
FIRMWIRE: Transparent Dynamic Analysis for
Cellular Baseband Firmware

Grant Hernandez∗¶, Marius Muench†¶, Dominik Maier‡, Alyssa Milburn†,
Shinjo Park‡, Tobias Scharnowski§, Tyler Tucker∗, Patrick Traynor∗, Kevin R. B. Butler∗

∗University of Florida, {grant.hernandez, tylertucker1, traynor, butler}@ufl.edu
†Vrije Universiteit Amsterdam, {m.muench, a.a.milburn}@vu.nl

‡TU Berlin, {dmaier, pshinjo}@sect.tu-berlin.de
§Ruhr-Universität Bochum, tobias.scharnowski@rub.de

Abstract—Smartphones today leverage baseband processors to
implement the multitude of cellular protocols. Basebands execute
firmware, which is responsible for decoding hundreds of message
types developed from three decades of cellular standards. Despite
its large over-the-air attack surface, baseband firmware has
received little security analysis. Previous work mostly analyzed
only a handful of firmware images from a few device models, but
often relied heavily on time-consuming manual static analysis or
single-function fuzzing.

To fill this gap, we present FIRMWIRE, the first full-system
emulation platform for baseband processors that executes unmod-
ified baseband binary firmware. FIRMWIRE provides baseband-
specific APIs to easily add support for new vendors, firmware
images, and security analyses. To demonstrate FIRMWIRE’s
scalability, we support 213 firmware images across 2 vendors and
9 phone models, allowing them to be executed and tested. With
these images, FIRMWIRE automatically discovers and bridges
internal baseband APIs, allowing protocol messages to be injected
with ease. Using these entry points, we selected the LTE and GSM
protocols for fuzzing and discovered 7 pre-authentication memory
corruptions that could lead to remote code execution – 4 of which
were previously unknown. We reproduced these crashes over-the-
air on real devices, proving FIRMWIRE’s emulation accuracy.
FIRMWIRE is a scalable platform for baseband security testing
and we release it as open-source to the community for future
research.

I. INTRODUCTION

Cellular protocols, and the billions of devices that use
them, have ushered widespread connectivity and mobility to
the world. Modern-day smartphones use a dedicated Baseband
Processor (BP), which is responsible for processing the com-
plex cellular protocol message formats, state machines, timers,
and more. These basebands run high-performance firmware,
usually driven by a Real-Time Operating System (RTOS).

Unfortunately, analyzing and testing the security of BPs is
extremely difficult for outside researchers, as their firmware is
typically not only proprietary but also tremendously complex

¶These two authors contributed equally.

and executed in unfavorable environments (e.g. secure mobile
devices) for debugging and introspection. Initial industry-
driven security research [6], [21], [54], [67] has demonstrated
that over-the-air exploitation of basebands is not only possible
but also practical – even remotely – due to the lack of
hardening compared to mobile operating systems like Android
or iOS.

Recent academic work attempts to automate the processes
of baseband security analysis with varying degrees of success.
A first approach [40] treated User Equipment (UE) and base-
bands themselves as black boxes while carrying out automated
over-the-air testing. While automated, this approach does not
scale as physical radio equipment and many mobile phones are
required. Lack of visibility into the baseband’s internal state
means that crashes, which can indicate a security vulnerability,
are at best diagnosed as a “denial of service”.

In an attempt to address this problem, a new line of re-
search about automated analysis of binary firmware images for
BPs emerged. These new approaches either emulate and fuzz
test individual parsers embedded in baseband firmware (e.g.,
[45], [22]) or statically analyze specific components of the
firmware, such as control plane layer-3 protocols [38]. The first
approach fails to capture interactions with other portions of the
firmware and thus does not scale to the hundreds of thousands
of functions present in modern baseband firmware. The second
suffers from many false positives. Although both approaches
found vulnerabilities, they cannot identify more complex issues
arising from the interaction of the different components and
stacks embedded in modern BPs. This is because neither
considers the execution environment of a baseband, ignoring
most of the firmware, including the underlying RTOS.

In this paper, we present FIRMWIRE, a baseband emulation
platform that addresses the complex and highly stateful nature
of baseband firmware. FIRMWIRE demonstrates that full-
system emulation of baseband firmware is not only possible but
also scalable. It overcomes the limitations of current automated
baseband security testing.

In summary, our contributions are as follows:

• We design and implement FIRMWIRE, a base-
band analysis platform, enabling extensible, scal-
able, and automated dynamic analysis for 213 base-
band firmware images across 2 vendors spanning 2

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.23136
www.ndss-symposium.org

Vendor
Configuration

Reconfigurable
Emulation Core

CPU
Core

Memory
Regions

Peripheral Slots

FIRMWIRE Interface

1011011
10000111
11101001
00101000
01001111

push {r1, lr}
ldr r1, [sp]
blx r1

Baseband
Firmware

Snapshots

Vendor A

Firmware
Loader

Pattern
DB

SoC

Pattern
Offsets

Vendor
Selector

Save &
Restore

Vendor B Vendor C

Vendor Specific Plugins
(One-time Manual Effort)

1011011
10000111
11101001
00101000
01001111

push {r1, lr}
ldr r1, [sp]
blx r1

Root Cause Analysis &
Exploration (Manual)

OTA Reproduction

Automated Baseband Analysis

ModKit

Memory
Hooks

Debugger

SDR

Crash
Cases

GSM

LTE

Injected
Analysis

RTOS
Boundary

CRASH

Base Station

Fig. 1: An overview of the FIRMWIRE baseband analysis platform. Starting from left to right: FIRMWIRE loads the baseband
firmware. The vendor plugin abstracts away image-specific details using the vendor firmware loader and PatternDB. Next, the
extracted information is used to configure the emulation core. During emulation FIRMWIRE uses a built-in interface to interact
with the running firmware, enabling automated dynamic analysis and manual inspection. Finally, discovered crashes can be
interactively root caused and verified over-the-air using a base station.

different Instruction Set Architectures (ISAs) and 9
device models. To support additional baseband re-
search and enable extension to other platforms, we
release FIRMWIRE’s source code and artifacts at:
https://www.github.com/FirmWire/FirmWire.

• Using FIRMWIRE we are the first to emulate
Samsung’s and MediaTek’s closed source propri-
etary basebands from boot while providing accurate
RTOS execution, fuzzing, and interactive and auto-
matic dynamic analyses. Moreover, we are the first to
assess modern MediaTek basebands running on MIPS
processors.

• We discover 7 vulnerabilities, 4 of which are previ-
ously unknown and reachable pre-authentication,
while using FIRMWIRE to test the LTE RRC, GSM
CC, and GSM SM protocols. We verify that these
vulnerabilities are real and affect physical devices,
demonstrating FIRMWIRE’s accuracy and strength as
a baseband analysis platform.

Outline. The rest of this work is structured as follows: in
Section II we briefly describe baseband firmware and motivate
why we created FIRMWIRE, Section III describes the design
of FIRMWIRE, Section IV provides implementation details of
supporting the Samsung and MediaTek basebands, Section V
evaluates FIRMWIRE as a platform and its ability to find bugs,
Section VI discusses additional research questions, Section VII
highlights related work, and Section VIII concludes.

II. MOTIVATION

Modern smartphones deploy a complex combination of
hardware and software from many manufacturers. It is com-
mon to split the phone’s functionality into an Application
Processor (AP) and a BP. The AP is the user-facing processor.
It runs the OS, such as Android or iOS, and all applications.
The BP, which is not directly exposed to users, is responsible
for all cellular network functionality.1 This includes attaching

1Cellular basebands are not limited to smartphones. FIRMWIRE’s approach
is applicable to other, more embedded targets, but for the purposes of this
paper we only consider smartphone basebands.

and detaching from base stations and handling calls, Short
Message Service (SMS) messages, and IP packets.

Due to the real-time demands of cellular protocols, BPs
leverage an RTOS that is responsible for managing state ma-
chines, maintaining network timers, and processing complex
message formats, such as ASN.1, CSN.1, and many other
encapsulated protocols. Vendors commonly split processing
of the complex cellular stack into independent tasks inside
the RTOS, most often with a direct mapping between tasks
and individual cellular protocols [46], [45], [64]. These tasks
interact with each other using messages, which are sent and
received via well-defined APIs [64], [21].

Understanding and auditing BP security is prohibitively
difficult due to the tremendous complexity of modern cellular
protocol stack implementations and a lack of baseband-specific
testing platforms. We observe that recent attempts to tackle
the challenges of automated baseband analysis suffer from
limitations and do not offer the advantages of a full-scale
dynamic baseband testbed. Such work typically falls into one
of the following three categories:

1) Dynamic on-device testing tests physical UEs by
sending cellular messages over-the-air and observing
their behavior through oracles [40], [55], [17]. Such
approaches offer only coarse-grained insight into the
baseband’s inner state. Even approaches for monitor-
ing baseband diagnostics, such as SCAT [30], require
a rooted device, which may be prevented by vendors.

2) Emulation-based parser testing extracts, rehosts,
and tests individual parsers embedded in the cellular
baseband [45], [22]. This approach not only requires
extensive manual effort to support testing of new
targets but also falls short in finding bugs beyond
the initial function [45].

3) Specification-driven static approaches try to infer
erroneous operations in the cellular specification [10]
or uncover mismatches between baseband implemen-
tations and specifications [38]. Static approaches may
be tailored towards specific protocols and operate
unaware of the operating system context or state,
yielding bugs not reproducible on real devices.

2

https://www.github.com/FirmWire/FirmWire

III. DESIGN OF FIRMWIRE

FIRMWIRE expands upon previous baseband research by
performing full-system emulation, scaling to many firmware
images, and offering introspection. Figure 1 shows the com-
ponents of the FIRMWIRE platform. There are roughly two
main parts: the vendor plugins (left) and the analysis core
(right). A vendor plugin loads and parses raw firmware images
to provide a layer of abstraction around the target for the
analysis core. First, the vendor plugin extracts out the sections,
CPU architecture, and load address, which are required by the
analysis engine to begin the emulation process. Second, the
vendor plugin uses signatures to locate core RTOS functions
and data symbols across firmware revisions. The analysis
engine links to these symbols to implement and expose the
FIRMWIRE interface, its common analysis API, to automated
analyses (right block of Figure 1).

At the heart of FIRMWIRE’s analysis engine is a recon-
figurable emulation core used to execute the firmware itself.
To implement dynamic analysis, such as fuzzing, FIRMWIRE
provides a ModKit (lower right side) that allows for custom
code to be injected into a running baseband. Module injection
uses internal baseband RTOS APIs recovered by the vendor
plugin and exposed by the FIRMWIRE interface. The results
of automated analyses (e.g., crash cases for fuzzing) can then
be further processed by an analyst (rightmost side of Figure 1),
for instance via over-the-air replication. To further aid the
analyst, FIRMWIRE offers rich debugging and introspection
capabilities.

A. Vendor Plugins

Enabling FIRMWIRE for different baseband vendors re-
quires the creation of a vendor plugin. These plugins are cre-
ated through one-time semi-automated effort, but scale to many
firmware images outside of the initial development set. This is
due to FIRMWIRE APIs, which provide services for firmware
loading, symbol discovery (PatternDB), System on Chip (SoC)
selection and quirk handling, memory map extraction, and a
built-in peripheral library. Vendors typically have a custom file
format for delivering baseband firmware. These have unique
headers and file extensions, making plugin selection easy and
automatic from the first bytes of the firmware image.

Firmware Loader and Device Selection. When a plugin
is selected, a firmware loader specific to a baseband vendor
is executed. This loader carves the firmware file header into
sections. From these headers, the high-level memory map and
SoC version can be determined. Firmware loading does not
require external tools or analyst intervention by design. The
logic is completely integrated into FIRMWIRE and executed
on-demand without any image preparation required, meaning
firmware directly from device updates can be used. This differs
from previous work [38] that relies on external static analysis
tools to preprocess images offline.

Baseband vendors typically provide multiple SoCs that
are used by phone manufacturers across different devices.
New SoCs are effectively hardware revisions, which change
the memory layout and hardware peripherals, along with
their locations. These unique attributes are consolidated by
FIRMWIRE into a single SoC definition file, with a simplified
example shown in Listing 1.

from firmwire.peripherals import *

class VendorBaseSOC:
common_peripherals = [
SOCPeripheral(UARTPeripheral, base=0x84000000,

size=0x1000)
]

class SOC123(VendorBaseSOC):
name = "SOC123"

SoC specific peripherals
peripherals = [
SOCPeripheral(PMICPeripheral, base=0x80000000,

size=0x100)
]

SoC specific attributes
CHIP_ID = 0x01230000
SOC_BASE = 0x82000000
TIMER_BASE = SOC_BASE + 0x8000

Listing 1: Simplified SoC definition. UARTPeripheral and
PMICPeripheral are pre-made peripherals either built in
to FIRMWIRE or specific to a vendor.

name: "BootTable",
pattern: [
Search for two stable 4-byte values
"00008004 200c0000",
Alternate pattern for other images
"00000004 ????0100"

],
required: true, # Fail boot if not found
Process the found table and extract
post_lookup: parse_memory_table,
Adjust found address
offset: -0x14,
Make sure 4 byte aligned
align: 4

Listing 2: Example entry in PatternDB.

PatternDB. Since FIRMWIRE is a platform for binary
firmware, we must recover the location of important functions
and data within each firmware image, even without symbol
tables. For example, to know the currently running OS task,
there could be a task ID stored somewhere in memory.
Knowing this memory location would allow FIRMWIRE to
also know the running task and display this during execution.
To address this requirement, FIRMWIRE provides PatternDB,
a configurable signature database. The most basic patterns
contain a hexadecimal text string with optional wildcards.
Wildcards are useful as they create patterns robust to minor
changes, such as padding or slightly different instruction
sequences, in different versions of firmware. Vendor plugins
provide patterns, which are then processed over the bytes of a
firmware image; successfully matched patterns are then added
to FIRMWIRE’s symbol table. Such patterns are constructed
by an analyst who has identified an address of interest using
a static analysis tool. We provide a representative example in
Listing 2 which is used for finding a data table crucial to
loading and booting firmware. The exact syntax for pattern
entries is described in Appendix A.

B. FirmWire Emulator

FIRMWIRE’s emulator is responsible for the execution of
firmware, based on the information collected by the vendor
plugin, i.e., the CPU configuration, expected memory regions,

3

their properties (read, write, execute), their contents (uninitial-
ized or data bytes), found patterns, and peripheral locations.
The emulator offers low-level access to baseband memory
through the FIRMWIRE interface (middle of Figure 1).

Peripherals. One of the major challenges for emulating
firmware is the missing interaction with physical hardware.
Baseband firmware is no exception as it interacts with a diverse
set of mostly undocumented peripherals, which must be imple-
mented to prevent crashing or hanging during firmware execu-
tion. Fortunately, in many cases emulated peripheral memory
responses can be reduced to a simple access pattern [25], [26],
[19]. FIRMWIRE provides ready-made peripherals (CyclicBit-
Peripheral in Appendix Table IX) for these cases. If these are
not sufficient, FIRMWIRE enables a semi-automated read-eval-
print-loop (REPL) flow allowing analysts to repeatedly run the
firmware with different peripheral behaviors until the boot (or
other) process continues. This semi-automated human-in-the-
loop approach is a one-time cost per peripheral.

FirmWire Interface. To abstract away from the low-level
details of FIRMWIRE’s emulation core, we leverage the vendor
plugin’s PatternDB to expose internal baseband functions with
the outside world in the form of cross-platform APIs. The API
includes verbs such as START, STOP, WRITE, READ, SNAP-
SHOT, SNAPSHOTRESTORE. Atop these low-level commands,
we build FIRMWIRE’s RTOS-level functions, including but
not limited to LISTTASKS, INJECTTASK, and SENDMESSAGE.
FIRMWIRE also provides a library of passive monitoring
callbacks for baseband analysis. Examples include redirecting
debug output of the modem to the analysis host, logging core
activity of the RTOS scheduler, and logging internal messages.

C. Automated Analysis

Until now, we have talked about supporting new baseband
platforms and controlling their execution at a low level. With
the current foundation, we can begin testing protocols and
baseband features at a high level.

Baseband ModKit. Building analyses may require changing
baseband code to set up state and target certain protocols. As
such, FIRMWIRE provides a firmware “ModKit” (Figure 2)
which enables the development, compilation, and injection of
data and code modules into the emulated baseband’s mem-
ory. ModKit code is written in portable C and compiled
to Executable and Linker Format (ELF) files using an off-
the-shelf compiler matching the target’s Application Binary
Interface (ABI). During injection, modules can link against
binary baseband functions using the help of FIRMWIRE’s
dynamic linker. This linker uses symbols from PatternDB to
create a table of function pointers or data at runtime, similar
to the dynamic loader for ELF files on Linux.

Symbols required for a module are indicated by a special
pre-processor macro which defines a function prototype:
MODKIT_FUNCTION_SYMBOL(return_type, name,
arg1, ...). FIRMWIRE will process these prototypes
and emit Write commands to populate a table of function
pointers. A module is injected by adding it to the RTOS’ task
structures, enabling the baseband itself to start the code.

Automated Protocol Testing. Using the ModKit, we devel-
oped a built-in module to enable coverage-guided fuzzing

Baseband RTOS

Dynamic
Linker

Pattern
DB

Pattern
Offsets

FUZZ GLINK

fuzz.c

hello.c

HELLO

101101
10000111
11101001
00101000
01001111

Cross-Compiler

mod.elf

glink.c

Symbols
Requested

MODKIT_FUNCTION_SYMBOL(...)

Resolved
Symbols

Inject Task

Mod
Kit

Fig. 2: The overall design of FIRMWIRE’s portable ModKit.
Modules are written in C and compiled using a baseband-
specific cross-compiler matching the CPU architecture. These
modules (ELF files) are dynamically linked against the Pat-
ternDB for portability between firmware and injected into the
baseband RTOS to modify its functionality.

(discussed in more detail in Section IV-B). This combines
built-in instrumentation of the emulation core and RTOS task
injection. The injected task uses baseband messaging and
task injection to fuzz cellular protocol implementations from
within the baseband itself. This code must follow the rules
of the baseband, including using the correct APIs. Normal
baseband tasks communicate to each other with messages
and our fuzzing tasks are no different. Multiple messages
in sequence can be sent to any number of tasks, enabling
complex state setup. By using the sanctioned interfaces for
sending fuzzing data, we avoid entire classes of false positives
due to uninitialized state. In contrast, BaseSpec [38] and
BaseSAFE [45] may suffer from false positives, as they do not
initialize the baseband through boot, but require the analyst
to model the respective baseband state, and inject messages
at non-task boundaries. Another benefit of messages injected
directly using the baseband’s RTOS APIs is that the message
routing logic is handled by the baseband itself. FIRMWIRE
effectively uses the same API that the baseband developers
themselves use.

D. Introspection

Beyond automated testing, FIRMWIRE offers baseband
introspection, allowing analysts to interactively explore the
baseband to help prototype automated analyses. It also assists
with root cause analysis for crashes generated by FIRMWIRE’s
automated analyses.

Function Hooking and Debugging. Building on PatternDB,
FIRMWIRE is able to hook baseband APIs to record their
arguments and return values. This is useful for understanding
how the baseband operates when building automated analyses
or performing root cause analysis. One of the most useful
hooks is on internal baseband logging APIs. By hooking these
APIs, we can liberate verbose baseband messaging. This is not
only useful for bringing up new vendor plugins, but also for
root cause analysis when debugging crashes. Beyond function

4

Command
Ring Buffers

Baseband RTOS (Emulation Core)

TX RX

TXRX

GLINK Task

G
LI

N
K

Dr
iv

er

G
LIN

K Peripheral

IPython:>

Analyst Driven
Root Cause Analysis
and Exploration

Send
Msg

Alloc

Dynamic Baseband
Symbols

Set
Event

RootCause

Custom

Fig. 3: An overview of the layout and communication between
FIRMWIRE and the injected Guest Link (GLINK) RTOS task.
An analyst can use the GLINK interface to manually send ad-
hoc commands or execute one-shot analyses. These commands
are effectively remote procedure calls serialized across a ring-
buffer peripheral that the GLINK task can access.

hooking, we integrate FIRMWIRE with the GNU Debugger
(GDB) to enable single stepping and memory exploration.

Guest Link (GLINK). To enable a more interactive ex-
ploration mode for FIRMWIRE, we created the Guest Link
module (Figure 3). When not performing automated analysis,
the GLINK module can be injected into an emulated base-
band’s task list. This task allows interactive, bidirectional Host
to Guest communication via a custom hardware peripheral.
GLINK’s custom peripheral provides MMIO registers imple-
menting a transmit and receive ring-buffer (i.e. a FIFO queue).
This allows full-duplex information exchange between the
baseband and FIRMWIRE APIs or a live analyst. An interactive
shell or scripts running on the host can then inject mes-
sages, trigger events, and receive results. GLINK allows for
asynchronous interaction with the emulated baseband without
disrupting the regular operation of the firmware (meaning the
target can be running). Extending GLINK only requires adding
a single opcode, command handler, and struct definition
shared between FIRMWIRE and the injected task’s code.

IV. IMPLEMENTATION

To demonstrate FIRMWIRE, we created vendor plugins for
Samsung and MediaTek basebands. We chose Samsung and
MediaTek because both vendors provide chipsets for millions
of devices worldwide, accounting for more than 40% of the
worldwide shipped BPs in 2020 [15]. No public documentation
exists for the hardware and firmware of these platforms,
but they have previously been the subject of some reverse
engineering and exploitation by the industry [6], [21], [22],
[48] and, more recently, academic research [40], [38], [55],
[45].

A. Vendor Plugins

Within each vendor plugin, we create a loader, populate
PatternDB, and create SoC definitions. Plugins are written in
Python for rapid prototyping and integrate with the Platform
for Architecture-Neutral Dynamic Analysis (PANDA) [16], a
QEMU-based emulator [8]. We extended PANDA to support
the needs of our baseband targets, which included adding new
instructions for MediaTek. To integrate these components, we

Vendor Phone Model Chipset #SLoC

Samsung

Galaxy S7/S7 Edge S335AP 25
Galaxy S8/S8+ S355AP 29
Galaxy S9 S360AP 33
Galaxy S10/S10e S5000AP 25

MediaTek
Galaxy A10s MT6762 14
Galaxy A41 MT6768 12

TABLE I: The different smartphones and corresponding SoCs
that are supported by FIRMWIRE.

extended the avatar2 framework [49], which acts as middleware
for FIRMWIRE, enabling Python-based peripherals.

For our implementation, we select 9 different popular
phone models from the Galaxy line which use 6 different
chipsets (Table I). While recent work focused on the older
MediaTek firmware for ARM [45], [38], our selection includes
the recent MediaTek chipsets based on the MIPS ISA, demon-
strating alongside Samsung’s ARM-based Shannon chipsets
the architecture independence of our approach.

Samsung’s Baseband. Samsung baseband processors, until the
S5123AP, are based on the Cortex-R microprocessor family.
They run a proprietary real-time operating system (Shan-
nonOS) and implement several cellular stacks, including GSM,
UMTS, LTE, and 5G NR on recent modems. Interaction with
the main Application Processor (AP) is carried out via DMA
to a custom kernel driver and inter-processor interrupts. After
writing a loader for Samsung’s firmware images, which follows
a known format [21] across all firmware we examined, we
developed 18 PatternDB entries (see Appendix Table VII) to
smooth over the address and data variations between firmware,
enabling stable operating system introspection of running
tasks, messaging APIs, and memory maps. We next per-
formed the semi-automated peripheral implementation process
as described in Section III-B, until our baseband introspection
indicated that tasks were coming online and no exceptions
were raised during baseband execution. For FIRMWIRE to boot
the Samsung baseband, we provided 17 peripheral definitions
total, with some being SoC specific (see Appendix Table IX).

After implementation, our Samsung vendor plugin is ca-
pable of starting nearly all RTOS tasks, though some raise
exceptions. These were disabled using the RTOS API if and
only if they were deemed to not be critical for protocol
testing. To our knowledge, no previous work has emulated the
Samsung baseband RTOS with enough fidelity to boot tasks to
this level. In total we now support 4 Samsung baseband SoCs
across 7 phone models (Table I), allowing us to boot nearly 200
different firmware images across 5 years of devices (Table VI).
For further details, see Section V-E where we discuss the bring-
up of the S335AP SoC along with additional firmware images.

MediaTek’s Baseband. Recent MediaTek BPs are based on
a MIPS (interAptiv) processor, with several custom DSPs and
other baseband-specific peripherals. Previous work [38], [45]
explored legacy versions of this baseband based on ARM.
Our emulation core, PANDA, did not support this specific
architecture out of the box, hence we needed to add support
for missing instructions, primarily those for MIPS16e2, a com-
pressed instruction set similar to ARM Thumb. This support

5

consisted of adding new instruction decoding and Tiny Code
(TCG) lifting.2 For MediaTek’s firmware format we wrote a
loader to extract the relevant code and data regions. MediaTek
firmware luckily contained a symbol table, unlike Samsung,
which greatly simplified the creation of PatternDB entries.
Only 9 patterns were needed to scale up to multiple firmware
images (see Appendix Table VIII). Like Samsung, we repeated
the semi-automated peripheral implementation process for
MediaTek’s peripherals. In total only 12 peripherals, many
of them just placeholders, were required to support 2 SoC
platforms (see Appendix Table IX).

One of the most complex peripherals that required mod-
eling was the communication between the MediaTek BP and
AP. System configuration information such as memory regions
is provided by the AP, so this interface is required for boot.
Support included instantiating ring buffers and messaging
structures (implicitly documented by MediaTek’s Linux kernel
source code). This interface is also used at runtime, primarily
to make requests to userspace programs; we implemented
support for running one such program (for storage access)
alongside FIRMWIRE, replacing the kernel interface with a
FIFO. The final obstacle in the boot process involves the BP
waiting for other hardware threads, which PANDA does not
support; we use PatternDB to find and bypass the code in
question and adjust all task affinities to run on a single core. As
with Samsung, our MediaTek implementation in FIRMWIRE is
capable of running nearly all RTOS tasks without failures; we
only needed to disable the low-level RF and hardware-related
tasks. To the best of our knowledge, this is the first public
work to emulate the MediaTek baseband RTOS to this level
of fidelity. In total we now support 2 MediaTek baseband SoCs
across 2 phone models (Table I), allowing us to boot 9 different
firmware images across nearly 2 years of devices (Table VI).

B. Automated Analysis

With 213 bootable baseband images now running under
FIRMWIRE, we turn to security analysis. To do so, we chose
coverage-guided fuzzing combined with semi-automated root
cause analysis (Figure 4). This approach has only been used on
single functions in previous research [45], while we perform it
on a fully running baseband. While some argue that dynamic
analysis of basebands is limited or even ineffective due to
the statefulness of cellular protocols [38], FIRMWIRE counters
these objections by emulating the entire baseband, achieving
a fine-grained initial state usable for fuzzing. By injecting
messages to the baseband in this initialized state, new states
can be reached to also be used for testing.

FUZZ Task. We created the FUZZ module using FIRMWIRE’s
ModKit. This drives coverage-guided fuzz testing from within
the baseband’s memory. This task requests test cases from
the host via guest-to-host hypercalls [52], enables coverage
collection and embeds them into messages sent to target
cellular protocol tasks. Hypercalls are implemented as special
instructions that, when translated by the emulator, trap out of
the guest OS to call a host helper function of our choosing. To
capture crashes the FIRMWIRE vendor plugin configuration is
used to determine the relevant events, such as CPU exceptions

2This also included extending Ghidra’s MIPS SLEIGH lifter to emit PCode
for these instructions.

SM CC

FUZZ

RRC

Baseband RTOS
Message Router

LTE TasksGSM Tasks

GLINK

GLink DriverFuzz Driver

Testcase
& Feedback

Ringbuffer

Fuzzed
Msg.

ModKit
Inject

Crash Cases

Inject

RRC
SM

Root
Cause

Analysis

Cmd.

CC

Fig. 4: Exemplary application of FIRMWIRE for security
analysis. Special FUZZ tasks are injected into the running
baseband for coverage-guided fuzzing. The resulting crashes
are then subject to root cause analysis, which is aided by the
GLINK task.

or deliberate baseband asserts. Our anomaly detection is
not limited to crashes. Additional conditions can be added to
match the specific fuzzing campaign if needed. When a fault
occurs, it is automatically saved for analyst review and can
be replayed to obtain crash context and internal baseband log
messages. Our FUZZ Task can be modified using a few lines of
C to target arbitrary tasks and messages as shown in Table II,
giving the analyst freedom to evaluate arbitrary parts of the
BP. For input generation, we build on top of the state-of-the-art
fuzzer, AFL++ [20], which runs on the host. Once a FUZZ task
is written, it is injected into the baseband using our ModKit
(Figure 2).

V. EVALUATION

We evaluate FIRMWIRE by posing three questions:

Q1 Can a dynamic emulation platform aid security testing
for baseband firmware?

Q2 Is FIRMWIRE’s approach scalable?
Q3 Are vulnerabilities discovered with FIRMWIRE real

bugs affecting physical phones?

For Q1 we wrote fuzzing tasks for multiple cellular proto-
cols (Section V-A), evaluate the achieved fuzzing performance
(Section V-B), and compare the results with the state of the
art (Section V-C). Using these fuzzers, we found in total
7 vulnerabilities (Section V-D) of which 4 were previously
undiscovered and with 1 acting as our ground truth. For Q2,
we showcase an empirical measurement of effort required to
integrate a new hardware platform and firmware images to the
FIRMWIRE platform (Section V-E). We further demonstrate
FIRMWIRE’s scalability by dynamically replaying crashing in-
puts for 229 firmware images across 9 different device models
(Section V-F). Lastly, for Q3 we reproduce 6 vulnerabilities
over-the-air, indicating the real-world impact of vulnerabilities
found in our emulator (Section V-G).

6

FUZZ Task SLoC #Setup Messages

MediaTek RRC (4G) 162 0

Samsung
RRC (4G) 53 0
SM (2G) 51 1
CC (2G) 46 1

TABLE II: Fuzzing tasks injected into the basebands.

A. Security Analysis: Fuzz Testing

Although a full-fledged baseband emulation platform offers
many dynamic analysis capabilities, we chose fuzz testing as
the main application for FIRMWIRE. In particular, we want to
automatically explore and test complex radio message handling
within the baseband and use the introspection capabilities
provided by FIRMWIRE to identify the root causes of crashes
more precisely than previous work [40].

Attacker Model. For identifying which parts of the modem
firmware to fuzz, we deployed a simple, yet realistic threat
model. Our attacker model focuses on discovering proximate
attacks involving a UE baseband receiving data from a nearby
rogue base station. We assume the attacker controls the rogue
base station and is able to send arbitrarily crafted control plane
radio payloads to be processed by the UE. However, we do not
assume that authentication between base station and UE was
carried out to guarantee that attacks can be carried out on real
devices. Hence, we focus our testing on the pre-authentication
attack surface of LTE and protocols with broken authentication
(GSM). UEs today may roam to GSM networks if they are the
only ones available or through a downgrade attack by rogue
base stations [61].

Fuzzing Targets. After carefully considering the attacker
model, we wrote fuzzing tasks for 3 parts of the cellular
protocol stack. Specifically, we tested LTE Radio Resource
Control (RRC) [3], GSM Session Management (SM) [4], and
GSM Call Control (CC) [4] protocols.

For each of these protocols, we create a fuzzing module
that uses the FUZZ task as a base (Table II). Once written,
the tasks are injected into each baseband. These tasks will
be scheduled by the RTOS and carry out the necessary target
initialization by injecting messages using the corresponding
RTOS API. They then activate the AFL++ forkserver and begin
distributing fuzzing inputs to target tasks (e.g., RRC, SM, CC)
using the RTOS messaging APIs recovered by PatternDB. The
inputs are encoded OTA messages. This means UPER encoded
ASN.1 for RRC and CSN.1 encoded Non-Access Stratum
(NAS) packets for SM and CC.

Image Selection. For our fuzzing experiments, we use the
chipset, models, and firmware as shown in Table III. We
chose these chipsets based on their use in Samsung’s flagship
(Galaxy S10 and earlier) and budget (A41) models. At the
time of writing, these devices are widely available and well-
supported with regular security updates. The S8 is no longer
receiving security updates and was instead used for our ground
truth testing. Note that we are not limited to fuzzing the 7
images in Table III and support significantly more firmware
for fuzzing (see Section V-F). Unlike previous work, we
purposefully chose the A41 model as it has a recent MediaTek

Chipset Phone Model Release FW Image

Samsung S355AP Galaxy S8 Sep’17 G950FXXU1AQI7

Samsung S5000AP

Galaxy S10 Feb’19 G973FXXU1ASBA
Galaxy S10 Mar’21 G973FXXU9FUCD
Galaxy S10e Nov’19 G970FXXU3BSKL
Galaxy S10e Mar’21 G970FXXU9FUCD

MediaTek MT6768 Galaxy A41 May’20 A415FXXU1ATE1
Galaxy A41 Jan’21 A415FXXU1BUA1

TABLE III: Target images for fuzzing experiments. Images
with bold name were used for the performance evaluation.

chipset, which uses the MIPS instruction set (rather than ARM)
to demonstrate the flexibility of FirmWire’s approach across
different ISAs.

B. Fuzzer Performance

Apart from discovering bugs, we use fuzzing to answer two
additional questions in this section: (1) Can our FUZZ tasks
trigger complex behavior and reach deep code paths in the
emulated baseband and (2) How do protocol implementations
across baseband versions and vendors compare in complexity?

Setup. To conduct our evaluation, we used a server with 2
Intel Xeon E5-2630v4 @ 2.20GHz CPUs (20 physical and
40 logical cores) and 128GB of RAM running Ubuntu 16.04
LTS and drive FIRMWIRE with AFL++ v3.13a as a fuzzer. A
single fuzzing instance uses less than 512MB of RAM, making
the number of cores available the limiting factor. To allow
multiple runs in parallel, we set the CPU affinity for each of the
stochastic tests to a single core to limit scheduler noise. We run
each FUZZ task for 24 hours, each in 5 independent runs. For
the three selected Samsung images, we fuzz LTE RRC, GSM
CC, as well as GSM SM. Additionally, we fuzz LTE RRC
for MTK to be able to compare different implementations.
During fuzzing, we use AFL’s persistent mode with 1000
iterations. This means the fuzzer will perform 1k executions in
the booted system before it resets the emulator. From previous
tests, we found this to be a good trade-off between mutating
baseband state and hard-to-replay test cases while minimizing
slow resets.

Reached Basic Blocks. After all runs were completed, we re-
ran the generated test cases and collected the unique translated
blocks using FIRMWIRE’s coverage instrumentation. We then
mapped these QEMU blocks to the corresponding basic blocks
using the Ghidra reverse engineering framework. This way
we get the correct number of basic blocks for each test
case, despite hash collisions in AFL++’s coverage map and
inconsistencies caused by QEMU’s translated blocks. The
results of this experiment are visualized in Figure 5.

Our results show that while fuzzing RRC, we exercise a
far greater amount of basic blocks (functionality) compared
to other cases. For example, when fuzzing the Shannon RRC
implementation our fuzzer exercises more than 10,000 unique
basic blocks, while discovering less than 4,000 basic blocks
for GSM CC and SM. We also observe that the curves of dis-
covered basic blocks over time for the same FUZZ test behave
similarly for different firmware and hardware platforms. The
two exceptions are the fuzzing results for the G950 (green)

7

2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 24h
Time

0

500

1000

1500

2000

2500

3000

M
ed

ia
n

Ba
sic

 B
lo

ck
 C

ov
er

ag
e

Variant
Samsung G970
Samsung G973
Samsung G950

(a) GSM CC 24h fuzzing run

2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 24h
Time

0

500

1000

1500

2000

M
ed

ia
n

Ba
sic

 B
lo

ck
 C

ov
er

ag
e

Variant
Samsung G970
Samsung G973
Samsung G950

(b) GSM SM 24h fuzzing run

2h 4h 6h 8h 10h 12h 14h 16h 18h 20h 22h 24h
Time

0

2000

4000

6000

8000

10000

12000

14000

M
ed

ia
n

Ba
sic

 B
lo

ck
 C

ov
er

ag
e

Variant
Samsung G970
Samsung G973
Samsung G950
MTK A415 CP15
MTK A415 CP17

(c) LTE RRC 24h fuzzing run

Fig. 5: Discovered basic blocks over time for fuzzing campaigns across firmware images (median and 95th percentile). Each
subfigure depicts one fuzzing target with data collected over 5 independent 24-hour runs for each selected firmware image.

SM and RRC fuzzing runs. For GSM SM, more basic blocks
are discovered on the G950 model compared to the G970
and G973. For RRC fuzzing, the G950’s block count caps
at around 5,000, unlike the other two models. As we show
in Section V-F, this is in line with our fuzzing results. More
specifically, we discover crashes in GSM CC for all tested
firmware images, while only uncovering a bug for GSM SM in
G950 firmware (which has the most code coverage). Similarly,
our fuzzers found RRC-related crashes in all images except
the G950 one (which has the least coverage). This behavior
could indicate a significant re-architecture of the targeted code
or changes to existing branch conditions that are difficult to
bypass with simple mutation-based fuzzing.

Per-Task Coverage. The number of reached basic blocks are
collected over the full modem operation including inter-task
interactions and low-level OS execution. Hence, to further
investigate the fuzzing efficacy, we also set out to measure the
achieved per-task coverage. As modem images are distributed
in binary-only form, we compensate for the lack of source code
or binary labeling ground truth by using the proxies described
in the Appendix when associating basic blocks of the firmware
with specific tasks. We show the number of reachable basic
blocks per task (according to the proxies) and the percentage
of reached blocks over the fuzzing experiments in Table IV.

We first observe that the number of reachable blocks for
RRC is significantly higher than for CC and SM. This maps
directly to the complexity of the corresponding standards; the
RRC specification spans over 1100 pages [3], while the GSM
layer-3 specifications describing SM and MM contain around
800 pages [5].

Second, we see that the number of covered blocks is

CC SM RRC
BBcov BBmax BBcov BBmax BBcov BBmax

G950 17.28% 9067 8.44% 6686 3.54% 54531
G970 14.01% 9161 4.13% 5785 2.82% 89584
G973 19.71% 8555 5.35% 5552 2.85% 90497

A415 CP15 - - 0.99% 68056
A415 CP17 - - 0.99% 68100

TABLE IV: Per-task coverage for fuzzed images.

surprisingly low, ranging from only 1%-3.5% in the case of
RRC to 14%-20% for CC. We believe this is due to two
reasons. First, to reflect our attacker model, our injected FUZZ
tasks target only a subset of the internal messages which
would be normally processed by the tasks under test. As such,
large parts of the tasks are made unavailable to the fuzzer
from the beginning. Second, cellular protocols are inherently
stateful with a large number of internal state machines. While
FIRMWIRE boots the baseband into an operable initial state,
systematically exploring complex state spaces in an efficient
manner poses an open challenge to coverage-guided fuzzing
approaches [7] and is a problem outside the scope of this paper.

Despite the seemingly low coverage, FIRMWIRE was able
to uncover several critical vulnerabilities as we will show in
Section V-D. Hence, we believe that virtualized testing of
baseband firmware is a viable strategy with room for future
work to improve generating inputs or new states that exercise
deeper paths in the firmware.

C. Comparison with the State of the Art

The amount of prior art on fuzz testing cellular baseband
implementations is limited. To this day, the most comprehen-
sive study focusing on fuzz testing UEs is LTEFuzz [40],
which directly tests physical devices in a black-box manner.
Unfortunately, the source code is not openly available and
typical test durations are not reported in the paper, which
makes an experimental comparison to LTEFuzz non-trivial.

The other most prominent work on UE fuzzing is
BaseSAFE [45], which is openly available. This approach
selectively rehosts and fuzz tests message parsers in baseband
firmware. In contrast to FIRMWIRE, creating a fuzzing harness
in BaseSAFE requires manually crafting an initial state which
is then loaded into the Unicorn emulator for fuzzing [56]. To
compare to FIRMWIRE, we created harnesses for a selected
firmware image in two different ways.3 Firstly, as proof of
concept, we manually created a harness for the CC message
parser and verified with the BaseSAFE developers that we
correctly followed their approach. We did not manually imple-
ment harnesses for SM and RRC due to the required manual

3Note that we could only use the ARM based Samsung images, as the MIPS
dialect used by MediaTek is not supported by Unicorn.

8

CC SM RRC
BBcov BBmax BBcov BBmax BBcov BBmax

Manual 15.55% 8555 - - - -
Automated 25.30% 8555 7.49% 5552 2.80% 90497

TABLE V: Per-task coverage with BaseSAFE fuzzers for
G973FXXU9FUCD.

effort (multiple days per firmware, per fuzzing target). Instead,
we wrote wrappers to automatically import an initialized
memory snapshot from FIRMWIRE into BaseSAFE. Using
these wrappers, we created snapshots with the injected fuzzing
tasks and provided hooks to correctly retrieve fuzzing input via
BaseSAFE.

We then ran five 24-hour experiments for each of these
harnesses on the same machine used for the fuzzing perfor-
mance evaluation, and report the resulting per-task coverage
in Table V. It is important to note that although BaseSAFE
supports persistent mode, we could not use it for these ex-
periments due to incompatible programming models for the
fuzzers. In comparison to FIRMWIRE, the manual BaseSAFE
harness for CC achieves less coverage (19.71% vs 15.55%),
which is in line with our expectations. In contrast, the auto-
matically generated harnesses exercise more (CC & SM) or an
equivalent amount of code (RRC) in the targeted tasks. In this
limited scenario, it appears that fuzzing without full-system
emulation mode achieves higher code coverage due to less
CPU overhead. However, this comes at the cost of no longer
having an accurate operating system model as task scheduling,
timing, and messaging semantics no longer exist. Additionally,
setting up an initial state corresponding to our automatically
generated harnesses would be non-trivial without the accurate
snapshot already provided by FIRMWIRE’s system emulation.
To conclude, we believe that FIRMWIRE is not only useful as
a standalone framework but can also integrate well with other
state-of-the-art approaches.

D. Discovered Vulnerabilities

Our fuzzing campaigns resulted in a variety of crashes
across the different baseband versions. After de-duplication
and root cause analysis, we attribute these crashes to 7 distinct
vulnerabilities (4 RRC, 1 SM, and 2 CC).

LTE RRC #1: RRC Reconfiguration. This crash case occurs
when providing malformed RRCConnectionReconfiguration-
r8-IEs within a RRCConnectionReconfiguration message. Al-
though the LTE RRC specification [3] specifies that this mes-
sage is conditionally accepted before the over-the-air security
establishment, the message has to be decoded regardless of
the security status in order to identify it. Thus, the decoder
is always called and this crash can be triggered at any time
once a UE is idle on a cell. Interestingly, the decoder infers
an invalid length but does not crash right away. Instead,
the decoded message is re-encoded onto a fixed-size stack
buffer. Due to a wrongly inferred length in the previously
decoded IE, this buffer is exceeded, causing corruption of
the saved instruction pointer with attacker-controlled data,
which can result in remote code execution. This example
demonstrates the advantages of FIRMWIRE in comparison to
approaches only targeting specific decoders (e.g., [45], [38]), as

the vulnerability is not in the decoder itself, but in subsequent
re-encoding.

LTE RRC #2: RadioResourceConfigDedicated IE. This
crash occurs when providing a RadioResourceConfigDed-
icated IE containing a malformed Mac-MainConfig field.
This IE can be included in various RRC messages, in-
cluding RRCConnectionReconfiguration. Similar to LTE RRC
#1, the corruption occurs during later re-encoding, but in-
stead of crashing with a PREFETCH ABORT (ARM) due
to a corrupted instruction pointer, the baseband issues a
PAL_MEM_GUARD_CORRUPTION exception. Upon closer in-
vestigation, we identified that in this crash case a heap buffer is
overflowed, which causes the baseband to raise the exception
upon freeing the corresponding chunk. The root cause is when
freeing an allocation, the modem heap allocator modem checks
for heap sentinels (0xaaaaaaaa), which no longer match,
leading to the fatal assertion. This serves to crash the baseband
but offers no security benefit as these guards are hard-coded
and can be replaced, allowing an attacker to corrupt adjacent
heap objects and metadata without crashing during free.

LTE RRC #3: RRC Reconfiguration. As with LTE
RRC#1, this vulnerability is triggered by a RRCConnec-
tionReconfiguration message but requires a malformed
RRCConnectionReconfiguration-v1250-IEs instead. Despite
using different IEs, the baseband’s behavior upon receiving
such a malformed message is identical to LTE RRC #1:
A PREFETCH_ABORT is issued due to a saved instruction
pointer on the being corrupted during re-encoding. While
the crash behavior appears identical, we used FIRMWIRE’s
introspection capabilities to verify that these are indeed two
distinct vulnerabilities, as the overflown stack buffers reside in
different functions.

LTE RRC #4: MCCH Double Free. This issue was found
by our LTE RRC fuzzer in the Galaxy A41 firmware images,
which use the MediaTek baseband. Most of this code has
previously been extensively fuzzed by previous work [45].
However, almost immediately after beginning our campaign,
FIRMWIRE reported inputs that caused assertion failures (lead-
ing to a reboot of the BP). These are caused by buffers being
freed twice on the code path after a MCCH message has been
received and the ASN.1 decoder has reported an error while
decoding it. Again, this is detected by the baseband’s own heap
allocator checks, and would not be visible if we had limited
our fuzzing to the ASN.1 decoder code.

SM #1: GPRS Session Management PDP Activation. This
particular vulnerability is special because it was previously
known and we specifically searched for it. Using research
from [6], we set out to replicate the findings automatically.
All work performed by this previous research was entirely
manual static analysis and over-the-air testing, which does not
scale. To serve as ground truth for FIRMWIRE’s emulation
fidelity and accuracy, we identified the target protocol task and
wrote a fuzzer targeting it. Our fuzzer successfully generated
a crashing input triggering the bug embedded within the PDP
CONTEXT ACTIVATION [4] message handler. The root cause
of the crash is missing validation of a length field when de-
coding a Type-Length-Value (TLV) Information Element (IE),
leading to a classic stack-based buffer overflow, enabling re-
mote code execution due to return address corruption. The tar-
get raised a PREFETCH ABORT exception which FIRMWIRE

9

used to flag the test case. Using the introspection offered by our
platform, especially baseband logs and debugging support, we
could pinpoint the exact crash condition to invalid processing
of the Protocol Configuration Options (PCO) [4] IE.

CC #1: Call Setup Heap Overflow. This vulnerability in a
GSM stack implementation was discovered by our CC fuzzer
during a large-scale fuzzing campaign, lasting 25 cumulative
days of CPU time across 30 instances, totaling 283 million
test cases. The vulnerability is triggered by the CALL SETUP
packet [4], which is sent when the base station establishes a
Mobile Terminated (MT) call. It is responsible for exchanging
metadata, including the remote bearer’s capabilities, including
available voice codecs.

The crash occurs during the processing of the bearer
capability IE (10.5.4.5). It should never exceed 16 bytes, yet
the implementation trusts the OTA length field of the TLV
during a memcpy, leading to a heap overflow. Using GDB,
we could confirm that in this case, the data overwriting the
adjacent chunks is directly controlled by the attacker, without
prior ASN.1 encoding or decoding as in the case of LTE RRC
#1 & #3.

CC #2: ASN.1 Decode Error. The second CC corruption
occurs earlier during setup packet decoding and is the result
of an invalid decoding procedure for the ASN.1 encoded
ss-Code information element for supplementary services [5].
Supplementary services provide additional functionality related
to voice calls, such as call forwarding [2] and call barring [1].
Signaling messages related to supplementary services are
usually delivered during voice call setup, including the status
notification of certain supplementary services. To deliver the
notification, the opCode IE is set to notifySS and ss-Code IE
is set to the service-specific values.

When the received IE is malformed, instead of raising an
error and aborting, the ASN.1 decoder attempts to decode the
IE at a later offset in the received data, while incrementing
the expected length. This results in writing more data than
expected to a stack buffer, resulting in corruption of the saved
program counter, ultimately leading to another PREFETCH
ABORT.

Coordinated Disclosure. With the exception of SM #1, which
was previously known and used for ground truth testing, we
reported all found vulnerabilities to Samsung. We reported
the presented vulnerabilities in the LTE stack in 2021 and
the ones in the GSM CC implementation in 2020. Samsung
determined that CC #1 was patched in early 2020 independent
from our report (bug collision), and considered LTE RRC #1
as a duplicate due to its similarity to our other findings (same
bug, multiple paths).

Samsung classified all other found vulnerabilities as previ-
ously unknown over-the-air vulnerabilities affecting multi-
ple devices. LTE RRC #2, #3, and CC #2 were assigned critical
severity scores, whereas LTE RRC #4 was assigned high
severity. Samsung allocated SVE-2021-22079 (CVE-2021-
25479), SVE-2021-22051 (CVE-2021-25478), SVE-2020-
18098 (CVE-2020-25279), and SVE-2021-22199 (CVE-2021-
25477) respectively for our findings, and deployed patches in
the fall of 2020 and 2021.

E. Extending FIRMWIRE

To give the reader insight into the extensibility of
FIRMWIRE, we conducted an empirical measurement of the
required time and effort to add a new hardware platform and
additional firmware to the framework. In particular, we added
support for different firmware targeting Samsung S7 and S7
Edge basebands while recording the time and taking notes.
While this is not an ideal experiment, we believe that this
can provide intuition about both the automation offered by
FIRMWIRE and the manual effort required to create or modify
vendor plugins.

Additional Hardware Platforms. We started by choosing a
single G930 firmware image from mid-2018 and tried to load
our emulator. FIRMWIRE detected the hardware platform as
a S335AP, which was not supported. We copied the nearest
SoC definition, the S355AP, as a template and registered the
S335AP in the vendor plugin (26 lines of Python). Booting
the image caused a bootloader crash mentioning an invalid
chip ID. We adjusted the CHIP_ID to 0x03350000. Booting
again made it further, but now the image hung without log
output. This was expected as the S355AP template contains
peripheral base addresses that may have changed. Using a
dedicated debug flag for displaying all peripheral accesses, we
discovered an infinite loop on a read. We recognized the access
pattern as that of an already made peripheral and adjusted
the base address accordingly (1 line change). Booting again,
the firmware executes past the BOOT image and runs into
the MAIN image where another hang occurred while enabling
system clocks. Using debug and raw assembly display modes
of FIRMWIRE, we noticed a while loop on a peripheral field
access. To bypass this, we created a cyclic bit pattern of
0xfffff [19], which passed the check and continued the boot
significantly further (2 lines of Python). Next try, the image hit
a fatal assert in hw_ClkFindSysClkCofigInfoIndex,
which is related to clock configuration. To fix this, we extended
a PatternDB entry (1 line of code) to find the code and pass the
check for the S335AP (the current pattern only worked for the
S355AP). Next try, we observed another fatal error of “check
code sync between CPU and DSP” and adjusted the S335AP’s
reused DSP peripheral (1 line of code) to use the correct
codes (which were displayed in the assert). For the next four
boots, the firmware hung during the L1C, InitPacketHandler,
PacketHandler, and SIM tasks. We disabled these one-by-one
(4 lines of code) as they use unmodeled peripherals (radio
hardware, chip-to-chip communication, and I2C respectively).
Finally, the firmware booted without crashes or hangs. In total
from start to finish, this process took less than two hours for
one person acquainted with the framework.

Additional Firmware. Although the above approach already
allows a variety of S7 and S7 EDGE firmware to run in
FIRMWIRE, some images, particularly those created before
2018, did not run in the emulator. Hence, we took an additional
firmware from 2016 and added support for it. While the SoC
was selected correctly and FIRMWIRE attempted to load the
firmware, the task table could not be resolved correctly. This
was due to the modem internal task table structure using a
different layout compared to the newer image. However, the
required layout was already integrated into FIRMWIRE, and
instructing the framework to use it for older S7 images required
2 lines of code. Afterward, the emulator failed to boot as

10

it could not recognize the required log_printf pattern,
which could be resolved by adjusting the existing pattern
via additional wildcards (1 line of code). Then, the firmware
booted up to the synchronization check between CPU and
DSP. As it turns out, different firmware revisions use different
constant values when communicating with the very same DSP,
and we resolved this issue by parsing the log message and
using the adjusted code for firmware images before June 2018
(2 lines of code). Now, the firmware booted but fuzz testing
failed, as pal_MemAlloc was not correctly resolved. This
was addressed by adding an additional pattern for this image
(1 line of code) resulting in the firmware booting. In total, this
additional firmware required 3 hours and was carried out by
a different analyst, who was not involved in creating platform
support for the S335AP.

F. Large-scale Vulnerability Analysis

The previous sections demonstrate FIRMWIRE’s targeted
bug finding capabilities and extensibility but provide few
insights about the actual scalability when applied to other
baseband firmware images beyond the ones selected for fuzz
testing. Hence, we conducted a large-scale (Q2) study where
we ran the crash cases found by FIRMWIRE against firmware
images outside our initial test set. More specifically, we tested
against a representative data set spanning a wide variety of
firmware for whose chipset we created vendor plugins.

Dataset collection & emulation efficacy. We downloaded
all available firmware updates targeting a single region for 9
different mobile phone models using a public service [59].
These updates are not exclusively for the BP but are bundled
together with updates to the AP. As a result, not all update
files provide new baseband firmware images. In total, we
downloaded 360 firmware updates and could obtain 229 unique
baseband images of which we could successfully boot 213
using FIRMWIRE. The other images failed to boot due to errors
in emulation fidelity, resulting, for instance, in hangs while
waiting for the expiry of specific timers or infinite loops when
checking for specific return values from peripherals. While
these errors could be fixed, the purpose of this experiment is
to demonstrate on how many images FIRMWIRE does work
without additional manual intervention. Table VI details the
distribution of the collected images over the different phone
models.

Results. For each image booting up in our emulator, we inject
the FUZZ task that triggered the specific crash and provide it
with the crashing test case. We then monitor the behavior of
the emulated firmware and log whether the baseband crashed.

Phone Model Earliest Latest #Updates #Images #Booting

Galaxy S7 Mar’16 Nov’20 37 24 21
Galaxy S7e Mar’16 Nov’20 52 27 24
Galaxy S8 Apr’17 Apr’21 47 37 34
Galaxy S8+ Apr’17 Apr’21 17 15 15
Galaxy S9 Mar’18 Oct’21 101 40 36
Galaxy S10 Feb’19 Oct’21 40 31 30
Galaxy S10e Feb’19 Oct’21 40 31 29
Galaxy A41 Jun’20 Aug’21 13 12 12
Galaxy A10s Dec’19 Sep’21 13 12 12
Total: Mar’16 Oct’21 360 229 213

TABLE VI: Collected Firmware Updates and Images.

SM

RRC#3

RRC#2

RRC#1

CC#2

CC#1

S
7
 (

G
9
3
0
)

SM

RRC#3

RRC#2

RRC#1

CC#2

CC#1

S
7
 E

d
g

e
 (

G
9
3
5
)

SM

RRC#3

RRC#2

RRC#1

CC#2

CC#1

S
8
 (

G
9
5
0
)

SM

RRC#3

RRC#2

RRC#1

CC#2

CC#1

S
8
+

 (
G

9
5
5
)

SM

RRC#3

RRC#2

RRC#1

CC#2

CC#1

S
9
 (

G
9
6
0
)

SM

RRC#3

RRC#2

RRC#1

CC#2

CC#1

S
1
0
e
 (

G
9
7
0
)

2016 2017 2018 2019 2020 2021 2022

SM

RRC#3

RRC#2

RRC#1

CC#2

CC#1

S
1
0
 (

G
9
7
3
) Crash

No Crash

Timeout

Unknown

Emu. Error

Fig. 6: Large scale testing of discovered Shannon baseband
crashes over time, per phone model and firmware image.
Each black dot is an image tested, with state interpolated
between. “Crash” indicates that the image crashed when re-
ceiving the input. “No crash” means the image did not crash
when receiving the input. “Timeouts” occur when the emulator
could not retrieve and process the input in time. “Emulation
Error” means FIRMWIRE was not able to boot the firmware.
“Unknown” indicates other types of errors.

We showcase the results of our longitudinal study in Figure 6.
We omit the results for LTE RRC #4, as this vulnerability
only affects MediaTek chipsets, and all tested versions prior
to August 2021 turned out to be vulnerable. The more recent
firmware (only one per chipset at the time of writing) includes
patches following the coordinated disclosure process with
Samsung.

Analyzing the other results of the longitudinal study, we
make several observations. First, although FIRMWIRE success-
fully boots the majority of tested images, both unknown and
emulation errors occur for a variety of images, at different
points in time. This is especially true for S7 and S7 Edge
images, which is not surprising. As described in the last
section, only two images were analyzed when adding support
for these models to FIRMWIRE. We believe that in most

11

cases, the emulation errors are caused by subtle changes in
task interfaces, which require additional PatternDB updates.
Furthermore, single modem images are not crashing when sup-
plied with specific crashing inputs, even though directly before
and after released images do crash on the same input. This is
likely caused by additional inaccuracies in the emulation or
code churn from the baseband vendor affecting the crashing
symptoms. The absence of a crash in the emulator does not
necessarily imply the absence of the vulnerability.

Our second observation is that while most of our found
vulnerabilities affect at least two or more chipsets (SM #1,
CC #2, RRC #2 & #3), only one vulnerability seems to apply
to all tested models (CC #1). We hence conclude that most
vulnerabilities found in FIRMWIRE’s emulator are likely to
be present in other firmware images targeting similar, but not
necessarily identical, chipsets.

Third, we observe that phones with the same chipset follow
similar update schemes, and vulnerabilities are usually patched
for multiple images simultaneously. Interestingly, our test case
for the RRC #1 vulnerability does not lead to crashes on
the Galaxy S10/S10e firmware images since mid-2020. Yet
it continued to crash on recent Galaxy S9 firmware until the
October 2021 update. We speculate that the baseband code
base is fragmented across different chipset implementations,
which could make patch propagation an error-prone task.

Additionally, we highlight that single fixes can patch multi-
ple vulnerabilities at the same time. Specifically, one update in
August 2020 fixed CC #2, and LTE RRC #1 for images using
the S5000AP chipset. Although these crashes can be triggered
via different cellular messages for distinct protocols and code
paths, we believe they are all caused by improper validation of
ASN.1 decoding output, regardless of whether the crash occurs
immediately or at a later stage during execution.

At the time of writing, all tested vulnerabilities are fixed
on the most recent firmware versions due to our disclosure
with Samsung. FIRMWIRE not only allows introspection into
single baseband firmware images but also valuable insights to
development and patching cycles over time (Q2).

G. Over-the-air Reproduction

To prove the applicability of the emulated fuzzing results
(Q3), we replay the found crashes over-the-air against a select
set of devices. For over-the-air verification, we used Ettus
Research’s USRP B210 and N210, lab-grade off-the-shelf
Software-Defined Radios (SDRs) for radio frontend, modified
OpenLTE and YateBTS 5.5.0 for LTE and GSM network
implementation respectively. The experimental setup for the
GSM network is shown in Figure 7 (Appendix).

Ethical Considerations. During our base station experiments,
we used a Faraday cage whenever possible. If a Faraday cage
was not available, we ensured that we did not interfere and
transmit on any frequencies used by local base stations. To
meet this goal, we used non-overlapping frequency in the
region, set the transmission power low enough to prevent
external devices from connecting, and confirmed that other
nearby devices are not affected by our experiment.

LTE RRC. For the verification of crashes in LTE, we modified
the OpenLTE source code to transmit the FIRMWIRE gener-

ated payload. Specifically, the function encoding RRCConfigu-
rationReconfiguration message was modified according to the
test case LTE RRC #1 to #3, and the state machine is modified
to transmit this signaling message directly after when a UE
attaches to the modified base station, without authentication.
We skipped the test case LTE RRC #4 because OpenLTE
does not support MCCH signaling, which is used only by
eMBMS (Evolved Multimedia Broadcast Multicast Services).
According to the GSA, only 5 cellular network operators
launched a commercial eMBMS service in 2019 [24], making
this issue less relevant in the real world at present. Although
alternatives such as srsRAN and OpenAirInterface do support
eMBMS, we leave such testing to future work.

GSM SM, CC. For the verification of crashes in GSM, we
modified the YateBTS source code to transmit the FIRMWIRE
generated payload. Specifically, the function encoding PCO
structure was modified for GSM SM, and the function encod-
ing Call Setup was modified for GSM CC.

Device Preparation. We modified the cellular network soft-
ware as described above for the over-the-air testing. Our test
devices are Galaxy S7 EDGE, S8, S9, S10, and S10e. We
allowed the device to connect to our base station (either LTE
or GSM), and checked whether each of our crashes can be
reproduced over-the-air:

LTE RRC: We wait for the UE to attach to the base station.
The base station sends our payload, and the baseband crashes.

GSM SM: We wait for the UE to acquire a GPRS PDP context
by activating a data connection. The base station sends our
payload, and the baseband crashes.

GSM CC: We initiate a call from another UE. Corruption
occurs when the target UE receives and answers the call.

For all test cases, the crash was visually confirmed when
the cellular signal bars disappeared and via ADB radio logs
with the CP crash indicator.

Over-the-air testing of a variety of crashes for multiple
firmware versions is both tedious and time-consuming work, as
1) baseband firmware is often linked to the specific version of
Android system firmware, requiring the time-consuming whole
firmware flashing and 2) upgrading and downgrading to any
arbitrary version is not always possible due to anti-rollback
protections. Hence, we performed over-the-air testing on a
small number of devices and firmware images. Our intuition is
that over-the-air reproduction of crashing inputs found during
emulation can serve as a proxy for FIRMWIRE’s accuracy.

Results. We were able to reproduce LTE RRC #1 and #3
over-the-air against a Galaxy S10e (G970FXXU3BSKL). This
is in line with our emulation results, as this device model
is not affected by the crashing input for LTE RRC #2.
Similarly, we could observe LTE RRC #1 for a Galaxy S9
(G960FXXS7CSJ3), which is not vulnerable to LTE RRC #2
and #3 according to FIRMWIRE. Corresponding to our threat
model, the phone does not require to be fully attached to
the base station, as the signaling message can be sent just
after the attach request. We also note that this message is
visually indistinguishable from network traffic sent by other
base stations in the Android user interface, and can cause a
Denial of Service (DoS) for other phones in the rogue base
station’s operation range.

12

We further reproduced selected CC and SM crashes over-
the-air. While we did not have access to S8, S9, or S10e
phones with old firmware vulnerable to all three findings, we
could replicate CC #1 and SM #1 against a Galaxy S7 EDGE
(G935FXXU1DPCT). We further replicated CC #2 against an
additional S10 (G973FXXS5CTD1). In all of these test cases,
the phone needs to be attached to the attacker-controlled rogue
base station, which is a realistic attack scenario for these
vulnerabilities, as 2G lacks mutual authentication.

All of these experiment results confirm our findings during
emulation, and, hence, we believe that FIRMWIRE’s results are
a good indicator for the behavior of real phones.

Discussion. These end-to-end examples demonstrate the power
and usability of FIRMWIRE to increase the productivity of
baseband research. If an analyst were to try and find the
flaws mentioned using over-the-air fuzzing alone, they would
have to continuously initiate calls and GPRS activations to
the device, with test rates close to 1 to 2 tests per minute.
Additionally, due to the statefulness of the cellular protocols,
they would have to not only write code to achieve this for
every other message type but also physically reset the device
if the internal state had been corrupted, preventing further
testing. Even if a crash occurred, with little insight into the
root cause of the crash beyond the message sent, debugging
the root cause would be nearly impossible. Using FIRMWIRE’s
scalable protocol testing (Q1 & Q2) and instrumentation not
offered by production hardware, we are able to get insight into
memory corruptions and the overall operation and resilience
of real-world baseband implementations.

VI. DISCUSSION

Supporting Qualcomm Basebands. The largest vendor for
baseband platforms by revenue, Qualcomm, poses an addi-
tional challenge to FIRMWIRE. Unlike other baseband imple-
mentations, Qualcomm leverages a fully-custom ISA known as
Hexagon, specifically built for their Digital Signal Processors
(DSPs). Unfortunately, tooling for this ISA is sparse, and
especially full-system emulators are lacking. To date, only
rudimentary user-mode emulation frameworks are publicly
available for Hexagon [53]. As a result, the most difficult
hurdle in supporting Qualcomm BPs would be implementing
a full-system emulator for an additional ISA, which is outside
the scope of this work. However, given such an emulator, a
vendor plugin could be created to add support to FIRMWIRE
for Hexagon’s hardware and RTOS (QuRT).

Supporting 5G Basebands. During our research, we also
performed an initial assessment of Samsung’s 5G modem (the
S5123 chipset). The most notable change is in the hardware
platform: instead of using a Cortex-R processor, the new
chipset uses the Cortex-A series. Early investigation into the
binary shows that the ShannonOS is nearly the same structure,
with the major changes centered around the memory layout.
Firmware for the MT6853 and MT6873 MediaTek chipsets
present a similar situation, with new nanoMIPS-based BPs
which require vendor plugin updates. In both cases, the core
RTOS primitives appear unchanged, which indicates that we
can easily reuse most of the existing FIRMWIRE vendor
plugins. We plan to apply FIRMWIRE to these additional
hardware platforms in future work in order to explore the
newly created 5G NR implementations.

Symbolic Execution. One of the benefits of our emulation-
based approach is that it allows us to run security analysis
tooling that would have been otherwise inaccessible. One
example is plug-and-play symbolic analysis of the firmware
using concrete state extracted from the emulator [23], [49].
We implemented a proof of concept on top of the angr
framework [62], in which we snapshot the emulator state
and transfer it to the symbolic execution engine. Then, an
analyst can annotate which parts of the memory should be
made symbolic, e.g., function inputs or memory buffers, before
beginning the symbolic exploration.

Thanks to the rich concrete state provided by the em-
ulator, typical problems such as state explosion and over-
approximation impact the symbolic exploration in our proof
of concept less severely than approaches starting from a fully
symbolic state, such as BaseSpec [38]. However, we note that
for such an analysis, the emulated baseband and included state
machines need to be driven towards the kick-off point for
symbolic exploration, which we consider to be an independent
challenge outside the scope of this work.

Exploring other Interfaces. To enable a fully virtual UE,
USIM peripheral support would need to be prototyped into
FIRMWIRE. This would yield more accurate processing of
messages, especially those which require a SIM card such
as SMS or USSD. Basebands also have many other pro-
tocols, including GPS/GNSS, audio codecs, AT commands,
diagnostic, and remote IPC. Exploring how basebands decode
GPS over-the-air could uncover new vulnerabilities beyond the
cellular standards. Audio codecs are complex on their own and
could be investigated further to make sure they operate with
malformed voice packets controlled by callers. AT command
interfaces are a large attack surface on some devices [65], [37].
Exploring the many AT command handlers could yield a better
understanding of this attack surface. Diagnostic modes [30],
similar to AT commands, are highly privileged and less ex-
plored, yet yield significant power for baseband introspection,
without requiring advanced dynamic analysis. Finally, remote
IPC from the application processor and system processes
running on the AP, is a large attack surface that needs more
auditing. For example, how the baseband can affect the AP’s
kernel and its structures is of great interest in the event that
the baseband is compromised by remote attack.

More than Introspection. FIRMWIRE’s application to base-
band introspection and security testing is clear. But, many
uses outside of the security community exist. This includes
the ability to have a fully virtualized UE for use in operating
system emulators, such as those for Android and iOS, or in
continuous integration environments for Radio Access Net-
works (RANs). For example, in typical mobile emulators, the
baseband processor does not exist and is instead stubbed out.
This means the environment is not able to test flows involving
calls or text messages. Instead, these have to be tested on real
devices, which prevents easy automation. Additionally, open
source RANs like srsRAN, OpenAirInterface, YateBTS, and
more could integrate FIRMWIRE into their CI environment.
This could be achieved by mocking out the physical layer
and instead tunneling layer-2 packets to and from a RAN.
srsRAN offers this functionality out-of-the-box via its ZeroMQ
interface.

13

VII. RELATED WORK

Cellular Protocol Security. BaseSpec [38] by Kim et al.
performs static and symbolic analysis of baseband firmware
to extract protocol models. It then compares these to the
cellular standards to discover inconsistencies. While system-
atic, this approach suffers from false positives due to un-
constrained symbolic execution, only considers NAS proto-
cols, and does not take into consideration accurate base-
band state. FIRMWIRE is a dynamic analysis platform for
basebands that has few false positives, supports a multitude
of protocols (not just NAS), and supports stateful testing.
LTEFuzz [40] tests LTE NAS and Radio Resource Control
(RRC) message handling on core and user equipment over-
the-air. Their approach inverts protocol decision trees in order
to classify invalid test cases and mutate a corpus of LTE
control packets collected using SCAT [30]. DoLTEst [55]
offers a more systematic approach to downlink testing, but like
LTEFuzz, also requires physical devices with log monitoring
enabled. Our work takes a different approach by emulating
the device’s baseband processor to explore the fine-grained
impact of message parsing and memory corruption bugs. Using
FIRMWIRE, we are able to pinpoint the precise reason for
a crash, which would normally be externally considered as
a “denial of service”, and use our debugging capabilities to
further understand the security impact. Additionally, LTE-
Fuzz effectively uses black-box fuzzing, while FIRMWIRE
provides coverage-guided fuzzing, increasing code coverage
while avoiding manual effort. Most notably, neither LTEFuzz
nor BaseSpec are designed as baseband analysis platforms and
neither released reproducible artifacts (full source code and
data set) to the community, limiting their usefulness.

T-Fuzz [34] uses existing cellular test suites based on
TTCN-3 as a basis for negative testing (fuzzing) of cellular
protocols. It is unclear what devices are tested and there is
no mention of this work being used for basebands. Besides
fuzzing, many papers focus primarily on cellular protocols
and standards. LTEInspector [31] discovered multiple flaws
within LTE by focusing on protocol state machines and their
security properties. 5GReasoner [32] took a similar approach
for 5G using model checking, leading to multiple weaknesses
and vulnerabilities. Atomic [10] analyzes the wording of LTE
specification documents, finding vulnerabilities in LTE itself
as well as some implementations. A large-scale analysis of
VoLTE demonstrated many attacks on network operators [39].
The ephemeral GUTI identifier, used in LTE to page specific
mobile devices while maintaining over-the-air privacy, was
shown to have bad random properties, allowing tracking of
subscribers [29]. The aLTEr attack on the LTE MAC layer
demonstrated cryptographic flaws with the Authentication and
Key Agreement (AKA) and ciphertext attacks, which allowed
for IP traffic and device fingerprinting [58], downgrading, and
more. Shaik et al. [61] and Chlosta et al. [11] also demonstrate
LTE downgrade attacks, UE fingerprinting, battery draining
attacks, and unprotected RRC messages. SigOver [69] targets
the LTE physical channel to craft malicious broadcast mes-
sages, signaling storms, denial of service, and downgrades.
SigUnder [44] attacks the 5G NR physical channel to enable
similar capabilities to the SigOver family of attacks.

Baseband Firmware Security. Early work targeting the cel-
lular baseband in 2009 by Mulliner et al. [51] demonstrated

generating invalid SMS messages through fuzzing on a local
device to reveal parsing and protocol flaws. This work was
extended years later to demonstrate that remote SMS attacks
against mobile devices are possible [50]. Following work in
2012 demonstrated that even more damaging remote attacks
are possible over-the-air as a result of targeted baseband mem-
ory corruption [67]. This highlighted the relative insecurity of
baseband processors when compared to application processors,
due to missing mitigations against memory corruption, such as
Address Space Layout Randomization (ASLR) [60]. This work
was limited to two phones and relied primarily on manual
static analysis. Recent work on baseband exploitation [54],
[6] confirms that practical remote attacks are still possible
and inexpensive to mount. Testing baseband firmware using
fuzzing was shown in [66], [28] which focuses on GSM, but
only targets SMS and SMS cell broadcast. Previous approaches
to scaling up cellular testing include developing a wireless
testbed and incorporating feedback from multiple UEs to detect
faults [17], [27]. Most previous work performs over-the-air
testing, which is difficult to fully scale and relies on manu-
facturer logs from UEs, which may not be detailed enough or
available at all, to triage faults. Notable, very recent, exceptions
exist. One example, alas not targeting cellular basebands, is
Frankenstein by Ruge et al., [57] proposing to rewrite parts of
a Bluetooth baseband. With their methodology, they are able
to run, and fuzz, the Bluetooth baseband on user-mode QEMU
after extracting a snapshot from a physical device. Targeting
cellular basebands, BaseSAFE fuzzes cellular basebands by
rehosting single functions to Unicorn, a CPU emulator, and
executing them directly [45]. As outlined in Section V-C,
BaseSAFE requires the manual creation of an initial state and
can benefit from snapshots created with FIRMWIRE.

Firmware Rehosting. Recently, rehosting for security test-
ing gained a lot of traction [18], [68]. Hardware-in-the-loop
approaches [36], [70], [42], [13], [25], [63] emulate target
firmware while forwarding hardware interaction to a physical
device. This does not only pose inherent challenges to scalabil-
ity but requires also the presence of advanced debug interfaces
capable of memory introspection and modification. Unfortu-
nately, due to the locked-down nature of cellular processors,
such interfaces are rarely available, rendering hardware-in-the-
loop approaches insufficient for this line of research.

To avoid direct hardware interactions and the resulting
challenges, various hardware-less rehosting solutions make use
of known and well-defined abstractions such as the Linux
kernel [9], [14], [71], [41], or hardware abstraction layers [12],
[43]. Furthermore, to rehost targets where hardware accesses
cannot be eliminated, recent approaches deploy simple models
[26], [19], [72], [35] to create peripheral mock-ups and enable
dynamic firmware analysis without a physical device, and a
recent work extends these approaches to add support for simple
DMA transactions [47]. Unfortunately, due to its obscurity
and complexity, baseband firmware poses a combination of
challenges which previous approaches handle strictly sepa-
rately: It is a highly complex, proprietary piece of software
that is not based on Linux and for which no public SDKs
exist (as would be needed for library matching schemes such
as HALucinator [12]). At the same time, its input channels
rely on memory sharing with the AP and DSPs, as well as
complex DMA interactions (e.g., via ring buffers). Both types
of input channels are not handled by the current state of the

14

art for automated hardware modeling. As such, no previous
approach cleanly applies to the complex area of baseband
firmware analysis.

VIII. CONCLUSION

In this paper, we presented FIRMWIRE, a scalable, full-
system emulation platform for baseband firmware analysis,
supporting firmware from two major device vendors span-
ning 6 different chipsets. Using FIRMWIRE, we discovered
4 previously unknown pre-authentication vulnerabilities in
LTE and GSM protocols via coverage-guided fuzzing. By
replaying the crashing inputs against 213 emulated firmware
images, we gained detailed insight into patching cycles and
vulnerability lifetimes. Finally, we demonstrated the accuracy
of FIRMWIRE’s emulation by replicating the crashes over-the-
air on multiple devices.

ACKNOWLEDGMENTS

We want to thank the anonymous reviewers for their
insightful comments and feedback. Additionally, we want to
express our gratitude to Samsung for working with us on the
identified issues and providing patches to the end-users in a
timely manner.

This work was partially supported by the US National
Science Foundation grant CNS-1815883, the Office of Naval
Research grant ONR-OTA N00014-20-1-2205, the Air Force
Office of Scientific Research award FA9550-14-1-0351, the
Semiconductor Research Corporation, the Netherlands Organ-
isation for Scientific Research through grants NWO “TROP-
ICS” (628.001.030) and NWA-ORC "InterSect", and the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany’s Excellence Strategy - EXC 2092
CASA - 390781972.

REFERENCES

[1] 3GPP, “Call Barring (CB) supplementary service; Stage 3,” 3rd
Generation Partnership Project (3GPP), Technical Specification (TS)
24.088. [Online]. Available: http://www.3gpp.org/DynaReport/24088.
htm

[2] ——, “Call Forwarding (CF) supplementary services; Stage 3,” 3rd
Generation Partnership Project (3GPP), Technical Specification (TS)
24.082. [Online]. Available: http://www.3gpp.org/DynaReport/24082.
htm

[3] ——, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio
Resource Control (RRC); Protocol specification,” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 36.331.
[Online]. Available: http://www.3gpp.org/DynaReport/36331.htm

[4] ——, “Mobile radio interface Layer 3 specification; Core network
protocols; Stage 3,” 3rd Generation Partnership Project (3GPP),
Technical Specification (TS) 24.008. [Online]. Available: http:
//www.3gpp.org/DynaReport/24008.htm

[5] ——, “Mobile radio interface layer 3 supplementary services
specification; Formats and coding,” 3rd Generation Partnership Project
(3GPP), Technical Specification (TS) 24.080. [Online]. Available:
http://www.3gpp.org/DynaReport/24080.htm

[6] Amat Cama, “A Walk with Shannon: Walkthrough of
a Pwn2Own Baseband Exploit,” in Infiltrate, Apr. 2018.
[Online]. Available: https://downloads.immunityinc.com/infiltrate2018-
slidepacks/amat-cama-a-walk-with-shannon/presentation.pdf

[7] C. Aschermann, S. Schumilo, A. Abbasi, and T. Holz, “IJON: Exploring
deep state spaces via fuzzing,” in IEEE Symposium on Security and
Privacy, 2020.

[8] F. Bellard, “QEMU, a fast and portable dynamic translator.” in USENIX
Annual Technical Conference, 2005.

[9] D. D. Chen, M. Woo, D. Brumley, and M. Egele, “Towards Automated
Dynamic Analysis for Linux-based Embedded Firmware.” in Sympo-
sium on Network and Distributed System Security (NDSS), 2016.

[10] Y. Chen, Y. Yao, X. Wang, D. Xu, C. Yue, X. Liu, K. Chen, H. Tang, and
B. Liu, “Bookworm Game: Automatic Discovery of LTE Vulnerabilities
Through Documentation Analysis,” in IEEE Symposium on Security and
Privacy, 2021.

[11] M. Chlosta, D. Rupprecht, T. Holz, and C. Pöpper, “LTE security dis-
abled: misconfiguration in commercial networks,” in ACM Conference
on Security and Privacy in Wireless and Mobile Networks (WiSec),
2019.

[12] A. Clements, E. Gustafson, T. Scharnowski, P. Grosen, D. Fritz,
C. Kruegel, G. Vigna, S. Bagchi, and M. Payer, “HALucina-
tor: Firmware Re-hosting Through Abstraction Layer Emulation,” in
USENIX Security Symposium, 2020.

[13] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: System-
Wide Security Testing of Real-World Embedded Systems Software,” in
USENIX Security Symposium, 2018.

[14] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: a case study on embedded web interfaces,” in ACM
Symposium on Information, Computer and Communications Security
(ASIACCS), 2016.

[15] Counterpoint Research, “Smartphone application processor (AP) /
system-on-chip (SoC) vendor shipment share worldwide in 2020 and
2021,” 2021.

[16] B. Dolan-Gavitt, J. Hodosh, P. Hulin, T. Leek, and R. Whelan, “Re-
peatable reverse engineering with PANDA,” in Proceedings of the 5th
Program Protection and Reverse Engineering Workshop, 2015.

[17] K. Fang and G. Yan, “Emulation-Instrumented Fuzz Testing of 4G/LTE
Android Mobile Devices Guided by Reinforcement Learning,” in Eu-
ropean Symposium on Research in Computer Security (ESORICS).
Springer International Publishing, 2018.

[18] A. Fasano, T. Ballo, M. Muench, T. Leek, A. Bulekov, B. Dolan-Gavitt,
M. Egele, A. Francillon, L. Lu, N. Gregory et al., “SoK: Enabling
Security Analyses of Embedded Systems via Rehosting,” in ACM
Symposium on Information, Computer and Communications Security
(ASIACCS), 2021.

[19] B. Feng, A. Mera, and L. Lu, “P2IM: Scalable and Hardware-
independent Firmware Testing via Automatic Peripheral Interface Mod-
eling,” in USENIX Security Symposium, 2020.

[20] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Combin-
ing incremental steps of fuzzing research,” in USENIX Workshop on
Offensive Technologies (WOOT), 2020.

[21] N. Golde and D. Komaromy, “Breaking Band: Reverse Engineering and
Exploiting the Shannon Baseband,” in RECON, Jun. 2016. [Online].
Available: https://comsecuris.com/slides/recon2016-breaking_band.pdf

[22] M. Grassi and Kira, “Exploring the MediaTek baseband,” in Offensive-
Con, Feb. 2020.

[23] F. Gritti, L. Fontana, E. Gustafson, F. Pagani, A. Continella, C. Kruegel,
and G. Vigna, “SYMBION: Interleaving Symbolic with Concrete Ex-
ecution,” in Proceedings of the IEEE Conference on Communications
and Network Security (CNS), 2020.

[24] GSA, “LTE Broadcast (eMBMS) Market Update,” Jul. 2019.
[25] E. Gustafson, M. Muench, C. Spensky, N. Redini, A. Machiry,

Y. Fratantonio, D. Balzarotti, A. Francillon, Y. R. Choe, C. Kruegel
et al., “Toward the Analysis of Embedded Firmware through Automated
Re-hosting,” in Symposium on Recent Advances in Intrusion Detection
(RAID), 2019.

[26] L. Harrison, H. Vijaykumar, R. Padhye, K. Sen, and M. Grace,
“PARTEMU: Enabling dynamic analysis of real-world trustzone soft-
ware using emulation,” in USENIX Security Symposium, 2020.

[27] G. Hernandez and K. R. B. Butler, “Basebads: Automated security
analysis of baseband firmware: poster,” in ACM Conference on Security
and Privacy in Wireless and Mobile Networks (WiSec). Association
for Computing Machinery, 2019.

[28] B. Hond, “Fuzzing the GSM protocol,” Master’s thesis, Radboud
University Nijmegen, Netherlands, Jul. 2011.

15

http://www.3gpp.org/DynaReport/24088.htm
http://www.3gpp.org/DynaReport/24088.htm
http://www.3gpp.org/DynaReport/24082.htm
http://www.3gpp.org/DynaReport/24082.htm
http://www.3gpp.org/DynaReport/36331.htm
http://www.3gpp.org/DynaReport/24008.htm
http://www.3gpp.org/DynaReport/24008.htm
http://www.3gpp.org/DynaReport/24080.htm
https://downloads.immunityinc.com/infiltrate2018-slidepacks/amat-cama-a-walk-with-shannon/presentation.pdf
https://downloads.immunityinc.com/infiltrate2018-slidepacks/amat-cama-a-walk-with-shannon/presentation.pdf
https://comsecuris.com/slides/recon2016-breaking_band.pdf

[29] B. Hong, S. Bae, and Y. Kim, “GUTI Reallocation Demystified: Cellular
Location Tracking with Changing Temporary Identifier.” in Symposium
on Network and Distributed System Security (NDSS), 2018.

[30] B. Hong, S. Park, H. Kim, D. Kim, H. Hong, H. Choi, J.-P. Seifert,
S.-J. Lee, and Y. Kim, “Peeking Over the Cellular Walled Gardens - A
Method for Closed Network Diagnosis -,” IEEE Transactions on Mobile
Computing, Oct. 2018.

[31] S. R. Hussain, O. Chowdhury, S. Mehnaz, and E. Bertino, “LTEInspec-
tor: A Systematic Approach for Adversarial Testing of 4G LTE,” in
Symposium on Network and Distributed System Security (NDSS), 2018.

[32] S. R. Hussain, M. Echeverria, I. Karim, O. Chowdhury, and E. Bertino,
“5GReasoner: A Property-Directed Security and Privacy Analysis
Framework for 5G Cellular Network Protocol,” in ACM Conference
on Computer and Communications Security (CCS), 2019.

[33] M. Jiang, Y. Zhou, X. Luo, R. Wang, Y. Liu, and K. Ren, “An empirical
study on ARM disassembly tools,” in ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA), 2020.

[34] W. Johansson, M. Svensson, U. E. Larson, M. Almgren, and
V. Gulisano, “T-Fuzz: Model-Based Fuzzing for Robustness Testing of
Telecommunication Protocols,” in IEEE Transactions on Control System
Technology (CST), 2014.

[35] E. Johnson, M. Bland, Y. Zhu, J. Mason, S. Checkoway, S. Savage,
and K. Levchenko, “Jetset: Targeted Firmware Rehosting for Embedded
Systems,” in USENIX Security Symposium, 2021.

[36] M. Kammerstetter, C. Platzer, and W. Kastner, “PROSPECT: Peripheral
Proxying Supported Embedded Code Testing,” in ACM Symposium
on Information, Computer and Communications Security (ASIACCS),
2014.

[37] I. Karim, F. Cicala, S. R. Hussain, O. Chowdhury, and E. Bertino,
“Opening Pandora’s Box through ATFuzzer: Dynamic Analysis of
AT Interface for Android Smartphones,” in Annual Computer Security
Applications Conference (ACSAC), 2019.

[38] E. Kim, D. Kim, C. Park, I. Yun, and Y. Kim, “BaseSpec: Comparative
Analysis of Baseband Software and Cellular Specifications for L3
Protocols,” in Symposium on Network and Distributed System Security
(NDSS), 2021.

[39] H. Kim, D. Kim, M. Kwon, H. Han, Y. Jang, D. Han, T. Kim,
and Y. Kim, “Breaking and Fixing VoLTE: Exploiting Hidden Data
Channels and Mis-implementations,” in ACM Conference on Computer
and Communications Security (CCS), 2015.

[40] H. Kim, J. Lee, E. Lee, and Y. Kim, “Touching the Untouchables: Dy-
namic Security Analysis of the LTE Control Plane,” in IEEE Symposium
on Security and Privacy, 2019.

[41] M. Kim, D. Kim, E. Kim, S. Kim, Y. Jang, and Y. Kim, “FirmAE: To-
wards Large-Scale Emulation of IoT Firmware for Dynamic Analysis,”
in Annual Computer Security Applications Conference (ACSAC), 2020.

[42] K. Koscher, T. Kohno, and D. Molnar, “SURROGATES: Enabling
near-real-time dynamic analyses of embedded systems,” in USENIX
Workshop on Offensive Technologies (WOOT), 2015.

[43] W. Li, L. Guan, J. Lin, J. Shi, and F. Li, “From Library Portability
to Para-rehosting: Natively Executing Microcontroller Software on
Commodity Hardware.” in Symposium on Network and Distributed
System Security (NDSS), 2022.

[44] N. Ludant and G. Noubir, “SigUnder: a Stealthy 5G Low Power Attack
and Defenses,” in ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec), 2021.

[45] D. Maier, L. Seidel, and S. Park, “BaseSAFE: Baseband SAnitized
Fuzzing through Emulation,” in ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec), 2020.

[46] Marco Grassi, Muqing Liu, and Tianyi Xie, “Exploitation Of A Modern
Smartphone Baseband,” in Black Hat USA, 2018.

[47] A. Mera, B. Feng, L. Lu, and E. Kirda, “DICE: Automatic emulation of
dma input channels for dynamic firmware analysis,” in IEEE Symposium
on Security and Privacy, 2021.

[48] G. Miru, “Path of Least Resistance: Cellular Baseband to Application
Processor Escalation on Mediatek Devices,” Jul. 2017, Comsecuris
Blog.

[49] M. Muench, D. Nisi, A. Francillon, and D. Balzarotti, “Avatar²: A
Multi-target Orchestration Platform,” in Workshop on Binary Analysis
Research (BAR), 2018.

[50] C. Mulliner, N. Golde, and J.-P. Seifert, “SMS of Death: From Analyz-
ing to Attacking Mobile Phones on a Large Scale,” in USENIX Security
Symposium, 2011.

[51] C. Mulliner and C. Miller, “Fuzzing the Phone in your Phone,” in Black
Hat USA, 2009.

[52] NCC Group, “TriforceAFL,” 2017. [Online]. Available: https://github.
com/nccgroup/TriforceAFL

[53] Niccolò Izzo and Taylor Simpson, “QEMU-Hexagon: Automatic Trans-
lation of the ISA Manual Pseudcode to Tiny Code Instructions of a
VLIW Architecture,” KVM Forum, Nov. 2019.

[54] Nico Golde, “There’s Life in the Old Dog Yet: Tearing New Holes into
Intel/iPhone Cellular Modems,” Apr. 2018, comsecuris Blog.

[55] C. Park, S. Bae, B. Oh, J. Lee, E. Lee, I. Yun, and Y. Kim, “DoLTEst:
In-depth Downlink Negative Testing Framework for LTE Devices,” in
USENIX Security Symposium, 2022.

[56] N. A. Quynh and D. H. Vu, “Unicorn: Next Generation CPU Emulator
Framework,” BlackHat USA, 2015.

[57] J. Ruge, J. Classen, F. Gringoli, and M. Hollick, “Frankenstein: Ad-
vanced Wireless Fuzzing to Exploit New Bluetooth Escalation Targets,”
in USENIX Security Symposium, 2020.

[58] D. Rupprecht, K. Kohls, T. Holz, and C. Pöpper, “Breaking LTE on
Layer Two,” in IEEE Symposium on Security and Privacy, 2019.

[59] SamMobile, “Download firmware updates for your Samsung mobile
phone and tablet,” 2021. [Online]. Available: https://sammobile.com/
firmwares/

[60] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the Effectiveness of Address-space Randomization,” in ACM Con-
ference on Computer and Communications Security (CCS), 2004.

[61] A. Shaik, R. Borgaonkar, S. Park, and J.-P. Seifert, “New vulnerabilities
in 4G and 5G cellular access network protocols: exposing device
capabilities,” in ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec), 2019.

[62] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens, M. Polino,
A. Dutcher, J. Grosen, S. Feng, C. Hauser, C. Kruegel et al., “SoK:(state
of) the art of war: Offensive techniques in binary analysis,” in IEEE
Symposium on Security and Privacy, 2016.

[63] S. M. S. Talebi, H. Tavakoli, H. Zhang, Z. Zhang, A. A. Sani, and
Z. Qian, “Charm: Facilitating Dynamic Analysis of Device Drivers of
Mobile Systems,” in USENIX Security Symposium, 2018.

[64] T. B. Team, “Exploring Qualcomm Baseband via ModKit,” in
CanSecWest, 2018.

[65] D. Tian, G. Hernandez, J. Choi, V. Frost, C. Ruales, P. Traynor, H. Vi-
jayakumar, L. Harrison, A. Rahmati, M. Grace, and K. Butler, “ATten-
tion Spanned: Comprehensive Vulnerability Analysis of AT Commands
Within the Android Ecosystem,” in USENIX Security Symposium, 2018.

[66] F. van den Broek, B. Hond, and A. Cedillo Torres, “Security Testing of
GSM Implementations,” in Engineering Secure Software and Systems,
J. Jürjens, F. Piessens, and N. Bielova, Eds. Springer International
Publishing, 2014.

[67] R.-P. Weinmann, “Baseband Attacks: Remote Exploitation of Memory
Corruptions in Cellular Protocol Stacks.” in USENIX Workshop on
Offensive Technologies (WOOT), 2012.

[68] C. Wright, W. A. Moeglein, S. Bagchi, M. Kulkarni, and A. A.
Clements, “Challenges in Firmware Re-Hosting, Emulation, and Anal-
ysis,” ACM Computing Surveys (CSUR), 2021.

[69] H. Yang, S. Bae, M. Son, H. Kim, S. M. Kim, and Y. Kim, “Hiding
in Plain Signal: Physical Signal Overshadowing Attack on LTE,” in
USENIX Security Symposium, 2019.

[70] J. Zaddach, L. Bruno, A. Francillon, and D. Balzarotti, “Avatar:
A Framework to Support Dynamic Security Analysis of Embedded
Systems’ Firmwares,” in Symposium on Network and Distributed System
Security (NDSS), 2014.

[71] Y. Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun,
“FIRM-AFL: High-Throughput Greybox Fuzzing of IoT Firmware via
Augmented Process Emulation,” in USENIX Security Symposium, 2019.

[72] W. Zhou, L. Guan, P. Liu, and Y. Zhang, “Automatic Firmware
Emulation through Invalidity-guided Knowledge Inference,” in USENIX
Security Symposium, 2021.

16

https://github.com/nccgroup/TriforceAFL
https://github.com/nccgroup/TriforceAFL
https://sammobile.com/firmwares/
https://sammobile.com/firmwares/

APPENDIX

PATTERNDB ENTRY FORMAT

Pattern := {
name := string
pattern := [PatternSyntax...]
lookup := PatternFn?
post_lookup := PatternFn?
required := bool?
for := [string...]?
within := [AddressSet...]?
offset := integer?
offset_end := integer?
align := integer?

}

PatternSyntax :=
r"([a-fA-F0-9]{2}|([?][?+*]))+"

PatternFn := code
AddressSet := SymbolName | AddressRange
SymbolName := string
AddressRange := [integer, integer]

The syntax above uses := for type definitions, [] for
arrays, ... for one or more of a type, | for either or, and ?
for optional elements. Pattern is made up of two required
fields: a name and one or more PatternSyntax elements.
PatternSyntax is a plain-text string that abstracts away
from regular expressions. This string is made up of hex bytes,
masked bytes ??, variable-length byte sequences using ?* for
zero or more and ?+ for one or more. For more complex
patterns (e.g. ones requiring Turing complete checks), the
lookup field can point to a code sequence. Patterns can
also have a post-processing function (post_lookup) after
a match has been found. FIRMWIRE provides built-in post-
processing helpers to perform operations such as searching
for pointer references and dereferencing pointers. In addition,
there are other optional fields like required, which make
pattern failure halt execution, for which constrains a pattern
to specific devices, within which only searches for patterns
within a symbol region or address range (the default is the
entire address range), offset and offset_end which
adjust the final address, and finally align which constrains
found addresses to a byte alignment.

To develop a pattern, an analyst would use a static analysis
tool to identify an area of interest within one or more firmware
images. They would then discover nearby byte sequences and
using hex patterns, lookup functions, and constraints test the
pattern on the target set of binaries, ensuring the same relative
location is matched. Effectively, PatternDB performs light-
weight static analysis and does not require an external static
analysis tool or disassembly to operate.

IMPLEMENTATION DETAILS

We provide the full list of used patterns for the Samsung
and MediaTek vendor plugins, as well as implemented periph-
eral models in Table VII, Table VIII, and Table IX below.

SELECTING PROXIES FOR PER-TASK COVERAGE

Retrieving an accurate number for the achieved coverage
for individual tasks in the baseband firmware images is a
non-trivial problem. Firstly, these firmware images are only

distributed in binary form, usually spanning 20-50MB in
size. As such, to retrieve the correct number of basic blocks
embedded in this binary, perfect disassembly of the binary
would be required, which is an undecidable problem for
architectures interleaving code and data. Additionally, even if
source code was available, establishing boundaries between
the tasks is difficult due to shared code and common API
calls. Lastly, even when considering non-perfect disassembly,
a recent study demonstrates the limitations of state-of-the-art
disassembly tools for ARM binaries [33], which largely reflects
our experiences for analyzing baseband modems.

To this end, we deploy two proxies for a best-effort
mapping between fuzzed tasks and associated basic blocks.
For MediaTek images, we leverage debugging symbols shipped
together with the baseband firmware. These symbols are stored
in a proprietary format and contain start addresses and names
of functions. We filter these functions by the prefix likely
associated with the fuzz task (i.e., errc) and consider all basic
blocks of the corresponding disassembled functions as relevant
code.

For Samsung images, we use the debugging trace entries
embedded in the modem binaries. These trace entries are
located in a specific region of the loaded firmware, follow
a well-specified format, and hold a pointer to a string for the
associated source code file name. Therefore, we could easily
discover the trace entries and associate them to the specific
tasks, based on the file name. Then, for each trace entry
associated with a task, we automatically check for references
to the trace entry in the disassembled binaries. If a reference
is found, we automatically attempt to identify the function
boundaries for the code using this reference and consider all
basic blocks in resulting functions as relevant.

OVER-THE-AIR TESTING SETUP

Fig. 7: Hardware setup for YateBTS GSM network. A similar
setup had been used for the OpenLTE LTE network.

17

Name Pattern/Lookup PostLookup Req? For Within Offset OffsetEnd Align

boot_mpu_table 00000000 00000000 1c000000????????
???????? ???????? ???????? ????????
???????? 01000000 01000000 00000004
20

- T * * 0x0 0x0 0x0

boot_setup_memory PAT1: 00008004 200c0000
PAT2: 00000004 ????0100

parse_
memory_
table

T * * -0x14 0x0 0x4

boot_key_check ?? 49 00 22 ?? 48 ?? a3 ?? ?? ?? ??
80 21 68 46 ?? ?? ?? ?? 10 22 20 a9
68 46 ?? ?? ?? ??

- T S5000AP * 0x0 0x0 0x0

OS_fatal_error 70 b5 05 46 ???????? ?? 48 ?? 24 - F * * 0x0 0x0 0x0

pal_MemAlloc 2d e9 f0 4f 0d 00 83 b0 99 46 92 46
80 46

fixup_
bios_
symbol

F * * 0x0 0x0 0x0

pal_MsgSendTo PAT1: 70 b5 ?+ 04 46 15 46 0e 46
?? ?? 01 df ?* 88 60 08 46 ?+ ?? 48
???? ???? 20 46 98 47
PAT2: ???????? b0f5fa7f 0446 ??46

- F * * 0x0 0x0 0x0

pal_Sleep 30 b5 ?+ 98 ?+ ??98 ??22 ??23 11 46
?? 94

- F * * 0x0 0x0 0x0

log_printf 0fb4 2de9f047 ???? ??98 d0e90060
c0f34815

- T * * 0x0 0x0 0x0

log_printf2 0fb4 2de9f04f ???? ??0a 8fb01898
4068

- F * * 0x0 0x0 0x0

pal_SmSetEvent PAT1: 10b5 ???? ???????? 04 b2
PAT2: 10b5 0068 0028 ???? ????????
04 b2

- F * * 0x0 0x0 0x0

SYM_EVENT_GROUP_
LIST

70 40 2d e9 00 40 a0 e1 ?? ?? 00 eb
00 50 a0 e1 20 00 9f e5 04 10 a0 e1
?? 05 00 eb ?? 00 94 e5 00 00 50 e3
30 ff 2f 11 05 00 a0 e1 ?? ?? 00 eb
00 00 a0 e3 70 80 bd e8

dereference F * * 0x0 0x0 0x0

SYM_TASK_LIST find_task_table - F * * 0x0 0x0 0x0

SYM_
SCHEDULABLE_
TASK_LIST

find_schedulable_task_table - F * * 0x0 0x0 0x0

SYM_CUR_TASK_ID find_current_task_ptr - F * * 0x0 0x0 0x0

SYM_FN_
EXCEPTION_SWITCH

find_exception_switch - F * * 0x0 0x0 0x0

SYM_QUEUE_LIST find_queue_table - F * * 0x0 0x0 0x0

SXXXAP_DVFS PAT1: ??f8???? 00f01f01 ??48 d0 f8
???? c0 f3 ???? ???????? ???? 00 ??
?* ??f1???? ??82 ??eb??11 0988
PAT2: ???? 00 ?? ?* ??f1???? ??82
??eb??11 0988

- T S335AP,
S355AP,
S360AP

* 0x0 0x0 0x2

SYM_LTERRC_INT_
MOB_CMD_HO_
FROM_IRAT_MSG_ID

find_lterrc_int_mob_cmd_ho_from_
irat_msgid

- F * * 0x0 0x0 0x0

TABLE VII: PatternDB for Shannon baseband images

18

Name Pattern/Lookup PostLookup Req? For Within Offset OffsetEnd Align

INC_Initialize_corewait 409a 609b 62ea - F * INC_Initialize 0x0 -0x2 0x0

sync1_addr_code 609a 809c 82eb - F * INC_Initialize -0x2 0x0 0x0

nvram_ltable_init_code a0e8 - F * nvram_ltable_construct 0x0 0x0 0x0

corewait_addr_code 11ea 6eea 2367 - F * stack_init_tasks 0x0 0x0 0x0

L1D_
CustomDynamicGetParam_
assert

00 f1 00 5c - F * L1D_
CustomDynamicGetParam

-0x2 0x0 0x0

errc_evth_inevt_handler_
assert

65 ea - F * errc_evth_inevt_handler 0x0 0x0 0x0

errc_evth_inevt_handler_
end

???? a0e8 - F * errc_evth_inevt_handler 0x0 0x0 0x0

ptr_logical_data_item_
table

a0 e8 - F * nvram_util_get_data_item 0x0 0x0 0x0

ptr_sys_comp_config_tbl a0 e8 - F * SST_CheckHealthinessQCB 0x0 0x0 0x0

TABLE VIII: PatternDB for MediaTek baseband images

Peripheral Description Used by SLoC

CyclicBitPeripheral Dummy peripheral returning different bit set on every access S* 14

LoggingPeripheral Generic peripheral logging read and write accesses S* 15

PassThrough Peripheral behaving like ordinary memory M* 50

GLink Custom peripheral injected by FIRMWIRE for interaction with an emulated system - 501

DSP Digital Signal Processor for cellular messages. Firmware expects correct sync words S* 22

PMIC Power Management Integrated Circuit, requires platform specific contents S355AP, S360AP, S5000AP 37

S355APClk Core system clock for S355AP chipsets S335, S355 92

S355DSPBuffer DSP Buffer for S355AP S355AP 16

S360APClk Core system clock for S360AP chipsets S360 55

S3xxAPBoot Peripheral returning specific values for some hardware platforms during boot S335AP, S360AP 19

S5000APClk Core system clock for S5000AP chipsets S5000AP 34

ShannonAbox Mock-Up for audio related peripheral S* 23

ShannonSOC Peripheral containing core information over the SoC S* 40

ShannonTCU Timer Control Unit for various timers S* 24

ShannonTimer Custom timer. Due to frequent accesses implement directly in QEMU. S* 177

SHM Shared Memory to communicate with the AP via circular FIFO buffers S* 157

SIPC Peripheral for IPC between AP and CP S* 38

UARTPeripheral Used during boot for I/O S* 18

Unknown2 Peripheral who is expected to return a specific value S* 15

AES Hardware peripheral for AES M* 45

CDMM Dummy Peripheral for Common Devyce Memory Map M* 3

GCR Global Configuration Registers M* 25

MCUSync Dummy peripheral M* 3

MDC Modem Configuration Peripheral M* 59

MDPERISYS_MISC Dummy peripheral for synchronization with AP M* 4

MODEML1_TOPSM Dummy peripheral return 0xffffffff at offset 0xD4 M* 9

OSTimer Timer peripheral dedicated to the OS M* 40

PCCIF Peripheral for communicating with the AP via Shared Memory M* 486

PMIC Power Management Integrated Circuit M* 51

TDMABase Timer peripheral used for TDMA M* 10

TOPSM Dummy peripheral return 0xffffffff at offset 0x590 M* 8

TABLE IX: List of peripherals created for FIRMWIRE and platforms using them.
S*: Peripheral is used for all Shannon images. M*: Peripheral is used for all MediaTek images.

19

	Introduction
	Motivation
	Design of FirmWire
	Vendor Plugins
	FirmWire Emulator
	Automated Analysis
	Introspection

	Implementation
	Vendor Plugins
	Automated Analysis

	Evaluation
	Security Analysis: Fuzz Testing
	Fuzzer Performance
	Comparison with the State of the Art
	Discovered Vulnerabilities
	Extending FirmWire
	Large-scale Vulnerability Analysis
	Over-the-air Reproduction

	Discussion
	Related Work
	Conclusion
	References
	Appendix

