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Abstract—Code virtualization is a well-known sophisticated
obfuscation technique that uses custom virtual machines (VM) to
emulate the semantics of original native instructions. Commercial
VM-based obfuscators (e.g., Themida and VMProtect) are often
abused by malware developers to conceal malicious behaviors.
Since the internal mechanism of commercial obfuscators is a
black box, it is a daunting challenge for the analyst to understand
the behavior of virtualized programs. To figure out the code
virtualization mechanism and design deobfuscation techniques,
the analyst has to perform reverse-engineering on large-scale
highly obfuscated programs. This knowledge learning process
suffers from painful cost and imprecision.

In this project, we study how to automatically extract
knowledge from the commercial VM-based obfuscator via a
novel chosen-instruction attack (CIA) technique. Our idea is
inspired by chosen-plaintext attack, which is a cryptanalysis
attack model to gain information that reduces the security of the
encryption scheme. Given a commercial VM-based obfuscator,
we carefully construct input programs, proactively interact with
the obfuscator, and extract knowledge from virtualized output
programs. We propose using the anchor instruction and the
guided simplification technique to efficiently locate and extract
knowledge-related instructions from output programs, respec-
tively. Our experimental results demonstrate that the modern
commercial VM-based obfuscators are under the threat of CIA.
We have discovered 760 anchor instructions and extracted 1,915
verified instruction mapping rules from the four most widely
used commercial obfuscators. The extracted knowledge enables
security analysts to understand virtualized malware and improve
deobfuscation techniques. Besides, we also contributed the first
fine-grained benchmark suite for systematically evaluating the
deobfuscation techniques. The evaluation result shows that three
state-of-the-art deobfuscation techniques are insufficient to defeat
modern commercial VM-based obfuscators and can be improved
by our extracted knowledge.

I. INTRODUCTION

Code virtualization is one of the strongest industrial-grade
software obfuscation transformations [1], [2], which is inspired
by system virtualization [3]. Instead of virtualizing the hard-
ware and system components, code virtualization transforms
selected instructions of the input program into a complex,
customized process-level virtual machine (or interpreter). This
process is analogous to the classical substitution ciphers. The
VM-based obfuscator maps each original instruction to cor-
responding virtual handlers based on the internal customized

mapping rules. Then, the obfuscator replaces original instruc-
tions with a customized virtual machine that uses a dispatcher
to schedule virtual handlers for emulating equivalent semantics
at runtime. The strength of customized VM depends on the
complexity of the virtual components (i.e., virtual handlers,
mapping rules, and VM structure). The sophisticated obfusca-
tor can integrate with other obfuscation schemes (e.g., packing
[4] and opaque predicates [5]) to protect virtual components.
Since these internal mechanisms of the commercial obfuscator
are undisclosed, attackers have to spend significant efforts in
understanding them in a virtualized program. Therefore, the
commercial VM-based obfuscator is effective in protecting
legitimate programs from unauthorized usage [6], [7].

Code virtualization is also abused by malware authors [8],
[9] and advanced persistent threat (APT) groups [10]–[12].
Intuitively, malware authors tend to use customized obfusca-
tion to evade anti-virus scanning. For example, nearly 40%-
50% of malware use customized binary unpacking instead of
off-the-shelf packers [13], [14]. In contrast, malware authors
prefer to use the commercial VM-based obfuscator rather
than customized code virtualization. After analyzing 13,512
reports collected from malware analysis services [15]–[17]
over the past three years, we find out that nearly 99% of
virtualized malware samples are protected by commercial VM-
based obfuscators, such as Themida [18], VMProtect [19], and
Code Virtualizer [20]. To our best knowledge, FinFisher [10],
[21] is the only known malware that uses the custom virtual
machine. The reason is that code virtualization development
is a time-consuming and error-prone process, and these costs
may exceed the profits of malware. Malware authors need
to make great efforts to design various virtual components
properly. Otherwise, the customized virtual machine will be
much weaker than the commercial ones. The report [10] shows
that FinFisher’s VM uses a simple decode-dispatch loop, a
classic emulator structure, as the interpretation structure and
only has 34 handlers. Security analysts can efficiently recover
the semantics protected by this customized VM.

The complexity of code virtualization has also become an
obstacle for reverse engineers and malware analysts to dis-
cover potentially malicious behaviors. To defeat the virtualized
malware, researchers have proposed several techniques. These
deobfuscation techniques simulate the process of manually
reverse-engineering virtualized programs by skilled analysts.
First, they locate the virtualized snippet (or area) from a
long execution trace by detecting VM structure patterns (e.g.,
decode-dispatch loop structures [22]–[24] or context switch
instructions [25]). Then, they use backward slicing [25], [26]
or taint analysis [27], [28] to extract important instructions that
are related to program behaviors (e.g., suspicious API calls) or
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the native context. To further remove junk instructions intro-
duced by semantic-based obfuscation [5], [29], they simplify
the redundant instructions by performing symbolic execution
[25], [30] or rule-based transformation [27]. Moreover, recent
works also apply oracle-guided program synthesis [1], [31]
to help analysts understand virtual handlers; they produce
multiple simple formulas to represent the semantics of a virtual
handler.

Unfortunately, the previous work has failed to spec-
ify that security analysts’ knowledge is an essential fac-
tor when designing the deobfuscation techniques mentioned
above. The existing deobfuscation research inevitably relies
on knowledge-based (i.e., heuristics) algorithms. For example,
both generic-deobfuscator [27] and VMHunt [25] adopt rule-
based transformation (e.g., peephole optimization) to simplify
junk instructions. This transformation requires experienced
analysts to write appropriate rules. Another example is that
VMHunt, the most effective research, uses two heuristics
(stack depth and execution transfer instruction) to recognize
virtualized snippets. To choose appropriate heuristics that work
on different virtualized programs, the analyst has to learn the
VM knowledge generated by different commercial obfuscators.
Unfortunately, the internal mechanism of commercial VM-
based obfuscator is still a black box. Especially, virtualized
programs generated by the highly sophisticated commercial
obfuscator are arduous to be understood. Hence the analyst
inevitably has to examine large-scale virtualized programs to
design generic heuristic algorithms. Since the analyst cannot
systematically evaluate heuristics on various scenarios, the
constructed heuristics suffer from poor generalizability and
careless mistakes. If the obfuscator changes the obfuscation
mechanism, the newly generated code virtualization can easily
evade the deobfuscation technique guided by the outdated
heuristics. For example, Xu et al. [25] have shown that the
threaded interpretation structure [32], [33] impedes all prior
deobfuscation techniques based on identifying the decode-
dispatch loop of the interpreter. To find new heuristics, the
analyst has to analyze the large-scale virtualized programs
again. Therefore, the major challenge faced by researchers
is how to automatically extract reusable knowledge from
virtualized programs.

In this paper, we propose the chosen-instruction attack
(CIA), a new approach to automatically extract reusable
knowledge from commercial VM-based obfuscators. Similar
to the chosen-plaintext attack (CPA) attacker [34], the CIA
attacker also constructs arbitrary input programs to generate
corresponding virtualized programs. The attacker aims to ex-
tract essential reusable knowledge (e.g., VM structure and
mapping rules) from output programs. To reduce the cost of
analyzing virtualized programs, we propose using the anchor
instruction: it can separate the virtualized instructions related
to original instructions from other irrelevant areas of the
virtualized program. In each input program, the CIA attackers
insert knowledge leaking code between two anchor instruc-
tions. Then, they can quickly locate virtualized knowledge
leaking code from a long execution trace by searching the
anchor. But these extracted instructions may still contain plenty
of junk code. To further extract specific knowledge-related
instructions, we design the guided simplification technique.
It uses the semantics of original instructions as a guide to
extract related virtualized instructions. The correctness of ex-

tracted instructions can be verified by comparing the symbolic
formulas with the original instructions. Therefore, the CIA
attacker can efficiently learn and reuse knowledge from the
extracted virtualized instructions. The extracted knowledge can
help security professionals to understand virtualized programs,
select appropriate heuristics, and systematically evaluate deob-
fuscation techniques.

We have evaluated our CIA model on the multiple versions
of four advanced commercial VM-based obfuscators (VMPro-
tect [19], Code Virtualizer [20], Themida [18], and Obsidium
[35]). The experiment shows that the existing commercial
obfuscators are under the threat of CIA. We find out 760
anchor instructions from Intel ISA (detailed in Sec. VII-A)
and extract 1,915 customized mapping rules from obfuscators.
Based on the extracted knowledge, we construct the first fine-
grained benchmark dataset which contains 5,745 virtualized
programs. We have evaluated the correctness of three state-
of-the-art deobfuscation approaches (VMHunt [25], generic-
deobfuscator [27], and Syntia [1]). The evaluation results show
that they are suffering from imprecision due to the lack of
systematic evaluation. For example, we find out the decoy
context switch introduced by Code Virtualizer and Themida
causes VMHunt to miss correct virtualized snippets.

In summary, we make the following contributions:

• We propose chosen-instruction attack, a general approach
to automatically extract reusable knowledge from VM-
based obfuscators. We propose using the anchor instruc-
tion to locate real virtualized instruction sequences from
a tedious execution trace, and guided simplification to
extract knowledge-related instructions.

• We show that CIA threatens the advanced commercial
VM-based obfuscators. We find 760 anchor instructions
and extract 1,915 verified instruction mapping rules from
four commercial obfuscators. The experimental results
also show that the complexity of the obfuscation scheme
used in commercial VM-based obfuscators far exceeds
the ability of the existing deobfuscation research.

• We construct the first fine-grained benchmark dataset for
evaluating the correctness of their deobfuscation tech-
niques. We have evaluated three state-of-the-art deobfus-
cation techniques and demonstrated their weakness. We
release the source code of CIA and benchmark dataset at
(https://github.com/chosen-instruction-attack/).

II. BACKGROUND AND MOTIVATION

In this section, we first outline the workflow of the commer-
cial VM-based obfuscators. Then we summarize the knowl-
edge (or heuristics) used in existing deobfuscation research
works. We also discuss the challenges faced by researchers in
designing the deobfuscation techniques.

A. Commercial VM-based Obfuscator

For each user-selected input program P , the commercial
VM-based obfuscator O generates an obfuscated program
O(P ). The transformation process is shown in Fig. 1. Ac-
cording to the mapping rules, each selected native instruction
is linearly transformed into a combination of virtual handlers.
Then, O assembles the generated virtual handlers into VM
structures and other obfuscation schemes. Finally, O uses a
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Fig. 1: The transformation process of commercial VM-based obfuscators. The obfuscator transforms each instruction selected
in P into virtualized instructions. Then, virtualized instructions are combined into the VM structure and other obfuscation
techniques.

custom VM to replace the selected area in P . Here, we discuss
two essential components that are reused in each O(P ).

Virtual handler and mapping rules. Similar to the micro-
operations used to implement complex instructions in the CPU,
the virtual handler is a minimal operator of the process-level
VM. It is composed of multiple native instructions and is used
to operate runtime context. Since most VMs use the RISC-like
structure [1], [23], the semantic of single native instruction is
emulated by multiple handlers. According to the customized
mapping rules, the obfuscator transforms each selected native
instruction into a combination of virtual handlers. For example,
the handler Decrypt and Load shown in Fig. 1 store imme-
diate 0x1 and the original value of register eax into virtual
context. Then, the operation handler add_handler will per-
form addition. After the VM is executed, the calculation result
stored in the virtual context will overwrite the native context.
The virtual handler generated by sophisticated obfuscators is
usually highly obfuscated to hide actual calculation behaviors.
For example, VMProtect applies data encoding [29], [36] and
metamorphism [37], [38] to protect the immediate operand and
virtual program counter. Besides, the obfuscator only embeds
required handlers that are mapped from original instructions
into O(P ), preventing analysts from discovering all kinds of
virtual handlers from a single virtualized program.

VM structure. As shown in Fig. 1, it is used to establish the
virtual environment and dispatch virtual handlers. To isolate
the native area from the virtual environment, the virtual ma-
chine typically begins with context switch instructions to save
the native context (e.g., registers) [25]. After initializing the
virtual environment, the virtual machine dispatches handlers by
fetching and decoding the bytecode [39], [40]. The traditional
interpreter uses a central loop to fetch the bytecode and
schedule corresponding handlers. But this loop structure is a
conspicuous pattern that attackers can easily recognize. The
advanced commercial obfuscator turns to adopt the direct
threaded code structure [32], [33], [41], which merges the
dispatcher into each virtual handler.

Furthermore, the sophisticated obfuscator will integrate
multiple obfuscations to hinder analysts from locating vir-
tual components. For example, the obfuscator can randomize
and encrypt the bytecode [1] to conceal the control flow
of virtual instructions from static analysis. The obfuscator
can also insert multiple fake decode-dispatch loops into the
virtualized program for camouflaging the real VM dispatcher
[25]. Even worse, we notice that the commercial obfuscator

TABLE I: Knowledge used in the existing research

Categories Knowledge Used in Related Research

Detect VM Structure Decode-dispatcher loop [22]–[24], [43], Call/Re-
turn pattern [26], Handler boundary [1], [31],
Context switch [25]

Recover/Use Mapping Rules Human intelligence [1], [23], [31], Virtual ISA
[44], Dataset for evaluation

Simplify Obfuscation Schemes Rule-based transformation [24]–[27], [45], Be-
haviour of concealed conditional jump [30]

also virtualizes other integrated obfuscations such as binary
packing. It is difficult for the analyst to locate the real
virtualized snippets that mapped from the original P , rather
than the virtualized integrated obfuscations. Another approach
to increase the cost of reverse-engineering is to diversify VM
structures and mapping rules. For example, the latest version
of Code Virtualizer and Themida provides six VM options. But
obfuscator developers also must make great efforts to design
various virtual components correctly.

B. Knowledge-based Deobfuscation

The design of the existing deobfuscation techniques re-
lies on the researcher’s knowledge of the code virtualization
mechanism. To correctly simplify the virtualized program,
the analyst needs the ability to distinguish between kernel
virtualized instructions and irrelevant (junk) instructions. Note
that the internal mechanism of commercial obfuscator is not
publicly disclosed. Similar to the Man-At-The-End (MATE)
[42] attackers, the analyst also performs reverse-engineering on
the large-scale O(P ) (or O) to learn the knowledge and design
appropriate heuristics. As shown in Table I, the knowledge
used in existing research can be divided into three categories.

Detect VM structure. Most existing works have to locate
virtualized snippets from the long execution trace based on
the pattern of the VM structure. The prior research [22],
[24] focuses on recognizing the conspicuous loop structure
of the VM dispatcher from the execution trace. However, they
are easily evaded by fake decode-dispatch loops and cannot
recognize the VM that uses the direct threaded code [25].
VMHunt [25] turns to detect the context switch patterns for
locating the virtualized snippet boundary. It pairs the context
switch instructions based on two heuristics (stack depth and
execution transfer instruction). Specifically, it assumes that the
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context switch instructions must be in the same stack depth and
followed by a control flow transfer instruction. In addition,
Syntia [1] detects the boundary of virtual handlers based on
the indirect branches.

Recover/Use mapping rules. To find essential (but not junk)
virtualized instructions from O(P ), the analyst must under-
stand the mapping rules. Most research assumes the analyst is
experienced in distinguishing between virtualized instructions
and junk instructions. For example, the analyst has to manually
construct inputs and select parameters when using the program
synthesis [1]. Another example is that the replacement attack
adversary [44] is assumed to be familiar with the virtual
ISA to overwrite virtualized instructions correctly. Besides, the
existing research also requires the virtualized samples as the
dataset for evaluation. The mapping rules can help create a
ground-truth dataset to systematically evaluate the correctness
of a deobfuscation work. However, the mapping rules used
in commercial obfuscators are undisclosed, and they have not
been closely investigated.

Simplify obfuscation schemes. Since the obfuscation is hard
to be recognized and removed, the existing research [24]–
[27], [45] has to rely on the rule-based transformation (e.g.,
dead code elimination) to remove potential junk instructions.
Even if the data dependence analysis can extract specific
behavior (e.g., system call or native context) related instruc-
tions, the extracted result still contains junk instructions intro-
duced by semantic-based obfuscation. For example, generic-
deobfuscator [27] relies on more than five rule-based trans-
formations to remove junk instructions from the extracted
input-output flow. Another example is that VMHunt [25]
uses a peephole optimizer to remove junk instructions for
revealing consecutive context switch instructions. However,
the selection of heuristics in existing research also requires
tremendous efforts. Due to the lack of a systematic evaluation,
the generality of these heuristics against various obfuscation
schemes remains unknown.

C. Challenges of knowledge-based deobfuscation

Even for an experienced analyst, it is challenging to learn
complete knowledge about the internal mechanism of obfusca-
tors. Since the virtualized instructions only can be decrypted at
runtime [1], the existing research relies on dynamic analysis to
record execution traces. But the code virtualization and other
integrated obfuscation schemes bloat the trace size dramati-
cally. For example, we find out that the execution trace of
a single instruction virtualized by Code Virtualizer’s tiger
black VM is nearly 172,663 lines on average. It is typically
difficult for the analyst to examine the tedious execution trace
of virtualized programs. The painful cost of finding appropriate
heuristics is severely impeding the development of an effective
deobfuscation method. Note that heuristics are usually only
suitable for specific versions of obfuscators. If the inter-
nal obfuscation mechanism is changed, the newly generated
virtualized program can easily circumvent the deobfuscation
techniques that use outdated heuristics. Our experiment results
indicate that the state-of-the-art deobfuscation research is in-
effective in simplifying the virtualized programs generated by
the latest commercial VM-based obfuscators. Therefore, how
to automatically extract complete knowledge from commercial
VM-based obfuscators is a great challenge.

add ax, 0x1

Original Instruction

≔ 𝒗𝟏

≔ 𝒗𝟐
≔ 𝒗𝟑

669: movzx edx, word ptr [ebp]
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677: add dx, 0x6334
679: not dx
681: dec dx
685: xor dx, 0x2a07
686: xor bx, dx
687: lea esi, [esi-2]
689: mov word ptr [esi], dx

693: mov edx, dword ptr [ebp]
697: xor edx, ebx
699: ror edx, 1

...
709: add edi, edx
716: jmp edi

Key Register

Parts of Virtualized Instructions

804: mov cx, word ptr [esi]
807: mov dx, word ptr [esi+2] 
812: add cx, dx
814: mov word ptr [esi+4], cx

Load(ax)

Decrypt(mem0)
add(𝒗𝟏, 𝒗𝟐)

Virtual Handlers

13 other handlers (use ebx)

Virtualization Mapping

//Decrypt Bytecode

(Dispatcher)

//Update Key

(Decrypt Operation)

//Decrypt Operation

Dataflow

(add Operation) -> Operation Handler

Fig. 2: A simplified example of virtualized add ax, 0x1
generated by VMProtect 3.5 [19]. The virtualized immediate is
decrypted from memory using the key stored in register ebx.

Furthermore, how to evaluate the deobfuscation techniques
is another key obstacle. The existing research lacks a fine-
grained benchmark for systematic evaluation. Most existing
research only compares the representation of instructions such
as the similarity of control flow graphs [22], [27] or instruction
forms [26]. It cannot guarantee the semantic of simplified
instructions is equivalent to the original program. VMHunt is
the first work that verifies the correctness of the simplified
instructions based on symbolic execution. But it uses an
incomplete dataset for evaluation, which contains limited hand-
written programs with a simple function call and if-else
structure. This insufficient dataset cannot cover various map-
ping rules of the commercial obfuscator. Without the fine-
grained benchmark, the analyst cannot systematically evaluate
the effectiveness of heuristics. If some virtualized instructions
are incorrectly simplified, a potential malicious behavior may
be detected as benign.

Fig. 2 shows an example of virtualized instructions gener-
ated by VMProtect. For simplicity, junk instructions in the
handler are not listed. The original instruction add ax,
0x1 is transformed to three virtual handlers. The immediate
operand is decrypted from memory based on the key stored in
register ebx. But the key register ebx is also used to decrypt
the bytecode. Note that data dependence analysis tracks every
instruction that contributes to the target. It will be misled
to track 13 irrelevant handlers that all use the key register.
When facing the virtualized malware in the wild, the data
dependence analysis will record more irrelevant virtual instruc-
tions. It increases the difficulty for analysts to understand the
simplified results. Besides, the analyst also cannot discover
the mistakenly simplified results without a fine-grained bench-
mark. For example, we discover that generic-deobfuscator [27]
mistakenly transforms the instruction add cx, dx at line
812 to mov cx, 0x2 (detailed in Sec. VII-D). It will cause
the taint analysis cannot discover the data flow related to the
instruction at line 807. Meanwhile, the coarse-grained binary
similarity analysis (e.g., CFG comparison algorithm [22], [27])
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Fig. 3: An overview of our chosen-instruction attack.

is prone to false positives. Since it cannot discover the semantic
differences caused by mistakenly simplified instructions, the
correctness of the deobfuscation techniques that are only
evaluated by the coarse-grained methods is unreliable.

III. CHOSEN-INSTRUCTION ATTACK

A. Overview

The chosen-instruction attack is inspired by the chosen-
plaintext attack (CPA) [34], a well-known model to evaluate
the strength of cryptographic systems. The CPA attackers are
given access (i.e., construct arbitrary plaintext-ciphertext pairs)
to the encryption oracle. They can learn knowledge about
encryption algorithms by analyzing plaintext-ciphertext pairs.
Intuitively, the CPA model is similar to the scenario that an
analyst wants to extract knowledge from commercial VM-
based obfuscators. Security analysts can construct arbitrary
programs as the input of obfuscators. Then, they can examine
the input and output pairs to learn knowledge about the internal
mechanism of obfuscators. Therefore, motivated by the idea
of CPA, we propose a new chosen-instruction attack approach
to extract knowledge from the VM-based obfuscator. Unlike
the ciphertext that should not expose the form of plaintext,
the virtualized program must be semantically equivalent to
the original program. Although the obfuscator can randomly
insert junk instructions, the essential components (VM struc-
tures and mapping rules) are still reused in each obfuscated
program. The CIA attacker can construct a special program to
leak knowledge from the obfuscator. Because the knowledge-
related instructions that CIA attacker cares about are hidden
in enormous highly obfuscated instructions. We propose the
anchor and guided simplification to help the CIA attacker to
extract reusable knowledge.

The workflow of the chosen-instruction attack is shown
in Fig. 3. CIA attackers first construct a knowledge leaking
program as the input of the obfuscator. They can generate
different categories of Intel instruction (detailed in Sec. VI)
and choose single instruction as knowledge leaking code to
extract reusable knowledge. For example, they can insert single
xor edx, 0xdead as knowledge leaking code for under-

standing the mapping rules of xor REG, IMM. To decrease
the cost of locating virtualized instructions, they can put the
knowledge leaking code between anchor instructions (detailed
in Sec. IV-A). Then, the CIA attacker only needs to record
the execution trace between two anchor instructions. Based on
the guided simplification (detailed in Sec. V-A), CIA attackers
can extract kernel instructions that contribute to interesting
knowledge. By constructing and analyzing sufficient knowl-
edge leaking programs, the attackers can extract knowledge
(mapping rules, VM structures, and obfuscation schemes)
from the obfuscator. For example, they can traverse the target
machine ISA (e.g., Intel x86 ISA) to construct instructions as
knowledge leaking code and extract the corresponding kernel
virtualized instructions. Then, they can summarize complete
mapping rules. Since the semantics of original instructions
are known, the attacker can directly verify the correctness of
mapping rules. Similarly, the CIA attacker can also learn about
VM structures and other obfuscation schemes at a low cost.
The extracted knowledge can be reused in multiple scenarios.
For example, based on the extracted mapping rules, the CIA
attacker can construct a fine-grained benchmark to evaluate the
correctness of deobfuscation techniques.

B. Formal Definition of CIA

The CIA model is a tuple (O,A, P, T, s,K, c), where

– O is a commercial VM-based obfuscator.
– A is a CIA attacker.
– P is the program constructed by the CIA attacker.
– T is the execution trace.
– s is a user-selected protection configuration such as

packing and mutation. CIA attackers can choose different
obfuscation options for analyzing specific obfuscation
schemes. For example, they can select only the code
virtualization option, without integrating any other anti-
analysis techniques, to extract mapping rules.

– K is the reusable knowledge that CIA attackers want to
extract. It includes various k (i.e., mapping rules, VM
structure, and other obfuscation schemes).

– c is the knowledge leaking code used to trigger O to
generate virtualized code that contains k.
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1 ... // VM execution
2 pop eax, ecx, ebp, edx, ebx, esi, edi
3 // exit virtualization
4 cmpxchg eax, eax // anchor
5 // reenter virtualization
6 push edi, esi, ebx, edx, ebp, ecx, eax
7 ... // VM execution

Fig. 4: An example of anchor cmpxchg in trace.

Under the CIA model, the adversary A aims to learn the
knowledge by interacting with VM-based obfuscator O. They
can construct arbitrary program P that inserted special knowl-
edge leaking code c between anchor instructions. Then, the
A generates obfuscated Os(Pc) under the selected protection
options s. Based on the anchor, the A can record reduced
execution trace T s

c of Os(Pc). Guided by the information
of c, the A can extract part of knowledge k ∈ K (e.g.,
instruction mapping rules) from T s

c . We define an experiment
for VM-based obfuscator to represent the CIA model. The CIA
experiment VirOCIA

A,Os
(P ):

1) A configuration scheme s is chosen by A. The adversary
A is given oracle access to Os(·).

2) The adversary A constructs a set of knowledge leaking
programs PC = {Pc1 , Pc2 , ..., Pcn} for learning the
knowledge k.

3) An arbitrary program Pc ∈ PC is chosen, and then a
trace T s

c ← Os(Pc) is recorded and given to A.
4) The output of the experiment is defined to be 1 if

simplify(T s
c ) ≈ k, and 0 otherwise.

In case VirOCIA
A,Os

(P ) = 1, we say that A succeeded.
When the k is the mapping rules, the A can use single
instruction I as c and generate T s

I . If the simplified result
simplify(T s

I ) is semantically equal to I, it means A success-
fully extracts the knowledge of I. After the A traverses all
instructions in Intel ISA and gets the correct simplified result,
they can extract a complete k of mapping rules. Similarly,
when the k is the VM structures or obfuscation schemes, the
A can use nop as c and generate T s

c . The A can learn k when
different simplify(T s

c ) is similar.

IV. CIA SAMPLE CONSTRUCTION

In this section, we demonstrate the process of constructing
Pc and generating T s

c . We propose the anchor instruction to
locate the virtualized instructions that contain knowledge k
from T . The anchor is inserted into Pc during the construction
process. We also illustrate three types of knowledge leaking
code c to extract different k.

A. Anchor Instruction

Accurately locating the virtualized instructions that contain
implicit knowledge k is still an open challenge. The heuristics
used in existing works easily become invalid when the pattern
of VM changed (discussed in Sec. II-C). In contrast, the CIA
attacker A can introduce a unique pattern into P for efficiently
locating the boundary of kernel virtualized instructions. It is a
reasonable assumption since the A has oracle access to O.
Therefore, we propose a special type of instruction, called
anchor, to create landmarks in T (O(P )).

1 void KnowledgeLeaking(){
2 VIRTUALIZER START // VM macro
3 asm(
4 "cmpxchg eax, eax;" // anchor
5 "xor ebx, 0xdead;" // knowledge leaking code
6 "cmpxchg eax, eax;"
7 );
8 VIRTUALIZER END // VM macro
9 }

Fig. 5: An example of the knowledge leaking code. The xor
ebx, 0xdead can be replaced with other instructions.

The anchor is an instruction that is not (able to be)
virtualized by O. It is not included in the mapping rules and
will be kept in O(P ). Specifically, an instruction must satisfy
two conditions to become an anchor:

• Format Preserving. The instruction representation (pre-
fix, mnemonic, and operands) of virtualized anchor
in O(P ) is identical to the original anchor in P . It
makes sure that the A can efficiently locate anchor from
T (O(P )).

• Virtualization Repelling. To execute instructions that
cannot be virtualized, the VM has to be suspended (or ter-
minated) and switched to the native environment. Hence
the O is forced to generate context switch instructions
around the anchor inO(P ). It can help theA to efficiently
extract virtualized instructions that contribute to native
context, rather than painfully examine the relationship
between virtual context and native context.

The anchor is intended to trigger the O statically generate
context switch instructions. For example, if we insert anchor
cmpxchg eax, eax in P , we can get a trace of O(P )
illustrated in Fig. 4, which has been trimmed for better
presentation. The anchor instruction at line 4 preserves the
original format. It also triggers virtualization repelling at lines
2 and 6. Since we can remove the anchor during the dynamic
instrumentation, the anchor will not pollute the original exe-
cution of P or O(P ). Therefore, any instruction that satisfies
the above conditions can be safely chosen as anchor.

To discover potential anchor instructions from O, we
traverse the Intel ISA to construct various types of instruction I
and generate corresponding T (O(PI)). Then, we search for an-
chors that meet the above conditions (detailed in Sec. VII-A).

B. Knowledge Leaking Code

As discussed in Sec. III, the CIA attacker A can construct
different types of knowledge leaking code c to extract knowl-
edge from the obfuscator. To locate the virtualized c from
T (O(Pc)), the A can insert c between the anchor instructions.
For example, as shown in Fig. 5, the knowledge leaking
code xor ebx, 0xdeadbeef is surrounded by two anchor
cmpxchg eax, eax. These assembly instructions are em-
bedded within the source code of P . The VM macros are used
to tell O the instructions that need to be virtualized (lines 4-
6). Searching for instructions between the anchor cmpxchg in
the recorded T (O(Pc)), the A can find virtualized instructions
used to emulate xor ebx, 0xdeadbeef. For extracting
different types of knowledge, the A can diversify the c.
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Considering the essential knowledge discussed in Sec. II-B,
the types of c can be grouped into three categories.

Mapping rules leaking. To precisely extract the instruction
mapping rules between the original and virtualized instruc-
tions, the A can use a single instruction as c. For example, the
knowledge leaking code xor ebx, 0xdead shown in Fig. 5
is used to leak mapping rules of xor REG, IMM. The A
can replace it with other instructions to extract corresponding
mapping rules.

Transformation strategy leaking. Considering the O may
apply different transformation strategies to expand the mapping
rules, the A should diversify the generation of O(Pc) to
discover every possible transformation (detailed in Sec. V-B1).

VM structure leaking. For extracting the VM structure such
as context switch, the T s

c should contain a complete virtual
machine. The A can use nop to replace xor ebx, 0xdead
shown in Fig. 5. The generated T s

c will only contain a pure
VM without any other virtualized operation. Then, the A can
extract VM structure from T s

c .

After constructing the O(Pc), we use Intel Pin [46] to
record the execution trace between anchor instructions. The
recorded trace contains essential information of each executed
instruction. It includes the memory address, length, and run-
time information such as values of registers and accessed mem-
ory. The size of trace files is greatly reduced by the anchor. For
example, the trace size of single native instruction virtualized
by Code Virtualizer’s tiger black VM is reduced from
172,663 to 23,421 instructions on average. Then, the CIA
attacker can perform guided simplification on the trace.

V. KNOWLEDGE EXTRACTION AND REUSE

In this section, we present how we extract reusable
knowledge from the T s

c based on guided simplification. The
knowledge we aim to extract includes mapping rules and
VM structure. They are essential for analysts to design de-
obfuscation techniques (discussed in Sec. II-B). To extract
different types of knowledge, CIA attackers use corresponding
knowledge leaking code c to generate T s

c and apply guided
simplification to extract the related virtualized instructions. The
extracted knowledge can assist security analysts to understand
virtualized instructions and design appropriate deobfuscation
techniques.

A. Guided Simplification

Since the T s
c is still obfuscated, the CIA attacker A has

to extract kernel virtualized instructions related to knowl-
edge. Note that the information (e.g., semantic) of inserted
knowledge leaking code c is transparent to the A. Guided
by this information, the simplification technique can precisely
extract instructions related to knowledge k. The overview of
our approach is shown in Fig. 6. Our guided simplification
techniques include the following stages.

Trace Slicing. To extract the knowledge-related instructions,
we perform slicing on the T s

c . Our slicing algorithm is based
on the enhanced backward slicing [47] used in VMHunt. It is
reliable in handling virtualized instructions. When the c is used
to extract mapping rules, the source of slicing is native context.
As discussed in Sec. II-A, the context switch instructions

overwrite the native context with the calculation results stored
in virtual context. Therefore, to extract kernel virtualized
instructions, we can perform backward slicing starting from the
native context related to the embedded c (e.g., the destination
register ax in Fig. 2). The slice Sc contains every virtualized
instruction that contributes to emulate the semantic of the
original c. Considering the virtualized instructions use the
virtual memory environment to transfer values, the S will
inevitably contain instructions of the VM structure such as
handler dispatching instructions. For example, the computation
of virtual memory index (e.g., [esi] in Fig. 2.) will be in-
troduced into S by index-based slicing. Therefore, we perform
the forward slicing to shrink the trace after normalization. It
uses each operand of c as the source. When the c is used to
extract VM structure, the source of slicing can be grouped into
two types: native context and virtual bytecode. We can extract
the context switch instructions by slicing all general registers
when c is nop (shown in Fig. 5). Since the virtual bytecode
guides the VM scheduling handlers, we can perform forward
slicing to extract VM structure instructions.

Normalization. The operands of virtualized instructions are
used to interact with the virtual environment (e.g., the operands
of mov cx, word ptr [esi] in Fig. 2.). Especially, vir-
tual registers (or memory) can be randomly allocated by the
virtual machine at runtime. Hence we normalize the virtualized
instructions into instructions that interact with native contexts.
Similar to the generic-deobfuscator [27], we rewrite instruc-
tions in S. Furthermore, we also use semantic preserving
transformation (e.g., peephole optimization) to simplify the
instructions after S is normalized.

B. Reusable Knowledge Extraction

In this section, we demonstrate how we perform guided
simplification to extract k from commercial VM-based obfus-
cator O under the CIA model. The overview of the workflow
is also shown in Fig. 6. As mentioned earlier, the CIA attacker
focuses on two essential k (i.e., mapping rules and virtual
machine structure).

Algorithm 1: Mapping Rules Extraction
Input: instruction I of Intel ISA (except anchor)
Result: virtual handlers mapping of I

1 Embed I as c in P ;
2 T s

I = trace of Os(PI) between anchor instructions;
/* Guided Simplification */

3 dst:= destination operand of I;
4 S:= BackwardSlicing(T s

I , dst);
5 kernel:= NULL;
6 Sn:= Normalization(S);
7 for oper ∈ operands of I do
8 kernel← kernel+ForwardSlicing(Sn, oper);
9 end

10 Expnew:= Lift(kernel);
11 Exporigin:= Lift(I);
12 if Exporigin equal to Expnew then
13 return (I , kernel, Expnew);
14 else
15 return False;
16 end

7
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Fig. 6: The knowledge extraction process of CIA.

1) Mapping Rule: To recover the semantic of virtualized
instructions, analysts need to understand the mapping from
the source instruction I to kernel virtualized instructions,
which are the minimum required instructions to emulate the
semantic of the source instruction (e.g., the virtualized in-
structions mapped from xor edx, ecx shown in Appendix
Fig. 10). Note that the obfuscator applies different mapping
rules according to the type of source native instructions and
randomly inserts junk instructions into the generated semanti-
cally equivalent virtualized instructions. We construct different
Pc and analyze corresponding Tc, where c is a variety of
single native instruction I. Then, we summarize each I and
corresponding kernel virtualized instructions to construct the
mapping rules, which can be simply represented by a tuple
(I, kernel). This process is demonstrated in Algorithm 1. By
traversing the Intel ISA, we choose a virtualizable instruction
I as knowledge leaking code c each time. Then, we apply the
guided simplification on record trace TI of program O(PI).
We perform guided simplification to extract S that contains the
kernel virtualized instructions related to I. To verify and reuse
the extracted assembly instructions, we lift them into symbolic
formulas and compare them with the original instruction I.

Transformation Strategy. The obfuscator usually combines
multiple transformation strategies to complicate the mapping
rules. Intuitively, the mapping transformation strategy could be
divided into the following four categories.

• One to One (O2O). The O2O strategy is a basic transfor-
mation. It means that the obfuscator emulates the opera-
tion of single original instruction based on a single virtual
handler, which contains a kernel virtualized instruction
that uses the same mnemonic as the original instruction.
An example is the native instruction add ax, 0x1 and
corresponding virtualized instructions shown in Fig. 2. In
the add(v1, v2) operation handler, after the VM loads the
operands of original instruction into cx and dx (at line
804 and 807), the virtualized instruction at line 812 uses
the same mnemonic to perform addition.

• One to Multiple (O2M). The O2M strategy is that the
operation of single original instruction can be transformed
into a combination of virtual handlers. Besides, the ob-
fuscator may also have multiple mapping rules for the
same operation. For example, VMProtect converts the
xor instruction to multiple combinations of logical NOR
and NAND handlers rather than a single XOR handler. To
detect the O2M strategy, we use the same I as c and
generate multiple O(Pc). Then, we perform Algorithm 1
on each O(Pc) and compare whether the simplification
results are the same.

• Multiple to One (M2O). Similar to the optimization
strategy, the M2O strategy can use a single handler to
emulate the semantics of multiple instructions. Hence
we use multiple redundant instructions as c and de-
tect the combination of virtual handlers. For example,
if O uses virtualized instruction add eax, 0x10 to
replace the knowledge leaking code add eax,0x20;
sub eax,0x10;, it means that O adopts M2O strategy.

• Multiple to Multiple (M2M). Since the M2M strategy
is a combination of M2O and O2M, the above strategies
have already covered this scenario.

2) Virtual Machine Structure: As discussed in Sec. II-B,
most deobfuscation techniques rely on two components of
VM structure (i.e., context switch and dispatcher structure)
to locate the virtualized area. In the following, we introduce
the process of extracting virtualized instructions contributed
to the context switch and classifying the type of dispatcher
structures, respectively.

Context Switch. The context switch instructions transfer reg-
ister values when entering or exiting the virtual environment.
This feature is considered as the boundary of the virtualized
snippet by VMHunt. To extract context switch instructions, we
use the nop instruction as c. It can trigger O to generate pure
VM without any other virtualized operation. When applying
the guided simplification, we select all general registers as
the start of the backward slicing. Then, we can extract entire
context switch instructions from T s

c . We also place another set
of anchor instructions outside of the VM macros to discover
potential obfuscation schemes. It can help the analyst to select
an appropriate heuristic to discover context switch instructions.

Dispatcher Structure To detect the type of dispatcher struc-
tures, we insert multiple identical instructions as c. Then, we
can classify the dispatcher structure by examining whether the
identical handler is reused in VM. For example, we can insert
multiple add eax, 0x10 instructions as c into Pc. If the
VM schedules the same virtual handler add multiple times, it
means that the VM uses a decode-dispatch loop structure.

C. Verification

We apply multiple approaches to verify the extracted
knowledge. When the k is the mapping rules, we generate
symbolic formulas of simplify(TI) and original I, respec-
tively. If the generated formulas are semantically equivalent,
we consider that the extracted mapping rule is correct. As
for other k such as VM structure, we manually verify the
correctness and also compare it with the results of existing
research.
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D. Reuse of Extracted Knowledge

The extracted knowledge can be reused in three scenarios.

Human analyst. The extracted knowledge can help the analyst
quickly understand virtualized malware. Given the extracted
mapping rules, the analyst can learn the relationship between
native and virtualized instructions and efficiently recover the
semantics of virtualized instructions.

Heuristic Algorithm. The analyst can get a systematic in-
sight into the internal mechanism of commercial VM-based
obfuscators. Guided by the extracted knowledge, the analyst
can choose appropriate heuristics and design deobfuscation
techniques.

Benchmarks. We construct a fine-grained benchmark based
on our extracted mapping rules. The analyst can systematically
evaluate and improve their deobfuscation techniques.

VI. IMPLEMENTATION

We implement a prototype of our CIA model. The whole
toolchain is made of 274 lines of C++/C code, 318 lines of
Makefile, and 9k lines of Python code. In the CIA sample
construction stage, we resolve Intel XED [48] to generate
different categories (i.e., CPU, FPU, SIMD, and other types) of
valid instructions. Since the x86 and x64 architecture use the
same mnemonic, we only consider the Intel x86 instructions.
We combine each mnemonic with multiple prefixes (e.g.,
lock) and operands, including register, immediate value, and
memory operands with different granularity (32-bit, 16-bit,
and 8-bit). The generated instructions are embedded into the
sample code templates which are written in C We build a
logger based on Intel Pin DBI framework [46] to record the
execution trace. Our trace analysis framework is built on top of
the binary analysis platform angr [49]. We have redesigned the
trace-based slicing and normalization methods to implement
guided simplification techniques. Besides, we leverage angr’s
symbolic execution engine and Z3 SMT solver [50] component
to verify the correctness of the generated formula.

VII. EVALUATION

In this section, we demonstrate the effectiveness of the
chosen-instruction attack and the usability of the extracted
knowledge. Our experiments seek to answer the following
research questions (RQs).

• RQ1: How many usable anchor instructions can be found
from real-world commercial VM-based obfuscators?

• RQ2: Which type of knowledge can the CIA attacker ex-
tract from real-world commercial VM-based obfuscators?

• RQ3: Can the extracted knowledge help the analyst to
improve the existing deobfuscation techniques?

For answering RQ1, we traverse the instructions in the Intel
x86 ISA to search for anchor instructions suitable for different
obfuscators. As the response to RQ2, we perform CIA on the
four most widely used commercial VM-based obfuscators to
extract two kinds of essential knowledge. In RQ3, we construct
a fine-grained benchmark based on the extracted knowledge
and evaluate the state-of-the-art deobfuscation techniques.

Target of CIA. The selected commercial VM-based ob-
fuscator includes: VMProtect [19], Code Virtualizer [20],

TABLE II: Number of anchor instructions in Intel x86 ISA.

CPU FPU SIMD Other Total

Anchor 142 102 508 8 760
Total 875 193 508 8 1584

Themida [18], and Obsidium [35]. Themida and Code Vir-
tualizer are sharing the same VMs, which include six VMs
(tiger, fish, shark, puma, dolphin, and eagle). These VMs can
also be combined with three levels of obfuscation complexity,
represented by colors (white, red, and black). We only evaluate
the first three VMs and different complexity. One reason is that
when we apply dolphin VM to generate the virtualized O(Pc),
both Code Virtualizer and Themida would crash randomly.
Wang et al. [51] also reported a similar problem. Besides,
the traces generated by the shark, puma, and eagle VM are
significantly larger than the traces of other VMs. For example,
the trace of shark white TI is 100x larger than the trace of
other VMs (shown in Table III). The trace of puma white
and eagle white VM is nearly 2x and 3x larger than the trace
of shark white, respectively. Due to our limited computing
resources, it takes nearly nine hours to finish CIA on our
testbed for a trace of puma white VM. Therefore, we only
evaluate the shark white VM among the last four VMs. But
we have run and verified that our tool works properly on
randomly selected samples generated by puma and eagle VMs.
As for the configuration (e.g., packing) of each obfuscator,
we have verified the effectiveness of CIA under different
obfuscation configurations. Only the anti-debug option can
affect CIA by impeding Intel Pin. It is a common limitation for
any dynamic binary instrumentation framework. For simplicity,
we only present the evaluation result when applying a single
virtualization option to generate virtualized programs.

Our experiments are running on a testbed machine with
Intel i7-6700 CPU, 32GB RAM, 1.8TB Hard Disk, running
Windows 10.

A. Anchor Instruction

The anchor instruction is the key component of CIA to
locate the virtualized knowledge leaking code. One single
anchor instruction is enough to launch a chosen-instruction
attack. Since the mapping rules of each commercial obfuscator
are dissimilar, the usable anchor instructions are also different.
We search the anchor from four obfuscators and use the subset
(anchorVMProtect ∩ anchorCodeVirtualizer ∩ anchorThemida ∩
anchorObsidium) as the final list. We generate different cate-
gories of valid instructions I based on the syntax resolved
from Intel XED [48] (discussed in Sec. VI). The generated I
is inserted into the sample code templates (e.g., example shown
in Fig. 5) to compile unprotected testbed programs. For each
obfuscator, we use every single testbed program as input to
generate three corresponding virtualized programs. Then, we
record the runtime trace of virtualized programs and count the
number of anchor instructions. In every trace that belongs to
the generated I, if the I satisfies the property of anchor (see
Sec. IV-A), we will consider it as a usable anchor.

The number of usable anchor instructions for each ob-
fuscator is shown in Table III. We notice that VMProtect
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TABLE III: The features of virtual structure and virtual ISA are extracted from four obfuscators based on CIA. In “Obfuscators”
column, “CV” means the Code Virtualizer. “T (O(PI))” represents the number of instructions in the trace of virtualized program
O(PI) (without anchor), and TI represents the number of instructions that we use the anchor to locate the real virtualized snippet
from T (O(PI)). “simplify(TI)” represents the number of instructions that extracted from TI by our guided simplification.

Obfuscators Anchor Average Trace Size (ins) Virtual ISA VM Structure

T (O(PI)) TI simplify(TI) Extracted Mapping Rules Transformation Context Switch Dispatcher Structure

VMProtect obfuscated (semantic-based)
v3.5 783 (ins) 5,758 2,116 28 240/241 (ins) O2M, O2O threaded
v2.13.8 794 (ins) 18,330 4,405 26 231/232 (ins) O2M, O2O decode-dispatch-loop

CV / Themida v3.0.7
tiger white 1,144 (ins) 42,828 9,131 16 138/138 (ins) O2O obfuscated+decoy threaded+fake-dispatch-loop
tiger red 1,147 (ins) 63,388 12,208 31 138/138 (ins) O2O obfuscated+decoy threaded+fake-dispatch-loop
tiger black 1,144 (ins) 71,876 13,522 37 138/138 (ins) O2O obfuscated+decoy threaded+fake-dispatch-loop
fish white 1,143 (ins) 45,161 § 45,309 43 138/138 (ins) O2O (obfsucated) obfuscated threaded
shark white 1,146 (ins) 3,696,909 3,673,495 532 138/138 (ins) O2O (obfsucated) obfuscated+decoy threaded+fake-dispatch-loop

CV / Themida v2.2.2 threaded+fake-dispatch-loop
tiger white 1,144 (ins) 99,663 17,622 17 138/138 (ins) O2O obfuscated+decoy
tiger red 1,144 (ins) 151,532 22,326 40 138/138 (ins) O2O obfuscated+decoy
tiger black 1,108 (ins) 172,663 23,421 46 138/138 (ins) O2O obfuscated+decoy
fish white 1,143 (ins) 90,715 75,749 45 138/138 (ins) O2O (obfsucated) obfuscated
shark white 1,146 (ins) 6,562,094 5,737,988 955 138/138 (ins) O2O (obfsucated) obfuscated+decoy

Obsidium 1.6.7 1,175 (ins) 13,905 6,234 19 64/64 (ins) O2M, O2O no obfuscation decode-dispatch-loop
§ The fish VM does not adopt decoy context switch and fake dispatch loop. Since the obfuscator randomly insert junk instructions into O(PI), the TI can be greater than T (O(PI)).

can virtualize more instructions than other obfuscators. There
are fewer anchor instructions found in VMProtect v3 than
VMProtect v2. The reason is that VMProtect v3 can handle
part of lock prefix instructions such as add and or. Other
obfuscators have more anchor instructions because they cannot
virtualize complex instructions such as bts. Besides, Obsid-
ium cannot handle most instructions that use 8-bits and 16-bits
operands. It is also a reason that we find much more anchor
instructions in Obsidium. The reason why different colored
tiger VMs have different anchors is that some samples
are failed to be generated by the obfuscator. In total, there
are 760 anchor instructions feasible for all obfuscators. The
obtained anchor instructions can be categorized into four types
(CPU, FPU, SIMD, and other special instructions), which are
shown in Table II. We find that most CPU anchor instructions
have complex semantics. It is hard (or impossible) for the
obfuscator developers to write virtual handlers to emulate the
original instruction. For example, the cmpxchg and decimal
arithmetic instructions (e.g., daa) have complex behaviors. If
the instruction (e.g., cpuid and sysenter) needs to interact
with the operating system or hardware, it is impossible for VM
to emulate the hardware behavior and construct the correct
return value. As for the FPU instructions set, we discover
that VMProtect only can replace the general registers used in
instruction (e.g. fild [esp]) with virtual registers. If the
operands of instruction only use non-general registers (e.g.,
st(0)), it can still become an anchor.

Since the anchor is used to trigger the obfuscator to gen-
erate virtualization repelling (i.e., context switch instructions)
during the virtualized programs generation process, there is no
need to execute the anchor instruction at runtime. We can use
the INS_Delete function, provided by Intel Pin, to remove
the anchor instruction before the CPU executes it. It will not
violate the execution environment. Therefore, without the need
of carefully constructing instructions to avoid polluting the
original execution flow, any anchor instructions can be directly
inserted into the program. As for the potential mitigation of
anchor, we discussed in PM-1 of Sec. VIII-B.

Answer to RQ1: We have discovered 760 anchor in-
structions from four state-of-the-art commercial VM-based
obfuscators. There are 681 anchor instructions retrieving
information from the system kernel or hardware. They
cannot be virtualized by the process-level VM.

B. Knowledge Extraction

As described in Sec. V, we aim to extract two essential
knowledge k (mapping rule and VM structure) from four ob-
fuscators. The experiment results are summarized in Table III.

1) Mapping Rule: The CIA attacker has to construct
various instructions as knowledge leaking code to extract
kernel virtualized instructions and summarize mapping rules
(discussed in Sec. V-B1). Considering that the mapping rules of
some native instructions (e.g., control transfer instructions) are
not reusable, we choose 241 instructions from the instruction
dataset discussed above. It mainly contains arithmetic, shift,
and logical operation (detailed in Appendix A).

The number of mapping rules extracted from different VMs
is shown in Table III. We successfully extract 1,915 instruction
mapping rules from four obfuscators in total. We have applied
Z3 to verify whether each extracted virtualized instruction is
semantically equivalent to the original corresponding instruc-
tion. The only instruction that failed to be extracted is bswap.
This instruction reverses the byte order of the register operand.
It requires our tool to track the data flow between multiple
sources and destinations in bit-wise. We will support it in
future work.

We also discover that obfuscators apply different strategies
to virtualize the mnemonic and operands of native instruc-
tions. All four obfuscators can encrypt (or encode) the im-
mediate operand during virtualizing native instructions, and
the generated VM will decrypt it into a virtual register at
runtime. Only VMProtect applies context-sensitive encryption
to protect important values such as bytecode [1] and imme-
diate operand. The context-sensitive key will be updated by
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VM after every encryption and decryption. It increases the
difficulty to track the data flow (discussed in Sec. II-C) and
correctly recover the original operands. The different levels
of obfuscation (i.e., white, black, and red) provided by Code
Virtualizer and Themida only change the numbers of inserted
junk instructions but will not influence the complexity of
the mapping rules between original instructions and kernel
virtualized instructions. In particular, the operation virtual
handler of kernel virtualized instructions still uses the same
mnemonic as c in the virtualized instructions. Unlike Code
Virtualizer (and Themida), VMProtect and Obsidium can use
a different mnemonic to emulate the operation of the original
mnemonic. For example, the inc edx instruction is emulated
by ADD(edx, Decrypt(mem)⇒1). We also discover that
the obfuscator tends to reuse the mapping rules. For example,
the latest version of Code Virtualizer, Themida, and VMProtect
reuse the mapping rules adopted in their older versions.

Transformation Strategy. For each input program Pc, we
generate three O(Pc) under the same obfuscator options
s. By comparing the results extracted from multiple pro-
grams, we notice that only VMProtect and Obsidium have
adopted O2M transformation strategies. VMProtect uses mul-
tiple operation virtual handlers to emulate the operation
of the original mnemonic (including the affected status
flag). For example, the xor edx, ecx is transformed to
NOR(OR(edx,NOT(ecx)),OR(NOT(edx),ecx)) (de-
tailed in Appendix Fig. 10), a Mixed Boolean-Arithmetic
expression (MBA) [36]. We discover that 116 instruc-
tions can be transformed into a combination of multi-
ple operation handlers (e.g., NAND, NOR). Besides, VM-
Protect has applied multiple but limited mapping rules
to emulate the same native instruction. For example, the
same xor instruction as above can also be transformed
to NAND(NAND(edx,ecx),AND(edx,ecx)). Although
Code Virtualizer and Themida only adopt O2O transforma-
tion, they use heavyweight obfuscation to protect virtualized
instructions used in fish and shark VMs.

2) Virtual Machine Structure and obfuscation schemes: To
learn the VM structure and related obfuscation schemes from
obfuscators, we use the nop instruction as knowledge leaking
code and extract the VM structure related instructions. The
result is also shown in Table III.

Context Switch. Most VMs use mov or push/pop to load
and restore the native context. But the VMs provided by Code
Virtualizer and Themida also use xchg. We discover that they
also insert multiple decoy context switch into virtualized snip-
pets, even the virtualized instructions between the anchor in-
structions. The decoy context switch is in the same stack depth
as the real context restoring instructions. It can deactivate the
context pairing algorithm used in VMHunt. As for VMProtect,
it uses semantic-based obfuscation to protect the generated
context switch instructions. It also greatly hinders rule-based
transformation techniques such as peephole optimization.

Dispatcher Structure. We find out that most obfuscators
have replaced the decode-dispatch loop with the threaded code
structure. Similar to the discovery of VMHunt, our experiments
also show that Code Virtualizer and Themida have applied fake
dispatch loop to mislead the existing techniques.

Furthermore, we discover that the sophisticated VM-based
obfuscator also uses code virtualization to protect other in-
tegrated obfuscation schemes (e.g., the runtime unpacking
process). For example, if the obfuscator user applies packing
and code virtualization to protect the program at the same
time, the virtualized program will contain multiple virtualized
areas. But it may only contain a single virtualized area related
to the semantics of the original program. If the deobfuscation
technique only relies on the VM structure pattern to locate
virtualized snippets, it cannot distinguish which virtualized
area is related to the original program. Considering the binary
packing technique is widely adopted by malware authors [13],
[14], this will greatly damage the correctness of the existing
research in the real world.

Answer to RQ2: The CIA attacker can learn mapping rules
and VM structures from the state-of-the-art commercial
VM-based obfuscators. We have extracted 1,915 verified
mapping rules and features of VM structures from four
obfuscators.

C. Reuse of Extracted Knowledge

To demonstrate the effectiveness of extracted knowledge,
we reuse the mapping rules and VM structure in two scenarios.
We construct the first fine-grained benchmark. The security
analysts can systematically evaluate their deobfuscation tech-
niques on our benchmark. Besides, we also generate analysis
reports for each sample to help the analyst understand the VM
mechanism and improve the deobfuscation technique.

1) Fine-grained Benchmark: As we discussed in Sec. II-B,
without a fine-grained benchmark, the existing research cannot
systematically evaluate the effectiveness of deobfuscation tech-
niques. The coarse-grained evaluation (e.g., CFG similarity)
may cause researchers to ignore defects such as over-simplify
and over-taint. Our fine-grained benchmark is a complement
to existing evaluation methods.

Datasets. The dataset of the fine-grained benchmark is similar
to the samples from extracted mapping rules (detailed in
Sec. VII-B1). It contains 5,745 virtualized programs O(Pc)
generated by four obfuscators and corresponding extracted
virtualized instructions that have been verified. In each Pc

program, it contains a standard input-output data flow which
involves the instruction of c. It can be recognized by the
data dependence analysis such as the dynamic taint analysis
used in generic-deobfuscator [27]. Besides, we use the ex-
tracted mapping rules as the baseline information. It contains
the original instructions, verified virtualized instructions, and
symbolic formulas. The deobfuscation technique can compare
their simplified results with the baseline information.

Metrics. We propose two metrics to evaluate the simplified
trace T generated by performing the target deobfuscation
techniques on virtualized samples. (1) Recovery Rate. This
metric is used to evaluate the correctness and completeness
of the simplified result. We first search verified virtualized
instructions, provided by baseline information, from T to
examine whether T contains the correct virtualized snip-
pet. Then, we compare the symbolic formulas of T with
those of the original instruction. It can discern whether T
is semantically equivalent to the original instruction. If T
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TABLE IV: The result of benchmarking two state-of-the-art deobfuscation techniques. In “Deobfuscator” column,“without
anchor” means that the input of deobfuscation techniques is their own trace and “with anchor” means that the input is virtualized
snippets located based on anchor instructions.

Deobfuscator
VMProtect 3.5 Code Virtualizer 2.2.2 (tiger white)

Recovery Rate Average Size of Simplified Trace Average Redundancy Recovery Rate Average Size of Simplified Trace Average Redundancy
Full Partial None Full Partial None

without anchor
VMHunt [25] 0 0 0 - - 14 - 124 3329 ins 98.77%
generic-deobfuscator [27] 52 13 172 480 ins 95.45% 13 - 125 445 ins 95.18%
Syntia [1] - - - - - - - - - -

with anchor
VMHunt 237 0 0 389 ins 88.98% 138 - 0 181 ins 92.20%
generic-deobfuscator 52 13 172 147 ins 61.70% 13 - 125 37 ins 55.87%
Syntia 4 17 51 - - 0 12 60 - -

only contains parts of our verified virtualized instructions and
the formulas are unequal, we consider T only have partial
semantics of original instructions. (2) Redundancy Rate. This
metric helps us measure the redundancy of the simplified trace.
The redundancy rate of simplified trace T is computed as

redundant(T ) = 1− Ikernel
Itotal

where Ikernel is the number of instructions that can be found
both in T and our baseline, and Itotal is the total number of
instructions in T . If the simplified trace has a high redundancy
rate, it means that the trace still contains enormous redundant
instructions which are irrelevant to the semantics of I.

Target for Comparison. To demonstrate the importance of
our benchmark, we select three open-source state-of-the-art
deobfuscation techniques (VMHunt [25], generic-deobfuscator
[27], and Syntia [1]) as the target. Generic-deobfuscator is the
latest research that uses a generic approach to simplify mal-
ware protected by unknown obfuscation. VMHunt is the state-
of-the-art deobfuscation technique used to defeat virtualized
malware. Syntia uses stochastic program synthesis to recover
approximate semantics of virtual handlers. We only show the
evaluation results of deobfuscation techniques performed on
the samples virtualized by VMProtect and Code Virtualizer’s
tiger white VM. There are two reasons: 1) the above three
research all adopt these two VMs for evaluation; 2) tiger
white, the weakest VM, is selected as the borderline case.
Besides, we only evaluate Syntia on 72 samples randomly
selected from our benchmark dataset. Because Syntia requires
analysts to manually extract handlers from tedious execution
traces as the input, and identify the correct result from multiple
outputs generated by the program synthesis. The best we
can do is to manually select various handlers and examine
corresponding synthesized results. This cumbersome process
leads us to evaluate Syntia only on a limited dataset.

Since Syntia requires manually extracted handler as the
input, we discuss it in section Sec. VII-C2. We first perform
VMHunt and generic-deobfuscator on our virtualized samples
to generate the simplified trace. Then, we compare the result
with our baseline information. The evaluation results are shown
in Table IV (without anchor category). We discover that neither
generic-deobfuscator nor VMHunt can successfully recover
all instructions in the benchmark. The generic-deobfuscator is
limited by the unsound rule-based transformation which will
mistakenly simplify obfuscated instructions. The mistakenly

simplified instructions cause the dynamic taint analysis used
by generic-deobfuscator to overlook the correct data flow
(detailed in case study #1). The experiment results show that
VMHunt only can recover parts of instructions generated by
tiger white VM. One reason is that the decoy context
switch will mislead VMHunt to locate the fake virtualized
snippets. VMHunt’s context pairing algorithm cannot distin-
guish the real virtualized snippet that mapped from c in
Pc. Besides, the peephole optimizer used in VMHunt cannot
remove semantic-based obfuscation among the context switch
instructions generated by VMProtect. Thus, VMHunt is unable
to locate context switch instructions and virtualized snippets.
As for the redundancy rate, neither generic-deobfuscator nor
VMHunt can fully simplify the instructions. The redundant
instructions greatly thwart the analyst to understand the T .
It also prohibitively increase the complexity of symbolic
formulas generated by VMHunt. We find out most redundant
instructions are introduced by the semantic-based obfuscation
such as the key register adopted by VMProtect. We discuss
the detail in case study #2.

2) Assistance to Deobfuscation Techniques: To reveal the
ability of extracted knowledge in assisting deobfuscation tech-
niques, we use the anchor to improve VMHunt and generic-
deobfuscator. Specifically, we use the anchor to help the de-
obfuscation technique correctly locate the virtualized snippets
from the trace. The evaluation result is also shown in Table IV
(with anchor category). When we provide correct virtualized
snippets to VMHunt, it can work normally. Likewise, Syntia
can work properly when it uses handlers that are located
based on our anchor instructions. But Syntia cannot simplify
the handlers that mapped from complex instructions such as
div and ror. Syntia also cannot recover the semantics of
instructions virtualized by O2M transformations (detailed in
case study #3). The anchor can also help generic-deobfuscator
to reduce the redundancy of simplified results, but cannot
improve the recovery rate. Although the dynamic taint analysis
used in generic-deobfuscator can correctly find virtualized
snippets related to input and output, it is misled by erroneous
transformation.

Furthermore, our extracted knowledge can help security an-
alysts to understand complex code virtualization mechanisms.
We generate an HTML report for each analyzed native instruc-
tion. Each report contains the information of knowledge leak-
ing code, the original trace of virtualized instructions, extracted
virtualized instructions, and lifted symbolic expressions. Each
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instruction in the original trace is colored according to different
types. An example of the generated report is discussed in
Appendix A.

Answer to RQ3: We construct the first fine-grained bench-
mark based on our extracted mapping rules and evaluate the
effectiveness of three state-of-the-art deobfuscation tech-
niques [1], [25], [27]. We also provide an HTML report for
each analyzed instruction. These can assist security analysts
in understanding the virtualized instructions, selecting an
appropriate heuristic, and designing deobfuscation tech-
niques.

D. Case Study

Case Study #1: Over Simplification. Fig. 7 presents a virtual
handler add(v1, v2) in Fig. 2 mistakenly simplified by generic-
deobfuscator. The value of the original register operand ax
is represented by virtual register ecx, which connects the
data flow between standard input and output. Before taint
analysis, generic-deobfuscator applies multiple transformation
rules to simplify virtualized instructions. Some inappropriate
transformation rules convert the instruction add cx, dx to
mov cx, 0x2 according to the concrete value of registers.
It terminates the data flow from the register cx and dx to the
memory. Because generic-deobfuscator uses the standard input
and output as the taint source and sink, respectively. The taint
analysis cannot identify data flow and related instructions.

Case Study #2: Data flow Misleading. As shown in Fig. 2,
the Decrypt virtual handler decrypts the masked immediate
operand 0x1 into the virtual context during VM runtime
execution. The secret key stored in register ebx is also used to
decrypt the bytecode and other important values. This context-
sensitive key value is updated after every encryption and
decryption. Hence the data dependence analysis will be misled
to collect enormous junk instructions that use the key register.

Case Study #3: Handler Combination. An example of the
handler combination (i.e., O2M transformation) generated by
VMProtect is shown in Fig. 8. The handlers are used to
represent the semantic of kernel virtualized instructions. The
semantic of xor operation is emulated by a combination of
NAND handlers. Syntia only can synthesize the semantic of
a single handler such as the NAND handler. But the NAND
handler is also used to emulate other native instructions such
as adc. It is hard to recover the complete semantic of the
original instruction.

VIII. DISCUSSION

A. Heuristic Algorithms used in Deobfuscation

The heuristic algorithm is widely used in existing deobfus-
cation techniques. But the source and effectiveness of heuris-
tics have never been systematically evaluated. The existing
heuristic selection process is built on the analyst’s experience,
which is learned from painfully examining the large-scale
virtualized programs. In particular, the internal mechanism
of the commercial VM-based obfuscator is complicated and
undisclosed. Meanwhile, the obfuscator developer can eas-
ily eliminate the patterns used by heuristic algorithms. The
outdated heuristic makes the deobfuscation techniques also

become obsolete quickly. To the best of our knowledge, our
research is the first attempt to solve this dilemma.

B. Potential Mitigations for CIA

The potential mitigations can be categorized into two main
types: against the component/concept of CIA (PM-1, PM-2,
PM-3) and the implementation of CIA (PM-4, PM-5, PM-6).

PM-1: Deactivate every anchor. The obfuscator developers
may attempt to destroy or reduce the usability of the anchor.
Intuitively, the developers may prefer to emulate every an-
chor instruction. But they can only emulate part of anchor
instructions that have complex semantics (e.g., cmpxchg),
and pay a great cost on writing lots of virtual handlers.
The process-level VM cannot emulate the instructions that
interact with hardware. For example, processor-related (e.g.,
cpuid), privilege-related (e.g., syscall), FPU, and SIMD
instructions. Therefore, the obfuscator developers may attempt
to alter the representation of anchor instruction. They can
replace the general registers used in the anchor instruction with
virtual registers. For example, as mentioned in Sec. VII-A, we
have found that VMProtect adopts this technique to handle
part of FPU instructions (e.g. fild). But this method cannot
deactivate the anchor that only uses non-general registers (e.g.,
st(0)). Note that Barak et al. [52] have proven perfect
obfuscation is impossible. The CIA attackers can always find
anchor instruction (e.g., syscall) that cannot be virtualized
by obfuscators.

PM-2: Diversify mapping rules. The obfuscator developers
can diversify mapping rules to prevent the CIA attackers
from extracting complete rules. For example, developers can
write more O2M transformation rules for different native
instructions. But it will also increase development costs and
impair the flexibility of mapping rules. On the other hand, the
developer can also insert junk instructions into the mapping
rules. We only find that Code Virtualizer and Themida have
applied this technique. But the inserted garbage instruction can
be easily removed through peephole optimization. If the obfus-
cator integrates other heavy-weight data obfuscation such as
diversified MBA expressions [36], [53], it may impede the CIA
attackers from extracting mapping rules. But the performance
overhead of virtualized programs will be excessively increased.

PM-3: Use custom code virtualization. Malware authors can
customize code virtualization to prevent analysts from reusing
the extracted knowledge to understand virtualized malware. It
is one of our limitations. But it is difficult to design customized
code virtualization as powerful as commercial VM-based ob-
fuscators. Malware authors must pay huge development costs,
which may severely harm their profits. Our statistical result
also shows that most malware authors prefer the commercial
VM-based obfuscator (detailed in Sec. I). To our best knowl-
edge, FinFisher [21] is the only known malware that applies
the custom code virtualization. However, Kaspersky recently
discovered that FinFisher switches to VMProtect [54].

PM-4: Impede anchor locating and guided simplification.
To increase the difficulty of locating anchor instructions and
performing guided simplification, the obfuscator developers
can apply pattern recognition and heavy-weight obfuscation.
But the virtualized programs may become unstable and suf-
fer heavy performance overhead. Correspondingly, the CIA
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29697: [0x00425cb5] mov cx, [esi]             
29698: [0x00425cb8] xadd dl, dh               
29699: [0x00425cbb] cmc                       
29700: [0x00425cbc] mov dx, [esi+0x2]         
29701: [0x00425cc0] cmc                       
29702: [0x00425cc1] cmp esi, 0x30ca109a       
29703: [0x00425cc7] lea esi, [esi+0xfffffffe] 
29704: [0x00425ccd] cmp di, bp                
29705: [0x00425cd0] mov cx, 0x2               
29706: [0x00425cd3] jmp 0x44d036              
29707: [0x0044d036] mov [esi+0x4], cx         

00425cb5  mov cx, word ptr [esi]    
00425cb8  xadd dl, dh               
00425cbb  cmc
00425cbc  mov dx, word ptr [esi+0x2]
00425cc0  cmc
00425cc1  cmp esi, 0x30ca109a       
00425cc7  lea esi, ptr [esi-0x2]    
00425ccd  cmp di, bp                
00425cd0  add cx, dx                
00425cd3  jmp 0x44d036              
0044d036  mov word ptr [esi+0x4], cx

EAX=00000038, EBX=00430a2a, ECX=fff90001, EDX=00690001, ESP=0069fd94, EBP=00425cb5, ESI=0069fe7a, EDI=00439fda

(a) virtual handler of add(𝑣1, 𝑣2) (b) Intermediate results (before taint analysis)

Concretized

Fig. 7: An example of instructions mistakenly simplified by generic-deobfuscator. The concretized mov cx, 0x2 causes taint
analysis cannot track data flow from register cx to dx.

xor eax, 0xdead
Virtualization

Decrypt(mem0,ebx)->not(0xdead)

NAND(eax,eax)

NAND(𝒗𝟏, 𝒗𝟐)

Decrypt(mem1,ebx)->0xdead

NAND(eax, 𝒗𝟒)

NAND(𝒗𝟑, 𝒗𝟓)

Virtual Handlers

Original Instruction

≔ 𝑣1
≔ 𝑣2
≔ 𝑣3
≔ 𝑣4

≔ 𝑣5

Fig. 8: An example of mapping between xor eax,
0xdead and corresponding virtual handlers.

attackers can diversify the combination forms of anchor in-
structions and knowledge leaking code. Meanwhile, they can
also combine other simplification methods to improve guided
simplification techniques.

PM-5: Impede DBI-based dynamic analysis. Since the trace
recording process of our framework is currently based on Intel
Pin, the obfuscator developer can apply anti-debugging tech-
niques to defeat the DBI-based dynamic analysis. But analysts
can adopt the hardware-assisted tracing technique [55], [56] to
evade the detection of anti-debugging techniques. Furthermore,
the obfuscator developer may attempt to increase the number
of (junk) virtualized instructions to enlarge the execution trace
size. But it will greatly increase the runtime overhead of
virtualized programs. Besides, the CIA attackers can increase
their computing resources and optimize the algorithm.

PM-6: Run as a cloud service and use access control.
If the commercial obfuscator runs as a cloud service (e.g.,
Android APK packing service [57], [58]), traditional MATE
attackers [42] cannot directly reverse-engineer obfuscators to
learn complete knowledge. Since the CIA attackers only need
input and output programs, they can still effectively extract
knowledge by interacting with the obfuscator cloud services.
Intuitively, the obfuscator deployed in the cloud can record
and restrict the interactive behavior of authorized users. The
obfuscator can also scan the pattern of anchor instructions to
discover a potential CIA threat, and stop providing services to
potential attackers. However, it is difficult for the obfuscator
to learn the complete semantics of input programs. The CIA
attackers can also disguise the knowledge leaking program as
a benign program. If the obfuscator assumes that any anchor
instruction is a component of CIA, it will suffer high false
positives.

C. Is chosen-instruction attack short-lived?

As discussed in Sec. VIII-B, if the manufacturers of
obfuscators only apply PM-4, PM-5, and PM-6 to impede
the implementation of our CIA toolchain, the CIA attackers
can always find a way to improve analysis methods for de-
feating these mitigations. Therefore, the manufacturers have to
protect obfuscators against essential components (i.e., anchor
instruction, knowledge extraction, and obfuscator’s accessibil-
ity) of the CIA model. Otherwise, the CIA model will keep
threatening the commercial VM-based obfuscators. However,
as discussed in PM-1, manufacturers cannot virtualize every
anchor such as syscall. PM-2 is a promising direction for
the manufacturers, but the CIA attackers can also improve
the analysis method and traverse the diversified mapping
rules. PM-3 is an expensive choice for software (or malware)
authors.

IX. LIMITATIONS AND FUTURE WORK

The prerequisite for performing CIA is that the attackers
can interact with obfuscators. Inaccessible obfuscators are
out of the scope of the CIA model. For example, malware
authors can design a custom code virtualization scheme (e.g.,
the custom VM in FinFisher [21]). But the customized code
virtualization scheme is weak and rarely observed in the wild
(detailed in Sec. I). Besides, the custom VM also inevitably
inherits the same design philosophy of code virtualization.
For example, FinFisher’s VM uses the classic decode-dispatch
based interpretation. The knowledge we extracted from com-
mercial obfuscators can help analysts to understand the cus-
tomized virtualized malware. To defeat our trace-based analy-
sis technique, obfuscator developers can also widely adopt the
anti-debugging technique or maximize the size of virtualized
instructions. It is a common limitation for any DBI-based
dynamic analyses. Moreover, the CIA model is designed to
assist analysts in extracting knowledge from commercial VM-
based obfuscators, rather than directly simplifying virtualized
malware. We leave it to future work. Another limitation of the
CIA model is that the selection of anchor instructions depends
on the architecture. For example, the reduced instruction set,
such as RISC, may limit the number of anchor instructions.
Considering Android malware also uses code virtualization to
evade anti-virus detection [59], we plan to migrate the CIA to
the Android platform in the future.
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X. CONCLUSION

In the competition with code virtualization, the existing de-
obfuscation techniques inevitably rely on heuristic algorithms.
Note that the heuristics are selected by the analysts through
painfully examining enormous virtualized programs. They are
suffering from inaccuracies and incompleteness. This paper
proposes a new approach, called chosen-instruction attack,
to extract reusable knowledge automatically by interacting
with the obfuscator. The experiment results indicate that four
state-of-the-art commercial obfuscators are under the threat of
CIA. Based on the extracted mapping rules, we construct a
fine-grained benchmark to evaluate the effectiveness of the
existing works. The evaluation results show that the extracted
knowledge is a complement to the deobfuscation techniques.
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APPENDIX

Fig. 9 presents part of a colored trace in our generated
report. The instructions colored with yellow are the kernel
instructions. The blue-colored instructions is used to decode
the virtual bytecode and jump to the next handler. Other
instructions colored with grey are the redundant instructions.
With the help of our report, the analyst can easily find out the
pattern of the NOR handler.

The mnemonic we choose to generate native instructions,
which is used to extract mapping rules, includes: adc, add,
and, bswap, btc, btr, bts, cbw, cwd, cdq,
cwde, dec, div, idiv, imul, inc, movsx,
movzx, mul, neg, not, or, rcl, rcr, rdtsc,
rol, ror, sahf, sal, sar, sbb, seta,
setae, setb, setbe, sete, setg, setge,
setl, setle, setne, setno, setnp, setns,
seto, setp, sets, shl, shld, shr, shrd,
sub, xadd, xor.
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1338 0x458eac mov ecx, dword ptr [ebp]

1339 0x458eb0 rol al, cl

1341 0x458eb4 bsr dx, sp

1342 0x458eb8 mov eax, dword ptr [ebp + 4]

1343 0x458ebb and dx, 0x7fe3

1344 0x458ec0 rcl dx, cl

1345 0x458ec3 not ecx

1346 0x458ec5 not eax

1347 0x458ec7 or ecx, eax

1348 0x458ec9 cmovp dx, bx

1349 0x458ecd mov dword ptr [ebp + 4], ecx

1350 0x458ed0 bswap dx

1351 0x458ed3 movsx edx, dx

1352 0x458ed6 pushfd

1353 0x458ed7 pop dword ptr [ebp]

1354 0x458edb lea edi, [edi - 4]

1355 0x458ee1 mov edx, dword ptr [edi]

1358 0x42e277 xor edx, ebx

1359 0x42e279 dec edx

1360 0x42e27a xor edx, 0x53c1455d

1362 0x42ff6e rol edx, 1

1366 0x455ba0 sub edx, 0xf51294

1369 0x455ba8 xor ebx, edx

1372 0x455bad add esi, edx

1374 0x4614ef jmp esi

Fig. 9: An example of colored trace.

10: 0x45afa9, mov dword ptr [0x69fe64], edx
16: 0x44962c, mov dword ptr [0x69fe58], ecx
114: 0x4274c6, mov ecx, dword ptr [0x69fe58]
132: 0x486e5d, mov dword ptr [0x69fdd0], ecx
250: 0x41c3ae, mov ecx, dword ptr [0x69fe64]
273: 0x4530ca, mov dword ptr [0x69fd9c], ecx
623: 0x47e005, mov edx, dword ptr [0x69fdd0]
630: 0x47e01d, mov dword ptr [0x69fe7c], edx
682: 0x454375, mov edx, dword ptr [0x69fdd0]
684: 0x45437e, mov dword ptr [0x69fe78], edx
715: 0x468770, mov ecx, dword ptr [0x69fe78]
716: 0x468772, mov eax, dword ptr [0x69fe7c]
719: 0x46877c, not ecx
720: 0x46877e, not eax
724: 0x468785, or ecx, eax
728: 0x468791, mov dword ptr [0x69fe7c], ecx
813: 0x420b17, mov edx, dword ptr [0x69fd9c]
818: 0x420b27, mov dword ptr [0x69fe78], edx
851: 0x47cc76, mov ecx, dword ptr [0x69fe78]
854: 0x47cc80, mov eax, dword ptr [0x69fe7c]
856: 0x47cc86, not ecx
859: 0x47cc8f, not eax
861: 0x43f6d1, or ecx, eax
862: 0x43f6d3, mov dword ptr [0x69fe7c], ecx
948: 0x470be6, mov edx, dword ptr [0x69fdd0]
952: 0x470bf5, mov dword ptr [0x69fe78], edx
1007: 0x46ad2a, mov edx, dword ptr [0x69fd9c]
1012: 0x46ad3b, mov dword ptr [0x69fe74], edx
1062: 0x488ebf, mov edx, dword ptr [0x69fd9c]
1069: 0x488ed8, mov dword ptr [0x69fe70], edx
1098: 0x482dac, mov ecx, dword ptr [0x69fe70]
1101: 0x482db4, mov eax, dword ptr [0x69fe74]
1103: 0x482dba, not ecx
1104: 0x482dbc, not eax
1107: 0x482dc2, or ecx, eax
1108: 0x482dc4, mov dword ptr [0x69fe74], ecx
1182: 0x4929c7, mov ecx, dword ptr [0x69fe74]
1183: 0x4929c9, mov eax, dword ptr [0x69fe78]
1186: 0x47b629, not ecx
1187: 0x47b62b, not eax
1189: 0x48144f, or ecx, eax
1193: 0x481459, mov dword ptr [0x69fe78], ecx
1276: 0x46de79, mov ecx, dword ptr [0x69fe78]
1278: 0x46de7c, mov eax, dword ptr [0x69fe7c]
1282: 0x46de87, not ecx
1284: 0x46de8f, not eax
1287: 0x46f28f, or ecx, eax
1291: 0x44601d, mov dword ptr [0x69fe7c], ecx
1377: 0x460b26, mov ecx, dword ptr [0x69fe7c]
1400: 0x461907, mov dword ptr [0x69fdc0], ecx
1719: 0x4547bf, mov edx, dword ptr [0x69fdc0]
1724: 0x4547cf, mov dword ptr [0x69fe68], edx
1932: 0x41613e, mov edx, dword ptr [0x69fe68]

Fig. 10: An example of extracted virtualized instruc-
tions that generated by VMProtect v3.5. The original in-
struction is the xor edx, ecx. It is transformed to
NOR(OR(edx,NOT(ecx)),OR(NOT(edx),ecx)) rep-
resented by virtualized instructions.
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