11],
[16]. These restrictions limit the storing and processing of
data inside the devices for forensic purposes. In fact, most
smart platforms offer cloud-based solutions [38]-[40] and
no data is ever stored inside the devices.

High Divergence and Diversity of Data: In traditional foren-
sic investigations, the data is typically collected from specific
devices of interest. However, in smart forensics, a single
case may require the collection of data from a diverse set
of devices [41]. Different data sources may have diverse
impacts and meanings during a forensic investigation. For
instance, even though generated from the same activity
(e.g., a user walking through a restricted area), the data
collected from a motion sensor and a smart thermostat may
have different format and size. Therefore, it is required
to have a dedicated and reliable forensic mechanism that
can successfully handle and analyze the data collected from
different types of smart devices.

Lack of Forensic Analysis Support: Even though smart data
may contain a high forensic value, smart platforms do

not offer any means to support forensic investigations. For
instance, as devices do not normally store data, the smart
home/office platforms do not provide specific mechanisms to
collect such data from the smart environment at runtime. One
solution could be to monitor the devices’ traffic passively
and collect information as needed. However, such a proce-
dure might be impractical as most of the smart environment
communication is encrypted [42], [43]. Also, as forensic
analysis in the smart home is a novel approach, traditional
mechanisms of data preservation and chain of custody must
be enabled for the very distributed smart data.

III. DEFINITIONS AND THREAT MODEL
A. Problem Definition

This work assumes that there exists an office O. The
office has deployed several devices to create a fully equipped
smart environment. The topology of the smart environment
in O includes devices like smart thermostats, locks, lights,
presence sensors, security cameras, and smoke detectors.
We also assume that the general manager, Bob, is the only
person in O with administrative rights to handle the apps
that control the smart devices. By policy, these apps are the
only ones authorized to manage the devices inside O. Bob,
however, is not authorized to modify the security policies in
place for the smart environment. Finally, the security policies
of O prohibit the presence of any person between 8:00 pm
to 7:00 am from Monday through Friday and anytime during
the weekends. At some point, a fire incident inside O has
caused the loss of sensitive information along with important
economic consequences. After the incident, the insurance
company requests a forensic investigation.

We propose VERITAS as a novel framework that utilizes
the data extracted from the smart apps to perform the
forensic analysis of the events in O. Indeed, VERITAS can
be used in conjunction with traditional forensic analysis
tools and techniques to hold the person, smart app, or
device (if any) accountable if a case of negligence or
deliberate violation of security policies is detected. By using
VERITAS, we can answer several forensic questions: (1) What
was happening inside O right before the fire incident had
occurred (e.g., right before the smart smoke detector started
sensing the smoke presence)? (2) Was anyone inside the
room (e.g., presence sensor state changed)? (3) Was the
door opened/closed anytime before the fire incident (e.g.,
smart lock state changed)? Further, the proposed framework
would be able to evaluate the different states of connected
devices and the overall state of the smart environment. Then,
this information can be matched with the security policies
in place to detect any (intentional or involuntary) violation
of the security policies. Some of these violations could be:
workers accessing the office at night time (i.e., careless
unauthorized activities), Bob tampering the security camera
to avoid video recording (i.e., device tampering), or smart
apps running malicious code to modify the values of the
presence sensor.

B. Assumptions and Definitions

We make the following realistic assumptions and define
the terms to introduce VERITAS’s threat model.

e Assumption 1 — Smart Environment Security Policies:
We assume there is a dedicated security policy (e.g.,
Enterprise Information Security Policy (EISP)) that reg-
ulates physical activities within the smart environment
(e.g., unauthorized presence in physical spaces, approved
work schedules, etc.). Also, the EISP defines the types
of devices and applications approved for use within the
corporate environment. We believe this is a realistic
assumption because many governments and organizations
use EISP’s guidelines to define their security posture [44],
[45]. For instance, the U.S. government currently works
with vendors to define baseline standards for the use of
IoT devices and apps in government agencies and smart
offices [46]. For VERITAS, we assume that there is a
corporate smart environment (devices and apps) that is
centrally-managed by well-defined EISPs, and users are
not authorized to change its pre-defined settings with
their own apps without upper management’s approval.
For instance, the configuration settings of thermostats and
smart locks cannot be changed unless the management
office requests and approves the reconfiguration. With
this, we expect that the security policies regulate both the
access level and settings of the smart environment. Such
an assumption imposes a finer granularity to traditional
EISPs, as they will need to clearly match, for instance, a
specific set of apps with their approved user(s). Note that
this will not impact VERITAS’s adoption considering its
overall benefits to the enterprise security efforts.

e Definition 1 — Forensically-relevant Data: It defines the
smart apps events, device’s states, user-defined inputs,
device’s information, and time and location information
that VERITAS extracts/logs from the smart environment.
This information typically reflects on the state of the
different smart devices and sensors as a function of the
users’ and smart apps’ activities.

e Definition 2 — Unauthorized User: It defines a user that
carelessly try to change the pre-defined settings of the
smart environment. Also, unauthorized users are those
who perform activities and access the smart environment
locations during not-permitted hours. Depending on the
specific time, date, the context of the activity, and the
smart environment policies, authorized users may act in
an unauthorized manner.

e Definition 3 — Attacker (insider or outsider): We consider
the attacker as an insider or outsider that maliciously
tries to disrupt or take control over the smart environment
or any of its entities (i.e., devices and sensors) to learn
user behaviors, steal sensitive information, gain access to
the systems, or even interrupt the normal operations of
VERITAS.

e Definition 4 — Malicious App: This is a smart app
with malicious code intended to leak sensitive informa-
tion from users and the smart environment to attackers,
change/replace legitimate VERITAS logs with the intention
to hide malicious behavior, or perform any other malicious
activity inside the smart setup (e.g., side channel attacks).

e Definition 5 — Tampered Device: It defines a smart entity
that is forced to change its expected state (based on the
user activity) by a different one that does not reflect the
real overall state of the smart environment. Also, this

Smart App Repository

Events & Actions
Sensor Values & Locations
User-defined Information 5

Smart Environment

Device Handlers]

VeritaS-modified 9 [Source Code Analysis]
Smart App] ;E

[Identification]

[Activity and Behavior]

[Preservation
VeritaS Collector (VC)

[Security Policies]

[Forensic Decision]

o @ o
4

5,3
Smart App Cloud Backend | Recovery ®

—

VeritaS Analyzer (VA)
Forensic Analysis

VeritaS Database (VD)

Figure 1: The architecture of the VERITAS. The VC logs smart data to the VD at runtime. Later, the VA analyzes the data

and infers activities and forensic behaviors.

group includes devices that are deliberately relocated,
disabled, or turned off without the required authorization.

C. Threat Model

We consider two different sets of forensic threats: (1)
anomalous user activities and (2) malicious behavior from
users, smart apps, and devices.

Anomalous User Activities. Anomalous user activity in-
cludes any careless or unintentional action performed by
an unauthorized user inside the smart environment that is
considered a violation of the security policies in place. For
instance, an authorized user trying to access a restricted area
during the non-permitted hours. Here, we consider threats
related to user activities based on their time dependency;
that is, we explicitly consider time-based actions to evaluate
VERITAS in detecting anomalous user activities.

Forensic Behavior. We consider forensic behavior as any
intentional action performed by users, smart apps, and smart
devices that can be considered a threat to the overall state
of the smart environment. These forensic behaviors may
include impersonation attacks, false data injection attacks,
replay attacks, Denial-of-Service, and side channel attacks.

We provide details of specific activities and behaviors
used to evaluate the performance of VERITAS in Section V.
For every activity and behavior, we specify the attack
method utilized, time dependency, and specific examples in
the context of the problem considered by this work. Later,
these activities and behaviors are considered to evaluate the
efficacy and performance of VERITAS.

IV. VERITAS ARCHITECTURE

Figure 1 depicts the general architecture of VERITAS.
First, the user downloads the original smart app source
code from one of the freely available online repositories @.
Then, the VERITAS Collector (VC) automatically analyzes
the app and enables the collection of forensically-relevant
data to a secure database (VD) @. With this, the VC
implements the first three stages of a traditional forensic
analysis (Section II). Specifically, the VC processes include
the identification (via source code analysis) of forensically-
relevant data within the smart apps that monitor and control
the smart environments. Also, the VC supports preserva-
tion of the smart data via implementing secure collection

mechanisms that log the smart data upon app’s utilization
(i.e., runtime data collection). Finally, the collected data
is stored into a secure VERITAS’s database where the data
is properly labeled and time-stamped for further analysis
(i.e., recovery) ©. Later, during the event of a forensic
investigation, the Analyzer (VA) performs data processing
and applies a First Order Markov Chain model on the
VERITAS-collected data @. The purpose of this analysis is to
extract forensically-relevant information from the VERITAS
logs. Analyzing this data allows learning the state of the
smart environment during specific incidents and provides
insights about the users’, apps’, and devices’ actions. Finally,
VERITAS correlates these actions with the security policies
defined for the smart environment to uncover anomalous
user activities and potential malicious behaviors from users,
smart apps, and devices to the investigator @.

A. Forensically-valuable Features in VERITAS

We describe smart app features that potentially contain
relevant information for forensic purposes. We consider
events since they define physical changes in the smart
environment setup based on the user’s activities (e.g., a
door’s state was “unlocked” at an unauthorized time). Also,
our architecture considers actions extracted from smart apps
because they potentially contain valuable timing information
that can define changes in forensic timelines (e.g., a fire
event occurred “after” a door was unlocked). Addition-
ally, we consider user-defined inputs in our architecture.
Changes in user-defined inputs are critical during forensics
analysis because unauthorized modifications directly impact
the execution of the apps’ events, actions, and notification
mechanisms (e.g., the notification recipients of the smoke
detector app are modified right before a fire event). Other
features considered by VERITAS are time and location infor-
mation. These features provide valuable timing information
about forensic actions. Also, they prevent reply attacks from
malicious users trying to inject fake activity data into the
smart environment (e.g., it prevents an attacker from using
old benign logs to hide current potentially dangerous activ-
ities). Finally, VERITAS tracks smart apps communications
to correlate the logged data with information obtained from
notifications. For instance, the device state obtained through
specific VERITAS logs can be confirmed or disproved by
checking the notifications sent by the smart app. This process
may help to identify tampered devices or attackers trying to

inject fake device state data into the system to disrupt the
normal operations of VERITAS.

B. VERITAS Collector (VC)

The VERITAS Collector analyzes the source code of
original smart applications to identify forensically-relevant
data. Then, it automatically inserts code (i.e., app instru-
mentation) to enable the secure collection of the data. The
app instrumentation process of VERITAS works on the source
code of the smart apps. VERITAS takes advantage of the
existence of 1000+ open-source apps in the market today.
Recent data collected from IoT vendors estimate that these
open-source apps control over 4000 different smart devices
from most major vendors including SmartThings, openHAB,
Windows IoT, and AWS IoT [47]. Considering this, the
potential impact of VERITAS is significant, and the approach
of using open-source apps makes its contribution realistic.
We also envision the adoption of VERITAS in the closed-
source market. As we make VERITAS fully open source,
closed vendors can use its technology as is, or adapt it to
their specific needs, so they can enable full out-of-the-box
forensics support in their smart products and take advantage
of the benefits offered by VERITAS framework.

Algorithm 1: Steps in the VERITAS Collector (VC).

1: appSC' <« app source code
Analysis:

2: AST <« generateAST(appSC)

3: ICFG < createICFG(AST)

4: if Exists ICF'G then

5: for nodes in ICFG do

6:

7

8

forensicPT < forensic-relevant points
: end for
: end if
Instrumentation:
9: if forensicPT then
10: for points in forensicPT do

11: Insert VERITAS Logs
12: end for
13: end if

1) Identification Stage: Algorithm 1 details the processes
performed by the VC to analyze and modify a smart app.
During Analysis, the app’s source code is loaded into the VC
client (Line 1). The first step towards analyzing the smart
app source code is to create an intermediate representation
(IR) of the app and model the application’s structure [48].
Different smart home platforms may utilize different pro-
gramming languages to code their smart apps. For instance,
Samsung SmartThings uses Groovy [49] while openHAB
apps are written in a Java-based Domain Specific Language
(DSL). Thus, the IR facilitates the design of a generalized
solution that integrates apps and devices from multiple smart
home/office platforms into the VERITAS’s analysis. Further-
more, modeling the smart app permits the extraction of smart
apps’ entry points, events, and control the flow of data. Also,
it allows for identifying the data sources and exfiltrations
methods (i.e., sink functions) that VERITAS uses to define
(1) the source of the forensically-relevant information and
(2) how this information is sent out from the apps and its
recipients, respectively. The VC extracts an Abstract Syntax
Tree (AST) representation of the smart apps for building

Listing 1: A sample code of a real smart app instrumented by the
VeritaS Collector.

1 /* A section of a code block of a VeritaS—instrumented smart app */
2

3 section("Via a push notification and/or an SMS message") {

4 input("recipients", "contact", title: "Send notifications
to™) {

5 input "phone", "phone", title: "Enter a phone number

to get SMS", required: false}

6}

7 sendValue (”"New recipient defined: $phone”) //VeritaS log

8 }

algorithms to find forensically-relevant points inside the
source code’s IR (Line 2). The advantage of the AST is that
considering the simplicity of the smart apps, it permits the
extraction of app constructs that are relevant to the forensic
analysis like “Events”, “Actions”, and “User-defined Inputs”
(see Section II). Then, the source code analysis starts by
constructing an Inter-procedural Control Flow Graph (ICFG)
of the apps, and by extracting the specific nodes that define
events handlers, actions, and user inputs (Line 3). Once the
ICFG is obtained, the VC recursively visits all the ICFG
nodes and flags all forensic-relevant distinctiveness in Line
6. These distinctiveness can be summarized as:

App Permissions. In smart apps, permissions include the
device information, its capabilities, and the user inputs
defined at install time. The VC flags nodes from the ICFG
that potentially contain information related to permissions.

Entry Points. Smart apps define multiple entry points (i.e.,
event handlers) to subscribe to events occurring in the smart
environment. Hence, these handlers can be utilized to extract
events occurring in the smart environment and the specific
device’s response to those events (i.e., device actions). Thus,
the VC flags the ICFG nodes that define the event handlers
to extract the different device’s actions from the smart app.

Handler-dependent Methods. Once VERITAS flags the
event handlers, the VC visits all the methods invoked by
every specific handler. With this, the VC constructs the
multiple call graph branches of the ICFG.

Sink Functions. VERITAS flags the sink functions used
to send information out of the apps. With this, VERITAS
confirms that notifications are sent to the authorized recip-
ients when forensic events occur in the smart environment.
Additionally, the sink’s information can be used to correlate
device states collected via VERITAS logs. For instance, the
logs from a smart app controlling a motion sensor can be
modified to hide user presence. However, by analyzing the
notification received by the user, VERITAS detects malicious
behavior if the content from the sink function does not
match the recorded log. Also, sink information may reveal
unauthorized app settings (e.g., modification of the sink’s
recipients). Finally, in case of missing sink logs (e.g.,
notifications never received), VERITAS analysis may reveal
devices that were disabled or turned off.

Once the app’s relevant data is identified, the VC process
in Algorithm 1 concludes. At this point, the Instrumentation
process of VERITAS customizes the app by inserting the
tracing logs (Line 11 in Algorithm 1) to capture the forensic
data in real time. Listing 1 shows a sample code of a real

https://iotdots-modifier.appspot.com/

erita odifie onsole
section(“Push notification and/or SMS message")
{ input("recipients", "contact",)

{

input "phone", "phone", title: "Enter phone number,
required: True

}

}

Analysis Result Stacktrace

section(“Push notification and/or SMS message")
{ input("recipients", "contact",)

input "phone", "phone", title: "Enter phone number,
required: True
sendValue(“Recipient”, ${phone})
}

0 Modify Smart Appl Reset Console | Publish This Appl View Recent Apps |

Figure 2: The VERITAS Collector is freely available online.

SmartThings app that have been instrumented by VERITAS.
The VC identifies that a new phone number has been set
to receive notifications from the app. Then, a sendvalue
function is inserted to collect this specific app distinctiveness
in real time.

2) Preservation Stage: VERITAS solves the challenge of
securely collecting relevant forensic data from smart devices
and sensors via app instrumentation. Specifically, the VC
visits the ICFG nodes and detects potentially forensically-
relevant data such as user-defined inputs and device actions.
Then, the VC automatically insert logs to collect the forensic
data. Figure 2 illustrates the instrumentation process of
VERITAS. On the left side, the user simply types or paste the
original source code of the app that needs to be modified to
enable VERITAS. Then, on the right panel, the tool returns
the modified app capable of logging all the forensically-
relevant data from the app. In this example, the VC flags
the user-defined input recipients. This specific input
defines the phone number to which all the notification from
the smart apps will be sent to. As explained earlier, these
types of inputs are critical for forensic purposes. Careless
or malicious users can modify the smart data anytime which
can negatively impact the final purpose of tracking the events
and actions executed by apps. Going back to the previous
example, after labeling the user input, VERITAS modifies the
app by inserting a forensic log. Here, the sendvalue ()
function defines an HTTPS request that securely pushes the
phone information to the remote VD. We note that the use
of the VC web app does not require technical background or
any level of coding experience from the users. The goal of
the VC is to automatically analyze the apps and perform the
required instrumentation to enable the collection of forensic-
relevant data. We made the VERITAS available online at:

https://iotdots-modifier.appspot.com/

3) Recovery Stage: During the recovery process, VER-
ITAS must guarantee the authenticity and integrity of the
collected data. As explained in Section III-A, we expect
network administrators to utilize the VERITAS-modified apps
to control devices within their smart environments. With
this, they can take advantage of VERITAS’s capabilities to
support forensic analysis on data extracted from the smart
environment. We do not expect individuals using other than
the VERITAS-enabled apps within the smart environments.
In fact, doing so would be a direct violation of the secu-
rity policies in places where VERITAS is implemented. To
prevent the VERITAS apps from being modified, network

administrators may verify that they have installed the correct
app version via the use of SHA checksum hashes [50].
While the VERITAS-enable apps are utilized in real time, the
apps send forensically-relevant data generated by the smart
devices to the secure VERITAS database (VD). We protect
the data in motion from apps to the database with the use of
encrypted HTTPS calls via Transport Layer Security (TLS).
Also, we digitally sign the messages containing the sensitive
information with digital certificates and methods approved
by the smart platforms (more details in Section V-A).
Finally, we consider that the VD is secure and protects the
stored data (i.e., data at rest) from being modified/leaked by
external entities. Note that attacks to the server or server-
related threats are not considered in this work.

C. VERITAS Analyzer (VA)

The VERITAS Database (VD) stores data logs obtained
from smart apps at runtime using VC. These logs are fed
later to a prediction model that VERITAS uses infer activities
and forensic behaviors occurring in a smart environment.
For successfully extracting forensics information from the
logs, VA performs the following operations on the VD data:

Time-stamping. As we consider that the smart environment
could be compromised, we cannot trust the temporal in-
formation of the collected smart data. Thus, we timestamp
every data instance collected by VERITAS upon arrival to the
database. We assume that the latency added by VERITAS
from the time in which the action occurs to the time in
which the log is properly timed and stored has negligible
effect in the forensic analysis (see Section V-G).

Labeling. The VA labels the collected data based on timing
information, the specific device and app generating and
handling the data, and their location.

Inference. For simpler smart environments with a low
number of devices (e.g., 5 to 10), data provenance and cross-
app analysis of the collected data could provide enough
forensic evidence. However, more complex scenarios with
a higher number of devices (e.g., enterprise environment
with tens or even hundreds of devices) or environments that
potentially include tampered devices may require a more
in-depth analysis. The VA uses intelligence to analyze the
VD-labeled data and infer forensic information from all data
logs. Specifically, VERITAS utilizes Markov Chain-based
prediction mechanisms, which we describe in Section [V-C2.

Algorithm 2 details the steps executed by the VA to
analyze the forensic data. In Line 1, verLogs variable is

initialized with the content of the VD. The initialization
step also includes updating the variable policy with the
security policies defined for the smart environment at the
time in which the logs were collected. Then, in Line 5
the VERITAS logs are organized and labeled based on the
timing information, the type of devices that generated the
logs, and the location information of the devices. With this
information, a prediction model is applied on the data to (1)
detect user actions in the smart environment (Line 9) and
(2) detect behaviour of users and smart apps, all depending
on the security policies established at the time the logs were
acquired (Line 10). Finally, if a forensic violation is detected,
the flag anomaly is set to TRUE.

Algorithm 2: Steps in the VERITAS Analyzer (VA).

1: verLogs <— VD

2: policy < smart environment security policies

3: anomaly <+ FALSE
Labeling:

4: for each Log in verLogs do

5: label Log by Time, Device, Location

6: M Ldata < labels

7: end for
Detection:

8: for data in M Ldata do

9: Evaluates user activity user Act

10: ML <+ MLanalyzer(user Act, policy)

11: if Anomaly detected in M L then

12: anomaly < TRUE
13: end if
14: end for

In the following, we describe the characteristics of the
data collected and the analysis techniques used by VERITAS
to identify activities and behaviors in a smart environment.

1) Data Characterization in VERITAS: As noted earlier,
the VC collects and stores data from a smart environment in
a secure VERITAS Database (VD). The data includes timing
information, sensor information, device state, location, and
log’s timestamps. VERITAS collects such a diverse dataset
from different sources. For instance, some data may be
collected via instrumenting the app functions that directly
handle data received from devices and sensors (e.g., device
states). And, some other data may be collected via instru-
menting portions of the apps that contain information defined
by users or developers (e.g., location, device settings) [42].

For a specific time slot ¢, the collected data can be
represented by:

Data array, B, = {T,S,D, M, L,t}, (1)

where T represents the timing features, S represents the
set of sensors’ features, D is the set of device features,
M are the features extracted from the controlling devices
(smartphone/tablet), L is the set of location features of
the controlling devices, and ¢ represents the VERITAS log’s
timestamp information. We describe the characteristics of
these features below.

Timing features (T). A smart environment consists of
several sensors and devices that change their states based
on different user activities and controlling commands. In
this context, some devices perform instantaneous tasks (e.g.,

switching lights on and off based on motion) while some
devices perform a task over certain period of time (e.g.,
controlling the room temperature). VERITAS considers this
timing information as a feature to infer the overall state of
the smart environment at a specific time.

Sensor features (S). Sensors in a smart environment trigger
different actions. A smart environment may contain several
different sensors (e.g., motion sensor, temperature sensor,
presence sensor) attached to multiple devices. These sensors
sense the changes in devices’ proximity and help the devices
to take autonomous decisions such as switching lights on
motion or triggering fire alarm after smoke is detected.
Depending on the nature of the sensors, sensor data can
be both logical (active/inactive) or numerical values. For
VERITAS, we collect both numerical values and logical states
of the sensors and create the state of the smart environment
at a specific time. We represent the change in both logical
states and a numerical value of a sensor as a binary input (1
if active/change and O otherwise) to create a forensic data
matrix to train the detection algorithm (see Section IV-C3).

Device features (D). A smart environment supports different
devices that may be or may be not connected to a smart
hub (Section II), to different sensors, or other devices.
These devices can perform multiple tasks as standalone (e.g.,
smart thermostat) or as ad-hoc entities (e.g., automatic door
controlled by smart lock, camera, and presence sensor). For
different user activities and input commands, these devices
change their states (active/inactive) autonomously. VERITAS
considers the device state data as part of its analysis.

Controller device features (M). In a smart environment,
users can use smartphones or tablets to control devices (i.e,
controller devices) from the associated smart apps. VERITAS
collects the control command generated from controller
devices to understand the smart environment settings and
the user intended operations in the smart environment at
any moment.

Location features (L). The smart environment allows con-
trolling the connected devices from both inside and outside
of a specific location. Location information from where a
given command was executed has very high forensic value,
and is critical to infer illegal activities. VERITAS considers
the location of both the controller devices and the smart
devices as a feature to understand activities occurring in the
smart environment. We use app instrumentation to collect
data, such as location, that is not directly provided by smart
devices. Specifically, location information is part of the app’s
permission block and is often defined by the user or the app’s
developer. The permission block of an app defines device-
related settings (e.g., location, value ranges, and notification
recipients). As noted in Section IV-B, we included the
app permissions block as part of the forensically-relevant
information that VERITAS collects.

Timestamps (t). VERITAS considers the data timestamps to
accurately infer the exact date and time of occurrence of the
events. The data instances of type timestamps define the
time interval in which VERITAS predicts the activities and
forensic events within the smart environment. As explained
in Section IV-C2, these intervals are minimized by the use

of a prediction model of first order. Hence, timestamps
represent the prediction instances with high precision. Ad-
ditionally, the use of timestamps prevents adversaries from
performing reply attacks on the VERITAS’s data logs.

2) The Markov Chain Model: VERITAS uses a First Order
Markov Chain model [51] to understand the chain of events
occurring in a smart environment over time and identify any
unexpected or malicious incident that violates the security
policies of an organization. The high statistical correlation
between different smart environment states supports the use
of Markov Chain approaches in VERITAS. In most cases,
a smart environment contains smart devices with similar
sensors that generate a highly redundant dataset. Also, as
we detailed in previous sections, the extraction of Markov
states from the environment constitute a very straightforward
process via smart app instrumentation.

We use the Discrete-Time Markov Chain library written
in Python, PyDTMC [52], to implement VERITAS’s Markov
Chain model. This library offers the flexibility of choosing
a specific number of dependent states, which is very helpful
to infer quasi-instantaneous activities (e.g., opening a door).
Also, PyDTMC offers automatic feature extraction from
datasets, which is suitable for smart environments with
a diverse set of devices and also makes VERITAS easily
scalable.

Benefits of a First Order Markov Chain Model. Note
that the benefits of implementing a Markov Chain model
of first order to support the VERITAS’s analysis are two-
fold. First, a Markov Chain stochastic model permits using
device state information collected from the smart apps to
create an array of Markov states. These states characterize
the behavior of entities (users, devices, etc.) within the smart
environment. We apply this stochastic model to the set of
device states to predict the overall future state of the envi-
ronment. Then, based on the probability distribution of the
Markov states, the model infers the expected state of every
device and identify violations of the security policies within
the environment even in the presence of tampered devices
(see Section IV-D) [53]. Second, because we use a first order
model, exactly the previous (¢_1) Markov State is considered
to infer the current (fy) overall state of the environment
(the model considers the previous dependent state). This
makes the VERITAS’s analysis highly adaptable and resilient
to changes in the smart environment configuration (e.g.,
add/remove devices, change the device settings, etc.). To
explain this, assume that an organization wants to change
the position of some presence sensors. This modification
impacts the overall state of the environment as the new posi-
tions of the sensors change the statistical correlation between
device states. We call this interval a transition time in which
VERITAS does not depend on backwards data of previous
configurations of the environment to successfully predict the
new state. Instead, since VERITAS uses a first order model, its
analyzer can quickly adapt to the new environment state, and
start predicting the new Markov states with the fresh data
instantly, minimizing the duration of the transition time and
hence the time interval in which VERITAS can predict with
high accuracy. For n'" order models, VERITAS would need to
collect several states instances before being able to perform

an accurate prediction. In general, the use of a first order
model guarantees the shortest time frame in which VERITAS
can perform a valid prediction. Finally, the use of a First
Order Markov Model aligns with the characteristics of the
smart devices and sensors whose states do not propagate
over time, but are mostly dependent on the previous state
(e.g., the light is now on, was off before).

3) Markov Chain States in VERITAS: In addition to
considering the previous state to perform the prediction,
we use binary Markov states to characterize a smart en-
vironment. The rationale behind such a design decision is
supported by the fact that most smart sensors and devices
have binary outputs (e.g., door open, presence, light on, light
off, etc.). In fact, only a few cases (e.g., temperature) provide
outputs of type numerical data. Although numeric sensor
values may provide additional cases of analysis and finer
granularity, only those values that lead to a forensic case
(e.g., temperature value over certain threshold that violates a
security policy) are of real interest of VERITAS. Also, multi-
level Markov states are mostly valuable for implementing
real-time monitoring systems, which is not the purpose of the
VERITAS framework. Hence, we convert numerical device
data into binary states and keep the Markov Chain model
simpler and homogeneous.

For this, we implemented a binarizer to convert numer-
ical data into binary values that can be directly interpreted
by the Markov Chain model. We found that for the types
of devices and sensors utilized in our evaluation, only a few
cases of sensors and devices outputs explicitly required bina-
rization. In these specific cases, we correlated user-defined
settings extracted from the smart apps with the security
policies (i.e., EISPs, see Section III-B) to define threshold
values that permit VERITAS determine cases with potential
forensic interest. For instance, for a temperature sensor,
VERITAS may log as “active” (e.g., “1”) any temperature
values exceeding the upper bound limit set by the EISPs,
and “inactive” (e.g., “0”) otherwise. As we combine user-
defined settings and EISPs to binarize numerical values, we
minimize the occurrence of potential quantification errors
due to wrongly determining the “active” and “inactive” state
of the multi-state devices.

4) Analytical Approach used in VERITAS: VERITAS cor-
relates Markov states derived from the data collected from
similar sensors in one location and at any given time to
(1) determine the validity of the state, (2) infer if one
specific state was or not compromised, and (3) determine
the probability that specific events and actions occurring are
either anomalous or malicious. The VA collects the smart
environment data and creates a binary state array (1 for
active status and O for inactive status) to represent the state
of the smart environment at any specific time ¢. Thus, we
represent the state of the smart environment as a n-bit binary
number, where n is the number of features extracted from
the logs. Thus, the total number of possible states of a smart
environment with n number of features (sensors’ states,
devices’ states, controller devices, and locations) would be
m = 2". VERITAS utilizes the timed binary state of the
smart environment to train a First Order Markov Chain
model to detect forensically-valuable behavior from users,

smart apps, and devices. The Markov Chain model benefits
from two main assumptions: (1) the occurrence probability
of a specific state s; only depends on the previous state
s;_1 and (2) the transition between two consecutive states
is independent of time and does not depend on any previous
condition. Based on these assumptions, we represent the
Markov Chain model with the following equation [54].

P(Xty1=z|X1 =21, Xo =22.., Xt =a¢) =
P(Xip1 = z|Xe = m), (2)
when, P(X1 =x1,X2 = xg...,Xt = CCt) > 0,

where X; and X;;; denotes state of the smart environment
at time ¢ and ¢ + 1, respectively. Lets assume the smart
environment has the state ¢ at time ¢ and 7 at time ¢ + 1. If
P;; illustrates the transition probability between state 7 to j,
the state transition matrix for m number of states of a smart
environment can be represented by the following matrix.

Py P2 Pi3 Pin
Py Poo Pos . - Poy,

P=|.o o] (©)
Pn1 P Prnz Pmm

To calculate each element of the transition matrix, we
assume that the smart environment has Xy, Xq,..., X7
states at a given time ¢ = 0,1,...,7. Then, each element
of the transition matrix can be represented by the following

equation [54]: N

N;

P = ; 4)
where V;; is the total number of transition from X; to X,
over a certain period. From the state transition matrix, the
Markov Chain model calculates the probability of occurring
a state or sequence of states. To predict the probability of oc-
curring a state, we assume the initial probability distribution
of the Markov Chain model as follows:

Q= ¢ g qm] (%)

where, ¢, is the probability that the model is in state m at
time 0. The probability of observing a sequence of states
can be calculated by the following equation:

T

s XT) = qz1 HPXt,le (6)
p)

P(X1,Xa,...

D. State Inference via Device Cooperation

VERITAS infers tampered devices based on the analysis
of collected logs from multiple devices. That is, the Markov
Chain model analyses the state of all the devices in the
smart environment at any given time and detects malicious
or unexpected states by comparing data from similar devices
that share similar contexts (e.g., nearby locations). We call
this process device cooperation. During device cooperation
analysis, if one device is compromised or tampered, the
information collected from other trusted devices inside the
environment is used to detect the one reporting fake or
unexpected data. For instance, consider a smart light con-
trolled by a motion sensor. During normal operations, if the
sensor detects any motion, the light is turned on. However,
in the event of a compromised state of the smart light, the
light may not operate appropriately nor follow the motion

sensor states. In this case, a third device (e.g., a smart
thermostat that also includes a presence sensor) can act as an
adjudicator authority to decide which device is misreporting
states. If both the motion sensor and the thermostat achieve
similar states, then the smart light is deemed as tampered.
On the other hand, if the smart light successfully follows
the smart thermostat actions, the motion sensor is flagged
as tampered. In summary, our classification model relies on
third-party entities to resolve conflicts between device states
inside the smart environment.

E. Suitability of the Markov Chain Approach

VERITAS is not a real-time prediction tool, but a forensic
framework that analyzes data after the events have occurred.
Since VERITAS does not infer activities and events occurring
in real time, organizations have the flexibility of adding/re-
moving devices, changing the smart environment settings
and configurations (e.g., new maximum allowed thermostat
temperature value), and upgrading/adding new security poli-
cies (e.g., additional presence restrictions for users) without
the need of re-training a pre-built Markov Chain model. We
demonstrate in Section V that the amount of data collected
from a completely new environment over a period of seven
days is enough to infer activities and behaviors with high
accuracy with VERITAS. Also, as explained in Section IV-C2,
the characteristics of the data collected and the type of
prediction model used impact the time interval in which
events or activities can be predicted with VERITAS. A smart
environment contains several devices with similar sensors,
hence, the data collected tends to be highly redundant.
Data redundancy and the use of a stochastic First Order
Markov Chain model to correlate the data permits learning
the Markov states of the environment with finer granularity
and with the least amount of data. Therefore, VERITAS is
capable of capturing all the events and activities occurring
in the smart environment regardless of the frequency or time
intervals in which they occur.

FE. Chain of Custody in VERITAS

As VERITAS supports traditional forensics, it must abide
to strict Chain of Custody (CoC) rules. However, as VERITAS
introduces automation, the CoC rules has to be implemented
across the different VERITAS architectural stages. For in-
stance, as explained in Section IV-B2, network adminis-
trators start the CoC process by using the right forensics-
enabled application generated by VERITAS via the web
application (Section IV-B). With this, they guarantee that the
logging process integrated to the apps does not maliciously
modify the forensic data during the preservation stage.
Further, we also integrate the authenticity and integrity of
the collected smart data by protecting the transfer process
between apps and the VD residing in the VERITAS server. As
noted in Section IV-B3, we use encrypted HTTPS calls and
digital signatures to (1) avoid passive observers from having
access to the sensitive data during transmission [43] and (2)
verify that the forensic data have not been modified before
analysis. In cases where the digital certificates can not be
verified, the data is rejected for analysis. We also assume
the VERITAS server secure so the classification process of

Device

Type Model Count
Smart Home Hub Samsung SamrtThings Hub 1
Smart Light Philips Hue Light Bulb 5
Yale BIL Lock with
Smart Lock Z-Wave Push Button 2
Deadbolt
First Alert 2-in-1
Fire Alarm Z-Wave Smoke Detector and 1
Carbon Monoxide Alarm
Smart Monitoring System Q;(li?lr]l)t);/ I;?;ESIEAR 2
Smart Thermostat Ecobee 4 Smart Thermostat 1
Motion Sensor Fibaro FGMS-001 ZWS5 Motion
Light Sensor Sensor with Z-Wave Plus Multi- 6
Temperature Sensor sensor
Door Sensor Samsung Multipurpose Sensor 4
Total 22

Table I: List of smart devices and sensors used during the
data collection stage in VERITAS’s evaluation.

VERITAS and its results are not compromised. In addition,
we carefully date and time (i.e., labeling) every collected
log so we can follow a chronological order of the collected
data. As we consider that the smart environment could be
compromised, we add the timelines to the data upon arrival
to the VD. We use the same chronological information
to establish temporal dependencies (i.e., data provenance)
between events and actions generated withing the smart
setting during the Markov Chain analysis.

V. PERFORMANCE EVALUATION

With the performance evaluation of VERITAS, we aim to
answer the following research questions:

o RQ1: Anomalous Activities. What is the performance of
VERITAS in inferring anomalous activities within a smart
environment? (Section V-C).

e RQ2: Forensic Behavior from Users. Can VERITAS
effectively detect forensic behaviors from the users that
explicitly violate the corporate security policies? Can the
VERITAS analysis detect, via device cooperation, the pres-
ence of tampered devices within the smart environment?
(Section V-D).

e RQ3: Forensic Behavior from Devices and Apps.
What is the performance of VERITAS in detecting forensic
behaviors from malicious apps? (Section V-E)

e RQ4: Overhead. What is the overall overhead introduced
by VERITAS in terms of physical storage and latency?
(Section V-G).

Note that we obtained Institutional Review Board (IRB)
approval to test VERITAS in real scenarios. We implemented
a smart office environment with specific security rules en-
forced in the system (e.g., time-restricted location access
for users and restricted device re-configuration) where real
users performed regular activities. Further, we consider a
group of users that carelessly violate the security rules of
the environment by performing anomalous activities such
as accessing office locations at an unauthorized time or
changing the configuration and topology of the smart en-
vironment. Finally, we considered specific forensic behavior
like poisoning data from a specific number of devices
using malicious apps. We built the Markov Chain-based

10

detection method and trained our model with data collected
by VERITAS from the real-life smart office setup.

A. VERITAS Implementation

The current implementation of VERITAS provides so-
lutions for the Samsung SmartThings platform. With this,
we focus on a smart platform that (1) defines the highest
amount of different smart devices and apps in the mar-
ket [55]; (2) it is open-source, so the apps’ source code
is freely available online; and (3) it provides extensive
documentation to developers [39]. To protect the com-
munication between the SmartThings apps and the secure
VD, we used the asynchttpvl class of Samsung Smart-
Things [39], which allows for asynchronous and encrypted
HTTPS calls. Also, we used the SmartThings x.509 cer-
tificates to verify integrity of the data. Specifically, we
fetched the public keys generated for every app from the
https://key.smartthings.com + <aKeyId> ac-
count, which is assigned the first time the VERITAS-enabled
app is uploaded to the Samsung SmartThings account online.

1) Training Environment Setup: For training purposes,
we built a real-life smart office environment with 22 different
and popular smart devices and their apps available in the
SmartThings App Market (Table I). Then, we designed
generic forensically-valuable activities that the users typ-
ically perform in most smart environments. The set of
considered activities included the following scenarios:

Time-dependent access. We allowed a single user to access
all the office locations during scheduled hours and observed
her activity patterns inside the smart environment.

Restricted access. We repeated the previous activities while
enforcing restricted access policies for specific locations in
the smart environment.

Multi-user environment. We combined the two previous
scenarios with up to ten users interacting within the smart
setting, which emulated more realistic setups.

Reconfiguration rule. We allowed configuration of the
devices and apps in a timely and supervised manner only.
Any unauthorized reconfiguration is considered anomalous.
We provided time-specific rules to collect data while re-
configuring the smart environment.

2) Data Collection: During data collection, we used
the VC available online to automatically instrument the
SmartThing apps and insert the forensic log code. Then,
while utilizing the apps in real setups, the VERITAS-collected
data was sent to the VERITAS datbase (VD). For evalua-
tion purposes, we categorized the user activities as time-
independent and time-dependent. In the first group, we
included all the user actions whose execution times were
irrelevant to VERITAS. The second category grouped actions
whose execution times were strictly regulated by the security
policies of the smart environment (e.g., the presence of a user
in a restricted area would constitute a violation between 8:00
pm and 7:00 am). We explicitly considered scenarios where
10 different authorized users were freely performing regular
smart office activities within a smart environment consisting
of 22 smart devices and sensors (Table I) for seven days. The

Time 4 ack Method

Threat Dependency

Specific Attack Example

Bob changes the orientation of the presence sensor to fit

Activity-1 TI Tampered device . .
in a new equipment.
Careless Bob manually increases the temperature of smart thermos-
Activity-2 TIL . tat from home, the night before of an important meeting
unauthorized user .
with the stakeholders
an Careless A :
Activity-3 TD . Bob is inside a restricted area (servers room) at 8:45 pm.
unauthorized user
- Careless . L .
Activity-4 TD unauthorized user Bob is getting into the office at 8:45 pm.
Activity-5 TD Car‘%lcss Bob leaves the smart door unlocked.
unauthorized user
. . Bob disables the smart camera to stop recording while he
Behavior-1 I Tampered device is performing unauthorized activities inside the office O.
Impersonation Alice gets access to the office O using the smart lock pin
Behavior-2 TI P Attt that she obtained through a malicious app that leaks in-
formation.
Behavior-3 TI False Data Injection The smart fire detector reports inverted fire alarm states to
- Reply Attack ~ VERITAS.
Behavior-4 TI DenlaXzi;Sl(ervlce The smart thermostat is shut down via a malicious app.
Behavior-5 T Side Channel The smart light app disable the compromised smart came-

Attack ra by creating a specific light on/off pattern.

Table II: We used these specific activities and behaviors to
evaluate the efficacy of VERITAS.

activities and behaviors included in our evaluation were not
unique to our testing environment, but represented actions
that users can perform in any similar smart office scenario
(e.g., opening a door). Thus, our evaluation results can be
generalized to other smart environments with similar types
of devices, sensors, and apps.

We first asked the users to perform their regular office ac-
tivities while strictly avoiding violating the security policies.
Then, for the anomalous activities, we asked the users to
implicitly violate the security policies defined for the smart
environment. Specifically, the users performed five specific
anomalous types of activities. These anomalous activities
were related to: (Activity-1) careless tampering of smart
devices (e.g., relocation, disabling), (Activity-2) negligent
modification of device settings (e.g., temperature values),
(Activity-3) inadvertent user presence into restricted office
locations, (Activity-4) careless and unauthorized access to
restricted locations, and (Activity-5) negligent and unau-
thorized use of smart office devices. We further collected
data related to forensically-relevant behavior from the users,
smart apps, and devices. Forensic behaviors from users’
actions considered a user that tries to modify, tamper, or
remove the devices in the smart environment. We define a
Behavior-1 intended to explicitly and maliciously change the
original configuration of the smart setting to prevent VERI-
TAS from sending incriminating logs to the VD. We allowed
the users to tamper (e.g., disable, relocate) and remove smart
devices to recreate this scenario. On the other hand, for
forensic behaviors related to the smart apps, we installed the
modified version of malicious smart apps collected from the
IoTBench [56] project. We defined four additional behaviors
as follows. For Behavior-2, we created two different apps to
control a smart lock that leak the secure pin to an attacker.
For Behavior-3, we built an app that injects forged data in a
fire alarm and triggers the alarm maliciously. For Behavior-
4, we developed an app that can power down the smart
thermostat after setting a specific input temperature, creating
a Denial-of-Service (DoS) situation. Finally, for Behavior-
5, we created an app through which a specific light pattern
can maliciously trigger the smart camera. To collect the

11

ol
o
%

0.95

» 0.96
2 3
& % 0.94
= 09 2
= Z
D;:) é 0.92
J =09
0.85 . == Activity [
== Activity 0.88 =0+ Behavior °
-0+ Behavior - b
0.8 0.86
0.02 0.04 0.06 0.08 0.1 0.12 0.85 0.9 0.95
False Positive Rate Recall Rate
(a) ROC (b) PRC

Figure 3: Impact of data imbalance in VERITAS.

behavior-related data, we performed the attack scenarios
multiple times. We also considered multi-attacker scenarios
where multiple attackers perform different attacks at once.

We provide details of the specific anomalous activities
and forensic behaviors considered in our implementation and
evaluation of VERITAS in Table II. For every activity and
behavior, we specify the attack method utilized, the time
dependency, and provide specific examples in the context of
the problem considered by this work. These activities and
behaviors were utilized to test the efficacy and performance
of VERITAS in realistic smart office environments.

Our regular user activity dataset comprised 84209
forensically-valuable incidents. We also collected 4500 in-
stances of anomalous activities and 7500 data instances
corresponding to forensic behaviors. The data collected from
regular user activities represented the 87.5% of the total
data. Meanwhile, the 7.8% and the 4.7% of the data were
obtained from forensic behaviors and anomalous activities,
respectively. We applied some techniques to avoid data
imbalance and over-fitting issues in our evaluation. First,
we under-sampled the set of regular activity data until we
obtained a new evaluation dataset with a proportion of 50%
of the data corresponding to regular activities and 50% of the
data corresponding to both anomalous activities and forensic
behaviors (50-50 rule). We used 75% of the new dataset to
train the Markov Chain model and the remaining 25% to
evaluate its performance, which is a typical data split used
in other research studies [42], [54], [57]. Finally, we used
k-fold cross validation to generalize our Markov model and
avoid overfitting of specific activities or behaviors during
training.

3) Model Training and Optimization: To determine the
effectiveness of our data imbalance correction process,
we considered both the Receiver Operation Characteristics
(ROC) and Precision-Recall Curve (PRC) metrics. We used
these metrics to evaluate the base-rate fallacy of the training
data [58] after applying the techniques to avoid data imbal-
ance and over fitting issues. Figures 3(a) and 3(b) illustrate
the ROC and PRC for user activities and forensic behaviors.
We used the trapz function in MATLAB to calculate the
area under the curve for both Figures 3(a) and 3(b). The
ROC curves resulted in an average area under the curve of
85.1%, indicating very low sensitivity to data imbalance in
VERITAS [59]. The PRC evaluation achieved an area under
the curve of 82.7%, indicating excellent performance of
VERITAS under imbalanced dataset [60].

100

90
90

[=@=Forensic Behavior-1

80

80T [Accuracy:

Min = 93.24%
Max = 100%

70

Accuracy (%)
Accuracy (%)

70

=@~ Forensic Activity-1

= Forensic Activity 2 No. of Tampered Devices:
-3

60 Min=1

60

Forensic Activity-4
== Forensic Activity-5

50

50
10 2 4 6 8 0 12

Number of Tampered Devices

12 3 4 5 6 71 8 9
Number of Users

1416

(a) User Activities (b) Tampered Devices

Accuracy (%)

100
‘ 2500 a <—2400ms

AY

TR :
h e 2000

80 i3
£ 1500 N

e Latency (ms)
’

% Al
70 1000 N 20ms

Z N
\
ot

-
htps async calls https async calls
16 +
AtomicState

2

25ms

er:

=©- Forensic Behavior-2
=& Forensic Behavior-3

Forensic Behavior-4
=9 Forensic Behavior-5

Av
2
=

60

0
s https syne calls

2 4 6 8 0 12
Number of Devices

14

(¢) Forensic Behaviors (d) Overhead

Figure 4: Performance of VERITAS in: (a) inferring forensic activities in multi-user scenarios, (b) detecting forensic behavior
related to tampered smart devices, and (c) detecting forensic behavior of compromised smart apps. Finally, (d) details the
average latency imposed by VERITAS to smart apps’ execution times.

B. Performance Metrics

We chose six different performance metrics to evaluate
the effectiveness of VERITAS: True Positive rate or Recall
rate (TPR), False Negative rate (FNR), True Negative rate
or Specificity (TNR), False Positive rate (FPR), Accuracy,
and F-score. We define success and failure as follow:

e True Positive (TP): Refers to the total number of correctly
identified regular activities.

True Negative (TN): Specifies the number of correctly
detected anomalous activities or forensic behaviors.
False Positive (FP): Defines the number of instances when
an anomalous activity or a forensic behavior is deemed
as a regular activity.

False Negative (FN): States the number of regular activi-
ties that are categorized as anomalous activities or forensic
behaviors.

C. Inferring User Activities

The state of the interconnected devices inside the smart
environment depends on the on-going user activities. For
example, while a user moves from one place to another,
several devices and sensors become active. The changes
in device states can be an instantaneous event (a specific
event at a specific time such as switching on a light) or
a combination of subsequent events over a certain period
(motion from one place to another).

Table III shows the performance of VERITAS while
inferring user activities. One can observe that, for time-
independent activities (i.e., Activity-1 and Activity-2), VER-
ITAS achieved accuracy (i.e., ACC) and F-score values of
over 98% and 96%, respectively. True Positive Rate (TPR)
and True Negative Rate (TNR) are also high (over 99% and
94%, respectively). On the other hand, for time-dependent
activities (i.e., Activity-3, Activity-4, and Activity-5), VER-
ITAS achieved accuracy and F-score values of over 95%
and 91%, respectively. In summary, VERITAS obtained av-
erage accuracy values of over 95% for detecting different
forensically-relevant user activities.

In the case of a multi-user smart environment, the fact
that the users may perform different tasks at once directly
impacted the accuracy of VERITAS. Figure 4(a) shows the
accuracy of VERITAS in inferring user activities in multi-
user scenarios. As explained, one can observe how the

12

User TPR FNR TNR FPR ACC F-
Activity Score
Activity-1 0.9926 0.0074 0.9562 0.0438 0.9907 0.9740
Activity-2 09904 0.0096 0.9438 0.0562 0.9880 0.9665
Activity-3 0.9860 0.0140 0.8623 0.1377 09739 0.9197
Activity-4 09721 0.0279 08614 0.1386 0.9664 0.9133
Activity-5 09584 0.0416 0.8861 0.1139 0.9547 0.9208

Table III: Performance of VERITAS in inferring user activi-
ties.

accuracy values decreased with the number of users. For
time-independent activities (i.e., Activity-1 and Activity-2),
VERITAS achieved accuracy in the range of 98% to 95%. For
time-dependent activities (i.e., Activity-3, Activity-4, and
Activity-5), the accuracy of VERITAS varied from 96% to
86% as the number of users increased.

D. Forensic Behaviors from Users

Devices installed in a smart environment can be vul-
nerable to tampering, which can lead to malicious events.
Tampered devices impact VERITAS performance as the
framework relies on legitimate Markov States to infer actions
and activities occurring in the smart environment. Although
VERITAS is not a tool to detect compromised devices, it is
possible to infer device tampering by analyzing the data
collected from similar sensors and devices in a location.
For instance, if a motion sensor is tampered with, the data
collected from that sensor would contradict states from
similar devices at the same location. Figure 4(b) depicts
the accuracy of VERITAS in detecting tampered devices in a
smart environment. One can observe that VERITAS achieved
near 100% of accuracy in cases with 2 tampered devices
in the environment. As expected, the accuracy of VERITAS
decreased as the number of tampered devices increased in
the system. However, even with a maximum number of 16
tampered devices, VERITAS performed very well with over
90% accuracy.

E. Forensic Behaviors from Devices and Apps

Smart home/office platforms offer customized apps to
control smart devices. In recent years, researchers have
reported several malicious apps that can perform malicious
activities in the smart environments [48], [55], [56]. We
evaluated the efficacy of VERITAS in detecting behaviors in

Behavioral F-
Model TPR FNR TNR FPR ACC Score
Behavior-2 0.9612 0.0388 0.8652 0.1348 0.9533 0.9106
Behavior-3 09651 0.0349 0.9289 0.0711 0.9621 0.9466
Behavior-4 0.9730 0.0270 0.9317 0.0683 0.9696 0.9518
Behavior-5 0.9687 0.0313 0.9012 0.0988 0.9631 0.9336

Table IV: Performance of VERITAS in detecting forensic
behaviors from smart apps.

a smart environment caused by malicious apps installed in
the system. As noted earlier, we considered four different
scenarios to evaluate app behavior in VERITAS (Section III).
To evaluate these scenarios, we installed malicious VERI-
TAS-modified apps in a real-life smart environment (smart
office). Table IV shows the evaluation results of VERITAS in
detecting the app’s behavior in the smart environment. One
can observe that VERITAS achieved accuracy and F-score for
the cases above of 95% and 91%, respectively.

Figure 4(c) details the accuracy of VERITAS for different
forensic behaviors when the number of devices being con-
trolled by malicious apps increases in the system. VERITAS
achieved the highest accuracy of 97% for Behavior-4 and
the lowest accuracy of 95% for Behavior-2, for the case of
only one device in the system. As the number of devices
increased, the accuracy decreased to 95% and 89% for
Behavior-4 and Behavior-2, respectively. The accuracy of
detecting Behavior-3 and Behavior-5 varied between 96%
to 94% and 96% to 92%, respectively.

F. False Positive Rate Evaluation

We observed some cases of relatively high FPR and
FNR during our evaluation of time-dependent activities
(i.e., Activity-3, Activity-4, and Activity-5) in Table III and
forensic behaviors in Table IV (Behavior-2 and Behavior-
5). Although 22 devices is a very good representative setup
of realistic smart environments, we attribute these results
to (1) the number of devices and sensors used during our
evaluation and (2) the amount of data collected. We observed
that the inference of time-dependent activities such as the
user motion were highly dependent with the amount of data
used during training in VERITAS. We noticed that VERITAS
had more difficulties to infer user motion as different motion
patterns from users during different days of the week caused
the Markov Chain states to substantially differ.

We investigated the activities and behaviors with the
highest FPR (i.e., Activity-3, Activity-4, Behavior-2, and
Behavior-5) to verify the root cause. Specifically, we re-
trained the Markov Chain model using the cumulative
amount of data corresponding to those specific activities
and behaviors and observed the FPR performance over time.
Figure 5(a) and 5(b) depicts the FPR against training data
for selected activities and behaviors. For all four activities
and behaviors, we can observe that the FPR decreased with
the number of training days. However, in Figure 5(a), the
FPR suddenly increased in the 6" day for Activity-4. We
manually checked and found that this was caused by the
differences between activities performed during weekdays

13

False Positive Rate
False Positive Rate

1 2 3 4 5 6 1 2 3 4 5 6 7
Collected Data (days) Collected Data (days)

(a) FPR vs. Training (Activities) (b) FPR vs. Training (Behaviors)

Figure 5: Impact of the training data on VERITAS’s FPR.

and weekend schedules (Activity-4 depends on user pres-
ence and time). The FPR decreased again after we trained
VERITAS with data from the 7" day. We can conclude that
the current performance of VERITAS can be further improved
with additional training data. Since VERITAS is a forensic
framework that uses a first order model and not a real-time
analysis tool, we can realistically assume that the cumulative
amount of collected evidence over time in real scenarios
would be enough to improve these preliminary results easily.

G. Overhead Analysis

We evaluate overhead based on (1) the amount of phys-
ical storage occupied by the VERITAS-modified apps in the
cloud servers and (2) the extra latency imposed on the apps.

Physical Storage. On average, the VC added 110 new lines
of code to the original smart apps, which represents an
increase of around SKB of physical memory space per app.
Additionally, we evaluated the physical memory space used
to store VERITAS’s logs into the VD. We acquired data from
three different types of experiments: regular user activities,
anomalous activities, and forensic behavior from users and
apps. In total, the datasets from 7 days of activities occupied
a total size of 20.55 MB of memory.

Latency. We define latency as the additional delay imposed
to the VERITAS-modified apps compared to the execution
time of original apps. In general, the latency depends on (1)
the number of times that the VERITAS sends logs to the VD
and (2) the VERITAS logging function’s execution time. The
higher latency (2.4 sec) was observed when VERITAS used
synchronous HTTPS requests every time a log was sent to
the VD. To reduce latency, we implemented asynchronous
HTTPS calls using the asynchttp_vl API in Samsung
SmartThings [39]. Further, we utilized the AtomicState
variable in SmartThings to queue and map several logs
together before communicating with the VD. Finally, with all
these modifications, the average latency overhead imposed
by VERITAS decreased to around 30ms for every HTTP S call
sent to the VD (Figure 4(d)).

VI

A. Privacy and Ethic Considerations of VERITAS

DISCUSSION

VERITAS has access and stores sensitive information.
Thus, we apply well-known data protection schemes (i.e.,
restrictive access control, encryption) to secure the collected
logs at rest, in motion, and in use to prevent adversaries from

compromising the data. In addition, the VERITAS’s analysis
does not make any effort to fingerprint user behavior, nor
collect Protected Personal Information (PPI), nor implement
mechanisms that can be used for user surveillance. VERITAS
is not a surveillance tool nor a tool to monitor the users
in real time. Instead, VERITAS is intended to be used in
highly critical environments, where the users performs duties
related to their work environment only and not activities
related with their personal lives.

B. Security Analysis of VERITAS

Assume there is an attacker, Mallory, trying to bypass
the VERITAS analysis or modify its results to her benefits.

False Data Injection. Mallory may have the capability to
inject false data into the VERITAS Database (VD) and skew
the forensic analysis results. VERITAS uses digitally signed
requests (Section IV-F and V-A) to send data from the
instrumented apps to the VD while protecting the integrity
of the data and preventing external attackers from injecting
false data. As an example, Samsung SmartThings provides
mechanisms to digitally sign HTTPS requests following the
IETF HTTP Signatures Draft 3 specification. The legitimacy
of the logs sent via SmartThings APIs can be verified via
digital signatures, minimizing the impact of the false data
injection attacks in VERITAS [39], [61].

Unauthorized App Instrumentation. Mallory may use the
freely available Collector to instrument compromised apps
and use those app to control the smart environment. To
do so, Mallory would need to compromise the credential
information of the Samsung SmartThings account under
which the legitimate instrumented apps and devices are
registered. VERITAS relies on the security measures im-
plemented by SmartThings to protect the user credentials.
These measures include the use of encryption to protect
the credential information of users, hashed passwords, and
Multi-Factor Authentication (MFA) [62]. Also, inside the
SmartThings account, corporate administrators may verify
that they are using the allowed version of the apps via the
use of SHA checksum hashes [50] (Section IV-B3).

Tampering Devices or Inserting Compromised Devices.
Mallory tries to tamper the devices and sensors in the
smart environment to modify the forensic data collected and
change the outcome of the forensic analysis (e.g., disable a
presence sensor). In a similar attack, she may try to insert
compromised devices that generate fake data. Our evaluation
results in Section V-D demonstrate that VERITAS is resilient
and resistant to this type of attack via the use of device
cooperation. We note that device cooperation is effective
when the environment is redundant enough so the tampered
data can be compensated with information collected from
similar devices and sensors. As the number of tampered
devices increase, the accuracy of VERITAS decreases, hence,
Mallory may succeed in this attack if she can successfully
tamper a high number of devices. Device cooperation does
not stop the attack but makes VERITAS more resistant to it
and also makes it more difficult for Mallory to implement
the attack. Our evaluation results in Section V-D demonstrate
that VERITAS can achieve over 90% accuracy even when the

14

Cross Consider No Platform Fr.eely Consider App
Tool Name App . . . Available Tampered Data
. Devices Modification . . .
Analysis Online Devices Analysis
FlowFence [77] (] O O [o O
ContextIoT [78] o o [o o o
SaINT [48] (o) [] [) [(¢) (e}
ProvThings [23] [] [] [] (@] o o
IOTWATCH [42] (0] o [] [} ° °
IRULER [79] [] @) ° [[]]
VERITAS ° .) ° .)

Table V: VERITAS vs. other smart data analysis tools.

number of compromised devices represent over 50% of the
total number of devices in the environment.

Adversarial ML Attacks. Mallory may use adversarial
machine learning to tamper with the Markov Chain model
and modify the forensic analysis results. We consider this
attack out of scope, as VERITAS’ model is built and trained
on demand only when a forensic investigation is requested.
Although the attack is possible, we consider the forensic
process secure and outside of the scope of VERITAS.

VII. RELATED WORK

Forensic Data Collection. Previous approaches that collect
data from the smart environment and devices only focus
on vendor-specific devices [63], present general methods to
only collect data without any future analysis [64], [65], or
have proposed models to collect data for forensic purposes
using smart devices [66]-[68]. Kebande et al. proposed a
generic approach, DFIF-10T, to analyze digital forensic data
in Internet of Things (IoT) settings [69]. However, the au-
thors do not offer any real-life implementation or evaluation.
Zawoad et al. proposed FAIoT, a forensic-aware eco-system
to collect forensic data from smart platforms [70]. FAIoT
collects data systematically but it does not offer data analysis
capabilities. Chung et al. proposed a forensic framework to
collect and analyze forensic data in an IoT eco-system [71].
However, this solution is limited to Amazon Alexa with only
one device-specific solution.

Forensic Analysis in Smart Settings. Previous research
proposed digital forensic frameworks for the IoT. The work
in [72] proposes a forensic framework that analyzes network
data to detect anomalous IoT activities. In [73] the authors
propose an holistic forensic model that define baselines for
IoT forensics. Finally, the authors in [74], [75] propose a in-
depth study about challenges, approaches, and open issues
in IoT forensics analysis.

Smart Data Logging. Prior works have used logging to
access smart app data, which is allowed in some Ismart
home/office platforms [76]. ProvThings [23] proposes a
platform-centric approach that looks at activities from smart
apps for data provenance purposes. However, the analysis is
limited only to consider the temporal relationship between
devices and apps events. Lastly, this work assumes trusted
devices which, despite considered in other works [55], [77],
[78], may be unrealistic in several scenarios.

Information Flow Analysis. Recently, information flow
analysis (IFA) has moved from traditional domains like
Android to IoT. Table V summarizes the major differences

between FlowFence [77], ContextloT [78], ProvThings [23],
SaINT [48], IOTWATCH, IRULER, and VERITAS. In general,
solutions prior to VERITAS are limited to policy enforcement,
data provenance, or privacy analysis in [oT. In summary,
VERITAS achieves the capabilities of all the considered
tools with high accuracy and low overhead. In addition, the
proposed framework also offers the capability of applying
deep data analysis to solve a comprehensive forensic model
that includes challenges related to careless users, malicious
users, malicious apps, and tampered devices.

VERITAS vs. Prior Works. VERITAS presents a lightweight
solution that automatically analyses smart apps source code
and applies app instrumentation to collect forensically-
relevant data from a smart environment. Then, the frame-
work analyzes the collected data to infer anomalous activi-
ties and malicious behavior from users, devices, and smart
apps. VERITAS flags the activities and forensic behaviors that
potentially violate the security policies defined for the smart
environment.

VIII. CONCLUSION

Devices and sensors deployed in smart environments
have access to data with high forensic value. Nonetheless,
current smart home/office platforms do not provide any
digital forensic capability to keep track and analyze such
data. As a result, current forensic analysis do not use infor-
mation from smart settings to perform their investigations.
In this work, we introduce VERITAS, a novel framework that
instrumented smart apps and extracted forensically-relevant
logs from the smart environment. Then, the framework
used a First Order Markov Chain model to automatically
analyze the data for forensic purposes. We tested VERITAS
in a realistic smart office environment with a total of 22
devices that produced 84209 forensically-valuable incidents.
VERITAS achieved over 95% accuracy in inferring anoma-
lous activities and forensic behaviors from users, devices,
and smart apps. VERITAS’s performance yielded very low
overhead to the cloud server and smart apps.

ACKNOWLEDGMENTS

This work was partially supported by the U.S. Na-
tional Science Foundation (Awards: NSF-CAREER-CNS-
1453647, NSF-1663051). The views expressed are those of
the authors only, not of the funding agencies.

REFERENCES

[11 S. Notra, M. Siddiqi, H. H. Gharakheili, V. Sivaraman, and R. Boreli,
“An Experimental Study of Security and Privacy Risks with Emerg-
ing Household Appliances,” in Communications and Network Secu-

rity (CNS), 2014.

H. Aksu, L. Babun, M. Conti, G. Tolomei, and A. S. Uluagac,
“Advertising in the IoT Era: Vision and Challenges,” IEEE Com-
munications Magazine, 2018.

L. P. Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac,
“Survey on Enterprise Internet-of-Things Systems (E-IoT): A Secu-
rity Perspective,” arXiv preprint arXiv:2102.10695, 2021.

B. L. R. Stojkoska and K. V. Trivodaliev, “A Review of Internet
of Things for Smart Home: Challenges and Solutions,” Journal of
Cleaner Production, vol. 140, 2017.

[2]

[4]

15

(5]

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

A. K. Sikder, G. Petracca, H. Aksu, T. Jaeger, and A. S. Uluagac, “A
Survey on Sensor-Based Threats and Attacks to Smart Devices and
Applications,” IEEE Communications Surveys & Tutorials, vol. 23,
no. 2, 2021.

A. K. Sikder, L. Babun, H. Aksu, and A. S. Uluagac, “Aegis: a
Context-aware Security Framework for Smart Home Systems,” in
Proceedings of the 35th Annual Computer Security Applications
Conference, 2019.

A. K. Sikder, L. Babun, and A. S. Uluagac, “Aegis+ A Context-
aware Platform-independent Security Framework for Smart Home
Systems,” Digital Threats: Research and Practice, vol. 2, no. 1, 2021.

Control4: Can Smart Home Technology Reduce Home Insurance
Rates?, https://www.control4.com/blog/440/can-smart-home-
technology-reduce-home-insurance-rates, [Online; accessed 10-
March-2020].

A. I. Newaz, A. K. Sikder, L. Babun, and A. S. Uluagac, “Heka:
A novel Intrusion Detection System for Attacks to Personal Med-
ical Devices,” in 2020 IEEE Conference on Communications and
Network Security (CNS). 1EEE, 2020, pp. 1-9.

L. Babun, H. Aksu, and A. S. Uluagac, “Identifying Counterfeit
Smart Grid Devices: A Lightweight System Level Framework,” in
IEEE International Conference on Communications (ICC), 2017.

L. Babun and H. Aksu and A.S. Uluagac, “A System-level Behavioral
Detection Framework for Compromised CPS Devices: Smart-grid
Case,” ACM Transactions on Cyber-Physical Systems, vol. 4, no. 2,
2019.

L. Babun, H. Aksu, L. Ryan, K. Akkaya, E. S. Bentley, and
A. S. Uluagac, “Z-IoT: Passive Device-class Fingerprinting of Zigbee
and Z-wave IoT Devices,” in IEEE International Conference on
Communications (ICC), 2020.

L. Babun, H. Aksu, and A. S. Uluagac, “CPS Device-Class Iden-
tification via Behavioral Fingerprinting: From Theory to Practice,”
IEEE Transactions on Information Forensics and Security, vol. 16,
2021.

A. Cosson, A. K. Sikder, L. Babun, Z. B. Celik, P. McDaniel, and
A. S. Uluagac, “Sentinel: A Robust Intrusion Detection System for
IoT Networks Using Kernel-Level System Information,” in Proceed-
ings of the International Conference on Internet-of-Things Design
and Implementation, 2021.

Z. B. Celik, P. McDaniel, G. Tan, L. Babun, and A. S. Uluagac, “Ver-
ifying Internet of Things Safety and Security in Physical Spaces,”
IEEE Security & Privacy, vol. 17, no. 5, 2019.

C. Kaygusuz, L. Babun, H. Aksu, and A. S. Uluagac, “Detection
of Compromised Smart Grid Devices with Machine Learning and
Convolution Techniques,” in IEEE International Conference on Com-
munications (ICC), 2018.

K. Denney, E. Erdin, L. Babun, M. Vai, and S. Uluagac, “USB-watch:
A Dynamic Hardware-assisted USB Threat Detection Framework,” in
International Conference on Security and Privacy in Communication
Systems. Springer, 2019.

F. Naseem, L. Babun, C. Kaygusuz, S. Moquin, C. Farnell, A. Man-
tooth, and A. S. Uluagac, “CSPoweR-Watch: A Cyber-Resilient
Residential Power Management System,” in [EEE Green Computing
and Communications (GreenCom), 2019.

A. K. Sikder, L. Babun, Z. B. Celik, A. Acar, H. Aksu, P. McDaniel,
E. Kirda, and A. S. Uluagac, “Kratos: Multi-user Multi-device-aware
Access Control System for the Smart Home,” in Proceedings of
the 13th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, 2020.

S. Chitnis, N. Deshpande, and A. Shaligram, “An Investigative Study
for Smart Home Security: Issues, Challenges and Countermeasures,”
Wireless Sensor Network, p. 61, 2016.

P. Sundaravadivel, K. Kesavan, L. Kesavan, S. P. Mohanty, and
E. Kougianos, “Smart-Log: A Deep-Learning Based Automated
Nutrition Monitoring System in the IoT,” IEEE Transactions on
Consumer Electronics.

M. A. B. Ahmadon, S. Yamaguchi, S. Saon, and A. K. Mahamad,
“On Service Security Analysis for Event Log of IoT System Based

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

on Data Petri Net,” in Inter. Symp. on Consumer Electronics, Nov
2017.

Q. Wang, W. U. Hassan, A. J. Bates, and C. Gunter, “Fear and
Logging in the Internet of Things,” in Network and Distributed
Systems Symposium (NDSS), Feb 2018.

SmartThings Logging, Matt J
https://github.com/krlaframboise/SmartThings/blob/
master/smartapps/krlaframboise/simple-event-logger.src/simple-
event-logger.groovy, [Online; accessed 10-March-2020].

L. P. Rondon, L. Babun, K. Akkaya, and A. S. Uluagac, “HDMI-
walk: Attacking HDMI Distribution Networks Via Consumer Elec-
tronic Control Protocol,” in Proceedings of the 35th Annual Com-
puter Security Applications Conference, 2019.

K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si,
X. Zhang, and D. Xu, “Hercule: Attack Story Reconstruction via
Community Discovery on Correlated Log Graph,” in Proceedings
of the 32Nd Annual Conference on Computer Security Applications,
2016.

B. Saltaformaggio, Z. Gu, X. Zhang, and D. Xu, “{DSCRETE}:
Automatic Rendering of Forensic Information from Memory Images
via Application Logic Reuse,” in 23rd USENIX Security Symposium
(USENIX Security 14), 2014.

A. Ali-Gombe, S. Sudhakaran, A. Case, and G. G. Richard III,
“DroidScraper: A Tool for Android in-memory Object Recovery and
Reconstruction,” in 22nd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2019), 2019.

N. Lewis, A. Case, A. Ali-Gombe, and G. G. Richard III, “Memory
Forensics and the Windows Subsystem for Linux,” Digital Investi-
gation, vol. 26, 2018.

M. Graziano, A. Lanzi, and D. Balzarotti, “Hypervisor Memory
Forensics,” in International Workshop on Recent Advances in In-
trusion Detection, 2013.

A. Reina, A. Fattori, F. Pagani, L. Cavallaro, and D. Bruschi, “When
Hardware Meets Software: A Bulletproof Solution to Forensic
Memory Acquisition,” in Proceedings of the 28th annual computer
security applications conference, 2012.

Frank,

L. Martignoni, A. Fattori, R. Paleari, and L. Cavallaro, “Live and
Trustworthy Forensic Analysis of Commodity Production Systems,”
in International Workshop on Recent Advances in Intrusion Detec-
tion. Springer, 2010.

R. Hegarty, D. J. Lamb, and A. Attwood, “Digital Evidence Chal-
lenges in the Internet of Things,” in INC, 2014, pp. 163-172.

Y. Yusoff, R. Ismail and Z. Hassan, “Common Phases of Computer
Forensics Investigation Model,” International Journal of Computer
Science & Information Technology (IJCSIT), 2011.

K. Denney, L. Babun, and A. S. Uluagac, “USB-Watch: a Gen-
eralized Hardware-Assisted Insider Threat Detection Framework,”
Journal of Hardware and Systems Security, vol. 4, no. 2, 2020.

Why You Need Forensics in an IoT World, Raj
Udeshi, https://www.guidancesoftware.com/blog/digital-
forensics/2017/10/03/why-you-need-forensics-in-an-iot-world,
[Online; accessed 10-March-2020].

How can [oT help digital forensics?, Cognixia,
https://www.cognixia.com/blog/how-can-iot-help-digital-forensics/,
[Online; accessed 10-December-2020].

A. 1. Newaz, A. K. Sikder, M. A. Rahman, and A. S. Uluagac,
“A Survey on Security and Privacy issues in Modern Healthcare
Systems: Attacks and Defenses,” ACM Transactions on Computing

for Healthcare, vol. 2, no. 3, pp. 1-44, 2021.

SmartThings Official Developer
https://developer-preview.smartthings.com/,
10-November-2021].

OpenHAB: Open Source Automation Software for Home,
https://www.openhab.org/, [Online; accessed 10-March-2020].

Documentation,
[Online;

Samsung,
accessed

Smart Forensics for the Internet of Things (IoT), Usama Salama,
https://securityintelligence.com/smart-forensics-for-the-internet-of-
things-iot/, [Online; accessed 10-March-2020].

16

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

[60]

[61]

[62]

L. Babun, Z. B. Celik, P. McDaniel, and A. S. Uluagac, “Real-time
Analysis of Privacy-(un)aware IoT Applications,” in 2/st Privacy
Enhancing Technologies Symposium (PETS), 2021.

A. Acar, H. Fereidooni, T. Abera, A. K. Sikder, M. Miettinen,
H. Aksu, M. Conti, A.-R. Sadeghi, and S. Uluagac, ‘“Peek-a-boo:
I See Your Smart Home Activities, even Encrypted!” in Proceedings
of the 13th ACM Conference on Security and Privacy in Wireless
and Mobile Networks, 2020.

L. P. Rondon, L. Babun, A. Aris, K. Akkaya, and A. S. Uluagac,
“Poisonlvy: (In)Secure Practices of Enterprise IoT Systems in Smart
Buildings,” in Proceedings of the 7th ACM International Conference
on Systems for Energy-Efficient Buildings, Cities, and Transporta-
tion, 2020.

Rondon, Luis P. and Babun, Leonardo and Aris, Ahmet and Akkaya,
Kemal and Uluagac, A. Selcuk, “LightningStrike: (In)Secure Prac-
tices of E-IoT Systems in the Wild,” ser. WiSec ’21, 2021, p. 106116.

Microsoft, Cybersecurity Policy for the Internet
https://www.microsoft.com/en-us/cybersecurity/content-
hub/cybersecurity-policy-for-iot, [Online; accessed 20-November-
2021].

L. Babun, K. Denney, Z. B. Celik, P. McDaniel, and A. S. Uluagac,
“A Survey on IoT Platforms: Communication, Security, and Privacy
Perspectives,” Computer Networks, vol. 192, 2021.

Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel,
and A. S. Uluagac, “Sensitive Information Tracking in Commodity
10T,” in 27th USENIX Security Symposium, 2018.

GroovyCodeVisitor: An Implementation of the Groovy Visitor Pat-
terns, http://docs.groovy-lang.org/docs, [Online; accessed 10-March-
2020].

Generate SHA or MDS5 File Checksum Hash in Java,
https://howtodoinjava.com/java/io/how-to-generate-sha-or-md5-
file-checksum-hash-in-java/, [Online; accessed 10-March-2020].

S. M. Ross, Probability Models for Computer Science, st ed.
Orlando, FL, USA: Academic Press, Inc., 2001.

PyDTMC 6.10.0, https://pypi.org/project/PyDTMC/, [Online; ac-
cessed 20-November-2021].

A. R. Cassandra, “Exact and Approximate Algorithms for Partially
Observable Markov Decision Processes,” 1998.

A. K. Sikder, H. Aksu, and A. S. Uluagac, “6thsense: A Context-
aware Sensor-based Attack Detector for Smart Devices,” in 26th
USENIX Security Symposium, 2017.

E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of
Emerging Smart Home Applications,” in IEEE Security and Privacy
Symposium (S&P), 2016.

IoTBench Repository, L. Babun, Z. Berkay Celik and A. Kumar
Sikder, https://github.com/IoTBench, [Online; accessed 10-March-
2020].

A. K. Sikder, H. Aksu, and A. S. Uluagac, “A Context-aware
Framework for Detecting Sensor-based Threats on Smart Devices,”
IEEE Transactions on Mobile Computing, vol. 19, no. 2, pp. 245-
261, 2019.

S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou, V. P.
Ranganath, H. Li, and N. Guevara, “Experimental Study with Real-
world Data for Android App Security Analysis using Machine
Learning,” in Proceedings of the 31st Annual Computer Security
Applications Conference, 2015.

of Things,

C. G. Weng and J. Poon, “A New Evaluation Measure for Imbalanced
Datasets,” in Proceedings of the 7th Australasian Data Mining
Conference-Volume 87, 2008.

T. Saito and M. Rehmsmeier, “The Precision-recall Plot is More
Informative than the ROC Plot when Evaluating Binary Classifiers
on Imbalanced Datasets,” PloS one, vol. 10, no. 3, 2015.

GitHub: Joyent node-http-signature, [Online; accessed 10-November-
2021]. [Online]. Available: https://github.com/joyent/node-http-
signature

How Do 1 Activate the Two-Step Verification on my Samsung
Account?, https://www.samsung.com/nz/support/mobile-

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

(791

devices/activate-two-step-verification/, [Online; accessed 10-
November-2021].

H. Chung, J. Park, S. Lee, and C. Kang, “Digital Forensic Investi-
gation of Cloud Storage Services,” Digital Investigation, 2012.

E. Oriwoh, D. Jazani, G. Epiphaniou, and P. Sant, “Internet of
Things Forensics: Challenges and Approaches,” in Collaborative
Computing: Networking, Applications and Worksharing, 2013.

S. Watson and A. Dehghantanha, “Digital Forensics: the Missing
Piece of the Internet of Things Promise,” Computer Fraud &
Security, 2016.

S. Perumal, N. M. Norwawi, and V. Raman, “Internet of Things (IoT)
Digital Forensic Investigation Model: Top-down Forensic Approach
Methodology,” in Digital Information Processing and Communica-
tions, 2015.

M. Harbawi and A. Varol, “An Improved Digital Evidence Acqui-
sition Model for the Internet of Things Forensic: A Theoretical
Framework,” in Digital Forensic and Security, 2017.

F. Bouchaud, G. Grimaud, and T. Vantroys, “IoT Forensics: Identifi-
cation and Classification of Evidence in Criminal Investigations,” in
13th Int. Conf. on Availability, Reliability and Security, 2018.

V. R. Kebande and I. Ray, “A Generic Digital Forensic Investigation
Framework for Internet of Things (IoT),” in IEEE 4th International
Conference on Future Internet of Things and Cloud (FiCloud), 2016.

S. Zawoad and R. Hasan, “FaloT: Towards Building a Forensics
Aware Eco System for the Internet of Things,” in Services Comput-
ing, 2015.

H. Chung, J. Park, and S. Lee, “Digital Forensic Approaches for
Amazon Alexa Ecosystem,” Digital Investigation, vol. 22, pp. S15—
S25, 2017.

N. Koroniotis, N. Moustafa, and E. Sitnikova, “A New Network
Forensic Framework based on Deep Learning for Internet of Things
Networks: A Particle Deep Framework,” Future Generation Com-
puter Systems, vol. 110, 2020.

L. Sadineni, E. Pilli, and R. B. Battula, “A Holistic Forensic Model
for the Internet of Things,” in [FIP International Conference on
Digital Forensics. Springer, 2019.

J. Hou, Y. Li, J. Yu, and W. Shi, “A Survey on Digital Forensics in
Internet of Things,” IEEE Internet of Things Journal, vol. 7, no. 1,
2019.

M. Stoyanova, Y. Nikoloudakis, S. Panagiotakis, E. Pallis, and E. K.
Markakis, “A Survey on the Internet of Things (IoT) Forensics:
Challenges, Approaches, and Open Issues,” IEEE Communications
Surveys & Tutorials, vol. 22, no. 2, 2020.

SmartThings Official Logging, Samsung,
http://docs.smartthings.com/en/latest/tools-and-ide/logging.html,
[Online; accessed 10-March-2020].

E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti,
and A. Prakash, “Flowfence: Practical Data Protection for Emerging
IoT Application Frameworks,” in 25th USENIX security symposium,
2016.

Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao,
A. Prakash, and S. J. Unviersity, “ContexIoT: Towards Providing
Contextual Integrity to Appified IoT Platforms,” in Network and
Distributed Systems Symposium (NDSS), 2017.

Q. Wang, P. Datta, W. Yang, S. Liu, A. Bates, and C. A. Gunter,
“Charting the Attack Surface of Trigger-Action IoT Platforms,” in

2019 ACM Conference on Computer and Communications Security,
2019.

17

