
Multi-Certificate Attacks Against
Proof-of-Elapsed-Time And Their Countermeasures

Huibo Wang
Baidu Security

wanghuibo01@baidu.com

Guoxing Chen
Shanghai Jiao Tong University

guoxingchen@sjtu.edu.cn

Yinqian Zhang†�
SUSTech

yinqianz@acm.org

Zhiqiang Lin
Ohio State University

zlin@cse.ohio-state.edu

Abstract—Proof-of-Elapsed-Time (POET) is a blockchain con-
sensus protocol in which each participating node is required
to wait for the passage of a specified time duration before it
can participate in the block leader election in each round. It
relies on trusted execution environments, such as Intel SGX, to
ensure its security, and has been implemented in Hyperledger
Sawtooth and used in many real-world settings. This paper
examines the security issues including fairness guarantees of the
Sawtooth’s POET design and implementation, and discovers a
new category of security attacks against POET, dubbed Multi-
Certificate Attacks, which allows a malicious node to unfairly
create multiple Certificates in each round of block leader election
and select the one that maximizes her probability of winning. We
have systematically analyzed the root causes of these attacks and
assisted the Sawtooth community to fix several vulnerabilities in
the latest version of POET. To further mitigate the identified
threats, we propose a new design of POET in this paper, which
we call POETA, that can be used to address the remaining
vulnerabilities we have discovered. We have implemented POETA
and evaluated its security and performance.

I. INTRODUCTION

The most important technology in blockchain, a decentral-
ized and append-only ledger, is the consensus protocol, which
maintains the consistency of the views of the ledger from
all nodes in the network, even in the presence of dishonest
participants. Over the past decade, numerous consensus pro-
tocols have been proposed, from the earliest Proof-of-Work
(POW), which underpins Bitcoin [35], to a variety of alter-
native designs, such as Proof-of-Elapsed-Time (POET) [5],
Proof-of-Ownership [22], Proof-of-Burn [36], Proof-of-
Capacity [19], Proof-of-Luck [32], Proof-of-Stake [25], Proof-
of-Activity [11], Proof-of-Reputation [21], and so forth.

Among these consensus protocols, POET is of particular
interest due to its scalability and potential for wide adoption.
In particular, POET is a production-ready consensus protocol
supported by the Hyperledger Sawtooth project [3]. Compared
with Bitcoin and Ethererum, Hyperledger Sawtooth is designed
to be adaptable and customizable; it serves diverse use-cases

†Yinqian Zhang is affiliated with the Department of Computer Science and
Engineering and Research Institute of Trustworthy Autonomous Systems of
Southern University of Science and Technology (SUSTech).

on different scales; it allows on-chain control of network
settings and policies so that it can be used for permissioned
and closed environments. Hyperledger Sawtooth is applicable
to seafood chain traceability, bond asset settlement, and mar-
ketplace digital asset exchanges [2]. In practice, Hyperledger
Sawtooth has already been used by Blockchain Technology
Partners (BTP) [1], a leading enterprise blockchain company
that combines Hyperledger Sawtooth with Kubernetes to create
an enterprise blockchain management platform for simplifying
enterprise blockchain adoption, and in ScanTrust [6] for
bringing transparency to supply chains.

Meanwhile, unlike many other consensus protocols, POET
uses a proof-of-elapsed-time to select the block leader. A proof-
of-elapsed-time is a proof that a participating node samples a
random variable and waits until an amount of time specified
by the sample has elapsed. The participating node with the
smallest sample, i.e., “elapsed time” becomes the leader to
mine a block to be appended to the chain. To prevent nodes
from cheating, a trusted execution environment (TEE), such as
Intel SGX, is introduced to sample the random variable, and
generate a proof-of-elapsed-time (in the form of a Certificate)
after checking the sampled amount of time has elapsed.

Consequently, the authenticity of the Certificates plays
a central role in ensuring two main properties of the
protocol:

• Fairness: The “elapsed time” is not controlled by the node
and is generated in a (pseudo)random manner, such that
each node would have the same probability of winning the
leader election.
• Trustworthiness: The node indeed waits for the “elapsed

time” specified in the Certificate for the current round of
leader election.

Fundamentally, since Certificates are generated inside TEEs,
they are believed to be protected from dishonest nodes, who
will benefit from manipulating Certificates to increase their
probabilities of winning the block elections.

In this paper, we examine whether TEEs like SGX are
indeed capable of providing guarantees of such fairness and
trustworthiness for consensus protocols like POET. Surpris-
ingly, our study has led to the discovery of a new category
of attacks against SGX-based POET, which we call Multi-
Certificate Attacks (MCA). In a Multi-Certificate Attack, the
adversary, a malicious node in the blockchain network, could
generate multiple Certificates during the same round of block
leader election and then select the one that maximizes the

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.24158
www.ndss-symposium.org

likelihood that the adversary will win the election either
in the current round or in future rounds. MCAs allow the
adversary who controls one or multiple nodes of the network
to breach the fairness of POET and mine more blocks than her
fair share. MCAs may enable easy-to-perform selfish-mining
attacks against POET blockchains.

Moreover, we have found two variants of MCAs: parallel
MCAs and sequential MCAs. In parallel MCAs, multiple Cer-
tificates are generated in parallel, without the node waiting for
the designated elapsed time. We have identified vulnerabilities
in Hyperledger Sawtooth v1.0.5, which enable two types of
parallel MCAs. Specifically, the first vulnerability allows the
adversary to generate multiple values of the “elapsed time” and
choose the shortest one to wait and then create the correspond-
ing Certificate. The second vulnerability allows the adversary
to generate multiple Certificates for the same value of the
“elapsed time” and pick the one with the maximum likelihood
to win in the next round. We have demonstrated successful
attacks against Sawtooth v1.0.5 and reported the vulnerabilities
to the developers of Sawtooth, and received positive responses
with acknowledgments. These vulnerabilities have also been
patched in Sawtooth v1.1 [7].

In sequential MCAs, multiple certificates are generated one
after another, with the randomly generated wait time indeed
elapsing before generating each certificate. Although only a
limited number of Certificates can be generated in each round,
sequential MCAs still offer the adversary vantage points to
subvert the fairness of the protocol. The root cause of such
attacks is that the expected elapsed time is revealed to the
adversary once it is created, rather than after the required time
elapses. Hence, the adversary knows whether the value of the
timer is in her favor, and adjusts her strategy to launch attacks
accordingly. Sequential MCAs are still effective on the patched
version of Sawtooth v1.1, as it is non-trivial to eliminate such
vulnerability in the design of POET.

To mitigate sequential MCAs, we propose a new design
of POET, and we name it POETA where “A” stands for
“Afterward”, as the fundamental idea of our design is to
reveal the expected elapsed time of the wait timer “after” the
required time elapses. Particularly, we introduce a determine-
after-check approach to reveal a portion of the expected elapsed
time (dubbed a duration segment), and determine whether the
expected elapsed time is reached after each duration segment
elapses. As such, no participant (honest or not) could predict
the value of the expected elapsed time in advance. Meanwhile,
POETA has the identical distribution of the elapsed time as
POET (and thus the block generation rates), which is designed
with several properties required for proper distribution of
consensus. We have implemented POETA and evaluated it
with a number of benchmarks. Our evaluations show that PO-
ETA provides optimal performance overhead with a stronger
security guarantee.

Contributions. In short, we make two main contributions:

• New Attacks against POET (§V). We perform a sys-
tematic study of security issues of POET and demon-
strate a new category of attacks, Multi-Certificate Attacks,
that compromise fairness properties of Sawtooth POET.

Two vulnerabilities causing MCAs have been reported and
patched in Sawtooth v1.1.

• A Secure Design of POET (§VI). We propose a new
secure design POETA for Sawtooth, with concrete
implementation and evaluation. Our experimental results
show that POETA has optimal performance overhead
with stronger security and meanwhile the same expected
elapsed time distribution as POET.

Roadmap. The rest of this paper is organized as follows. In
§II, we provide necessary background related to Intel SGX and
POET consensus. Then §III provides an overview of POET
and security analysis of the fairness property of the POET
protocol. §IV presents our threat model. Next, we discuss real-
world vulnerabilities we have identified in the POET design
and implementation of Intel’s Sawtooth 1.0, and analyze SGX-
based POET in general in §V. We then investigate the problems
in Sawtooth POET design and propose the new design POETA
in §VI, and its implementation and evaluation in §VII. In §VIII,
we discuss a straightforward method of eliminating replay
attacks, an alternative design of POETA, potential attacks to
other TEE settings, and cases with multiple malicious nodes,
followed by reviewing the related work in §IX. Finally, §X
concludes the paper.

II. BACKGROUND

A. Intel Software Guard Extension

Intel SGX aims at protecting sensitive data from privileged
software such as operating system and hypervisor, by providing
a shielded execution environment, called enclave, to protect
the confidentiality and integrity of code and data loaded
inside [31], [17]. Adopting SGX typically requires applications
to be partitioned into trusted and untrusted components. The
trusted components contain the sensitive application data (e.g.,
secrets) and operations that work on those data. To facilitate
SGX application development, Intel SGX SDK provides an
enclave definition language (EDL) to define an enclave’s
trusted and untrusted interface functions, along with tools to
process EDL to create proxy or bridge code to call into (ECall)
and return from (OCall) an enclave [23].

Remote Attestation. Intel SGX provides a mechanism, named
remote attestation, to enable a remote party to establish trust in
an enclave. It provides a proof that a specific enclave has been
correctly instantiated and is running on a real SGX platform,
and that the remote party is securely communicating with this
enclave. The remote party can verify whether the running
enclave’s identity matches its expectations. Intel adopts En-
hanced Privacy ID (EPID), a group signature scheme based on
an anonymous signature technique, to preserve SGX platform
privacy [24]. EPID supports two modes of attestation service:
linkable quotes and unlinkable quotes. Linkable quotes allow
one to distinguish whether two given signatures are from the
same or different signers, whereas unlinkable quotes do not.

Sealing. Intel SGX also provides a mechanism, called sealing,
for enclaves to seal secrets and store them outside of the
enclave, e.g., on persistent storage. With sealing, secrets could
be restored when the enclave is torn down. Encryption is
performed with a private sealing key, which is unique to

2

the platform and enclave. Sealing keys can be bound to two
types of identities: (i) Enclave Identity, when sealing with the
Enclave Identity, the sealed data could only be unsealed by the
identical enclave; (ii) Signing Identity, sealing with the Signing
Identity allows the sealed data to be unsealed by different
enclaves as long as they are signed by the same developer.

Monotonic Counters. Intel SGX leverages trusted monotonic
counters supported by Intel Management Engine (ME) to
prevent rollback attacks, i.e., attacks that replace the current
enclave state with outdated states. Intel provides a privileged
enclave, called Platform Service Enclave (PSE) to facilitate
enclaves to access these counters. Notably, each counter is
associated with a counter ID and a counter value. The counter
ID is used to identify different counters, and the counter value
is used to identify the version of secret data for the verification
of the freshness of data. An enclave could register a counter
with the PSE, and then read, increase the counter value. The
counter accessibility is decided by the owner’s policy, such as
enclaves with the same signing key, enclaves with the same
measurement, or enclaves with both the same signing key and
measurement. Since these counters are stored in a non-volatile
memory located in Intel ME, updating the value of a counter
is time-consuming (around 80-250 ms) [29].

B. Blockchain

A blockchain is a decentralized and self-regulating peer-
to-peer system without a central authority. A consensus pro-
tocol is needed to achieve agreement on a value or state
of a blockchain among multiple participants. The consensus
protocol is designed to be fair, reliable, and secure. One main
problem in the consensus protocol is called Byzantine Generals
problem [26], which has been addressed by the classic Byzan-
tine fault tolerance (BFT) algorithms [14]. However, classic
BFT algorithms run into scalability problems and permissioned
BFT algorithms only fit for a closed group or semi-closed of
known nodes in small scales.

Interestingly, Nakamoto consensus [34] used in the Bitcoin
network offers an alternative solution to this problem, which
shows that it is possible to form a consensus in a peer-to-peer
network open to anonymous nodes. It proposes the idea of
the Proof-of-Work (PoW) consensus [35] mechanism, which
replaces the leader election in the closed network. Nakamoto
consensus includes a set of rules governing the network’s
authenticity in conjunction with the PoW mining consensus.
It can be mainly broken into three parts: PoW consensus (or
Nakamoto consensus), block validation, and incentive mech-
anism. Specifically, PoW involves solving a cryptographic
puzzle with unavoidable CPU power consumption. As such,
the longest chain represents the majority decision since it con-
sumes the greatest computational resources. As the mining pro-
cess is stochastic, the PoW consensus works like a fair lottery
game with an equal chance of winning for each player. During
the block validation, the first node that solves the puzzle will
propose a new block to the network and be the winner if all the
transactions in the block are valid. The incentive mechanism
is that each node competes in the mining block to earn a block
reward when the miner successfully mines a validated block.
The incentive mechanism helps encourage nodes to stay honest
and spend efforts validating and securing the network.

Blockchain Forks. In a blockchain, if two miners mine two
different blocks at roughly the same time, the chain will be
forked into two branches. Other miners in the network may
continue to work on either branch. These two branches are
called chain forks. Forking is one of the most critical problems
in distributed networks. Forks are inevitable due to the decen-
tralized nature of blockchain networks, e.g., propagation delay,
and connectivity quality. For each fork, there is a group of
miners working on it. The group with more computing power
tends to dominate the blockchain. The proper fork resolver
should suggest the miners join the group with more computing
power to increase the chance that the blockchain will accept its
blocks. In POW, the fork resolving strategy adopts the longest
chain that is formed by costing more mining power or more
nodes. In case two fork chains are of the same length, the
strategy is to attach to the first fork chain’s nodes.

When an attacker or a group of attackers could control
more than 50% mining power in the blockchain network,
they are in control of the blockchain network. Therefore, they
can select any fork, prevent new transactions from gaining
confirmations, and/or reverse transactions that were completed,
which means that they can do double-spending. This attack is
called 51% attack [10].

Selfish Mining. While controlling 51% mining power can be
challenging, if not impossible, Eyal et al. proposed another
type of attack, called selfish mining, which requires relatively
less mining power [20]. The critical idea of selfish mining is
that the malicious nodes, called selfish miners, intentionally
fork the chain by keeping the discovered block private in a
pool shared by them. Instead of mining on the public chain,
the selfish miners mine on their private chain, while the honest
miners are mining on the public chain. When the private
chain becomes longer than the public chain, the selfish miners
publish their private chain. Being the longest chain, the private
chain will be accepted by honest miners and become the
public chain eventually. The blocks mined by the honest miner
previously will be dumped. This strategy will cause honest
miners to waste their resources and lead them to leave the
blockchain network. It may also defer the inclusion of legit-
imate transactions into the blockchain, creating opportunities
for blockchain attacks such as double-spending.

C. Hyperledger Sawtooth and PoET

Hyperledger Sawtooth is an enterprise blockchain platform
composed of two levels [4]: an application level and a core
system level. Application developers can specify the business
rules appropriate for their applications without knowing the
design of the core system. Also, Hyperledger sawtooth is
highly modular, so the users can define policy rules, including
transaction rules, permissions, and consensus algorithms that
support their business needs. Furthermore, various consensus
protocols are supported, including Sawtooth PBFT, Sawtooth
Raft, and SGX-based PoET. Particularly, for SGX-based PoET,
Hyperledger Sawtooth utilizes the trusted execution environ-
ment of Intel SGX to reduce the power consumption of
Nakamoto consensuses such as PoW, by performing leader
elections using trusted programs running inside SGX enclaves.
The integrity of enclave programs can be verified through SGX
remote attestation. In addition, PoET is a generic consensus

3

protocol that can be used by any federated blockchain platform
other than Hyperledger Sawtooth.

III. OVERVIEW OF SAWTOOTH POET

In this section, we provide an overview of the Sawtooth
POET. At a high level, POET works as follows: First, each
node in the network generates a timer denoted by waitTimer,
and then goes to sleep for a pseudorandom expected elapsed
time denoted by duration before waitTimer expires; Then, each
node broadcasts its duration to the network for block leader
election. The node with the shortest duration may commit
a new block to the blockchain. As such, the security of
POET depends on two critical properties: (i) Fairness: every
node has an equal chance of winning the election. In other
words, the duration cannot be manipulated by the node. (ii)
Trustworthiness: the winner has indeed waited for an amount
of time denoted by duration before block leader election.

Sawtooth leverages Intel SGX to achieve these two proper-
ties. More specifically, fairness can be achieved by protecting
the waitTimer and duration inside an enclave such that the node
could not manipulate them. Trustworthiness can be achieved
by generating a Certificate inside an enclave that is signed by
its private key, as long as the trusted enclave code verifies that
a node does wait for the duration time until the expiration of
the waitTimer.

A. Sign-up and Election Phases

In the Sawtooth implementation of the consensus protocol,
a node has two roles: a client and a server, depending on the
execution phases of the consensus protocol. At a high level,
there are two phases of the POET consensus: the sign-up phase
and the election phase.

• Sign-up Phase. The sign-up phase is the initial phase of
the consensus, and it has two steps as well. First, a new
participating node (client) downloads and runs the SGX
enclave code. A pair of asymmetric keys are generated
inside the enclave. The participating node then requests
to join the blockchain network by broadcasting its sign-up
certificate (including its public key) with an SGX attestation
quote. Second, the existing nodes in the network (servers)
verify the join request. If the attestation is accepted, the
sign-up certificate of the new node will be recorded by
each node in the network.

• Election Phase. After sign-up, the new node can participate
in the block election. The election phase utilizes the concept
of proof-of-elapsed-time. Specifically, each node in the
network creates a waitTimer inside an SGX enclave. A
random duration is sampled from a specific distribution
inside the enclave to ensure that the node cannot manipulate
it. The node waits outside the enclave until the duration
has passed. Then it calls into the enclave, which checks if
the waitTimer has expired. If so, a Certificate signed by the
node’s private key is produced by the enclave and broadcast
to the entire blockchain network. The node with the shortest
duration in each round is elected as the leader who could
publish the block.

B. The Two SGX ECalls for Block Election

Two ECalls are implemented inside the SGX enclaves for
the main functionality of the election phase:

• ecall_CreateWaitTimer(). This ECall creates
a trusted timer with its expiration time (i.e., duration)
randomly sampled from a specified distribution. Because
there is no trusted hardware timer supported directly by
SGX, a software timer must be implemented inside an
SGX enclave. To do so, ecall_CreateWaitTimer()
uses the sgx_get_trusted_time API (with second-
level precision) provided by Intel’s SGX SDK as a trusted
clock. This API is implemented as a platform service
offered by the Platform Service Enclave (PSE), which
returns the value of the Real-Time Clock protected by
Intel Management Engine (ME).
To guarantee freshness of the Certificate, a node must
prove that a trusted timer is created for the current round
of block leader election. Therefore, information regarding
the current blockhead must be included in the creation of
the timer. Additional information regarding the node can
also be included as input to this ECall.

• ecall_CreateWaitCertificate(). This ECall
generates a cryptographic proof stating waitTimer was
created and has expired. Since the enclave code no longer
runs after ecall_CreateWaitTimer() returns, the
node will not be notified when the timer expires. Hence,
the node must call into the enclave again to check if
the timer has expired. This functionality can be achieved
by the ecall_CreateWaitCertificate() ECall,
which checks if the trusted timer has expired by invoking
the sgx_get_trusted_time API again and, if so,
continues to create a certificate signed by the enclave’s
private key.

C. Distribution of duration

At the core of a POET protocol design is the proof
of the elapsed time. In particular, the elapsed time that a
node must wait is treated as a random variable, duration.
When duration is sampled from an exponential distribution,
the block generation can be modeled as a Poisson process.
The exponential distribution should have a mean that is large
enough, such that in expectation, very few nodes will produce
blocks at roughly the same time. If multiple blocks are indeed
generated in the same epoch, the dispute can be resolved by
selecting the one with a shorter elapsed time. The mean value
should not be too large either, such that more blocks can
be generated per unit time. Sampling the distribution should
provide insights into the size of the population, which will help
adjust duration according to the population to avoid forks.

D. Fairness of POET

Ensuring fairness is one of the most important tasks in
a blockchain. In POET, ensuring fairness requires that each
participating node has an equal probability of winning a block
leader election. To prevent a single node from gaining a higher
winning probability than others, Sawtooth POET performs Z-
test [8] to determine if a node wins the block election with a
probability higher than expectation. In other words, Z-test is to

4

detect compromised SGX platforms by limiting the frequency
of winning elections for each node. However, our attack could
still break the fairness as long as the frequency of winning
elections by malicious nodes is within the limit (which is larger
than the expected/average frequency).

Without fairness, malicious nodes may perform 51% at-
tacks or selfish mining attacks on the POET blockchain,
by creating a chain that is more likely to win during fork
resolution before releasing it to the honest nodes. In theory, the
fork resolver selects a chain with more computing resources
involved. In POET, the fork resolver selects the fork chain
with larger aggregate localMean, which is an estimate of the
total amount of time spent on waiting. Specifically, localMean
of i-th round is calculated as

localMeani = targetWaitTime× populationSizei−1 (1)

where targetWaitTime is the expected wait time of the wining
block and populationSizei−1 is an estimate of the number of
nodes in the network based on previous i−1 blocks. When two
fork chains have the same aggregate localMean, the resolver
attaches to the chain the block with a shorter duration.

The strategy of fork resolution in POET is shown
in Figure 1. Specifically, as presented in Equation 1, the
localMean of each block is calculated by the product of the
targetWaitTime and the estimate of populationSizei−1 based
on previous blocks on the chain. Therefore, two forks’ chain
heads with the same previous blocks will eventually have the
same localMean, which directly leads to the same aggregated
localMean for the two forks as shown in Figure 1a. In this
case, the fork a with the smaller duration is selected. Whereas
two forks’ chain heads having different previous blocks will
result in different localMeans, and thus different aggregated
localMean as shown in Figure 1b. In this case, the fork a with
the larger aggregated localMean is selected.

E. Existing Security Mechanisms

To prevent a malicious node from abusing the consensus
protocol, Sawtooth adopts the following security mechanisms:

• Linkable Signature. To stop each node from signing up
multiple enclaves at the same time, Sawtooth protocol
enforces the use of linkable signature [4] in the attestation
quote, so that existing nodes in the network can recog-
nize sign-up requests from different enclaves running on
the same SGX machine. Duplicated sign-up requests will
replace the old ones. Moreover, after sign-up, a node can
only participate in the election phase after c blocks have
been generated. As such, a node that failed in the election
cannot immediately compete for block leader election in
the same round by creating a new enclave to sign up in the
network again.

• Random Nonce. A nonce generated from a random source
(i.e., rdrand) inside the enclave is included in a Certifi-
cate. With the introduction of randomness, a node cannot
control the entire content of Certificate. This mechanism
is used to prevent a malicious node from manipulating the
content of the Certificate and hence affecting the next round
of block leader election, since the winning Certificate is
used to create duration of the next round.

dn-3

LMn-3

dn-2

LMn-2

dn-1

LMn-1

dn
a

LMn
a

dn
b

LMn
b

fork
!
"#$

%
LMk

a == !
"#$

%
LMk

b

dn
a dn

b<Bn-3 Bn-2 Bn-1

fork a

fork b

d: duration, LM: localMean, B: block

(a) When two forks have the same aggregated localMean, the one
with a smaller duration will be selected.

dn-3

LMn-3

dn-2

LMn-2

dn-1

LMn-1

dn
a

LMn
a

dn
b

LMn
b

dn+1
a

LMn+1
a

dn+1
b

LMn+1
b

!
"#$

%&'
LMk

b!
"#$

%&'
LMk

a >fork

d: duration, LM: localMean, B: block

Bn-3 Bn-2 Bn-1

fork a

fork b

(b) When fork chains have different aggregated localMean, the one
with the larger aggregated localMean will be selected.

Fig. 1: Fork resolution in POET.

• Secure Monotonic Counter. To prevent an enclave
from creating multiple Certificates, using the same enclave
instance or multiple enclave instances, the enclave checks a
secure monotonic counter [4] and generates the Certificate
only if the counter value is as expected. It increments
the counter by one each time a Certificate is generated.
Moreover, it binds the enclave to a monotonic counter
with a specific ID (determined in the sign-up phase) to
ensure all enclave instances on the same platform using
the same counter.

IV. THREAT MODEL

We assume that the adversary controls a number of dishon-
est nodes participating in the POET-based blockchain network.
Our analysis will start with only one dishonest node and will
be extended to cases with multiple compromised nodes. All
software components of the malicious nodes outside the POET
enclaves are managed and controlled by the adversary. As such,
the adversary is capable of controlling the CPU scheduling,
interrupt delivery and handling, memory management, I/O
operations of the malicious nodes.

Intel SGX is used in the POET protocol and is assumed
to be secure in terms of both its integrity and confidentiality.
That is, the dishonest nodes cannot modify or inspect the code
or data inside the POET enclaves. In addition, trusted timer
and monotonic counter services are trusted, i.e., the adversary
could not manipulate the clock ticks and counter values.
We assume side-channel attacks, including cache side-channel
attacks [33] and controlled-channel attacks [41], against the
enclave program’s memory access patterns, are out of scope.
We assume the speculative execution attacks, such as SgxPec-
tre [15], Foreshadow [37], RIDL [39], CacheOut [40], and
LVI [38] are mitigated in hardware. Hardware vendors are

5

1 sgx_key_128bit_t key = { 0 };
2 sgx_key_request_t key_request = { 0 };
3 key_request.key_name = SGX_KEYSELECT_SEAL;
4 key_request.key_policy =

SGX_KEYPOLICY_MRENCLAVE;
5 sgx_status_t ret = sgx_get_key(&key_request,

&key);
6 sgx_cmac_128bit_tag_t tag = { 0 };
7 sgx_rijndael128_cmac_msg(key,

validatorAddress+previousCertificateId,
&tag);

8 duration = MINIMUM_WAIT_TIME - localMean *
log((&tag) / ULLONG_MAX);

Fig. 2: Calculating duration for ecall_CreateWait-
Timer().

ultimately responsible for eliminating such threats to allow
any secure applications to run on the hardware.

V. MULTI-CERTIFICATE ATTACKS AGAINST SAWTOOTH
POET

In this section, we describe Multi-Certificate Attacks
(MCA) against Sawtooth POET. In a Multi-Certificate Attack,
an adversary generates multiple Certificates during each
election round, and picks one that increases the probability
of her winning the election in either the current round or the
next round.

A. Parallel MCAs

We first present a variant of Multi-Certificate Attacks,
which we call Parallel MCAs. In a Parallel MCA, the adversary
could produce multiple durations during the same elapsed time.
Specifically, we describe two categories of Parallel MCAs. One
allows the adversary to select a duration to win the current
round of the election with a higher probability by controlling
the input to ecall_CreateWaitTimer() (§V-A1); the
other allows the adversary to create multiple Certificates and
select the one to win the next round of the election with
a higher probability by abusing the enclave code’s use of
monotonic counters and secure timers (§V-A2).

1) Parallel MCA against the Current Round:
As shown in Figure 2, duration is derived in
ecall_CreateWaitTimer() from the following
variables:

• validatorAddress, which specifies the address of the
node with the default value being the public key of the
node;

• previousCertificateId, which is the ID of the
Certificate of current block head;

• localMean, which is the average of the winning duration
of each block in the blockchain and also a field of
waitTimer that will be checked by other nodes in the
network during block validation.

• SGX_SEAL, which is derived from the root secret of SGX
(cannot be altered by software);

• MINIMUM_WAIT_TIME, which is a constant that specifies
the minimum value for duration.

Calculate
duration

Calculate
durationmin

VA1

VA2

VAk

d1

d2

dk

MC = M0 + 1

VAmin, dmin dmin

MC = M0 + k + 1

MC = M0 + 2

MC = M0 + k

d: duration, VA: ValidatorAddress, MC: Monotonic Counter Value

Fig. 3: Workflow of the Parallel MCA against Current Round.

Since the SGX_SEAL key and validatorAddress vary
in each node, the nodes in the network will generate waitTimers
with different durations. However, the validatorAddress
is provided by the node as an argument of the ECall
ecall_CreateWaitTimer(). Moreover, unlike other ar-
guments of the ECall, its validity is not checked by other nodes
of the network. Therefore, it is possible for a malicious node
to manipulate the value of validatorAddress and affect
the calculated duration. Because the node is expected to wait
(e.g., sleep) outside the enclave for duration time, the value of
duration is returned by the ECall to the node. As such, this
implementation is vulnerable as the node is able to choose a
validatorAddress so that the returned duration is short
and the winning probability is high.

Attack Demonstration. The vulnerable code was found
in Hyperledger Sawtooth v1.0.5. We have demonstrated
the attack on a Sawtooth network with three nodes, each
of which ran Ubuntu Linux 16.04 on a 4-core Intel
Xeon E-2174G CPU with 16 GB memory and 1Gbps
Ethernet Connection. As shown in Figure 3, a malicious
node can call ecall_CreateWaitTimer() repeatedly
with different validatorAddress as input until a suf-
ficiently short duration is generated, which is then used
to generate a Certificate. It is worthwhile noting that ev-
ery time ecall_CreateWaitTimer() is called, the
previously generated durations are no longer valid, as
the monotonic counter has been increased by this ECall,
which invalidates these duration values. To pass the check
of the monotonic counter, the attacker needs to call
ecall_CreateWaitTimer() again with the correspond-
ing validatorAddress to generate the desired duration.

Mitigation. We reported the vulnerabilities to the Sawtooth
community in June 2019. The core team acknowledged our
findings and released a patch to address the issue. The
patch was integrated into Sawtooth v1.1, which ensures that
validatorAddress used to generate duration is recorded
in the Certificate, and signed by the enclave’s private key, so
that this value can be validated by other nodes in the network.
A valid value of validatorAddress is expected to be
the public key of the enclave that has been registered in the
network. As such, the malicious node cannot provide a fake
validatorAddress to control the value of duration.

6

1 poet_err_t ecall_CreateWaitCertificate("
arguments")

2 {
3 uint32_t sequenceId = 0;
4 ret = sgx_read_monotonic_counter(
5 &validatorSignupData.counterId,

&sequenceId);
6 sp::ThrowSgxError(ret, "Failed to read

monotonic counter.");
7

8 if (sequenceId != waitTimer.SequenceId)
{

9 Log(
10 POET_LOG_ERROR,
11 "WaitTimer out of sequence. %d

!= %d (Attempted replay "
12 "attack?)",
13 sequenceId,
14 waitTimer.SequenceId);
15 throw
16 sp::ValueError(
17 "WaitTimer out of sequence.

(Attempted replay "
18 "attack?)");
19 }
20 sgx_time_source_nonce_t timeNonce;
21 double currentTime = ceil(static_cast<

double>(GetCurrentTime(&timeNonce)));
22

23 double expireTime =
24 floor(waitTimer.SgxRequestTime +

waitTimer.Duration);
25

26 uint8_t nonce[
WAIT_CERTIFICATE_NONCE_LENGTH];

27 ret = sgx_read_rand(nonce, sizeof(nonce)
);

28

29 ret = sgx_increment_monotonic_counter(
30 &validatorSignupData.counterId,
31 &sequenceId);
32 }
33

Fig. 4: Code Snippet of ecall_CreateWaitCert-
ificate().

2) Parallel MCAs against the Next Round: The enclave
code in the ecall_CreateWaitCertificate() ECall
first checks if a Certificate has been generated before, by
checking if the monotonic counter value matches the value
passed in as an argument of the ECall. If the check passes,
it reads the secure clock (using GetCurrentTime()) to
determine if waitTimer has expired. If so, a Certificate could
be created. Finally, the monotonic counter is increased by 1,
indicating a Certificate has been created. The code snippet of
the ECall is shown in Figure 4.

However, the code shown in Figure 4 is vulnerable.
Specifically, ecall_CreateWaitCertificate() has 3
steps: (1) check counter, (2) read secure clock, (3) increment
counter. The root cause of this vulnerability is that such
an ECall cannot be executed atomically. Step (2) can be
paused by a malicious node, as the GetCurrentTime()

Calculate
duration

min

dn

dk
n+1

MC = M0

dmin
n+1

MC = M0 + k - 1

MC = M0 + 1

di: duration for block i gcTime: GetCurrentTime()
Cert: Wait Certificate MC: Monotonic Counter Value

Certmin

Launch
Enclave1

Launch
Enclave2

……

Launch
Enclavek

MC = M0 + k

Cert1

Cert2

Cert……

MC = M0 + ……

Certk

d……
n+1

d2
n+1

d1
n+1

gcTime

gcTime

gcTime

Fig. 5: Workflow of Parallel MCA against Next Round.

API is implemented by the Platform Service Enclave (PSE)
and communication between enclaves (the POET enclave and
PSE) can be delayed (though not readable by the adver-
sary as it is encrypted). Therefore, if the malicious node
pauses the return of GetCurrentTime() API and, in the
meantime, creates another enclave instance, she can call into
the ecall_CreateWaitCertificate() of the second
enclave and still pass the check of the monotonic counter,
which has not yet been changed by the previous ECall. As
such, more than one Certificates can be created.

Attack Demonstration. We have demonstrated an attack
against the vulnerable code in Hyperledger Sawtooth v1.0.5
under the same setting described in the previous section.
Particularly, at a certain round of blockchain leader election,
with the generated duration value, as shown in Figure 5,
the node can perform the following steps to create multiple
Certificates with the same duration value.

First, ecall_CreateWaitCertificate() is
called. Then, when the enclave code triggers the
GetCurrentTime() API, which generates an inter-enclave
communication with the PSE, the node suspends the API call
before it reaches the PSE. Next, the attacker creates a second
enclave with the same enclave binary, and then invokes
another ECall ecall_CreateWaitCertificate().
Because the first ECall has been paused at the
GetCurrentTime() call, the monotonic counter has
not been increased yet. Consequently, the second ECall to
ecall_CreateWaitCertificate() passes the check
of the monotonic counters. Again, the node suspends the out-
going API call to GetCurrentTime(). The adversary can
repeat the same procedure by creating more enclaves. Given
a particular duration value, the malicious node may have
the opportunity of creating hundreds or thousands of enclaves.
When the wait duration has passed, the node resumes the
GetCurrentTime() API calls for all these enclaves. Each
of these ECalls will finish and return a valid Certificate.

As the Certificate contains a nonce that is different every
time a certificate is created, the Certificates created are different
and have distinct WaitCertificateIds. If the malicious
node wins in the current round, the WaitCertificateId
generated in the current round will be used by all nodes in the
blockchain to calculate the duration in the next round. There-

7

fore, the malicious node has the incentive to choose one of the
WaitCertificateIds that helps her win in the next round.

Mitigation. We reported the vulnerabilities to the Sawtooth
community in June 2019. The core team acknowledged our
findings and released a patch to address the issues. The patch
was integrated into Sawtooth v1.1, which prevents the attacker
from calling ecall_CreateWaitCertificate()
multiple times for the same elapsed duration. To do so,
the value of the monotonic counter is incremented at the
beginning of the ECall. In this way, the second call to
ecall_CreateWaitCertificate() will be rejected
immediately as the check for the monotonic counter value
fails. By combining these two changes, the Sawtooth patch
ensures that only one Certificate can be generated for the
same elapsed duration.

B. Sequential MCAs

While both vulnerabilities described above have been fixed
in Sawtooth v1.1, this up-to-date implementation still ex-
poses potential vulnerabilities, which enable Sequential MCAs.
Specifically, the patch only guarantees that to generate one
Certificate, the node must wait outside the enclave for at least
duration time. Nonetheless, attackers can still generate more
than one Certificates in the same round. This is because to
synchronize all nodes in the network entirely, the protocol
must accept all Certificates generated within a long-enough
time window to tolerate network latency. This time window
is what we call the attack window. In practice, as the attack
window is long enough to encompass multiple small durations,
a malicious node may have enough time to generate multiple
Certificates (though all of them have the same duration for
competing the block leader in the current round) and call
ecall_CreateWaitTimer() with each of them to pre-
view the durations for the next round, assuming the current du-
ration is small enough to be selected as the winner by the net-
work. Then the malicious node can choose the Certificate that
increases her likelihood of winning in the next round (should
she win the current round) and submit it to the network.

1) Analysis of Attack Windows: Let W be the attack
window. To analyze the security of POET with regard to W ,
we compute the probability of creating multiple Certificates
within W .

Consider an example blockchain network with T nodes.
Without loss of generality, we assume the T -th node is
malicious, and the rest are honest. In the Sawtooth blockchain
design, when a block i needs to be published, all nodes try
to publish the block i. Due to the network latency that the
certificate with the shortest time maybe come in late, the
blockchain will keep updating the block i with the incoming
certificate from different nodes which has a shorter time until
the block i + 1 is decided. Let Xi

t denote the duration of
t-th node in i-th round. The attack window length for the T -
th (malicious) node should be the shortest current-round wait
time plus the shortest next-round wait time among the other
T -1 nodes because only the current-round block will be in the
chain during this time window, the next round would not be
in the chain yet. Therefore, we can get the length of the attack
window as

W =
(
min(Xi

1, ..., X
i
T−1) +min(Xi+1

1 , ..., Xi+1
T−1)

)
(2)

TABLE I: Original and manipulated winning probabilities.

Validator
Numbers

(T)

Original
Winning

Probability (%)

Manipulated
Winning

Probability (%)

100 1 29
1,000 0.1 3

10,000 0.01 0.3
100,000 0.001 0.03

Note that each honest node has a winning probability of
p = 1

T . Even if one honest node wins the current round, its
winning probability in the next round is still 1

T . In contrast,
when the malicious node wins the current round and try to
replay its current round K−1 times during the attack window
W to generate in total K different Certificates, she could
obtain K different durations for the next round, increasing her
winning probability to p′ = K

T+K−1 for the next round. We
then analyze the statistical properties of K and then study the
adversary’s winning probability of p′.

Let
A = min(Xn

1 , . . . , X
n
T−1)

and
B = min(Xn+1

1 , . . . , Xn+1
T−1),

the probability that the adversary could generate K Certificates
given that she wins the current round is

P [K] = Pr
(
KXn

T < A+B|Xn
T < A

)
(3)

So the expectation of the winning probability in the next
round becomes

E(p′) =

∞∑
K=1

K

T +K − 1
P [K] (4)

We represented P [K] in the form of integrals. De-
tails can be found in Appendix A. We use numeri-
cal integration to estimating probability. Particularly, we
compute the probabilities with four different number of
nodes, i.e., T = 100, 1000, 10, 000, 100, 000. The
other parameters are set as follows: MINIMUM_WAIT_TIME
= 1.0, POPULATION_ESTIMATE_SAMPLE_SIZE = 50,
TARGET_WAIT_TIME = 20.0, BlockSize = 80, 000,
INITIAL_WAIT_TIME = 5.0. The results are shown in
Figure 6. From the result, we can see the probabilities of
generating multiple Certificates are not affected by the node
size. The probability of generating 2 Certificates is about
73 percent, generating 3 Certificates is about 53 percent,
generating 4 Certificates is about 40 percent, the distribution
of dropping is as exponential.

We also estimate the expectation of p′ accordingly, and
the results are shown in Table I. Again, this vulnerability is
enabled by the fact that duration is revealed to the node as soon
as ecall_CreateWaitTimer() returns, which leaves the
node an opportunity to check its value and predict whether the
value will be in her favor. Consequently, we propose POETA
in the next section to address the problem.

8

2 3 4 5 6 7 8 9 10 11
0

10

20

30

40

50

60

70

80

90

100

Times of generating Certificate: K

Pr
ob

ab
ili

ty
(%

)
Node Number is 100

Node Number is 1000
Node Number is 10,000
Node Number is 100,000

Fig. 6: The probabilities of (K-1) times replay attack with
validator numbers as 100, 1000, 10, 000, and 100, 000

VI. POETA: A SECURE POET DESIGN

In this section, we present POETA, a secure design and
implementation of PoET, which is proposed to address the
problem that causes the Sequential MCAs.

A. Design Goals

As analyzed in §V-B, one key enabling factor of Sequential
MCAs is that the value of duration can be previewed so that
a malicious node could peek multiple durations of the next
round without actually spending time waiting, thus increasing
its winning probability for the next round. Hence, we aim to
eliminate this key enabling factor to improve the existing PoET
design. The design goals of POETA are as follows.

• G1-Security: The adversary’s capability of previewing the
duration should be revoked. That is, the final duration should
not be revealed until the required time elapses.

• G2-Consistency: The distribution of the duration should be
consistent with that of Sawtooth POET. POET adopted
a distribution of duration with consideration of a stable
block generation rate with various population sizes. The
new design should follow the same rules to obtain a similar
distribution of duration.

• G3-Performance: The overhead of the new design should
be kept minimal. Since one of the major advantages of
using POET is to save energy, the new design should
preserve this property.

B. Design of POETA

Now we start to describe the design of POETA. Particu-
larly, we explain our design choices step by step to address
each of the above three design goals.

1) Concealing duration via determine-after-check: In the
original POET design, duration is finalized and revealed before
the required time starts to elapse. This enables the adversary to

skip ecall_CreateWaitCertificate() if the duration
is not in her favor, without any penalty—waiting for the
required amount of time. To address G1, POETA must conceal
duration until it expires. However, there are two difficulties.

First, it is inevitable to disclose partial information about
the duration to the host program, so that it knows when to
check back whether the elapsed time reaches the duration,
as constantly checking the expiration status might be quite
resource-consuming, leading to the degradation of PoET to
something like PoW. Second, it is desired to defer the calcu-
lation of duration to the latest possible time, eliminating the
possibility of leaking the value of duration.

We propose a determine-after-check approach, which splits
the duration into multiple segments and discloses one segment
at a time to the host program. The final duration is generated
by accumulating these segments in the following way:

1. When calling ecall_CreateWaitTimer(), the first
duration segment τ1, which is sampled from a proba-
bility distribution whose probability density function is
fτ (x), as well as the MINIMUM_WAIT_TIME µ, are re-
vealed to the host program, indicating the total amount
of time the host program needs to wait before calling
ecall_CreateWaitCertificate().

2. During the i-th (i = 1, 2, . . .) invocation of
ecall_CreateWaitCertificate() after the
required time elapses, an oracle Θ(i) is used to determine
whether the final duration is reached (when Θ(i) = 1) or
not (when Θ(i) = 0). In the latter case, another duration
segment τi+1 will be sampled and revealed to the host
program. This step repeats until the oracle returns 1.

3. When the oracle finally returns 1 on the k-th invocation
of ecall_CreateWaitCertificate(), the duration
is finalized and the Certificate is generated.

The final duration D of POETA is

D = µ+ ∆, (5)

where ∆ =
∑k
i=1 τi, Θ(i) = 0, i = 1, 2, . . . , k−1 and Θ(k) =

1, k ∈ N+.

The choices of the duration segment distribution fτ (x) and
the oracle function Θ(i) will be detailed later when addressing
the second design goal as they are highly related to the
distribution of the duration. The state machine of POETA is
shown in Figure 7.

Security Analysis. We show that the duration is revealed after
the required time elapses. Note that the client could get a
Certificate only when the oracle function call in the current
invocation of ecall_CreateWaitCertificate() out-
puts 1. Otherwise, if Θ(i) = 0, the client has to wait for
another duration segment, and the duration keeps accumulating.
As the output of Θ(i) is unpredictable, the duration is also
unpredictable before it elapses.

While predicting the exact duration is infeasible, the ad-
versary might try to determine whether the final duration is
larger than certain threshold Γ so that it is unlikely the smallest
duration for the current block. When the adversary learns that
the final duration is larger than the threshold, she could start ex-
ploring alternatives. In the original design, the adversary knows

9

WAIT
COMPLETECREATE

TIME
CREATE
PROOF COMMIT

COMPLETE COMPLETE

CLEANIDLE

ABORT

INIT

COMPLETE

COMPLETESTART

RESTART

ABORT

ABORTABORT ABORT

1

2

3

4 5

6

Fig. 7: State Machine of POETA. À:New batches of trans-
action coming, Á:Generated duration, Â: Time elapses, Ã:
Oracle function Θ() outputs 0, need to wait one more segment,
Ä: Oracle function Θ() outputs 1, no need to wait one more
segment, Å: Broadcast the Proof to the blockchain network.

it immediately after calling ecall_CreateWaitTimer().
In POETA, the adversary might need to wait for several
duration segments before she could learn it. We will provide
a more detailed analysis in §VI-B3, as it is about the trade-off
between security and performance.

2) Achieving the Identical Distribution of the duration
as POET: The intuition to address the second design goal
is to properly choose the duration segment distribution fτ (x)
and the oracle function Θ(i) such that the distribution of the
duration is as close to that of the original (which already satis-
fies those characteristics as discussed in §III-C) as possible.
Interestingly, we find the final distribution of duration can
be identical to that of the original, through both theoretical
analysis and simulations.

As shown in Figure 2, the duration of the original design
follows an exponential distribution, with a probability density
function

fPOET(x) =
1

Λ
e−

1
Λ (x−µ) (6)

where Λ and µ denote the localMean and
MINIMUM_WAIT_TIME. One key property of an exponential
distribution is memorylessness, i.e., the probabilities at any
time of one process are not affected by the history of the
process:

Pr(D > s+ t|D > s) = Pr(D > t),∀s, t ≥ 0

When it comes to POETA, the memorylessness property
suggests that each time the oracle function Θ(i) is called, the
probabilities of outputting 1 and 0 should be constant. Hence,
we choose the oracle function in POETA to be a Bernoulli
distribution such that

Pr[Θ(i) = 1] =θ

Pr[Θ(i) = 0] =1− θ

where θ ∈ [0, 1].

Now we need to choose the distribution of the duration
segment fτ (x). Considering an extreme case when θ = 1, the

duration becomes µ + τ1. The comparison with the original
duration calculation suggests the distribution of τ1 should also
follow one exponential distribution. Hence, we set fτ (x) =
λe−λx.

With the chosen oracle function and duration segment
distribution, we show that the probability density function of
the duration in POETA is

fPOETA(x) = θλe−θλ(x−µ) (7)

By setting θ and λ such that θλ = 1
Λ , the distributions

of duration in POET Equation 6 and POETA Equation 7
become identical. Details can be found in Appendix B. Hence,
the distribution of the duration in POETA also satisfies the
characteristics described in §III-C, and the second design goal
is achieved.

3) Trade-off between Security and Performance: Now
we target the third design goal. There is always a trade-off
between security and performance. Particularly, we analyze the
performance overhead and security with regards to different
values of λ (the value of θ is then determined by θ = 1

λΛ).

The performance overhead mainly comes from the extra
invocations of ecall_CreateWaitCertificate().
Note that counter operations are the most costly
(One counter write operation might take 80-250
ms [29]) in ecall_CreateWaitTimer() and
ecall_CreateWaitCertificate(), here we use the
frequency of counter operations to estimate the performance
overhead (real evaluations are provided in §VII-B).

Consider a network of N nodes, the mean of the min-
imum duration DM is Λ

N . The number of counter opera-
tions for generating one block in POET is roughly N +
1 (N ecall_CreateWaitTimer() for all nodes and
one ecall_CreateWaitCertificate() for the leader
node). In POETA, the mean of intervals (duration segments)
between two ecall_CreateWaitCertificate() in-
vocations is 1

λ . Hence, the number of counter opera-
tions for generating one block in POETA is roughly
N(1 + λ Λ

N) (one ecall_CreateWaitTimer() and λ Λ
N

ecall_CreateWaitCertificate() for each node).
Hence, the performance overhead can be estimated as λΛ−1

N+1 .
Note that λ = 1

θΛ ∈ [1
Λ ,∞). When λ is close to 1

Λ , the
performance overhead is close to 0, as POETA becomes
more like the original design. When λ approaches infinity,
the performance overhead could grow really large. Counter
operations will be performed constantly and frequently, and
POETA becomes more like POW.

While λ affects the performance overhead, it also plays
an important role in security. While the adversary could
not preview the value of duration, she might alternatively
try to infer whether the duration will be above a cer-
tain threshold and determine whether to skip the call
to ecall_CreateWaitCertificate(). The adversary
could learn it one step (duration segment) in advance since
the duration accumulates step by step. Detailed analysis is
in Appendix C. Simply put, larger λ suggests smaller steps
the duration accumulates, forcing the adversary to wait until
a time closer to the interested threshold, resulting in better
security. For example, given that a network of 100 nodes with
a localMean of 1000 seconds, if it is acceptable with the

10

1 WaitTimer{
2 double requestTime
3 double currentDurationSegment
4 double accumulatedDuration
5 byte[32] WaitCertId:sub:’n’
6 double localMean
7 }

Fig. 8: WaitTimer Structure

mean of each step (duration segment) equal to 5 seconds, we
have λ = 0.2 and overhead of 1.97×. If the security is more
concerned and it is desired that the mean of each step is 1
second, we need to set λ = 1, resulting in an overhead of
9.89×. The real performance overhead under various settings
is reported in §VII-B.

VII. IMPLEMENTATION AND EVALUATION

In this section, we present a prototype implementation of
POETA and describe the evaluation results.

A. Implementation

We implemented POETA based on Hyperledger Sawtooth
version 1.0.5, which is the most recent version that supports
running Sawtooth POET with SGX. The modules that are
most relevant to POETA include BlockPublisher and Chain-
Controller. BlockPublisher is responsible for batch validation
and inclusion in a block, and ChainController is responsible
for block validation and fork resolution. These two modules
correspond to the two roles of a validator, i.e., the client and
the server. We also implemented the Sawtooth patch mentioned
in subsection V-A as it is not yet included in version 1.0.5.

When implementing POETA, we aim to minimize
the modifications to the original POET framework.
Since the shortest duration is still the decider of a
leader election process, we keep the block verification
and fork resolution in ChainController unchanged. We
also keep the original POET block generation flow in
BlockPublisher. In POETA, the block publish flow is
changed from waiting for one duration to wait for multiple
duration segments. In the consensus module, we rewrote
the two main ECalls ecall_CreateWaitTimer() and
ecall_CreateWaitCertificate(). Instead of gen-
erating one final duration, ecall_CreateWaitTimer()
will generate the first duration segment plus the
MINIMUM_WAIT_TIME. The major modifications were
applied to ecall_CreateWaitCertificate() as
shown in algorithm 1. The key implementation flow is shown
in the following steps:

• In the first step, a validator requests the first duration
segment τ1 along with the MINIMUM_WAIT_TIME by
calling ecall_CreateWaitTimer(). A data structure
called WaitTimer is introduced to record necessary infor-
mation about the duration accumulation. As shown in Fig-
ure 8, WaitTimer consists of 5 components. Particularly,
requestTime records the time when the current timer
is created; currentDurationSegment is the newly
generated duration segment τs; accumulatedDuration

Algorithm 1: ecall CreateWaitCertificate()
Data: inSealedSignupData,
inSealedSignupDataSize,
inSerializedWaitTimer,
inWaitTimerSignature,
inBlockHash,
inSerializedWaitCertificateLength,
outWaitCertificateSignature
Result: Generate WaitCertificate or update

WaitTimer
1 variables initialization;
2 check re-entrance attacks;
3 if the timer is expired and within the predefined window

then
4 continue;
5 else
6 abort;
7 if Θ() = 1 then
8 generate WaitCertificate;
9 else

10 sample another duration segment τs;
11 update WaitTimer;

is the accumulated duration so far including the current
duration segment, i.e., MINIMUM_WAIT_TIME+

∑s
i=1 τi;

• In the second step, a validator keeps waiting until the
amount of time equal to currentDurationSegment
elapses, and invokes CreateWaitCertificate() af-
terward. ecall_CreateWaitCertificate() then
checks if the currentDurationSegment is passed. If
yes, it will invoke the oracle function Θ(): it generates a
random number within (0, 1) and outputs 1 if the random
number is smaller than θ, or 0 otherwise. If the oracle
function outputs 1, a WaitCertificate will be created.
Otherwise, another duration segment will be sampled, and
the WaitTimer will be updated and returned. Note the
random values and duration segments are generated deter-
ministically from the previous duration segments, sealed
key pairs, and the previous certificate.

• The third step is after a validator repeats the second step
until a WaitCertificate is generated successfully. The
validator then submits it to the network.

B. Evaluation

We evaluate POETA with regards to the three design goals.
We first evaluate the consistency between the distributions of
duration in POET and POETA. We then evaluate the security
and performance under different values of θ and discuss the
trade-off between them.

1) Consistency: As analyzed in §VI-B2, when θλ = 1
Λ , the

distributions of duration in POET and POETA are the same.
We verified this by simulations. Particularly, we evaluated how
different values of λ affect the distribution with localMean
equal to 100 seconds. We simulated the generation of duration
in POETA under 5 different values of λ. With each value of λ,
we collected 1, 000, 000 durations and plotted the normalized
histogram as shown in Figure 9. We can see that the distri-
butions of duration in POETA under different values of λ are

11

 0

 0.05

 0.1

 0.15

 0.2

 0.25

50 100 150 200 250 300 350 400 450 500 550 600

Ra
tio

Duration (sec)

PoET
PoETA (1/λ=1)
PoETA (1/λ=3)
PoETA (1/λ=5)
PoETA (1/λ=7)
PoETA (1/λ=9)

Fig. 9: Duration distributions of POET and POETA

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

1 2 3 4 5 6 7 8 9

D
is

ta
nc

e
to

 th
re

sh
ol

d
(s

ec
)

1/λ

threshold=5
threshold=10
threshold=20
threshold=30
threshold=40

Fig. 10: Distances to thresholds under different values of λ.
Larger λ suggests smaller steps the duration accumulates, forc-
ing the adversary to wait until a time closer to the interested
threshold, and thus resulting in better security.

almost the same as that of POET. Hence, we claim that the
consistency goal is achieved.

2) Security and Performance: We now detail the security
and performance evaluations of POETA. Both are evaluated
under different values of λ. For the security evaluation, we
measure how much time in advance when one could determine
that the current durations would exceed certain thresholds
(such as 10 seconds or 20 seconds). For the performance eval-
uation, we measured the CPU utilization of running our imple-
mented POETA. We experimented with 9 different values of λ.

Security. We tested 5 different thresholds (ranging from 5
seconds to 40 seconds) around the default target wait time
(20 seconds). For each threshold, we simulated the duration
generation process and collected those samples with durations
larger than the threshold. For each sample, we recorded the
accumulated durations right before they went beyond the
threshold and calculated the mean of these accumulated dura-
tions. The results are averaged from 1, 000, 000 samples each,
as shown in Figure 10. We can see that the average distances
from the thresholds when one realizes that the final duration
would exceed the thresholds are less than the mean of duration
segments, i.e., 1

λ . Hence, a larger λ provides better security.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 3 4 5 6 7 8 9

O
ve

rh
ea

d

1/λ

3.5X

2X
1.75X

1.5X

1X
0.75X 0.75X 0.75X 0.75X

Fig. 11: Performance overhead under different λ values.

Performance. We measured the CPU utilization when running
POET and POETA. We used perf, a performance analyzing
tool, to measure the CPU utilization of one validator during the
period that 10 blocks are published in the network, which has
an average time cost of around 10 minutes. The CPU utilization
of POET was 0.4%. For POETA, we tested 9 different values
of λ as in the security evaluation, and obtained the CPU
utilization ranging from 1.8% to 0.7%, resulting in a overhead
ranging from 3.5× to 0.75× as shown in Figure 11.

The evaluated performance overhead is smaller than that is
analyzed in §VI-B3. The reason is that the overhead estimation
is calculated only from counter operations, while the actual
execution cost includes both enclave operations and non-
enclave operations. For example, in the host application of
Sawtooth, there is a loop checking whether a given duration
(or duration segment for POETA) has elapsed. The default
frequency of such checks is 10 times per second.

Trade-off. By comparing the security and performance under
different values of λ, we can see the trade-off, e.g., better secu-
rity leads to more considerable overhead. For POETA systems
requiring faster block generation rate, i.e., smaller target wait
time, better security guarantee is needed. Furthermore, even for
the largest performance overhead we have evaluated, the CPU
utilization is still quite low (1.8%), making POETA a resource-
efficient alternative of POW. On the other hand, the trusted
timers provided on existing SGX platforms have a granularity
of one second. Hence, λ = 1 would be a reasonable choice
for most scenarios if 1.8% of CPU utilization is acceptable.

VIII. DISCUSSION

A. Eliminating Multi-Certificate Attacks.

To completely eliminate Multi-Certificate Attacks, the fol-
lowing approach can be taken: In the sealed data, we keep
track of the previous Certificates. For each round, one node
is allowed to generate only one duration and one Certificate.
To enforce this rule, we can use the monotonic counter and a
flag for tracking the previous Certificates, and any violation
will terminate the current enclave instance and require re-
authentication. Notably, a node is only allowed to generate a
waitTimer if the previous Certificate is not used. The monotonic
counter is leveraged to prevent the sealed data from the

12

rollback attacks. When a waitTimer is generated, the flag is
set to true. Once the flag is true, no more waitTimers could
be generated for the current round unless the previous round
has another certificate with a smaller duration than that in the
sealed data is found.

While this design could eliminate MCAs, it suffers from the
following disadvantages: First, all Certificates must be stored
in the sealed storage, introducing both significant storage and
computation overhead that grow linearly with regards to the
length of the blockchain and the number of nodes in the
network. Though utilizing algorithms and data structures might
help with the issues of storage size and the computational
overhead, the overhead might still be high compared with
POETA. Second, this option highly depends on the secure im-
plementation of complex algorithms and data structures while
evaluating the security of a larger TCB requires considerable
effort. Third, when a node misses the chance to claim the
waitTimer in time due to some unexpected long latency of
creating Certificate, it will lose the chance to publish the
current block since it is allowed to generate the duration only
once for each round by design. Therefore, a solution like
POETA is of significance.

B. Alternative Design

Instead of sampling a random duration segment, one alter-
native design is to use constant duration segments. However,
two reasons prevent us from adopting the constant interval
design in POETA: First, it comes with a distribution that is dif-
ferent from PoET. From our discussion with PoET designers,
the distribution of PoET leads to desired blockchain properties
(higher block processing rate, constant block generating rate,
and fewer forks). Hence, it is preferred to preserve these
properties by a design with an identical distribution. Second,
with the constant interval design, it is more likely for two nodes
to generate the same duration, leading to a network jam.

C. Potential Attacks to Other TEE Settings

As Hyperledger Sawtooth POET is implemented on Intel
SGX, our analysis focuses on SGX. But the attacks presented
in section V are not specific to SGX. Other TEEs, such as
AMD Secure Encrypted Virtualization (SEV), may also be
vulnerable to similar attacks. The adversary controlling the
virtual machine monitor may restart the VM to roll back the
state of the POET consensus protocol. However, as SEV’s
protected domain is the entire virtual machine, duration may
not be exposed to the adversary who stays outside the VM. As
such, we envision a secure implementation of POET on AMD
SEV remains an interesting research problem.

D. Multiple Malicious Nodes

Next, we discuss both parallel and sequential MCAs with
just one malicious node. They could be performed with mul-
tiple nodes under the adversary’s control. In such cases, the
colluding nodes may gain more advantages during block leader
election. For example, they can bypass Z-test by mining blocks
in an alternating manner. Consequently, the group of malicious
nodes could control the chain with fewer efforts. As discussed
in §III-D, forks are resolved by selecting the one with larger
aggregated localMean of all blocks on the chain. As such, if

the malicious nodes can obtain a high probability of winning
by generating blocks with a larger aggregated localMean, they
can thereby create a winning fork, which is the well-known
selfish mining attack.

IX. RELATED WORK

A. Integrating SGX into Blockchain

Increasingly, SGX has been integrated into blockchain
for various reasons, such as leveraging SGX to protect smart
contracts, deploying SGX as part of blockchain consensus to
provide security from hardware, and protecting the privacy of
blockchain nodes in SGX.

PDO [13] leverages SGX to run smart contracts in SGX
enclave to provide data confidentiality, execution integrity and
also enforce data access policies. Inspired by PDO, Ekiden [16]
aims at protecting smart contracts in SGX with the support of
permissionless and open settings, while PDO targets permis-
sioned and controlled settings. FastKitten [18] also leverages
SGX to protect smart contracts but with a focus on off-chain
execution of multi-round contracts.

BITE [30] protects the privacy of light clients in Bitcoin
using SGX. Teechain [27] deploys SGX to protect treasuries
for establishing off-chain payment channels. SCIFER [9]
leverages SGX’s remote attestation for identification in the
permissionless network. Recently, FastBFT [28] proposes a
new BFT protocol which deploys SGX for secret sharing.

B. Consensus Protocols in Blockchain

Proof-of-Work (POW) [35] is the original Bitcoin consen-
sus protocol. The fundamental goal of POW was to address
Sybil Attacks by requiring validators to solve a puzzle through
non-negligible cost. The process of finding a solution is
called mining. Validators can only participate in the distributed
blockchain if they have proposed a correct solution. The
critical drawback of POW is its energy resource expense,
transaction slowness, and double-spending. Consequently, to
address the shortcomings of POW, various new consensus
protocols as discussed below have been proposed:

• Proof-of-Ownership [22] uses Bitcoin’s decentralized
ledger to verify that users with the private key associated
with the signature can prove they are the owner. It
allows artists or businesses to certify the integrity, date
of publication, and ownership of creations and contracts.
Proof of Ownership is always attached to a piece of data
using cryptographic functions. This makes it impossible to
alter the data after certification.

• Proof-of-Capacity [19] aims to reduce the amount of
wasted energy and computing resources by utilizing
hardware storage for blockchain production. Similar to the
computation of POW, storage space is used to construct a
proof of validity, allowing a validator to propose a block to
the consensus. Validator membership requires a validator
to prove validity through storing and retrieving shards of
a given file.

• Proof-of-Luck [32] is based on the use of SGX-enabled
CPUs, similar to POET. Proof of Luck utilizes SGX
platform’s random number generator to choose a consensus

13

leader for block proposal. This provides low latency trans-
action validation, deterministic confirmation time, negligi-
ble energy consumption, and equitably distributed mining.

• Proof-of-Stake (POS) [25] is introduced to reduce
resource consumption encountered with POW. The core
idea is that participants deposit a value of the stake,
which will be lost if the validator does not conform to
the protocol. Key advantages are energy savings and
improved throughput. Hash puzzle-solving is replaced by
stake selection. This protocol suffers from centralization
governance and Nothing-at-Stake attacks.

• Proof-of-activity (POA) [11] is a hybrid approach of
POW and POS. In PoA, the mining process starts as a
standard POW mining process utilizing computing power
to solve the puzzle and create a new block. When a new
block is found (mined), the system switches to POS, with
the newly found block containing only a header and the
miner’s reward address. Based on the header details, a new
random group of validators from the blockchain network
is selected who are required to validate or sign the new
block. The more crypto coins a validator owns, the more
chances he or she has for being selected as a signer.

• Proof-of-Reputation (POR) [21] is an optimization for
selecting valid validator members over the existing POW
validator selection process. Instead of using instantaneous
mining power to select members, POR considers the
validator’s mining integrity. This is a formula calculation
based on the total amount of valid work a miner has
contributed since the system has been active. Any
malicious activity will lower the miner’s reputation and its
voting power. An adversary can only be successful after
gaining a positive reputation, requiring costly investment
over time and resulting in fewer attacks.

• Elapsed Time (ET) [12] is a simplified version of PoET
and Proof of luck. The key difference between POETA and
ET is whether the time interval is determined or not before
time elapsing. In ET, the time interval is determined at
the beginning and revealed partially during each OCALL.
However, since a large variety of side-channel attacks
against SGX enclaves have been reported, the time interval
may be leaked in advance if it is generated within the
enclave memory before time elapses, making ET vulnerable
to the MCA attacks. In contrast, POETA eliminates such
possibilities. The interval will not be determined before
the last invocation and thus will not be leaked in advance.

X. CONCLUSION

We have presented a security study of Proof-of-Eclipsed-
Time (POET) and demonstrated a new type of attack against
this consensus protocol, namely Multi-Certificate Attacks.
Vulnerabilities that enable the parallel Multi-Certificate At-
tacks have been reported to the community and patched in the
latest version of Sawtooth. For the sequential Multi-Certificate
Attacks that are difficult to remove from the current imple-
mentation, we propose POETA, a new design of POET, which
only reveals the duration of the waitTimer after the elapsed time
to the untrusted software. We have implemented POETA and
tested it with three sets of experiments. Our evaluation results
show that POETA has optimal performance with stronger
security and also the identical duration distribution as POET.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers and
our shepherd Pedro Moreno-Sanchez for their very helpful
comments. Guoxing Chen was partially supported by the
National Natural Science Foundation of China under Grant
No. 62102254 and Shanghai Pujiang Program under Grant No.
21PJ1404900. Zhiqiang Lin was partially supported by NSF
grant 1834213.

REFERENCES

[1] “Btp,” https://www.hyperledger.org/learn/publications/
kubernetes-case-study.

[2] “Hyperledger sawtooth examples,” https://sawtooth.hyperledger.org/
examples/.

[3] “Hyperledger sawtooth project,” https://www.hyperledger.org/use/
sawtooth.

[4] “Sawtooth poet document,” https://sawtooth.hyperledger.org/docs/core/
releases/1.0/architecture/poet.html.

[5] “Sawtooth poet sgx,” https://sawtooth.hyperledger.org/docs/core/
nightly/1-2/sysadmin guide/configure sgx.html.

[6] “Scantrust,” https://www.hyperledger.org/learn/publications/
scantrust-case-study.

[7] “Sawtooth patch,” https://github.com/hyperledger/sawtooth-poet/pull/
35/files, Jul. 2019.

[8] “Sawtooth poet z-test,” https://sawtooth.hyperledger.org/docs/core/
releases/1.0/architecture/poet.html#z-test, Jul. 2019.

[9] M. Ahmed and K. Kostiainen, “Identity aging: Efficient blockchain
consensus,” arXiv preprint arXiv:1804.07391, 2018.

[10] M. Bastiaan, “Preventing the 51%-attack: a stochastic analysis of
two phase proof of work in bitcoin,” in Availab le at http://referaat.
cs. utwente. nl/conference/22/paper/7473/preventingthe-51-attack-a-
stochasticanalysis-oftwo-phase-proof-of-work-in-bitcoin. pdf, 2015.

[11] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of activity:
Extending bitcoin’s proof of work via proof of stake [extended abstract]
y,” ACM SIGMETRICS Performance Evaluation Review, vol. 42, no. 3,
pp. 34–37, 2014.

[12] M. Bowman, D. Das, A. Mandal, and H. Montgomery, “On elapsed
time consensus protocols.” IACR Cryptol. ePrint Arch., vol. 2021, p. 86,
2021.

[13] M. Bowman, A. Miele, M. Steiner, and B. Vavala, “Private data objects:
an overview,” arXiv preprint arXiv:1807.05686, 2018.

[14] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, no. 1999, 1999, pp. 173–186.

[15] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai, “Sgxpectre:
Stealing intel secrets from sgx enclaves via speculative execution,” in
2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 2019, pp. 142–157.

[16] R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contracts,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS&P). IEEE,
2019, pp. 185–200.

[17] V. Costan and S. Devadas, “Intel sgx explained.” IACR Cryptology
ePrint Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[18] P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostáková, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: practical smart contracts on
bitcoin,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 801–818.

[19] S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs of
space,” in Annual Cryptology Conference. Springer, 2015, pp. 585–
605.

[20] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining is
vulnerable,” in International conference on financial cryptography and
data security. Springer, 2014, pp. 436–454.

14

https://www.hyperledger.org/learn/publications/kubernetes-case-study
https://www.hyperledger.org/learn/publications/kubernetes-case-study
https://sawtooth.hyperledger.org/examples/
https://sawtooth.hyperledger.org/examples/
https://www.hyperledger.org/use/sawtooth
https://www.hyperledger.org/use/sawtooth
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html
https://sawtooth.hyperledger.org/docs/core/nightly/1-2/sysadmin_guide/configure_sgx.html
https://sawtooth.hyperledger.org/docs/core/nightly/1-2/sysadmin_guide/configure_sgx.html
https://www.hyperledger.org/learn/publications/scantrust-case-study
https://www.hyperledger.org/learn/publications/scantrust-case-study
https://github.com/hyperledger/sawtooth-poet/pull/35/files
https://github.com/hyperledger/sawtooth-poet/pull/35/files
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html#z-test
https://sawtooth.hyperledger.org/docs/core/releases/1.0/architecture/poet.html#z-test

[21] F. Gai, B. Wang, W. Deng, and W. Peng, “Proof of reputation: A
reputation-based consensus protocol for peer-to-peer network,” in Inter-
national Conference on Database Systems for Advanced Applications.
Springer, 2018, pp. 666–681.

[22] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of
ownership in remote storage systems,” in Proceedings of the 18th ACM
conference on Computer and communications security, 2011, pp. 491–
500.

[23] Intel, “SDK for Intel Software Guard Extensions,” 2020, https://
software.intel.com/en-us/sgx/sdk.

[24] S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel
Software Guard Extensions: EPID Provisioning and Attestation Ser-
vices,” Intel, Tech. Rep, Tech. Rep., 2016.

[25] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual Inter-
national Cryptology Conference. Springer, 2017, pp. 357–388.

[26] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” in Concurrency: the Works of Leslie Lamport, 2019, pp. 203–
226.

[27] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch,
“Teechain: a secure payment network with asynchronous blockchain
access,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, 2019, pp. 63–79.

[28] J. Liu, W. Li, G. O. Karame, and N. Asokan, “Scalable byzantine
consensus via hardware-assisted secret sharing,” IEEE Transactions on
Computers, vol. 68, no. 1, pp. 139–151, 2018.

[29] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais,
A. Juels, and S. Capkun, “ROTE: Rollback protection for trusted
execution,” in 26th USENIX Security Symposium (USENIX Security 17),
2017, pp. 1289–1306.

[30] S. Matetic, K. Wüst, M. Schneider, K. Kostiainen, G. Karame, and
S. Capkun, “BITE: Bitcoin lightweight client privacy using trusted
execution,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 783–800.

[31] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and
software model for isolated execution,” in Proceedings of the 2nd
International Workshop on Hardware and Architectural Support for
Security and Privacy (HASP), Tel-Aviv, Israel, 2013, pp. 1–8.

[32] M. Milutinovic, W. He, H. Wu, and M. Kanwal, “Proof of luck: An
efficient blockchain consensus protocol,” in proceedings of the 1st
Workshop on System Software for Trusted Execution. ACM, 2016,
p. 2.

[33] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How
SGX amplifies the power of cache attacks,” in 19th International
Conference on Cryptographic Hardware and Embedded Systems -
CHES 2017, 2017, pp. 69–90. [Online]. Available: https://doi.org/10.
1007/978-3-319-66787-4 4

[34] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Manubot, Tech. Rep., 2019.

[35] S. Nakamoto et al., “Bitcoin: A peer-to-peer electronic cash system,”
2008.

[36] I. Stewart, “Proof of burn,” bitcoin. it, 2012.

[37] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the intel SGX kingdom with transient out-of-order
execution,” in 27th USENIX Security Symposium (USENIX Security 18),
2018, pp. 991–1008.

[38] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lippi, M. Minkin,
D. Genkin, Y. Yarom, B. Sunar, D. Gruss, and F. Piessens, “Lvi:
Hijacking transient execution through microarchitectural load value
injection,” in 2020 IEEE Symposium on Security and Privacy (SP).
IEEE, 2020, pp. 54–72.

[39] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “Ridl: Rogue in-flight data load,”
in 2019 IEEE Symposium on Security and Privacy (SP). IEEE, 2019,
pp. 88–105.

[40] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,
“Cacheout: Leaking data on intel cpus via cache evictions,” in 2021

IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp. 339–
354.

[41] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks:
Deterministic side channels for untrusted operating systems,” in
Proceedings of the 2015 IEEE Symposium on Security and Privacy,
ser. SP ’15. Washington, DC, USA: IEEE Computer Society, 2015,
pp. 640–656. [Online]. Available: https://doi.org/10.1109/SP.2015.45

APPENDIX A
THE WINNING PROBABILITY OF THE ADVERSARY

The generation of duration of node t in n-th round is given
by

Xn
t = MINIMUM_WAIT_TIME︸ ︷︷ ︸

a

− localMeann︸ ︷︷ ︸
bn

∗ log (r)

︸ ︷︷ ︸
a and b are constant positive integers

r ∈ (0, 1)

So we have

Pr (Xn
t ≥ u) = Pr

(
r < e(

a−u
bn

)
)

and

Pr
(
Xn+1
t ≥ u

)
= Pr

(
r < e

(
a−u
bn+1

))

Since A = min(Xn
1 , ..., X

n
T−1), and Xn

t , t = 1, . . . , T − 1
are independent, we have

Pr (A ≥ u) = Pr
(
Xn

1 ≥ u, . . . ,Xn
T−1 ≥ u

)
=

T−1∏
t=1

Pr (Xn
t > u)

= e
(T−1)(a−u)

bn

Similarly, we have

Pr (B ≥ u) = e
(T−1)(a−u)

bn+1

The probability density functions of A and B can be
obtained as follows

ρ (A = u) =
d

du

(
Pr (A ≥ u)

)
=
e

(T−1)(a−u)
bn ∗ (T − 1)

bn

ρ (B = u) =
d

du

(
Pr(B ≥ u)

)
=
e

(T−1)(a−u)
bn+1 ∗ (T − 1)

bn+1

Now, we can calculate P [K] as follows

P [K] = Pr
(
KXn

T < A+B|Xn
T < A

)
=
Pr
(
KXn

T < A+B,Xn
T < A

)
Pr(Xn

T < A)

15

https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1007/978-3-319-66787-4_4
https://doi.org/10.1109/SP.2015.45

where Pr(Xn
T < A) = 1

T and

Pr
(
KXn

T < A+B,Xn
T < A

)
=

∫
u

∫
v

Pr
(
Xn
T <

u+ v

K
,Xn

T < u
)
∗ ρ(A = u)ρ(B = v)dudv

=

∫ ∞
a

∫ ∞
(K−1)u

Pr(Xn
T < u) ∗ ρ(A = u)ρ(B = v)dudv

+

∫ ∞
a

∫ (K−1)u

a

Pr(Xn
T <

u+ v

K
) ∗ ρ(A = u)ρ(B = v)dudv

APPENDIX B
THE DISTRIBUTION OF THE DURATION IN POETA

Given that τi, i = 1, 2, 3, . . . are independent and iden-
tically distributed random variables with probability density
function fτ (x) = λe−λx, we first show the probability density
function of ∆k =

∑k
i=1 τi is

f∆k
(x) = λk

xk−1

(k − 1)!
e−λx (8)

by mathematical induction:

• Base: When k = 1, ∆1 = τ1, we have

f∆1(x) = fτ1(x) = λe−λx = λ1 x1−1

(1− 1)!
e−λx

• Inductive step: show that for any k ≥ 1, if f∆k
(x) follows

(8), f∆k+1
(x) also follows (8). Note that ∆k+1 = ∆k +

τk+1,

f∆k+1
(x) =

∫ ∞
−∞

f∆k
(y)fτk+1

(x− y)dy

=

∫ x

0

λk
yk−1

(k − 1)!
e−λyλe−λ(x−y)dy

= λk+1e−λx
∫ x

0

yk−1

(k − 1)!
dy

= λk+1x
k

k!
e−λx

Hence, (8) holds for all k ≥ 1.

Note that the outputs of the oracle function invocations are
also independent and identically distributed. The probability
that the final duration consists of k = s duration segments is

Pr[k = s] = Pr[Θ(1) = 0, . . . ,Θ(s− 1) = 0,Θ(s) = 1]

= Pr[Θ(s) = 1]

s−1∏
i=1

Pr[Θ(i) = 0]

= θ ∗ (1− θ)s−1

The cumulative distribution function of ∆ is

Pr[∆ < x] = Pr[

k∑
i=1

τi < x]

=

∞∑
s=1

Pr[

k∑
i=1

τi < x|k = s]Pr[k = s]

=

∞∑
s=1

Pr[∆s < x]θ ∗ (1− θ)s−1

Now we have the probability density function of ∆

f∆(x) =

∞∑
s=1

f∆s
(x)θ ∗ (1− θ)s−1

=

∞∑
s=1

λs
xs−1

(s− 1)!
e−λxθ ∗ (1− θ)s−1

= θλe−λx
∞∑
s=1

[(1− θ)λx]s−1

(s− 1)!

= θλe−λx ∗ e(1−θ)λx

= θλe−θλx

Hence, the distribution of the duration in POETA becomes

fPOETA(x) = θλe−θλ(x−µ)

.

APPENDIX C
THE EXPECTATION OF TIME BEFORE KNOWING DURATION

WILL EXCEED A THRESHOLD

We are trying to capture the scenarios that one node
has already waited k duration segments before reaching the
threshold Γ and the k + 1-th duration segment will cause the
aggregated duration to exceed the threshold, i.e. µ+ ∆k < Γ
and µ+ ∆k + τk+1 ≥ Γ. Let Ω denote such µ+ ∆k, which is
the earliest time when one can determine that the duration will
exceed the threshold. Since ∆k and τk+1 are independent, the
joint probability distribution can be represented as

f∆k,τk+1
(x, t) = f∆k

(x) ∗ fτ (t)

The probability of having at least s+ 1 segments is

Pr[k ≥ s+ 1] =

∞∑
k=s+1

θ ∗ (1− θ)k−1 = (1− θ)s

The expectation of Ω − µ given the final duration will
exceed Γ is

16

E(Ω− µ)

=

∫ Γ−µ

0

∫ ∞
Γ−µ−x

x

∑∞
s=1 f∆s,τ (x, t)Pr[k >= s+ 1]

Pr[D > Γ]
dtdx

=

∫ Γ−µ

0

∫ ∞
Γ−µ−x

x

∑∞
s=1 f∆s

(x)fτ (t)Pr[k >= s+ 1]

Pr[D > Γ]
dtdx

=

∫ Γ−µ

0

xeθλ(Γ−µ)
∞∑
s=1

λs
xs−1

(s− 1)!
e−λx(1− θ)s

∫ ∞
Γ−µ−x

λe−λtdtdx

=

∫ Γ−µ

0

xeθλ(Γ−µ)(1− θ)λe−λxe(1−θ)λxe−λ(Γ−µ−x)dx

=e−(1−θ)λ(Γ−µ)

∫ Γ−µ

0

(1− θ)λxe(1−θ)λxdx

=(Γ− µ)− 1− e−(1−θ)λ(Γ−µ)

(1− θ)λ

Hence, The expectation of time before knowing duration
will exceed the threshold Γ is

E(Γ− Ω)

=Γ− µ− E(Ω− µ)

=
1− e−(1−θ)λ(Γ−µ)

(1− θ)λ

When θλ = 1
Λ , the expectation can be written as

E(Γ− Ω)

=
1− e−(λ− 1

Λ)(Γ−µ)

λ− 1
Λ

17

	Introduction
	Background
	Intel Software Guard Extension
	Blockchain
	Hyperledger Sawtooth and PoET

	Overview of Sawtooth PoET
	Sign-up and Election Phases
	The Two SGX ECalls for Block Election
	Distribution of duration
	Fairness of PoET
	Existing Security Mechanisms

	Threat model
	Multi-Certificate Attacks against Sawtooth PoET
	Parallel MCAs
	Parallel MCA against the Current Round
	Parallel MCAs against the Next Round

	Sequential MCAs
	Analysis of Attack Windows

	PoETA: A Secure PoET Design
	Design Goals
	Design of PoETA
	Concealing duration via determine-after-check
	Achieving the Identical Distribution of the duration as PoET
	Trade-off between Security and Performance

	Implementation and Evaluation
	Implementation
	Evaluation
	Consistency
	Security and Performance

	Discussion
	Eliminating Multi-Certificate Attacks.
	Alternative Design
	Potential Attacks to Other TEE Settings
	Multiple Malicious Nodes

	Related Work
	Integrating SGX into Blockchain
	Consensus Protocols in Blockchain

	Conclusion
	References
	Appendix A: The winning probability of the adversary
	Appendix B: The distribution of the duration in PoETA
	Appendix C: The expectation of time before knowing duration will exceed a threshold

