
Uncovering Cross-Context Inconsistent Access
Control Enforcement in Android

Hao Zhou1, Haoyu Wang2, Xiapu Luo1∗, Ting Chen3∗, Yajin Zhou4 and Ting Wang5
1The Hong Kong Polytechnic University, 2Beijing University of Posts and Telecommunications

3University of Electronic Science and Technology of China, 4Zhejiang University, 5Pennsylvania State University

Abstract—Due to the complexity resulted from the huge code
base and the multi-context nature of Android, inconsistent access
control enforcement exists in Android, which can be exploited by
malware to bypass the access control and perform unauthorized
security-sensitive operations. Unfortunately, existing studies only
focus on the inconsistent access control enforcement in the Java
context of Android. In this paper, we conduct the first systematic
investigation on the inconsistent access control enforcement across
the Java context and native context of Android. In particular,
to automatically discover cross-context inconsistencies, we design
and implement IAceFinder, a new tool that extracts and contrasts
the access control enforced in the Java context and native context
of Android. Applying IAceFinder to 14 open-source Android
ROMs, we find that it can effectively uncover their cross-context
inconsistent access control enforcement. Specifically, IAceFinder
discovers 23 inconsistencies that can be abused by attackers to
compromise the device and violate user privacy.

I. INTRODUCTION

Modern operating systems (e.g., Windows, Linux, Android,
iOS) commonly employ access control mechanisms to prevent
unauthorized applications or users from accessing the sensitive
system functions and the users’ private data [73]. For example,
Linux only allows the processes associated with specific user
identifiers (UIDs) to access certain files [64]. As a Linux based
operating system, Android not only adopts the UID based
security model but also employs the permission based access
control mechanism [48]. Precisely, it only permits the Android
applications (including Android apps and native programs that
are written by C or C++ code) that have specific UIDs and
permissions to invoke its sensitive functions.

Unfortunately, due to the complexity and the huge code
base of modern operating systems, it is not uncommon that
developers fail to enforce consistent access control on sensitive
system functions [77]. Such an inconsistency can be exploited
by the unauthorized applications to perform security-sensitive
operations to compromise privacy of user data or cause damage
to the system. For instance, owing to the inconsistent UID
check, malware can launch DoS attacks on Android’s critical
system services [43, 75]. In addition, due to the inconsistent
permission check, malicious Android applications can steal
users’ private data [15, 52, 61, 75, 85].

∗The corresponding authors.

Android system services provide both Java and native
interfaces for applications to invoke sensitive system functions,
which can be divided into two types depending on the pro-
gramming languages used to implement their core functionality,
namely Java system services and native system services that are
usually implemented in C++ code [69]. Android is expected to
enforce consistent access control to restrict the invocations to
these system services [46]. First, since Android applications can
call the sensitive functions of system services through multiple
ways in the same context [75], consistent access control should
be enforced on all possible invocation interfaces to the same
function. Second, since the sensitive functions of Java system
services may rely on native system services to implement their
functionality, the access control enforced in the Java context
should be consistent with that in the native context.

Unfortunately, recent studies showed that inconsistent access
control enforcement exist in Android’s Java system services
(i.e., the first scenario) [43, 61, 75]. However, to the best of our
knowledge, none of existing work examines the inconsistent
access control enforcement across the Java context and native
context of Android (i.e., the second scenario).

In order to fill in the gap, in this paper, we conduct the first
systematic investigation on the cross-context inconsistent access
control enforcement in Android framework, and develop the
Inconsistent Access control enforcement Finder (IAceFinder)
to automatically uncover such inconsistencies. More precisely,
IAceFinder first extracts the access control enforced in the Java
context and that in the native context, and then contrasts them.
The whole process consists of three steps. First, to identify
the access control enforced in different contexts, IAceFinder
performs static analysis on Java libraries (i.e., .jar files)
and native libraries (i.e., .so files) of Android framework to
construct the callgraphs for Java system services and native
system services, respectively. Second, IAceFinder analyzes the
callgraphs to find the access control enforced in Java system
services and native system services. Since the sensitive functions
of Java system services may employ the JNI interface [23, 72]
to interact with native system services, the JNI interface bridges
these two contexts of Android. A JNI interface contains a pair
of JNI method and JNI function. The former is declared in
the Java context and the latter is implemented in the native
context [22, 80]. Accordingly, the access control enforced to
restrict the invocation of the JNI method in Java system services
should be consistent with the access control enforced to restrict
the execution of the JNI function in native system services.
Therefore, IAceFinder identifies the access control enforced
on the JNI methods and that enforced on the JNI functions,
respectively. Third, given a JNI interface, IAceFinder contrasts

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.23166
www.ndss-symposium.org

the access control associated with its JNI method and the access
control enforced on its JNI function to uncover the potential
cross-context inconsistent access control enforcement.

It is challenging to design and develop IAceFinder due to
the following technical issues. First, it is non-trivial to build
the complete callgraph of native system services by analyzing
its native libraries individually, because the functions in one
native library may rely on the functions exported by the others.
To approach this issue, when building the callgraph of a native
library, we also analyze the dependent shared libraries (detailed
in §VI-A). Second, since native system services are mainly
implemented in C++, the polymorphism of C++ language makes
it hard to accurately distinguish the objects of the classes that are
inherited from the same parent class (especially for the interface
class), thus degrading the quality of the callgraph built for
native system services. To mitigate this problem, we carefully
perform points-to analysis on native code when constructing the
callgraph (detailed §VI-A). Third, since the interfaces accessible
to Android applications use Binder to interact with native
system services, there is no explicit function calls from the
interfaces to the functions of native system services, and thus the
calling relationships between them are missed in the callgraph.
To address this issue, we conduct static analysis on Binder
of native system services to restore the edges that connect
the interfaces to the corresponding functions of native system
services in the callgraph (detailed in §VI-A).

We use IAceFinder to discover the cross-context inconsis-
tent access control enforcement in 14 open-source Android
distributions, including the recently released official Android
systems and other third-party Android ROMs (e.g., LineageOS
[24]). IAceFinder uncovers 23 inconsistencies which can be
exploited by adversaries to compromise the device or invade
user privacy. We have reported the discovered inconsistencies
to Google and other ROMs’ maintainers and got rewards from
Google vulnerability reward program.

In summary, we make the following contributions:

• To the best of our knowledge, we are the first to investigate
the inconsistent access control enforcement across the Java
context and native context of Android framework.

• We develop IAceFinder, a new tool to automatically uncover
the cross-context inconsistent access control enforcement
after tackling several technical challenges. Our tool will be
released at https://github.com/moonZHH/IAceFinder.

• We extensively evaluate the performance of IAceFinder by
applying it to 14 open-source Android ROMs. IAceFinder
discovers 23 cross-context inconsistent access control en-
forcement that can be abused to compromise the device and
invade user privacy.

II. BACKGROUND

This section introduces two types of access control enforced
by Android in §II-A and Android system services in §II-B. To
explain the causes of cross-context inconsistent access control
enforcement (in §III), we describe how Android applications
interact with Android system services and how different system
services interact with each other in §II-C.

A. Access Control

Android mainly employs permission checks and UID checks
to protect their sensitive functions [44, 46, 47, 83]. Therefore,
in this paper, we mainly focus on analyzing the permission
based and UID based access control.

• Permission: Android employs the permission based access
control model [48, 74, 75], which requires Android applications
to gain the necessary permissions to access private user data
(e.g., contacts), retrieve sensitive device information (e.g., mi-
crophone’s states), or use critical system features (e.g., camera)
[34]. Depending on the protection level that characterizes the
potential risk implied in the permission [8], Android divides
permissions [32] into four categories. The permissions with
the protection levels privileged and signature can only
be gained by the privileged system applications (e.g., system
services and ADB shell [1, 2]), and thus they are associated with
high privilege [43]. Since the permissions with the protection
levels dangerous and normal can be obtained by normal
applications, they are associated with low privilege [43].

TABLE I: Partial UIDs in Android framework.

UID Alias Value Description
ROOT_UID AID_ROOT 0 For root user.

SYSTEM_UID AID_SYSTEM 1,000 For system user.
SHELL_UID AID_SHELL 2,000 For shell user.

FIRST_APPLICATION_UID AID_APP_START 10,000 For normal apps.
LAST_APPLICATION_UID AID_APP_END 19,999 For normal apps.

• User Identifier (UID): Android also employs the UID based
access control model [75], which only allows the applications
with the required UIDs to call the restricted system functions.
Table I lists partial of the critical UIDs and their aliases used by
Android. Specifically, for normal applications, their UIDs are
in the range of [10, 000, 19, 999], and the UIDs of privileged
system applications (e.g., system services and ADB shell) are
smaller than 10, 000. Generally, the privilege associated with
the UIDs of privileged system applications is higher than that
associated with the UIDs of normal applications [43]. It is
worth to note that, ADB shell shares its UID (i.e., SHELL_UID)
and permissions to the native programs executed by it.

B. Android System Services and Binder

Being the essential components of Android, Android system
services can be accessed by Android applications through
their interfaces [36, 84]. Since system services usually provide
sensitive functions, Android enforces access control on their
interfaces. Depending on the programming languages used to
implement their functionality, system services are categorized
into Java system services and native system services [69].

Since Android applications and system services run in
separate processes, Android provides Binder [10], an inter-
process communication (IPC) mechanism, for applications to
interact with system services. Android applications use the
Binder proxy to communicate with the corresponding Binder
stub, which is a special object held by system services. Precisely,
the applications invoke the methods (local interfaces) defined
in the classes of the Binder proxy to call the methods (remote
interfaces) defined in the classes of the Binder stub. Note that,
the classes of a pair of Binder proxy and Binder stub inherit the

2

https://github.com/moonZHH/IAceFinder

same interface class, where the interface methods are declared.
Accordingly, a pair of local interface and remote interface share
the same method name, parameter types, and return type.

C. Interacting with Android System Services

We use an example (in Fig.1) to explain the interactions
between Android applications and system services and those
between Java and native system services because they are
essential to the cross-context access control enforcement.

Fig.1 shows the workflow for Android applications to create
a secure virtual display. It involves Display Manager service
[18] and SurfaceFlinger service [41]. The former is a Java
system service that manages the virtual displays in Android
framework, and the latter is a native system service that takes
the charge of creating virtual displays.

• Interaction between Android applications and Java sys-
tem services: To interact with Java system services (e.g., Dis-
play Manager service), applications use the Java Binder proxy
(e.g., the IDisplayManager$Stub$Proxy object) to send the
request to the Java Binder stub (e.g., the IDisplayManager$Stub
object). This process (Interact-J in Fig.1) has three steps.

First, Android applications invoke the method getService
defined in the class ServiceManager to get the Binder proxy.
Then, they invoke the method createVirtualDisplay imple-
mented in the class IDisplayManager$Stub$Proxy to request
Display Manager service to create a virtual display (i.e., S1).
Second, createVirtualDisplay (i.e., the local interface I1L)
invokes the method transact of the class BinderProxy to send
the request to the Binder stub (i.e., S2). Third, to create the vir-
tual display (i.e., S3), the method onTransact of the Binder stub
processes the request, and then invokes createVirtualDisplay
(i.e., the remote interface I1R) of Display Manager service.

Since createVirtualDisplay provides sensitive functional-
ity (i.e., creating a secure virtual display), Display Manager
service enforces permission checks and UID checks (i.e., E1)
on the applications, which use IPC to call this method. More
about the enforced access control is introduced in §III-D.

• Interaction between Android applications and native
system services: To interact with native system services (e.g.,
SurfaceFlinger service), applications use the native Binder proxy
(e.g., the BpSurfaceComposer object) to send the request to the
native Binder stub (e.g., the BnSurfaceComposer object). This
process (Interact-N in Fig.1) consists of three steps.

First, Android applications call the function getService of
the class IServiceManager to get the Binder proxy. Then, they
call the function createDisplay of class BpSurfaceComposer
to request SurfaceFlinger service to create a virtual display
(i.e., S5). Second, createDisplay (i.e., the local interface I2L)
calls the function transact of the class BpBinder to send the
request to the Binder stub (i.e., S6). Third, to create the virtual
display (i.e., S7), the function onTransact of the Binder stub
handles the request, and then calls the function createDisplay
(i.e., the remote interface I2R) of SurfaceFlinger service.

Similarly, since the execution of createDisplay results in
the sensitive operation (i.e., creating a secure virtual display),
SurfaceFlinger service enforces access control (i.e., E2) on the
applications that use IPC to call this function. More about the
access control enforcement is introduced in §III-D.

• Interaction between two types of system services: Since
native system services usually provide more powerful function-
ality (e.g., accessing hardware [36]) than Java system services,
the latter usually relies on the former to complete certain tasks.
For example, to create a secure virtual display, Display Manager
service uses Java Native Interface (JNI) to access the native
context to request SurfaceFlinger service to do so. This process
(Interact-JN in Fig. 1) includes two parts.

First, createVirtualDisplay of Display Manager service
calls the JNI method SurfaceControl.nativeCreateDisplay
to get access to the native context (i.e, S4-J). Since different
contexts have distinct naming conventions for JNI interfaces
[21], there is a one-on-one mapping between JNI methods and
JNI functions. For instance, the corresponding JNI function
of nativeCreateDisplay is android::nativeCreateDisplay.
Android invokes AndroidRuntime::registerNativeMethods,
or RegisterMethodsOrDie, or jniRegisterNativeMethods to
record such the JNI method-function mapping. Second, since
invoking the JNI method leads to the execution of the corre-
sponding JNI function, android::nativeCreateDisplay will
be executed (i.e., S4-N). Then, the BpSurfaceComposer object
will be retrieved for requesting SurfaceFlinger service to create
the secure virtual display (i.e., S5→S6→S7).

III. CROSS-CONTEXT INCONSISTENCY

This section presents the threat model of cross-context
inconsistent access control enforcement in §III-A and introduces
how we normalize different access control and contrast them
in §III-B. After that, we reveal two types of inconsistencies in
§III-C and present their motivating examples in §III-D.

A. Threat Model

According to the example in §II-C, an application has
two paths to access createDisplay of SurfaceFlinger service.
First, it uses Binder to call the interface createVirtualDisplay
of DisplayManager service, which will internally invoke the
JNI method nativeCreateDisplay to access createDisplay.
Second, it uses Binder to call createDisplay directly. If the
access control enforced in the two paths is different, it is a
cross-context inconsistent access control enforcement.

Since existing studies [43, 61, 75] focus on the inconsistent
access control enforcement in Java system services, their
threat models only assume that attackers will implement the
exploitation in Java code of Android apps. In contrast, our
threat model extends theirs to include native programs because
it is feasible to interact with Java system services through native
code [69]. Since C++ code can be executed by either apps or
native programs, we assume that adversaries can construct either
of them to exploit the inconsistency. For example, adversaries
may induce victims to install and launch the attack app or use
ADB [2] to push and execute the native program. It is practical
for adversaries to use native programs and ADB to exploit the
inconsistency because they have been abused by malware to
launch attacks as reported by Trend Micro [14, 31].

Fig.2 abstracts the example in §II-C and shows entities
of the cross-context access control enforcement, including an
Android application, a deputy (the remote interface of a Java
system service), and a target (the remote interface of a native
system service). The application has two paths to access the

3

Interact-JN

Interact-N

Interact-J
DisplayManagerService

createVirtualDisplay(*)

IDisplayManager$Stub$Proxy
transact(*)

BnSurfaceComposer
onTransact(*)

SurfaceFlinger
createDisplay(*)

BpSurfaceComposer
createDisplay(*)

IDisplayManager$Stub$Proxy
createVirtualDisplay(*)

Access Control

Enforcement

Access Control

Enforcement

Native
context

Java
context

ServiceManager.getService("display")

IServiceManager::getService("surfaceflinger")

Java
context

Native
context

SurfaceControl
nativeCreateDisplay(*)

Binder
proxy

Binder
stub

Binder
proxy

Binder
stub

android
nativeCreateDisplay(*)

RegisterNatives or
RegisterMethodsOrDie

JNI method

JNI function

（I1L）

（S1）

（S7）

（E2）

（E1）

（S2）

（S6）

（S3）

（S5）

（I2L）

JNI

（S4-J）

（S4-N）

IDisplayManager$Stub
onTransact(*)

BpSurfaceComposer
transact(*)

IPC（Binder）

Indirect Method Call

Indirect Method Call

（I1R）

（I2R）
Application

Application

Path-1

Path-2

Fig. 1: The workflow of creating a secure virtual display involves three interactions with the Android system services, including an interaction
between the application and the Java system service (i.e., Interact-J), an interaction between the application and the native system service (i.e.,
Interact-N), and an interaction between the Java system service and the native system service (i.e., Interact-JN).

Android Deputy
Java Service

(Java or C++ Code) (Interface Ij)

Target
Native Service
(Interface In)

IPC IPC

(JNI Jm , Jf)
restrict invocation

Application

Reachable path

restrict execution
invokecall call

IPC callPath-2 Path-2

Path-1 Path-1

Fig. 2: Entities of cross-context inconsistency.

functionality provided by the native system service. Path-1:
the application uses IPC to call the remote interface Ij of the
Java system service to access the remote interface In of the
native system service, which implies that Ij is the deputy of
the target In. In detail, Ij internally invokes the JNI method
Jm, whose corresponding JNI function Jf uses IPC to call In.
Path-2: the application uses IPC to call In.

Ij and In both enforce access control on the calling process
of IPC. More precisely, for Path-1, Ij enforces access control
on Jm to restrict it from being invoked by the application. We
call Jm an access restricted JNI method, whose invocation is
restricted by access control. In addition, In enforces access
control on Jf to restrict itself from being called by the Java
system service. We call Jf an access restricted JNI function,
whose execution leads to enforcement of access control. Since
the Java system service is a privileged system application, it
can pass the access control enforced in In. For Path-2, In
enforces access control to restrict itself from being called by
the application. Note that, In enforces the same access control
on Jf (in Path-1) and the application (in Path-2).

We formally define the entities as follows:
IJ := set of all remote interfaces of Java system services,
IN := set of all remote interfaces of native system services,
JM := set of all JNI methods that will be invoked by remote

interfaces of Java system services,
JF := set of all JNI functions that will call remote inter-

faces of native system services, and
J (·) := JM 7→ JF , the corresponding JNI functions of every

JNI methods.

Definition 1 (Reachable Path). For the remote interface Ij ∈ IJ
and the JNI method Jm ∈ JM , there is a reachable path between

them (Ij;Jm) if Ij internally invokes Jm. For the JNI function
Jf ∈ JF and the remote interface In ∈ IN , there is a reachable
path between them (Jf;In) if Jf uses IPC to call In.

For example, in Fig.1, the execution flow S1→S2→S3 shows
a reachable path between createVirtualDisplay (Ij) and the
JNI method nativeCreateDisplay (Jm). The execution flow
S5→S6→S7 indicates a reachable path between the JNI function
nativeCreateDisplay (Jf) and createDisply (In).

Definition 2 (Deputy). A remote interface Ij of Java system
services (Ij ∈ IJ) is a deputy if ∃ Jm ∈ JM , ∃ Jf ∈ JF , and
∃ In ∈ IN such that Ij;Jm, J (Jm) = Jf , and Jf;In.

Definition 3 (Target). A remote interface In of native system
services (In ∈ IN) is a target if ∃ Ij ∈ IJ , ∃ Jm ∈ JM , and
∃ Jf ∈ JF such that Ij;Jm, J (Jm) = Jf , and Jf;In.

For instance, in Fig.1, createVirtualDisplay (Ij) is the deputy
and createDisplay (In) is the target.

B. Contrasting Access Control

We contrast the access control enforced in the deputy Ij and
that in the target In to discover cross-context inconsistencies.
However, it is non-trivial to accomplish this task because of
two reasons. First, permission checks and UID checks are in
different forms, making it hard to compare them. Second, Ij
and In can enforce multiple permission checks and UID checks,
raising the difficulty of comparing the access control. To tackle
them, we normalize diverse checks and then determine the
necessary privilege of multiple checks.

• Normalizing Permission Checks and UID Checks: Since
permissions and UIDs have equivalent semantics in terms of the
privilege they entail [43], we follow the recent study [43] to
normalize permission checks and UID checks to the checks on
privileges. Compared with the previous work, we use a special
privilege level to denote the permissions and UID held by ADB
shell as attackers can run normal applications using ADB shell.
As listed in Table II, we categorize the privileges into four
levels, namely normal, shell, system, ∅. No permissions and
UIDs are associated with ∅, and we use it to denote there is
no access control. Note that, we use IAceFinder to identify
inconsistencies at privilege levels rather than at permission and

4

(or) UID levels because the latter produces many false positives
as pointed out by the previous work [43].

In detail, normal applications can request the permissions in
either of the protection levels normal and dangerous (see
§II-A). Therefore, we associate these permissions and the UIDs
of normal applications (i.e., those in range [10, 000, 19, 999])
with the normal privilege. Additionally, ADB shell is granted
with several permissions in the protection levels signature
or privileged for debugging purposes [33]. Hence, we
correlate these permissions and the UID of ADB shell (i.e.,
SHELL_UID) to the shell privilege. Note that, normal native
programs can pass the check on the shell privilege if they are
run by ADB shell (see §II-A). For the remaining UIDs (i.e.,
those for privileged system applications excluding ADB shell)
and permissions that cannot be gained by normal applications,
we associate them with the system privilege.

TABLE II: Privilege levels associated with permissions and UIDs.

Privilege Access Control Description

System Permission Those can only be granted to system applications.
UID For system applications excluding ADB shell.

Shell Permission Those have been granted to ADB shell.
UID For ADB shell, i.e., SHELL_UID or AID_SHELL.

Normal Permission Those can be granted to normal applications.
UID For normal applications.

∅ N/A N/A

Among the privilege levels except ∅, the system privilege is
the highest one as its corresponding permissions and UIDs are
only associated with privileged system applications and they
cannot be gained by normal applications. The shell privilege
is lower. Although its corresponding permissions and UIDs are
correlated with ADB shell, a privileged system application, they
can be gained by normal applications that are run by ADB shell.
The normal privilege is the lowest privilege among the three.

In summary, the relation among the privilege levels is: system >
shell > normal > ∅, where > means higher privilege.

• Determining Necessary Privilege: Necessary privilege is
defined as the least privilege level required to execute a reach-
able path, and we use it to check the cross-context inconsistent
access control. Aafer et al. [44] found that permission checks
and UID checks are usually disjoint. That is, the applications
holding any of the permissions or UIDs being checked can pass
the access control enforced in the deputy Ij or the target In.
Therefore, the necessary privilege is the least one associated
with the permissions or UIDs being checked. We use examples
to elaborate more on it in §III-D.

 01 status_t AudioFlinger::setMicMute(*) { // AudioFlinger.cpp

 09 return PERMISSION_DENIED; // do not have the required permission

 02 IPCThreadState* ipc = IPCThreadState::self();
 03 const int uid = ipc->getCallingUid(); // retrieve UID
 04 if (uid >= AID_APP_START) {

 08 if (!checkPermission("MODIFY_AUDIO_SETTINGS"))

 10 } /* ignore irrelevant code */ }

normal privilege

 05 // if (uid != AID_SYSTEM) { if (uid != AID_SHELL) { if (uid != ...) { ... } } }
 06 return PERMISSION_DENIED; /* deny UIDs with normal privilege */ }
 07 if (uid != AID_AUDIOSERVER) { system privilege

shell privilege

Fig. 3: The access control enforced on setMicMute (target).

However, we discover a class of special cases (as shown in
Fig.3), where the check on the AID_APP_START UID (in Line
4) is conjoined with the other permission checks (in Line 8) and
UID checks (in Line 7). For example, to call the remote interface
setMicMute, applications must not run with the UIDs associated
with the normal privilege, and they should either hold the
MODIFY_AUDIO_SETTINGS permission (normal privilege) or
run with the AID_AUDIOSERVER UID (system privilege). Since
the UID check on AID_START_APP in Line 4 is semantically
equivalent to a disjunction of checks on all UIDs associated with
the shell and system privilege as shown in Line 5, we normalize
it to the check on the shell privilege. The shell privilege and
the privileges associated with other permissions and UIDs being
checked are conjoined (∧) to determine the necessary privilege
required to execute setMicMute. More specifically, the check on
the higher privilege between the shell privilege and the lowest
privilege among the privileges associated with other permissions
and UIDs is the necessary privilege. To make it clear, we
abstract the aforementioned process using the formula: shell ∧
(system ∨ normal) = shell ∧ normal = shell. The necessary
privilege required to execute setMicMute is the shell privilege.

Hence, to determine the necessary privilege, we consider
both the common cases pointed out by Aafer et al. [44] and the
special case found by us. We define less restrictive to denote
the relation between two necessary privileges.

Definition 4 (Less Restrictive). For necessary privileges p1
and p2, p1 is less restrictive than p2 if p1 < p2.

C. Two Types of Cross-Context Inconsistency

In this section, we introduce two types of cross-context
inconsistent access control enforcement discovered by us.

• Type-1 Inconsistency: Fig.4 illustrates the Type-1 cross-
context inconsistent access control enforcement. The access
control enforced in the target In is less restrictive than that in
the deputy Ij , i.e., the privilege check on Jf is less restrictive
than that on Jm. Therefore, the attack application can exploit
the inconsistency to evade the stricter access control enforced
in deputy by directly calling target.

Android Deputy
Java Service

(Java or C++ Code) (Interface Ij)

Target
Native Service
(Interface In)

IPC IPC

(JNI Jm , Jf)
stricter

Application

Reachable path

less strict
invokecall call

IPC call

Fig. 4: Type-1 cross-context inconsistency.

In the following, we formally define the Type-1 inconsis-
tency. For the definitions, let:

P (·) := (JM ∪ JF) 7→ {system, shell, normal,∅}, privi-
lege checks (i.e., the necessary access control) on
the JNI methods invoked by the remote interfaces
of Java system services and the JNI functions that
call remote interfaces of native system services.

Definition 5 (Type-1 Inconsistency). If ∃ Ij ∈ IJ , ∃ Jm ∈ JM ,
∃ Jf ∈ JF , and ∃ In ∈ IN such that Ij;Jm, J (Jm) = Jf ,
Jf;In and P (Jf) < P (Jm), Type-1 inconsistency occurs.

5

• Type-2 Inconsistency: Fig.5 illustrates the Type-2 cross-
context inconsistent access control enforcement. The access
control enforced in the deputy Ij is less restrictive than that in
the target In, i.e., the privilege check on Jm is less restrictive
than that on Jf . Thus, the attack application can exploit the
inconsistency to pass the stricter access control enforced in
target as if it was the Java system service by calling deputy.

Android Deputy
Java Service

(Java or C++ Code) (Interface Ij)

Target
Native Service
(Interface In)

IPC IPC

(JNI Jm , Jf)
less restrictive

Application

Reachable path

stricter
invokecall call

IPC call

Fig. 5: Type-2 cross-context inconsistency.

We formally define the Type-2 inconsistency as follows:

Definition 6 (Type-2 Inconsistency). If ∃ Ij ∈ IJ , ∃ Jm ∈ JM ,
∃ Jf ∈ JF , and ∃ In ∈ IN such that Ij;Jm, J (Jm) = Jf ,
Jf;In, and P (Jm) < P (Jf), Type-2 inconsistency occurs.

Type-2 inconsistency is a new instance of confused deputy
problems on Android. Although confused deputy problems on
apps have been widely studied [51, 54, 60, 63, 66, 78, 79], Type-
2 inconsistency is different from them and is a new instance,
where the deputy is the system service rather than the app.

D. Motivating Examples of Cross-Context Inconsistency

• Example of Type-1 Inconsistency: The code snippet in Fig.
6a shows the access control (E1 in Fig.1) enforced in Display
Manager service’s createVirtualDisplay (deputy), restricting
the JNI method SurfaceContral.nativeCreateDisplay to be
invoked for creating the secure virtual display. The code snippet
in Fig.6b shows the access control (E2 in Fig.1) enforced in
SurfaceFlinger service’s createDisplay (target), which restricts
the execution of the android::nativeCreateDisplay JNI func-
tion and restricts itself from being called by applications.

More specifically, in Line 3-6 of Fig.6a, Display Manager
service checks whether the application, requesting to create a
secure virtual display, is running with the UID SYSTEM_UID
(system privilege) or has been granted with the permission
CAPTURE_SECURE_VIDEO_OUTPUT (system privilege). Thus,
the access control on the JNI method is the check on the system
privilege, which is derived by system∨system = system. In Line
4-7 of Fig.6b, SurfaceFlinger service examines whether the
application, applying for the creation of a secure virtual display,
is running with the UID AID_SYSTEM (system privilege) or has
been granted with the permission ACCESS_SURFACE_FLINGER
(shell privilege). The access control on the JNI function is the
check on the shell privilege derived by system ∨ shell = shell.

Since the access control enforced on the JNI function (i.e.,
the check on the shell privilege) is less restrictive than that on
the JNI method (i.e., the check on the system privilege), a Type-
1 inconsistency is found. Accordingly, the attack application
can call the target to create a secure virtual display, evading
the stricter access control enforced in the deputy. The created
secure virtual display can be misused to steal the user’s sensitive
data, such as passwords for logging in online payment apps.
We present a use case of this inconsistency in §VIII-D.

 02 int callingUid = Binder.getCallingUid(); // retrieve UID
 01 public int createVirtualDisplay(*) { // DisplayServiceManager.java

 03 if (callingUid != Process.SYSTEM_UID && ...) {
 04 if (!checkCallingPermission(CAPTURE_SECURE_VIDEO_OUTPUT, *)) {

 07 SurfaceControl.createDisplay(*); // call SurfaceControl.nativeCreateDisplay }

 05 throw new SecurityException(*);
 06 } } /* ignore irrelevant code */ system privilege

system privilege

(a) The access control enforced in createVirtualDisplay (deputy).

 01 bool callingThreadHasUnscopedSurfaceFlingerAccess() { // SurfaceFlinger.cpp

 06 return false; // do not have the required permission

 02 IPCThreadState* ipc = IPCThreadState::self();
 03 const int uid = ipc->getCallingUid(); // retrieve UID
 04 if (uid != AID_SYSTEM) {
 05 if (!PermissionCache::checkPermission("ACCESS_SURFACE_FLINGER"))

 07 } /* ignore irrelevant code */
 08 return true; // pass the UID check and the permission check }

shell privilege

system privilege

(b) The access control enforced in createDisplay (target).

Fig. 6: An example of the Type-1 inconsistency.

• Example of Type-2 Inconsistency: Fig.7a shows the code
snippet of Audio service’s interface setRingerModeExternal
(deputy), where no access control is enforced to restrict the
JNI method AudioSystem.setForceUse from being invoked to
set the audio routing for the vibrate ringtone (in Line 3). The
code snippet in Fig.7b shows the access control enforced in
AudioPolicy service’s interface setForceUse (target), which
restricts itself from being called by Android applications and
the JNI function AudioSystem::setForceUse.

More precisely, since no permission checks and UID checks
are enforced on the JNI method, its access control is the check
on ∅. In Line 4-7 of Fig.7b, AudioPolicy service examines
whether the application, requesting to set the audio routing for
a specific usage, is running with the UID AID_AUDIOSERVER
(system privilege) or has been granted with the permission
MODIFY_AUDIO_ROUTING (system privilege). Therefore, the
access control on the JNI function is the check on the system
privilege, which is derived from system ∨ system = system.

 01 public void setRingerModeExternal(*) { // AudioService.java

 03 AudioSystem.setForceUse(FOR_VIBRATE_RINGING, FORCE_NONE);
 04 /* ignore irrelevant code */ }

 02 // no access control to restrict the invocation of the JNI method setForceUse

(a) The access control enforced in setRingerModeExternal (deputy).

 01 status_t AudioPolicyService::setForceUse(*) { // AudioPolicyService.cpp
 02 IPCThreadState* ipc = IPCThreadState::self();
 03 const int uid = ipc->getCallingUid(); // retrieve UID

 06 return PERMISSION_DENIED; // do not have the required permission
 05 if (!checkPermission("MODIFY_AUDIO_ROUTING"))

 07 } /* ignore irrelevant code */ }

system privilege
 04 if (uid != AID_AUDIOSERVER) { system privilege

(b) The access control enforced in setForceUse (target).

Fig. 7: An example of the Type-2 inconsistency.

Since the access control enforced on the JNI method (i.e.,
no privilege check) is less restrictive than that enforced on the
JNI function (i.e., the check on the system privilege), a Type-2
inconsistency is found. Accordingly, the attack application can
call the deputy to access the remote interface setForceUse of
AudioPolicy service as if it is the privileged system service,

6

passing the stricter access control enforced in the target. As a
result, attackers can silence the vibrate ringtone, which should
have been output by an audio device (e.g., Bluetooth headset)
when the Android smartphone is on the vibrate mode.

Although various work has been proposed to find vulnerabil-
ities in Android system services [43, 61, 62, 69, 70, 75], to our
best knowledge, none of them can discover the cross-context
inconsistent access control enforcement, because they neither
studied the access control enforced in native system services
nor investigated the interactions between Java system services
and native system services.

To fill in the gap, we design and develop IAceFinder, a new
tool for discovering the cross-context inconsistent access control
enforcement. Specifically, for the example in Fig.6, IAceFinder
identifies the access control enforced in createVirtualDisplay
(deputy) and createDisplay (target) at first. Then, the tool
associates the identified access control enforcement to the JNI
interface nativeCreateDisplay and analyzes them to determine
the necessary privilege. Since the privilege check on the
JNI function android::nativeCreateDisplay (i.e., the access
control enforced in the target) is less restrictive than that on the
JNI method SurfaceControl.nativeCreateDisplay (i.e., the
access control enforced in the deputy), IAceFinder uncovers a
Type-1 cross-context inconsistency.

IV. IACEFINDER

In this section, we introduce the overview and the workflow
of IAceFinder in §IV-A and §IV-B, respectively.

A. Overview

Fig.8 shows the architecture of IAceFinder, which has
three modules, including Module-J (detailed in §V), Module-N
(detailed in §VI), and Module-D (detailed in §VII). IAceFinder
analyzes both Java system services and native system services
to discover cross-context inconsistencies.

 1: build callgraph (.jar files)

 3: identify access control statement

 4: find access restricted JNI method

 1: build callgraph (.so files)

 2: collect JNI function (interface caller)

 3: identify access control function

 4: find access restricted JNI function

Module-D: discover the cross-context inconsistent access control enforcement

Module-J: analyze Java system service Module-N: analyze native system service

 2: collect JNI method (interface callee)

Fig. 8: The overview of IAceFinder.

Module-J analyzes Java system services to associate the
access control enforced in their remote interfaces to JNI
methods. Built upon Soot [40], a static Java bytecode analysis
framework, Module-J inspects the .jar files compiled from
the Java code of Android framework.

Module-N analyzes native system services to correlate
the access control enforced in their remote interfaces to JNI
functions. Built upon SVF [76], a static LLVM bitcode analysis
framework, Module-N inspects the LLVM bitcode of the .so
files compiled from the C/C++ code of Android framework.

Module-D contrasts the access control on a pair of JNI
method and JNI function to uncover the cross-context incon-
sistent access control enforcement. Specifically, this module

takes in the analysis results of Module-J and Module-N and
the mapping between JNI methods and JNI functions.

B. Workflow

Fig.8 also presents the brief workflow of each module in
IAceFinder, and we elaborate more on them as follows.

Module-J takes four steps to associate the access control
enforced in Java system services to JNI methods. First, it builds
the callgraph of the services to find the access control enforced
in Java system services. Second, it traverses the callgraph
to collect the JNI methods that can be invoked by the remote
interfaces of Java system services for the purpose of identifying
the access restricted JNI methods, whose invocation is restricted
by access control enforcement. Third, it analyzes each method
in the callgraph to find the statements that enforce access control
(e.g., the invocation of checkCallingPermission in Line 4 of
Fig.6a) for the sake of determining the access control enforced
on the access restricted JNI methods. Fourth, it performs control
dependence analysis [45] on the JNI methods and the statements
found in the previous steps to identify the access restricted JNI
methods and the access control enforced on them.

Module-N takes four steps to correlate the access control
enforced in native system services to JNI functions. First, it
builds the callgraph of the services to find the access control
enforced in native system services. Second, to find the JNI
functions that correspond to the JNI methods collected by
Module-J, it analyzes the registration processes of JNI interfaces
and maps each JNI method to its corresponding JNI function for
the sake of uncovering cross-context inconsistencies. Moreover,
it traverses the callgraph to collect the JNI functions that call
remote interfaces of native system services for the purpose of
identifying access restricted JNI functions, whose execution
leads to enforcement of access control. Third, it analyzes each
function in the callgraph to find the access control functions
that enforce access control (e.g., the caller of checkPermission
in Line 5 of Fig.6b) for the sake of determining the access
control enforced on the access restricted JNI functions. Fourth,
it traverses the callgraph from each JNI function to the access
control functions to identify the access restricted JNI functions
and the access control enforced on them.

Module-D takes in the access control enforced on each JNI
method and JNI function. It contrasts the access control (i.e.,
privilege checks) on each pair of JNI method and JNI function
to discover cross-context inconsistencies.

V. Module-J: ANALYZING JAVA SYSTEM SERVICE

This section elaborates on Module-J, including how it builds
the callgraph for Java system services (in §V-A), collects the JNI
methods that are invoked by remote interfaces of Java system
services (in §V-B), identifies the access control statements (in
§V-C), and finds the access restricted JNI methods (in §V-D).

A. Building Callgraph of Java System Services

Since we follow the same steps as the previous work [75]
to build the callgraph for each Java system service, the details
are left in Appendix-A. During this process, we also collect
the remote interfaces of Java system services, which will be
used to identify the JNI methods invoked by them, and save
each found remote interface Ij to the set IJ .

7

B. Collecting JNI Methods

Module-J analyzes the callgraph to collect the JNI methods
that will be invoked by the remote interfaces of Java system
services. Precisely, it traverses the callgraph from each remote
interface Ij ∈ IJ to find the target JNI method Jm. If there is
a reachable path between them (Ij;Jm), a target JNI method
is found. We save each found Jm to the set JM , which will
be used to discover cross-context inconsistencies (see §VII).

C. Identifying Access Control Statements

Since we inspect the permission based and the UID based ac-
cess control (as described in §II-A), we employ the approaches
proposed in [43, 62, 75] to identify the statements that enforce
permission checks and UID checks in remote interfaces of Java
system services. The details of this process are in Appendix-B.

For each identified permission check statement Sp, we
record the permission p being checked and store them in
the statement-permission map Msp := {Sp 7→ p}. For each
identified UID check statement Su, we record the value of the
UID u being checked and store them in the statement-UID map
Msu := {Su 7→ u}. Msp and Msu will be used to determine
the access control enforced on JNI methods (see §V-D).

D. Finding Access Restricted JNI Methods

Module-J finds the access restricted Java methods, whose
invocation is control dependent on the access control statements,
to identify the access restricted JNI methods, which are called by
the access restricted Java methods. It performs intra-procedure
control flow analysis to find the access restricted Java methods.
For instance, in Fig.6a, since the UID check statement in Line
3 and the permission check statement in Line 4 decide whether
the method invocation in Line 7 will be executed or not, the
invocation of the SurfaceControl.createDisplay method is
control dependent on those access control statements, and thus
createDisplay is identified as an access restricted Java method.

Once an access restricted Java method is found, Module-J
traverses the callgraph to find the JNI methods invoked by
the Java method. These JNI methods are the access restricted
ones, because invoking them is also control dependent on
the statements that restrict the invocation of the Java method.
For example, since SurfaceControl.createDisplay invokes
the JNI method nativeCreateDisplay, this JNI method is an
access restricted one, because its execution is restricted by
the permission check statement and the UID check statement
presented in Line 3-4 of Fig.6a.

It is noteworthy that there may be a few false positives
in the identified access restricted JNI methods because of two
reasons. First, we treat all JNI methods that are reachable from
the access restricted Java methods as the access restricted JNI
methods. For example, since the JNI method println_native
defined in the class android.util.Log is frequently invoked
by the access restricted Java methods to perform the logging
operation, we wrongly treat such a security-insensitive utility
method as an access restricted JNI method. Second, we treat all
JNI methods that are control dependent on the access control
statements as the access restricted JNI methods. For example, in
Fig.9, since the invocations to the JNI methods getMasterMute
(in Line 6) and setMasterMute (in Line 7) are control dependent

on the permission check statement in Line 3, both of them are
considered as the access restricted methods. However, since
getMasterMute is a normal method rather than a sensitive one
as setMasterMute, we wrongly treat getMasterMute, which is
not the target the access control statement intend to protect, as
an access restricted JNI method.

01 public void setMasterMute(*) { // AudioService.java

08 }

06 AudioSystem.getMasterMute(); // a normal JNI method

02 /* ignore irrelevant code */
03 if (!checkCallingOrSelfPermission("MODIFY_AUDIO_ROUTING")) {
04 return; // if the permission has not been granted, just return
05 }

07 AudioSystem.setMasterMute(*); // an access-restricted JNI method

 a false positive

 a true positive

control
flow

Fig. 9: A false-positive case of access restricted JNI methods.

To reduce the false positives caused by the first reason, we
ignore the identified access restricted JNI methods defined in
the packages (e.g., android.content.res [6], android.graphics
[7], android.util [9]) that just provide security-insensitive
utility methods. For the false positives caused by the second
reason, we observe that there are usually reachable paths from
remote interfaces of Java system services to them without
access control. For example, getMasterMute can be invoked by
isMasterMute of Audio service with no access control. Based
on this observation, given an access restricted JNI method, we
first check whether such paths exist (i.e., whether it is reachable
by a remote interface of a Java system service with no access
control). If so, it is a false positive and will be removed.

For each access restricted JNI method J ′
m (J ′

m ∈ JM), we
correlate J ′

m with a set of access control Sm enforced on it.
Specifically, we query Msp and Msu to retrieve the permissions
and UIDs examined in the access control statements that J ′

m con-
trol dependents on. For example, Sm for nativeCreateDisplay
is (CAPTURE_SECURE_VIDEO_OUTPUT, SYSTEM_UID). We store
such the correlation to the map Mm := {J ′

m 7→ Sm}, which
will be used to identify cross-context inconsistencies (see §VII).

VI. Module-N : ANALYZING NATIVE SYSTEM SERVICE

This section elaborates on Module-N, including how it builds
the callgraph for native system services (in §VI-A), collects
the JNI functions that call remote interfaces of native system
services (in §VI-B), identifies the access control functions (in
§VI-C), and finds the access restricted JNI functions (in §VI-D).

A. Building Callgraph of Native System Services

Since the implementations of native system services are
dispersed in native system libraries (e.g., libgui.so contains
the code for SurfaceFlinger service and libinput.so con-
tains the code for InputFlinger service), we build the callgraph
for each native library and then merge them together to form
the complete callgraph. This process consists of two steps.

In the first step, we use SVF [76] to build the callgraph of
each library based on its LLVM bitcode. During this process,
we tackle the problems of differentiating interface classes and
resolving virtual function calls in analyzing LLVM bitcode to
make the callgraph more complete. We will elaborate how
we address these two problems in the following. Since local

8

interfaces of native system services use Binder to access their
corresponding remote interfaces, there are no explicit function
invocations from local interfaces to remote interfaces, making
SVF unable to identify the reachable paths among them correctly.
Then, in the second step, we add callgraph edges to connect
local interfaces to the corresponding remote interfaces.

• LLVM Bitcode of Native Libraries: We address two issues
when analyzing the LLVM bitcode of native libraries to make
the callgraph more accurate and complete.

 06 class IServiceManager : public IInterface { // IServiceManager.h

 08 /* declarations of pure virtual functions */
 09 /* definitions of static fields */ }

 01 static jobject nativeCreateDisplay(env, *) { // android_view_SurfaceControl.cpp

 03 const string16 name("SurfaceFlinger"); // name of SurfaceFlinger service
 04 sp<ISurfaceComposer> composer = service->getService(name);

 02 sp<IServiceManager> manager = defaultServiceManager();

 05 return javaObjectForIBinder(env, composer->createDisplay(*)); }

 07 int placeholder[100]; // distinguish IServiceManager from ISurfaceComposer

 /* Class definitions for IServiceManager and BpServiceManager in libbinder.so */

 /* Class definition for ISurfaceComposer and BpSurfaceComposer in libgui.so */
 11 class ISurfaceComposer : public IInterface { // ISurfaceComposer.h

 13 /* declarations of pure virtual functions */ }
 12 int placeholder[200]; // distinguish ISurfaceComposer from IServiceManager

 /* A summary of nativeCreateDisplay in libandroid_runtime.so */

 10 class BpServiceManager : public IServiceManager { /* ignore the code */ }

 14 class BpSurfaceComposer : public ISurfaceComposer { /* ignore the code */ }

(a) The relevant C++ code of nativeCreateDisplay.

 01 %"class.android::sp" = type { %"class.android::IServiceManager"* }

 04 %manager = alloca %"class.android::sp" // define variable "manager"
 05 %composer = alloca %"class.android::sp" // define variable "composer"

 03 define void @nativeCreateDisplay(*) { // implementation of nativeCreateDisplay

 06 %vtable = * // get vtable for the type of %manager
 07 %vfn = *, i32 4 // get the 5th element in vtable (currently unknown)
 08 %vtable2 = * // get vtable for the type of %composer
 09 %vfn3 = *, i32 6 // get the 7th element in vtable2 (currently unknown)
 10 /* ignore the irrelevant LLVM-bitcode */ }

 02 /* no vtable is included in the LLVM-bitcode */

(b) The original LLVM bitcode of nativeCreateDisplay.

 01 %"class.android::sp" = type { %"class.android::IServiceManager"* }

 06 %manager = alloca %"class.android::sp" // define variable "manager"
 07 %composer = alloca %"class.android::sp.1" // define variable "composer"

 05 define void @nativeCreateDisplay(*) { // implementation of nativeCreateDisplay

 08 %vtable = * // get vtable for the type of %manager
 09 %vfn = *, i32 4 // get the 5th element in vtable (i.e., getService)
 10 %vtable2 = * // get vtable for the type of %composer
 11 %vfn3 = *, i32 6 // get the 7th element in vtable2 (i.e., createDisplay)
 12 /* ignore the irrelevant LLVM-bitcode */ }

 02 %"class.android::sp.1" = type { %"class.android::ISurfaceComposer"* }

 04 @_ZTVN7android17BpSurfaceComposer = * // vtable for BpSurfaceComposer
 03 @_ZTVN7android16BpServiceManager = * // vtable for BpServiceManager

(c) The updated LLVM bitcode of nativeCreateDisplay.

Fig. 10: The LLVM bitcode of libandroid_runtime.so.

. Distinguishing Interface Classes: LLVM bitcode repre-
sents a C++ class using the types of its non-static fields [27]. In
some cases, such representation cannot distinguish the classes
that inherit the same parent class. For example, in Fig.10a, since
both the class IServiceManager (in Line 6-9) and the class
ISurfaceComposer (in Line 11-13) inherit the class IInterface
and none of them has additional non-static fields, these two
classes have the same LLVM bitcode representation, which
makes SVF unable to correctly determine the types of their

objects. For instance, the LLVM bitcode in Fig.10b Line 4-5
indicates that the variables manager and composer have the same
type. However, it is incorrect according to the corresponding
C++ code in Line 2,4 of Fig.10a, which show that their types are
different. Since SVF relies on the type information to conduct
points-to analysis [76], this problem negatively influences the
analysis and makes the callgraph inaccurate.

To tackle this issue, we make the LLVM bitcode representa-
tions of interface classes differ from each other by adding extra
non-static fields to such classes. Precisely, we insert integer
arrays with various length to different interface classes. For
example, in Fig.10a, we add an array with 100 elements (in Line
7) to IServiceManager and an array with 200 elements (in Line
12) to ISurfaceComposer, respectively. As a result, Line 1-2,
6-7 of Fig.10c show that the LLVM bitcode representations for
the types of variables manager and composer become different,
and thus these two objects can be distinguished by SVF.

. Linking Shared Libraries: When compiling C++ code
to LLVM bitcode, an additional variable, representing the virtual
function table (a.k.a vtable), will be added to the LLVM bitcode
of the class that implements virtual functions [27]. Since the
variable contains the information (e.g., function names) about
the virtual functions, this variable is important for resolving
virtual function calls. For example, SVF identifies the function
call to getService (in Line 4 of Fig.10a) by parsing the value
of the variable @_ZTVN7android16BpServiceManagerE (in Line
3,9 of Fig.10c), representing the vtable of BpServiceManager.

However, since shared libraries do not have the implemen-
tations of their dependent libraries, the LLVM bitcode of shared
libraries does not contain the LLVM bitcode of their dependent
libraries. For instance, since the function nativeCreateDisplay
is implemented in libandroid_runtime.so whereas the
class BpServiceManager is defined in libbinder.so, the
LLVM bitcode of nativeCreateDisplay does not include the
variable @_ZTVN7android16BpServiceManagerE as presented in
Fig.10b. Therefore, SVF cannot resolve the function call to
getService. This issue makes the callgraph incomplete because
numerous virtual function calls remain unresolved.

To address this issue, we link the LLVM bitcode of shared
libraries with those of their dependent libraries. As a result, the
LLVM bitcode of shared libraries contains the LLVM bitcode
of their dependent libraries. More specifically, we first use
llvm-objdump [26] to get the dependent libraries of each shared
library. Then, we use llvm-link [25], a LLVM bitcode linker, to
merge the LLVM bitcode of the dependent libraries to the LLVM
bitcode of the shared library. For example, once we link the
LLVM bitcode of libandroid_runtime.so with those of
libbinder.so and libgui.so, the updated LLVM bitcode
(Fig.10c) has the variables (Line 3-4), containing the informa-
tion for resolving the virtual function calls. Consequently, SVF
can build a more complete callgraph.

• Callgraph: We add the missing callgraph edges associated
with Binder IPC by collecting local and remote interfaces of
native system services and then connect them in the callgraph.

. Collecting Local Interfaces: Since local interfaces will
call the transact function (see §II-C), we treat the callers of
this function (e.g., I2L: BpSurfaceComposer::createDisplay
in Fig.1) as local interfaces and find them from the callgraph.

9

. Collecting Remote Interfaces: Remote interfaces share
the same function names, parameter types, and return types
as their corresponding local interfaces (see §II-B). Meanwhile,
they are invoked by the function onTransact (see §II-C). Based
on these, we first find the callees of onTransact (e.g., I2R:
SurfaceFlinger::createDisplay in Fig.1). Then, we compare
each callee’s function name, parameter types, and return type
with each of the collected local interfaces to find whether the
callee is a remote interface and correlate it to its corresponding
local interface. We save each remote interface In to the set IN .

. Adding Edges: Since the execution of local interfaces will
result in the execution of their corresponding remote interfaces
(see §II-C), there is a reachable path from each local interface to
its corresponding remote interface. Hence, we add the callgraph
edges that connect local interfaces to remote interfaces.

B. Collecting JNI Functions

We collect the target JNI functions that call remote interfaces
of native system services by finding all JNI functions in native
context and then identifying those having reachable paths to
the remote interfaces from the callgraph.

• Finding All JNI Functions: Android framework provides
the JNINativeMethod structure for developers to declare the
mapping between JNI methods and their corresponding JNI
functions [23]. More specifically, JNINativeMethod is com-
posed of three elements storing the name, the subsignature
(including parameter types and return type) of the JNI method,
and the function pointer (i.e., function name) of the JNI function,
respectively. Meanwhile, as introduced in §II-C, to register the
mapping to Android runtime, Android framework calls the func-
tions jniRegisterNativeMethods, or RegisterMethodsOrDie,
or registerNativeMethods. Note that the second parameter of
these functions offers the package name of JNI method and the
third parameter is an array of JNINativeMethod structures.

Based on the aforementioned observations, we find all JNI
functions and correlate them to their corresponding JNI methods
by two steps. First, from LLVM bitcode, we analyze each
JNINativeMethod array to find the JNI functions and get the
basic information (e.g., names and parameter types) about the
corresponding JNI methods. Second, we retrieve the package
names of JNI methods for uniquely identifying them by their
package names, method names, and subsignatures. Precisely, for
each JNINativeMethod array, we conduct data flow analysis to
find the function (e.g., RegisterMethodsOrDie) that consumes
it and analyze the second parameter to get the package name.

Once we find a mapping between a JNI method Jm and a
JNI function Jf , we store it to the map J := {Jm 7→ Jf}. The
mapping will be used to discover the cross-context inconsistent
access control enforcement (see §VII).

• Identifying Target JNI Functions: We analyze the callgraph
to collect the target JNI functions that call remote interfaces of
native system services. They will be used for finding the access
restricted JNI functions, whose execution leads to enforcement
of access control (see §VI-D). Specifically, we traverse the
callgraph from each JNI function Jf to find whether there is
a reachable path to In ∈ IN (Jf;In). If so, Jf is the target
JNI function and we save it to the set JF , which is then used
to discover cross-context inconsistencies (see §VII).

C. Identifying Access Control Functions

To determine the permission checks and UID checks on
the access restricted JNI functions, we first identify the access
control functions, where the permission checks or UID checks
are enforced (detailed in the following), and then correlate
them to the JNI functions (see §VI-D).

• Finding Permission Check Based Functions: Android of-
fers several permission check functions (e.g., checkPermission
in Line 5 of Fig.6b) for native system services to examine
whether the calling process of IPC has been granted with the
required permission. The permission under check is passed as a
parameter to permission check functions, and each permission
is represented as a string constant in Android framework [75].

Based on this insight, we treat the callers of these permission
check functions as permission check based access control func-
tions (e.g., callingThreadHasUnscopedSurfaceFlingerAccess
in Fig.6b), which conduct permission checks to enforce access
control. We identify these access control functions via two
steps. First, we find the permission strings in LLVM bitcode.
Second, for each permission string, we apply data flow analysis
to get the permission check function that consumes it, and then
get the function’s callers from the callgraph.

For each identified permission check based access control
function Fp, we record the permission p being checked and
store them in a function-permission map Mfp := {Fp → p},
which will be used to determine the access control enforced
on JNI functions (see §VI-D).

• Finding UID Check Based Functions: Android takes two
steps to enforce the UID check. First, it retrieves the UID of
the calling process of IPC. For instance, in Line 3 of Fig.6b,
native system services call IPCThreadState::getCallingUid
to retrieve the UID. Second, the retrieved UID is compared with
a constant representing a specific UID (referring to Table I). For
example, the if statement in Line 4 of Fig.6b checks whether
the UID of the calling process of IPC equals to AID_SYSTEM.

Based on this observation, we regard the functions that
enforce UID checks as the UID check based access control func-
tions (e.g., callingThreadHasUnscopedSurfaceFlingerAccess
in Fig.6b). We identify these access control functions through
two steps. First, we retrieve the callers of getCallingUid from
the callgraph. Second, in the LLVM bitcode of each caller, we
perform intra-procedure data flow analysis on the return value
of getCallingUid (i.e., the retrieved UID) to find whether it
is used by an if statement. If so, the caller is a UID check
based access control function.

For each identified UID check based access control function
Fu, we record the UID u being checked and store them in a
function-UID map Mfu := {Fu 7→ u} that is used to determine
the access control enforced on JNI functions (see §VI-D).

D. Finding Access Restricted JNI Functions

To identify the access restricted JNI functions, we traverse
the callgraph from each JNI function Jf (Jf ∈ JF) to find
whether there are reachable paths from it to the access control
functions in Mfp or Mfu. If so, the JNI function under analysis
is an access restricted JNI function. For example, since the
execution of nativeCreateDisplay results in the invocation of

10

TABLE III: The open-source Android distributions under analysis.

Name Version Description #Binderj #J′
m Precis′m #Jm Precism ∆#Jm ∆Precism #Bindern #Jf Precisf #Inconsistency

1 AOSP Android 10 Official Android system 519 70 72.9% 57 89.5% -13 +16.6% 108 55 94.5% 18
2 AOSP Android 11 Official Android system 566 79 74.7% 66 89.4% -13 +14.7% 137 63 93.7% 22

3 LineageOS Android 10 AOSP based Android distribution 533 71 73.2% 58 89.7% -13 +16.5% 108 56 94.6% 19
4 OmniROM Android 10 AOSP based Android distribution 519 70 72.9% 57 89.5% -13 +16.6% 108 55 94.5% 18
5 CAF Android 11 AOSP based Android distribution 566 79 74.7% 66 89.4% -13 +14.7% 137 63 93.7% 22
6 BlissROM Android 11 AOSP based Android distribution 566 79 74.7% 66 89.4% -13 +14.7% 137 63 93.7% 22
7 PixelExperience Android 11 AOSP based Android distribution 566 79 74.7% 66 89.4% -13 +14.7% 137 63 93.7% 22
8 GrapheneOS Android 11 AOSP based Android distribution 566 79 74.7% 66 89.4% -13 +14.7% 137 63 93.7% 22
9 DirtyUnicorns Android 11 AOSP based Android distribution 566 79 74.7% 66 89.4% -13 +14.7% 137 63 93.7% 22

10 NitrogenOS Android 11 AOSP based Android distribution 566 79 74.7% 66 89.4% -13 +14.7% 137 63 93.7% 22
11 Replicant Android 10 LineageOS based Android distribution 533 71 73.2% 58 89.7% -13 +16.5% 108 56 94.6% 19
12 crDroid Android 11 LineageOS based Android distribution 579 80 75.0% 67 89.6% -13 +14.6% 137 64 93.8% 23
13 EvolutionX Android 11 LineageOS based Android distribution 579 80 75.0% 67 89.6% -13 +14.6% 137 64 93.8% 23
14 MoKee Android 10 CAF based Android distribution 519 70 72.9% 57 89.5% -13 +16.6% 108 55 94.5% 18

callingThreadHasUnscopedSurfaceFlingerAccess (an access
control function), it is an access restricted JNI function.

For each access restricted JNI function J ′
f (J ′

f ∈ JF), we
correlate J ′

f with a set of access control enforced on it. More
specifically, we query Mfp and Mfu to collect the permissions
and UIDs examined in the access control functions that are
reachable from J ′

f . For example, Sf for nativeCreateDisplay
is (ACCESS_SURFACE_FLINGER, AID_SYSTEM). We store this
correlation to the map Mf := {J ′

f 7→ Sf}, which will be
used to identify cross-context inconsistencies (see §VII).

VII. Module-D: DETECTING INCONSISTENCY

Module-D takes two steps to uncover inconsistencies. First,
it computes the privilege checks on the access restricted JNI
methods and JNI functions. Second, it contrasts the privilege
checks on JNI methods and their corresponding JNI functions
to discover cross-context inconsistencies.

In the first step, Module-D gets the set of access control
enforced on each access restricted JNI method J ′

m (J ′
m ∈ JM)

and JNI function J ′
f (J ′

f ∈ JF) from Mm and Mf , respectively.
Then, it follows the criteria defined in §III-B to compute the
privilege check P on J ′

m or J ′
f . For each of the remaining

JNI method J ′′
m (J ′′

m 6= J ′
m ∧ J ′′

m ∈ JM) and JNI function J ′′
f

(J ′′
f 6= J ′

f ∧J ′′
f ∈ JF), since there is no access control enforced

on it, its privilege check is ∅. We store such correlations to the
map P := {J ′

m 7→ P}∪{J ′
f 7→ P}∪{J ′′

m 7→ ∅}∪{J ′′
f 7→ ∅}.

For example, for the JNI method nativeCreateDisplay of
SurfaceControl, Module-D queries Mm to get the set of access
control enforced on it, i.e., (CAPTURE_SECURE_VIDEO_OUTPUT,
SYSTEM_UID). Then, it computes the privilege check (i.e., the
check on the system privilege) as detailed in §III-D and saves the
correlation SurfaceControl.nativeCreateDisplay 7→ system
to P . For the JNI function android::nativeCreateDisplay,
Module-D queries Mf to retrieve the set of access control
enforced on it, i.e., (ACCESS_SURFACE_FLINGER, AID_SYSTEM).
Then, it computes the privilege check (i.e., the check on the
shell privilege) as presented in §III-D and stores the correlation
android::nativeCreateDisplay 7→ shell to P .

In the second step, Module-D inspects J to get each pair
of JNI method Jm and JNI function Jf (Jm ∈ JM , Jf ∈ JF ,
J (Jf) = Jm), especially for the access restricted JNI methods
and JNI functions. Then, Module-D queries P to retrieve the

privilege checks on the pair of JNI method (P (Jm)) and JNI
function (P (Jf)) and contrasts their strictness to discover
inconsistencies. If P (Jm) > P (Jf) (i.e., the access control
enforced on Jf is less restrictive than that on Jm), a Type-
1 inconsistency is discovered. If P (Jm) < P (Jf) (i.e., the
access control enforced on Jm is less restrictive than that on
Jf), a Type-2 inconsistency is uncovered.

For instance, since the check on the shell privilege associ-
ated with the JNI function android::nativeCreateDisplay is
less restrictive than the check on the system privilege correlated
to the JNI method SurfaceControl.nativeCreateDisplay, a
Type-1 cross-context inconsistency is found.

VIII. EVALUATION

We implement IAceFinder in around 3k SLOC Java (for
Module-J) and 2k SLOC Python (for Module-N and Module-D).
We evaluate it by answering three research questions (RQs).

RQ1: Can IAceFinder precisely associate JNI methods and JNI
functions with their access control enforcement?

RQ2: Can IAceFinder discover the inconsistent access control
enforcement in the official Android systems?

RQ3: Can IAceFinder discover the inconsistent access control
enforcement in open-source third-party Android ROMs?

Data Set: To answer the research questions, we use IAceFinder
to analyze 14 open-source Android distributions. Table III lists
the details about the Android distributions under evaluation,
where Name, Version, and Description provide the
name, Android version, and additional information about each
Android distribution. In addition, #Binderj and #Bindern

provide the number of Binder proxy (or Binder stub) in the Java
context and native context of Android, respectively. In detail,
AOSP [5] is the official Android system provided by Google.
LineageOS [24], OmniROM [30], CAF [3], GrapheneOS [20],
BlissROM [11], PixelExperience [35], DirtyUnicorns [17], and
NitrogenOS [29] are variants of AOSP with customization.
Since LineageOS (previously known as CyanogenMod [16])
and CAF are two of popular open-source third-party Android
distributions, several Android ROMs are implemented based on
them, including Replicant [37], crDroid [13], EvolutionX [19],
and MoKee [28]. We downloaded and compiled these ROMs
between October, 2020 and January, 2021. During compilation,
we use WLLVM [42] to link the LLVM bitcode of each object

11

(.obj) file of a native library to a single bitcode file so that
IAceFinder can get the LLVM bitcode of each native library.

A. Precision of Correlating Access Control Enforcement to JNI
Methods and JNI Functions (RQ1)

To assess the precision of IAceFinder in correlating access
control to their corresponding JNI methods and JNI functions,
we manually examine the results of IAceFinder on analyzing
the system services of 14 open-source Android ROMs.

Results: Table III lists the details about the access restricted JNI
methods and JNI functions recognized by IAceFinder, where
#Jm and #Jf provide the number of identified access restricted
JNI methods and JNI functions, and Precism and Precisf

provide the precision of the identified access restricted JNI
methods and JNI functions, respectively. Table III also lists the
results showing the effectiveness of our approaches to filter out
false positives in identifying access restricted JNI methods (see
§V-D). #J′

m and ∆#Jm denote the number of identified access
restricted JNI methods without filtering and the number of false
positives reduced by our approaches, respectively. Precis′

m
and ∆Precisf denote the precision of the identified access
restricted JNI methods without filtering and the improvement
in precision resulted from our approaches, respectively.

More specifically, our approaches effectively filter out 13
false-positive cases in identifying the access restricted JNI
methods and increase the precise from around 74.1% to 89.5%.
After manually inspecting the remaining wrongly identified
access restricted JNI methods, we find that, although they are
control dependent on access control statements, they are not the
targets the access control intends to protect. The remaining false
positives that are not filtered out by our approaches are because
all reachable paths from remote interfaces of Java system
services to them enforce access control. For instance, we fail
to filter out the wrongly identified access restricted JNI method
nativeReloadCalibration because there is only one reachable
path to it from the Input Manager service’s remote interface
setTouchCalibrationForInputDevice [39], which enforces
the access control on the Java method setTouchCalibration
rather than the JNI method.

The average precision of the identified access-restricted JNI
functions is around 94.0%. After manually analyzing the four
false positives, we find that the enforced access control is not to
restrict the execution of JNI functions but to make the functions
execute properly. For example, the wrongly identified access re-
stricted JNI function MediaPlayer_set_audio_session_id [38]
enforces UID check in the interface releaseAudioSessionId of
the AudioFlinger service to adjust the value of the interface’s
local variable to a correct one.

Answer to RQ1: IAceFinder can precisely correlate the ac-
cess control enforcement to their corresponding JNI methods
and JNI functions with the precision of 89.5% and 94.0%.

B. Cross-Context Inconsistent Access Control Enforcement in
Recently Released Official Android Systems (RQ2)

To uncover inconsistencies in the official Android systems,
we apply IAceFinder to two recently forked branches of AOSP
[5], including branches 10.0.0_r41 and 11.0.0_r21.

Results: Table III also lists the statistics about the discovered in-
consistencies, where #Inconsistency provides the number
of uncovered inconsistent access control enforcement.

IAceFinder discovers 18 and 22 cross-context inconsistent
access control enforcement in Android 10 and Android 11 of
AOSP, respectively. Table IV presents details about them, where
Type indicates the type of each inconsistency, Interface
shows the remote interfaces of Java system services (deputy) and
native system services (target) involved in the inconsistencies,
Access Control lists the permission checks and UID
checks enforced on the interfaces, and Privilege provides
the necessary privilege to execute the interfaces. For example,
the 3rd case in Table IV lists the details about the example of
Type-1 inconsistency that has been introduced in §III-D.

In total, IAceFinder uncovers 22 cross-context inconsisten-
cies in the two official Android systems (i.e., the top 22 cases
presented in Table IV), 18 of them (i.e., the top 18 cases) are
found in both Android systems, and the remaining 4 cases
are uniquely found in Android 11. Meanwhile, among the 22
cases, 18 of them are Type-1 inconsistencies, and 4 of them
are Type-2 inconsistencies. We observe that, since numerous
interfaces of Audio service (a Java system service for managing
audio devices, audio streams, audio policies, and audio settings)
rely on native system services (e.g., AudioPolicy service and
AudioFlinger service) to accomplish their tasks, Audio service
is involved in many of the discovered inconsistencies. We have
reported the discovered inconsistencies to Google and got 9,500
USD rewards from Google vulnerability reward program.

Adversaries can exploit the cross-context inconsistent access
control enforcement to compromise the device and violate user
privacy. In Table V, we present the potential exploitability of
each discovered inconsistencies listed in Table IV. For example,
according to the 3rd case in Table V, the attack application
can abuse the inconsistency to create a secure virtual display
to steal the user’s password, violating user privacy. Meanwhile,
according to the 9th case in Table V, the attack application can
exploit the inconsistency to increase or decrease the volume of
audio steams, compromising the usability of the device.

Answer to RQ2: IAceFinder discovers 18 and 22 inconsis-
tent cross-context access control enforcement in 2 recently
released official Android systems, respectively.

C. Cross-Context Inconsistent Access Control Enforcement in
Open-Source Third-Party Android ROMs (RQ3)

To find inconsistencies in third-party Android distributions,
we apply IAceFinder to 12 open-source Android ROMs, whose
source code can be successfully compiled by us.

Results: Table III, Table IV, and Table V also list the statistics,
details, and exploitability of the cross-context inconsistencies
discovered in the third-party Android ROMs.

Specifically, comparing #Binderj , #Bindern, #Jm and
#Jf of the open-source third-party Android ROMs with those
of the official Android systems, we notice that the open-source
Android ROMs rarely customize system services. Hence, the
numbers of the identified inconsistencies are almost the same
as those found in the official Android systems. Nonetheless, we
discover an extra inconsistency in LineageOS based Android

12

TABLE IV: Details about the discovered cross-context inconsistent access control enforcement.

Type Interface1(Deputy) Access Control2 Privilege Interface1(Target) Access Control1 Privilege

1 Type-1 AS.isAudioServerRunning MODIFY_PHONE_STATE shell SM::checkService N/A ∅
2 Type-1 CDS.getTransformCapabilities CONTROL_DISPLAY_COLOR_TRANSFORMS system SF::getProtectedContentSupport N/A ∅
3 Type-1 DMS.createVirtualDisplay CAPTURE_SECURE_VIEDO_OUTPUT system SF::createDisplay ACCESS_SURFACE_FLINGER shell
4 Type-1 UAC.getWindowAnimationFrameStats SYSTEM_UID system SF::getAnimationFrameStats ACCESS_SURFACE_FLINGER shell
5 Type-1 UAC.clearWindowAnimationFrameStats SYSTEM_UID system SF::clearAnimationFrameStats ACCESS_SURFACE_FLINGER shell
6 Type-1 AS.getVolumeIndexForAttributes MODIFY_AUDIO_ROUTING system APS::listAudioProductStrategies N/A ∅
7 Type-1 AS.getMaxVolumeIndexForAttributes MODIFY_AUDIO_ROUTING system APS::getMaxVolumeIndexForAttributes N/A ∅
8 Type-1 AS.getMinVolumeIndexForAttributes MODIFY_AUDIO_ROUTING system APS::getMinVolumeIndexForAttributes N/A ∅
9 Type-1 AS.setVolumeIndexForAttributes MODIFY_AUDIO_ROUTING system APS::setVolumeIndexForAttributes MODIFY_AUDIO_SETTINGS normal

10 Type-1 AS.getVolumeIndexForAttributes MODIFY_AUDIO_ROUTING system APS::getVolumeIndexForAttributes N/A ∅
11 Type-1 AS.getAudioVolumeGroups MODIFY_AUDIO_ROUTING system APS::listAudioVolumeGroups N/A ∅
12 Type-1 AS.setMasterMute MODIFY_AUDIO_ROUTING system AF::setMasterMute AID_APP_START shell
13 Type-1 DMS.requestColorMode CONFIGURE_DISPLAY_COLOR_MODE system SF::setActiveColorMode ACCESS_SURFACE_FLINGER shell
14 Type-1 CS.notifyCameraState CAMERASERVER_UID system AF::setParameters MODIFY_AUDIO_SETTINGS normal
15 Type-2 DMS.releaseVirtualDisplay N/A ∅ SF::destroyDisplay ACCESS_SURFACE_FLINGER shell
16 Type-2 AS.setRingerMode N/A ∅ APS::setForceUse MODIFY_AUDIO_ROUTING system
17 Type-2 AS.setMode MODIFY_AUDIO_SETTINGS normal APS::setPhoneState AID_APP_START shell
18 Type-2 AS.setMicrophoneMute MODIFY_AUDIO_SETTINGS normal AF::setMicMute AID_APP_START shell

19 Type-1 AS.getDevicesForAttributes MODIFY_AUDIO_ROUTING system APS::getDevicesForAttributes AID_APP_START shell
20 Type-1 AS.setPreferredDeviceForStrategy MODIFY_AUDIO_ROUTING system APS::setPreferredDeviceForStrategy AID_APP_START shell
21 Type-1 AS.getPreferredDeviceForStrategy MODIFY_AUDIO_ROUTING system APS::getPreferredDeviceForStrategy AID_APP_START shell
22 Type-1 AS.removePreferredDeviceForStrategy MODIFY_AUDIO_ROUTING system APS::removePreferredDeviceForStrategy AID_APP_START shell

23 Type-1 LAS.listAudioSessions DUMP shell APS::listAudioSessions N/A ∅
1 APS:AudioPolicyService, AS:AudioService, CDS:ColorDisplayService, CS:CameraServiceProxy, DMS:DisplayManagerService, LAS:LineageAudioService, SF:SurfaceFlinger, SM:ServiceManager, UAC:UiAutomationConnection.
2 Due to space limitation, we just list the access control that can represent the privilege check enforced on remote interfaces of system services.

TABLE V: Potential exploitability of the discovered cross-context inconsistent access control enforcement.

Type Potential Exploitability

1 Type-1 Missing permission check on deputy ServiceManager::checkService lets third-party apps obtain the runtime status of AudioFlinger.
2 Type-1 Missing permission check on deputy SurfaceFlinger::getProtectedContentSupport lets third-party apps know whether protected content is supported in GPU composition.
3 Type-1 Less restrictive permission check on deputy SurfaceFlinger::createDisplay lets applications ran by ADB take screenshots of secured windows.
4 Type-1 Less restrictive UID check on deputy SurfaceFlinger::getAnimationFrameStats lets applications ran by ADB get the frame statistics of animations.
5 Type-1 Less restrictive UID check on deupty SurfaceFlinger::clearAnimationFrameStats lets applications ran by ADB clear the frame statistics of animations.
6 Type-1 Missing permission check on deputy AudioPolicyService::listAudioProductStrategies lets third-party apps retrieve audio product strategies of system.
7 Type-1 Missing permission check on deputy AudioPolicyService::getMaxVolumeIndexForAttributes lets third-party apps get the maximum volume index of an audio stream.
8 Type-1 Missing permission check on deputy AudioPolicyService::getMinVolumeIndexForAttributes lets third-party apps get the minimum volume index of an audio stream.
9 Type-1 Less restrictive permission check on deputy AudioPolicyService::setVolumeIndexForAttributes lets third-party apps adjust the volume index of an audio stream.

10 Type-1 Missing permission check on deputy AudioPolicyService::getVolumeIndexForAttributes lets third-party apps get the current volume index of an audio stream.
11 Type-1 Missing permission check on deputy AudioPolicyService::listAudioVolumeGroups lets third-party apps retrieve audio volume groups of system.
12 Type-1 Less restrictive access control on deputy AudioFlinger::setMasterMute lets applications ran by ADB silence the global sound of system.
13 Type-1 Less restrictive permission check on deputy SurfaceFlinger::setActiveColorMode lets applications ran by ADB configure the color mode of a display.
14 Type-1 Less restrictive access control on deputy AudioFlinger::setParameters lets third-party apps set the audio parameters related to camera.
15 Type-2 Missing permission check on target SurfaceFlinger::destroyDisplay lets third-party apps destroy the virtual display.
16 Type-2 Missing permission check on target AudioPolicyService::setForceUse lets third-party apps select the audio device for specific usages.
17 Type-2 Less restrictive access control on target AudioPolicyService::setPhoneState lets third-party apps change the phone state of system.
18 Type-2 Less restrictive access control on target AudioFlinger::setMicMute lets third-party apps silence the microphone of device.

19 Type-1 Less restrictive access control on deputy AudioPolicyService::getDevicesForAttributes lets applications ran by ADB get the audio devices used for an audio attribute.
20 Type-1 Less restrictive access control on deputy AudioPolicyService::setPreferredDeviceForStrategy lets applications ran by ADB set preferred audio device of an audio stream.
21 Type-1 Less restrictive access control on deputy AudioPolicyService::getPreferredDeviceForStrategy lets applications ran by ADB get preferred audio device of an audio stream.
22 Type-1 Less restrictive access control on deputy AudioPolicyService::removePreferredDeviceForStrategy lets applications ran by ADB remove preferred audio device of an audio stream.

23 Type-1 Missing permission check on deputy AudioPolicyService::listAudioSessions lets third-party apps retrieve the information about current audio sessions.

ROMs (the 23rd case in Table IV). The inconsistency can result
in an information disclosure (see the 23rd case in Table V).
We have reported the found inconsistency to the maintainers
of LineageOS, who confirmed and patched this inconsistency.

Answer to RQ3: IAceFinder identifies an extra case of the
cross-context inconsistent access control enforcement from
the 12 open-source Android ROMs under analysis.

D. Case Study

In this section, we present the case studies of the motivating
examples that have been introduced in §III-D.

• Example of Type-1 Inconsistency: According to the 3rd

case listed in Table IV, the Display Manager service’s inter-
face createVirtualDisplay (deputy) and the SurfaceFlinger
service’s interface createDisplay (target) enforce inconsistent
access control. More specifically, the deputy allows the ap-
plications, having gained the CAPTURE_SECURE_VIDEO_OUTPUT
permission (system privilege), to create the secure virtual dis-
play, whereas the target allows the applications, having gained
the ACCESS_SURFACE_FLINGER permission (shell privilege) to
create the secure virtual display.

. Exploitation: Since the access control enforced in the
target is less restrictive than that enforced in the deputy, the
attack application can call the target to evade the stricter access

13

control enforced in the deputy. In practice, attackers can create
a native program to call createDisplay to create the secure
virtual display. By using the techniques of malware [14, 31], the
native program can be pushed to the victim’s device and then
be launched by the remotely connected ADB. Since the native
program shares the same UID with ADB (i.e., SHELL_UID), it
has the ACCESS_SURFACE_FLINGER permission. Note that, the na-
tive program does not have the CAPTURE_SECURE_VIDEO_OUTPUT
permission since this permission has not been granted to ADB.

stealing user name

stealing password

user name: "xxxx@xxxx.com"
currently input password: "a"

This action isn't allowed by the app or your
organization

The dialog suggests that Android
system does not allow to take the
screenshot on secure windows in
order to prevents the leakage of
sensitive user data.

user name: unknown
password: unknown

click

(a) Disallow screenshot.

stealing user name

stealing password

user name: "xxxx@xxxx.com"
currently input password: "a"

This action isn't allowed by the app or your
organization

The dialog suggests that Android
system does not allow to take the
screenshot on secure windows in
order to prevents the leakage of
sensitive user data.

user name: unknown
password: unknown

click

(b) Leak sensitive data.

Fig. 11: Security impact of the example of Type-1 inconsistency.

. Security Impact: The secure virtual display created by
the attack application can be misused to steal the sensitive
user information (i.e., user name and password) rendered on
the device screen. Specifically, online payment apps or mobile
banking apps commonly render sensitive user data in the secure
window to prevent the leakage of such sensitive information
[53]. By design, the visual content of the secure window
should not be included in the screenshot (as shown in Fig.11a).
However, by leveraging the secure virtual display, adversaries
can take a screenshot (i.e., obtaining the visual content) of the
secure window, and thus they can steal the user’s sensitive data
rendered on the secure window.

For example, Fig.11b demonstrates that, by leveraging the
secure virtual display, attackers can obtain the visual content of
the secure window. More specifically, the attacker can obtain
the user name (“xxxx@xxxx.com”) and the currently input
password (“a”) from the screenshot of PayPal’s login window
(i.e., the secure window under attack). This case study shows
that the cross-context inconsistent access control enforcement
can be abused to invade user privacy.

• Example of Type-2 Inconsistency: For the 16th case listed in
Table IV, the Audio service’s interface setRingerModeExternal
(deputy) and the AudioPolicy service’s interface setForceUse
(target) enforce inconsistent access control. More specifically,
the deputy enforces no access control and thus allows any
applications to set the audio routing for the vibrate ringtone,
whereas the target allows the applications, having been granted
with the MODIFY_AUDIO_ROUTING permission (system privilege)
to set the audio routing for the vibrate ringtone.

. Exploitation: Since the access control enforced in the
deputy is less restrictive than that enforced in the target, the
attack application can call the deputy to access the target as if

it was the privileged system service. In practice, attackers can
create a normal app to call setRingerMode in order to control
the audio routing for the vibrate ringtone.

. Security Impact: The attack application can set no audio
routing for the vibrate ringtone (i.e., silence the vibrate ringtone)
as if the device was on the silence mode. By default, Android
system sets the Bluetooth SCO channel (e.g., Bluetooth headset)
as the audio routing for the vibrate ringtone. Accordingly, if the
user wears a Bluetooth headset, he can hear the vibrate ringtone
when there is a phone call. However, the attack application
can set no audio routing for the vibrate ringtone to make the
user unable to hear the ringtone from the Bluetooth headset,
letting him miss the phone call. This case study shows that the
cross-context inconsistent access control enforcement can be
abused to compromise the usability of the device.

IX. LIMITATIONS OF IACEFINDER

IAceFinder has two main limitations.

First, IAceFinder just considers the permission based and
UID based access control because we have conducted a manual
inspection on C++ code of more than 10 native system services
and observed that their remote interfaces mainly enforce these
two kinds of access control. In future work, we will adapt and
employ the text analysis proposed by ACMiner [61] to find all
potential access control enforced in native system services, and
then extend IAceFinder to detect cross-context inconsistencies
in the newly discovered access control enforcement.

Second, IAceFinder can just identify cross-context incon-
sistencies in open-source Android ROMs because we modify
their source code to distinguish C++ objects in native code
(e.g., objects of interface classes introduced in §VI-A). Since
IAceFinder will be open source after paper publication, the
developers of closed source Android ROMs can use it to discover
cross-context inconsistencies in their ROMs. To detect cross-
context inconsistencies in closed source ROMs, we will adopt
a hybrid approach to inspect such ROMs in future work. For
example, we could conduct binary analysis to identify the access
control enforcement whenever possible. We could also adopt
fuzzing techniques to dynamically execute each framework API
and instrument the framework to record and compare the access
control enforced in different contexts of Android.

X. RELATED WORK

We present the related work on finding inconsistent access
control enforcement in Android (§X-A), detecting confused
deputy (or capability leak) problems on Android (§X-B), and in-
specting access control in traditional operating systems (§X-C).

A. Finding Inconsistent Access Control in Android

There are a number of studies on finding inconsistent access
control enforcement in Android. To the best of our knowledge,
they all focus on finding inconsistencies in Java system services.
Kratos [75] builds the context-insensitive callgraph of Java
system services and discovers inconsistent permission checks
and UID checks based on the callgraph. AceDroid [43] identifies
inconsistencies by comparing Java system services’ access
control enforcement of diverse vendor customization. It models
the access control in a path-sensitive manner and normalizes

14

diverse authority inspections to a canonical form. ACMiner
[61] combines static code analysis and text analysis to generate
a set of authority inspections and uses association rule mining
to detect inconsistent access control enforcement

IAceFinder is different from the existing studies because
it uncovers the cross-context inconsistent access control en-
forcement in Android whereas all of the previous work just
finds inconsistencies in the Java context of Android. Existing
studies cannot be used to identify cross-context inconsistencies
because of three reasons. First, they do not analyze the access
control enforced on JNI methods in Java context of Android,
and thus they cannot identify the access restricted JNI methods
for detecting cross-context inconsistencies. Second, they do not
analyze native system services. Therefore, they cannot find the
access control enforced in native system services and the access
control enforced on JNI functions, which are used to identify
cross-context inconsistencies. Third, they do not analyze the
JNI interfaces (i.e., pairs of JNI methods and JNI functions) that
bridge Java and native context of Android, and thus they cannot
find the cross-context inconsistent access control enforcement.

B. Detecting Confused Deputy Problems on Android

Confused deputy (or capability leak) problems on Android
have been widely investigated, and most of the existing studies
focus on detecting and preventing such problems on Android
apps. To detect confused deputy (or capability leak) problems
on apps, existing studies [51, 54, 60, 63, 66, 78, 79] use static
code analysis to find whether the apps’ sensitive functionalities
can be accessed by other apps. If so, the apps suffer from
the problems. To prevent such problems, previous work [49,
50, 55, 60, 71] modifies Android framework to monitor inter-
component communication among apps at runtime. To our best
knowledge, ARF [62] is the only work that analyzes confused
deputy problems in Android system, and it uses ACMiner [61]
to find the problems on Java system services.

It is worth noting that, existing approaches for detecting
confused deputy (or capability leak) problems on Android
apps can not be used to identify Type-2 inconsistency, because
it is a new instance of confused deputy problems where the
deputy is a system service rather than an app. Moreover, Type-2
inconsistency is different from the problem uncovered by ARF,
because it involves both Java and native system services rather
than only Java system services. Therefore, ARF cannot be used
to identify Type-2 inconsistency.

C. Inspecting Access Control in Traditional Operating Systems

Besides Android, researchers have conducted many studies
on inspecting access control in traditional operating systems,
especially Linux. Existing work [56–58, 65, 77, 81, 82] adopts
static code analysis or system event monitoring to identify
inconsistent Linux Security Modules (LSM) authorization and
capability permission check in Linux kernel.

Since the access control enforced in Android system services
is different from that in Linux kernel, the previous approaches
cannot be used to identify such inconsistencies in Android.

XI. CONCLUSION

We conduct the first systematic investigation on the cross-
context inconsistent access control enforcement in Android.

To automatically detect such inconsistencies, we design and
develop IAceFinder, a novel tool that performs static analysis
on both contexts of Android after tackling several technical
challenges. Applying IAceFinder to 14 open-source Android
distributions, we find that it can effectively discover the cross-
context inconsistent access control enforcement. In particular, it
uncovers 23 cross-context inconsistencies, which can be abused
by attackers to compromise the device and invade user privacy.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful
comments. This research is partially supported by the Hong
Kong RGC Project (No. PolyU15223918), National Natural
Science Foundation of China (No. 62072046, No. 61872057,
No. 61872438), National Key R&D Program of China (No.
2018YFB0804100), the Fundamental Research Funds for the
Central Universities (Zhejiang University NGICS Platform
ZJUNGICS2021016, K20200019), Leading Innovative and
Entrepreneur Team Introduction Program of Zhejiang (No.
2018R01005), and the National Science Foundation under Grant
(No. 1951729, 1953813, and 1953893).

REFERENCES

[1] “ADB shell,” https://cs.android.com/android/platform/supe
rproject/+/master:frameworks/base/packages/Shell/, 2021.

[2] “Android Debug Bridge (adb),” https://developer.android.
com/studio/command-line/adb, 2021.

[3] “Android for MSM,” https://www.codeaurora.org/project
s/android-for-msm, 2021.

[4] “Android Interface Definition Language (AIDL),” https:
//developer.android.com/guide/components/aidl, 2021.

[5] “Android Open Source Project,” https://source.android.c
om/, 2021.

[6] “android.content.res,” https://developer.android.com/refere
nce/android/content/res/package-summary, 2021.

[7] “android.graphics,” https://developer.android.com/referenc
e/android/graphics/package-summary, 2021.

[8] “android:protectionLevel,” https://developer.android.com/
guide/topics/manifest/permission-element, 2021.

[9] “android.util,” https://developer.android.com/reference/an
droid/util/package-summary, 2021.

[10] “Binder,” https://developer.android.com/reference/android/
os/Binder, 2021.

[11] “Bliss ROMs,” https://blissroms.com/, 2021.
[12] “checkSelfPermission,” https://developer.android.com/refe

rence/android/content/Context#checkCallingPermission
(java.lang.String), 2021.

[13] “crDroid Android,” https://crdroid.net/, 2021.
[14] “Cryptocurrency-Mining Botnet Spreads via ADB, SSH,”

https://www.trendmicro.com/en_us/research/19/f/cryptoc
urrency-mining-botnet-arrives-through-adb-and-spreads-
through-ssh.html, 2021.

[15] “CVE-2020-27057,” https://cve.mitre.org/cgi-bin/cvenam
e.cgi?name=2020-27057, 2021.

[16] “CyanogenMod,” https://github.com/CyanogenMod, 2021.
[17] “Dirty Unicorns,” https://dirtyunicorns.com/, 2021.
[18] “DisplayManager,” https://developer.android.com/referenc

e/android/hardware/display/DisplayManager, 2021.
[19] “Evolution X,” https://evolution-x.org/, 2021.
[20] “GrapheneOS,” https://grapheneos.org/, 2021.

15

https://cs.android.com/android/platform/superproject/+/master:frameworks/base/packages/Shell/
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/packages/Shell/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://www.codeaurora.org/projects/android-for-msm
https://www.codeaurora.org/projects/android-for-msm
https://developer.android.com/guide/components/aidl
https://developer.android.com/guide/components/aidl
https://source.android.com/
https://source.android.com/
https://developer.android.com/reference/android/content/res/package-summary
https://developer.android.com/reference/android/content/res/package-summary
https://developer.android.com/reference/android/graphics/package-summary
https://developer.android.com/reference/android/graphics/package-summary
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/reference/android/util/package-summary
https://developer.android.com/reference/android/util/package-summary
https://developer.android.com/reference/android/os/Binder
https://developer.android.com/reference/android/os/Binder
https://blissroms.com/
https://developer.android.com/reference/android/content/Context#checkCallingPermission(java.lang.String)
https://developer.android.com/reference/android/content/Context#checkCallingPermission(java.lang.String)
https://developer.android.com/reference/android/content/Context#checkCallingPermission(java.lang.String)
https://crdroid.net/
https://www.trendmicro.com/en_us/research/19/f/cryptocurrency-mining-botnet-arrives-through-adb-and-spreads-through-ssh.html
https://www.trendmicro.com/en_us/research/19/f/cryptocurrency-mining-botnet-arrives-through-adb-and-spreads-through-ssh.html
https://www.trendmicro.com/en_us/research/19/f/cryptocurrency-mining-botnet-arrives-through-adb-and-spreads-through-ssh.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-27057
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-27057
https://github.com/CyanogenMod
https://dirtyunicorns.com/
https://developer.android.com/reference/android/hardware/display/DisplayManager
https://developer.android.com/reference/android/hardware/display/DisplayManager
https://evolution-x.org/
https://grapheneos.org/

[21] “Java Native Interface Programming,” http:
//journals.ecs.soton.ac.uk/java/tutorial/native1.1/imp
lementing/index.html, 2021.

[22] “Java Native Interface Specification,” https:
//docs.oracle.com/javase/7/docs/technotes/guides/jni
/spec/jniTOC.html, 2021.

[23] “JNI tips,” https://developer.android.com/training/articles/
perf-jni, 2021.

[24] “LineageOS Android Distribution,” https://lineageos.org/,
2021.

[25] “LLVM bitcode linker,” http://llvm.org/docs/CommandG
uide/llvm-link.html, 2021.

[26] “LLVM’s object file dumper,” https://llvm.org/docs/Co
mmandGuide/llvm-objdump.html, 2021.

[27] “Mapping High Level Constructs to LLVM IR,”
https://mapping-high-level-constructs-to-llvm-ir.readthe
docs.io/en/latest/README.html, 2021.

[28] “MoKee ROM,” https://www.mokeedev.com/, 2021.
[29] “Nitrogen OS,” https://github.com/nitrogen-project, 2021.
[30] “OmniROM,” https://omnirom.org/, 2021.
[31] “Open ADB Ports Used to Spread Possible Satori

Variant,” https://www.trendmicro.com/en_us/research/18/g
/open-adb-ports-being-exploited-to-spread-possible-sat
ori-variant-in-android-devices.html, 2021.

[32] “Permissions defined in Android framework,”
https://cs.android.com/android/platform/superproject/+
/master:frameworks/base/core/res/AndroidManifest.xml,
2021.

[33] “Permissions for ADB shell,” https://cs.andro
id.com/android/platform/superproject/+/master:
frameworks/base/packages/Shell/AndroidManifest.xml,
2021.

[34] “Permissions overview,” https://developer.android.com/gu
ide/topics/permissions/overview, 2021.

[35] “Pixel Experience,” https://download.pixelexperience.org/,
2021.

[36] “Platform Architecture,” https://developer.android.com/gu
ide/platform, 2021.

[37] “Replicant,” https://replicant.us/, 2021.
[38] “set_audio_session_id,” https://cs.android.com/android/pla

tform/superproject/+/master:frameworks/base/media/jni/
android_media_MediaPlayer.cpp;drc=master;l=991, 2021.

[39] “setTouchCalibrationForInputDevice,” https:
//cs.android.com/android/platform/superproject/+/master:
frameworks/base/services/core/java/com/android/server/
input/InputManagerService.java;l=968, 2021.

[40] “Soot,” https://github.com/soot-oss/soot, 2021.
[41] “SurfaceFlinger,” https://source.android.com/devices/gra

phics/surfaceflinger-windowmanager, 2021.
[42] “Whole Program LLVM,” https://github.com/travitch/wh

ole-program-llvm, 2021.
[43] Y. Aafer, J. Huang, Y. Sun, X. Zhang, N. Li, and C. Tian,

“AceDroid: Normalizing Diverse Android Access Control
Checks for Inconsistency Detection,” in Proc. NDSS, 2018.

[44] Y. Aafer, G. Tao, J. Huang, X. Zhang, and N. Li,
“Precise Android API Protection Mapping Derivation and
Reasoning,” in Proc. CCS, 2018.

[45] A. V. Aho, R. Sethi, and J. D. Ullman, “Compilers,
principles, techniques,” Addison wesley, vol. 7, p. 9, 1986.

[46] K. Au, Y. Zhou, Z. Huang, and D. Lie, “PScout: Analyzing
the Android Permission Specification,” in Proc. CCS,
2012.

[47] M. Backes, S. Bugiel, E. Derr, P. McDaniel, D. Octeau,
and S. Weisgerber, “On Demystifying the Android Ap-
plication Framework: Re-Visiting Android Permission
Specification Analysis,” in Proc. USENIX Security, 2016.

[48] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and
A. Somayaji, “A Methodology for Empirical Analysis
of Permission-Based Security Models and Its Application
to Android,” in Proc. CCS, 2010.

[49] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-
R. Sadeghi, “Xmandroid: A new android evolution to
mitigate privilege escalation attacks,” Technical Report
TR-2011-04, 2011.

[50] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.
Sadeghi, and B. Shastry, “Towards Taming Privilege-
Escalation Attacks on Android,” in Proc. NDSS, 2012.

[51] P. P. Chan, L. C. Hui, and S. M. Yiu, “DroidChecker:
Analyzing Android Applications for Capability Leak,” in
Proc. WISEC, 2012.

[52] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into Your
App without Actually Seeing It: UI State Inference and
Novel Android Attacks,” in Proc. USENIX Security, 2014.

[53] S. Chen, L. Fan, G. Meng, T. Su, M. Xue, Y. Xue, Y. Liu,
and L. Xu, “An empirical assessment of security risks of
global android banking apps,” in Proc. ICSE, 2020.

[54] B. F. Demissie, M. Ceccato, and L. K. Shar, “Security
analysis of permission re-delegation vulnerabilities in An-
droid apps,” Empir Software Eng, vol. 25, p. 5084–5136,
2020.

[55] M. Dietz, “QUIRE: Lightweight Provenance for Smart
Phone Operating Systems,” in Proc. USENIX Security,
2011.

[56] A. Edwards, T. Jaeger, and X. Zhang, “Maintaining the
correctness of the Linux security modules framework,” in
Ottawa Linux Symposium, 2002.

[57] A. Edwards, T. Jaeger, and X. Zhang, “Runtime veri-
fication of authorization hook placement for the Linux
security modules framework,” in Proc. CCS, 2002.

[58] D. Efremov and I. Shchepetkov, “Runtime Verification of
Linux Kernel Security Module,” in Proc. FM, 2019.

[59] A. Einarsson and J. D. Nielsen, “A survivor’s guide to
Java program analysis with soot,” BRICS, Department
of Computer Science, University of Aarhus, Denmark,
vol. 17, 2008.

[60] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin, “Permission Re-Delegation: Attacks and De-
fenses,” in Proc. USENIX Security, 2011.

[61] S. A. Gorski, B. Andow, A. Nadkarni, S. Manandhar,
W. Enck, E. Bodden, and A. Bartel, “ACMiner: Extraction
and Analysis of Authorization Checks in Android’s
Middleware,” in Proc. CODASPY, 2019.

[62] S. A. Gorski and W. Enck, “ARF: Identifying Re-
Delegation Vulnerabilities in Android System Services,”
in Proc. WiSec, 2019.

[63] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic
Detection of Capability Leaks in Stock Android Smart-
phones,” in Proc. NDSS, 2012.

[64] A. Grünbacher, “POSIX Access Control Lists on Linux,”
in Proc. USENIX ATC, 2003.

[65] T. Jaeger, A. Edwards, and X. Zhang, “Consistency
analysis of authorization hook placement in the Linux
security modules framework,” ACM Transactions on
Information and System Security (TISSEC), vol. 7, pp.

16

http://journals.ecs.soton.ac.uk/java/tutorial/native1.1/implementing/index.html
http://journals.ecs.soton.ac.uk/java/tutorial/native1.1/implementing/index.html
http://journals.ecs.soton.ac.uk/java/tutorial/native1.1/implementing/index.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/jniTOC.html
https://developer.android.com/training/articles/perf-jni
https://developer.android.com/training/articles/perf-jni
https://lineageos.org/
http://llvm.org/docs/CommandGuide/llvm-link.html
http://llvm.org/docs/CommandGuide/llvm-link.html
https://llvm.org/docs/CommandGuide/llvm-objdump.html
https://llvm.org/docs/CommandGuide/llvm-objdump.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/README.html
https://mapping-high-level-constructs-to-llvm-ir.readthedocs.io/en/latest/README.html
https://www.mokeedev.com/
https://github.com/nitrogen-project
https://omnirom.org/
https://www.trendmicro.com/en_us/research/18/g/open-adb-ports-being-exploited-to-spread-possible-satori-variant-in-android-devices.html
https://www.trendmicro.com/en_us/research/18/g/open-adb-ports-being-exploited-to-spread-possible-satori-variant-in-android-devices.html
https://www.trendmicro.com/en_us/research/18/g/open-adb-ports-being-exploited-to-spread-possible-satori-variant-in-android-devices.html
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/core/res/AndroidManifest.xml
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/core/res/AndroidManifest.xml
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/packages/Shell/AndroidManifest.xml
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/packages/Shell/AndroidManifest.xml
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/packages/Shell/AndroidManifest.xml
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://download.pixelexperience.org/
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://replicant.us/
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/media/jni/android_media_MediaPlayer.cpp;drc=master;l=991
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/media/jni/android_media_MediaPlayer.cpp;drc=master;l=991
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/media/jni/android_media_MediaPlayer.cpp;drc=master;l=991
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/input/InputManagerService.java;l=968
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/input/InputManagerService.java;l=968
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/input/InputManagerService.java;l=968
https://cs.android.com/android/platform/superproject/+/master:frameworks/base/services/core/java/com/android/server/input/InputManagerService.java;l=968
https://github.com/soot-oss/soot
https://source.android.com/devices/graphics/surfaceflinger-windowmanager
https://source.android.com/devices/graphics/surfaceflinger-windowmanager
https://github.com/travitch/whole-program-llvm
https://github.com/travitch/whole-program-llvm

175–205, 2004.
[66] Y. K. Lee, J. Y. Bang, G. Safi, A. Shahbazian, Y. Zhao,

and N. Medvidovic, “A SEALANT for Inter-App Security
Holes in Android,” in Proc. ICSE, 2017.

[67] O. Lhoták and L. Hendren, “Context-Sensitive Points-to
Analysis: Is It Worth It?” in Proc. CC, 2006.

[68] O. Lhoták and L. Hendren, “Scaling Java Points-to
Analysis Using SPARK,” in Proc. CC, 2003.

[69] B. Liu, C. Zhang, G. Gong, Y. Zeng, H. Ruan, and
J. Zhuge, “FANS: Fuzzing Android Native System Ser-
vices via Automated Interface Analysis,” in Proc. USENIX
Security, 2020.

[70] L. Luo, Q. Zeng, C. Cao, K. Chen, J. Liu, L. Liu, N. Gao,
M. Yang, X. Xing, and P. Liu, “System Service Call-
Oriented Symbolic Execution of Android Framework
with Applications to Vulnerability Discovery and Exploit
Generation,” in Proc. MobiSys, 2017.

[71] D. Octeau, P. McDaniel, S. Jha, A. Bartel, E. Bodden,
J. Klein, and Y. Le Traon, “Effective inter-component
communication mapping in android: An essential step
towards holistic security analysis,” in Proc. USENIX
Security, 2013.

[72] C. Qian, X. Luo, Y. Shao, and A. Chan, “On Tracking
Information Flows through JNI in Android Applications,”
in Proc. DSN, 2014.

[73] R. S. Sandhu and P. Samarati, “Access control: principle
and practice,” IEEE communications magazine, vol. 32,
pp. 40–48, 1994.

[74] Y. Shao, X. Luo, and C. Qian, “RootGuard: Protecting
Rooted Android Phones,” IEEE Computer, vol. 47, 2014.

[75] Y. Shao, J. Ott, Q. A. Chen, Z. Qian, and Z. M.
Mao, “Kratos: Discovering Inconsistent Security Policy
Enforcement in the Android Framework,” in Proc. NDSS,
2016.

[76] Y. Sui and J. Xue, “SVF: interprocedural static value-flow
analysis in LLVM,” in Proc. CC, 2016.

[77] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou,
“AutoISES: Automatically Inferring Security Specification
and Detecting Violations,” in Proc. USENIX Security,
2008.

[78] J. Wu, T. Cui, T. Ban, S. Guo, and L. Cui, “PaddyFrog:
Systematically Detecting Confused Deputy Vulnerability
in Android Applications,” Sec. and Commun. Netw., vol. 8,
p. 2338–2349, 2015.

[79] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The
Impact of Vendor Customizations on Android Security,”
in Proc. CCS, 2013.

[80] L. Xue, C. Qian, H. Zhou, X. Luo, Y. Zhou, Y. Shao, and
A. Chan, “NDroid: Towards Tracking Information Flows
Across Multiple Android Contexts,” IEEE Transactions
on Information Forensics and Security (TIFS), vol. 14, p.
814–828, 2019.

[81] T. Zhang, W. Shen, D. Lee, C. Jung, A. M. Azab, and
R. Wang, “PeX: A Permission Check Analysis Framework
for Linux Kernel,” in Proc. USENIX Security, 2019.

[82] X. Zhang, A. Edwards, and T. Jaeger, “Using CQUAL
for Static Analysis of Authorization Hook Placement,” in
Proc. USENIX Security, 2002.

[83] H. Zhou, H. Wang, S. Wu, X. Luo, Y. Zhou, T. Chen,
and T. Wang, “Finding the Missing Piece: Permission
Specification Analysis for Android NDK,” in Proc. ASE,
2021.

[84] H. Zhou, H. Wang, Y. Zhou, X. Luo, Y. Tang, L. Xue,
and T. Wang, “Demystifying Diehard Android Apps,” in
Proc. ASE, 2020.

[85] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang,
“The peril of fragmentation: Security hazards in android
device driver customizations,” in Proc. S&P, 2014.

APPENDIX

A. Building Callgraph for Java System Services

Since it is error-prone to build the callgraph for the entire
Java context because of the huge code base [43, 46, 75], we
choose to build the callgraph for each Java system service. Our
approach will not affect the soundness of the inconsistency
analysis as we let the callgraph include all potential interactions
between Android applications and each Java system service.

Specifically, we take two steps to build the callgraph. First,
to include all possible interactions between applications and
the Java system service, we collect the local interfaces, which
are provided by the Java Binder proxy for applications to call
remote interfaces of the service. In addition, since Soot needs
a single entrypoint (like the main method in Java programs)
to build the callgraph [59], we carefully create one, which
contains the invocations to all collected local interfaces. Note
that, the previous work [67, 75] has pointed out that adopting
context-sensitive points-to analysis to build the callgraph is time-
consuming, and such a complex approach will not dramatically
improve the accuracy of the callgraph. Therefore, we decide to
use SPARK [68], a context-insensitive points-to analysis based
callgraph generation algorithm supported by Soot, to build the
callgraph for each Java system service.

Since the adopted imprecise callgraph generation algorithm
will introduce incorrect callgraph edges, especially for those
associated with IPC, in the second step, we remove them.

 01 interface IDisplayManager extends android.os.IInterface {
 02 public int createVirtualDisplay(*); // local interface }

 /* The class that declares the local interfaces */

 /* The class for the Binder-proxy of Display Manager service */

 07 class IDisplayManager$Stub extends Binder implements IDisplayManager {

 03 class IDisplayManager$Stub$Proxy implements IDisplayManager {

 05 public int createVirtualDisplay(*) {
 06 boolean * = mRemote.transact(*); // IBinder.transact(*) } }
 /* The class for the Binder-stub of Display Manager service */

 08 public boolean onTransact(*) {
 09 this.createVirtualDisplay(*); // "this" refers to DisplayManagerService } }

 04 private IBinder mRemote; // the real type is BinderProxy

 /* The adjusted class for the Binder-stub of Display Manager service */
 10 class DisplayManagerService$BinderService extends IDisplayManager$Stub {
 11 public int createVirtualDisplay(*) { /* ignore the implementation */ } }

Fig. 12: android/hardware/display/IDisplayManager.java.

• Collecting Local Interfaces: We find the class of each Java
Binder proxy to collect the local interfaces. Java Binder proxy
executes the method transact to send the request to the Binder
stub of Java system services [10]. Accordingly, we treat the
classes, implementing the methods that invoke transact, as
the classes for the Binder proxy. For example, as shown in
Fig.12, since createVirtualDisplay calls transact in Line 6,
IDisplayManager$Stub$Proxy is class for the Binder proxy.

17

Once a class of the Java Binder proxy is found, to include
the potential interactions between applications and the service
in the callgraph, we create a method to invoke all this class’s
methods (i.e., local interfaces) that call transact. This method
is treated as the entrypoint for Soot to build the callgraph.

It is worth noting that, when collecting local interfaces, we
also find the class of each Java Binder stub, which is further
used to collect remote interfaces for adjusting the callgraph. The
class of the Binder proxy and the class of the corresponding
Binder stub implement the same interface class [4], where
interfaces of the service are declared. Accordingly, the class,
which implements the same interface class as the class of the
Binder proxy, is the class of the Binder stub. For example, in
Fig.12, since IDisplayManager$Stub$Proxy (i.e., the class for
the Binder proxy) in Line 3 and IDisplayManager$Stub in Line
7 both implement IDisplayManager (i.e., the interface class) in
Line 1, IDisplayManager$Stub is the class of the Binder stub.
Moreover, we observe that the class of the Binder stub may be
extended by another class to implement the inherited interface
methods. In this case, we treat the extending class as the class
for the Binder stub. For instance, since IDisplayManager$Stub
will be extended by DisplayManagerService$BinderService
in Line 10, we treat the latter as the class of the Binder stub.

Once a class of the Java Binder stub is found, all this class’s
methods, which are invoked by the class’s method onTransact,
are the remote interfaces. We store them to the set IJ .

 /* An implementation of the IBinder.transact method */
 01 class Binder implements IBinder {
 02 public final boolean transact(*) {
 03 boolean r = onTransact(*); // implies IBinder.transact may call onTransact
 04 } // other irrelevant code is ignored }

Fig. 13: android/os/Binder.java.

• Adjusting Callgraph: The callgraph built by Soot contains
incorrect edges resulted from the imprecise points-to analysis.
For example, since SPARK cannot accurately determine the
concrete type of the variable mRemote in Line 6 of Fig.12, for
the consideration of soundness, SPARK will create the edges
that connect transact to all its potential callees. Specifically,
regarding the code snippet in Fig.13, since the method transact
calls onTransact (in Line 3), every onTransact method is the
potential callee of transact. SPARK connects transact invoked
by the local interfaces to onTransact defined in the class of
each Binder stub, introducing incorrect edges.

IDisplayManager$Stub$Proxy.createVirtualDisplay

IBinder.transact

IDisplayManager$Stub.onTransact

DisplayManagerService$BinderService.createVirtualDisplay

remove
add

(J1)

(J2)

(J3)

(J4)

removed callgraph edge added/preserved callgraph edge

preserve

preserve local interface

remote interface

Fig. 14: An example of adjusting callgraph edges.

To remove the incorrect edges, we remove those that connect
transact to onTransact. However, it will break the link be-

tween the Binder proxy and Binder stub, causing unreachability
from local interfaces to remote interfaces. Fig.14 shows the
original reachable path (J1;J2;J3) started from a local in-
terface of the Binder proxy (the IDisplayManager$Stub$Proxy
object) to the corresponding remote interface of the Binder stub
(the DisplayManagerService$BinderService object). However,
since J2 is the edge that connects transact to onTransact, it
will be pruned. Thus, no path in the callgraph links the local
interface to its corresponding remote interface. To rebuild the
link, we connect local interfaces to their corresponding remote
interfaces. For instance, we create the edge J4 to reconnect the
two createVirtualDisplay methods.

B. Finding Access Control Statements in Java System Services

We mainly identify two types of access control statements,
i.e., permission check statements and UID check statements.

• Identifying Permission Check Statements: Android pro-
vides a series of permission check methods for Java system
services to examine whether the calling process of IPC has been
granted with the required permission [12]. More specifically,
the permission under check will be passed as a parameter to
permission check methods and each permission is represented
as a string constant in Android framework [75].

Based on this insight, we inspect every parameter value
of each method invocation to identify the permission check
statements. For example, as the invocation in Line 4 of Fig.6a,
since the value of its first parameter is the string constant of the
permission CAPTURE_SECURE_VIDEO_OUTPUT, the invocation of
checkCallingPermission is identified as a permission check
statement. Each time we identify a permission check statement
Sp, we also record the permission p under check and store
them in a statement-permission map Msp := {Sp 7→ p}, which
is then used to determine the access control enforced on the
access restricted JNI methods (see §V-D).

• Identifying UID Check Statements: Android takes two steps
to enforce the UID check. First, it retrieves the UID of the calling
process of IPC. To finish this task, as shown in Line 2 of Fig.6a,
Java system services commonly call the method getCallingUid
of Binder [75]. Second, the retrieved UID is compared with a
constant representing a specific UID (see Table I). For example,
as the if statement in Line 3 of Fig.6a, it checks whether the
UID of calling process of IPC equals to SYSTEM_UID.

Based on this observation, we follow the two steps to find
UID check statements. First, we find the methods that call
getCallingUid from the callgraph. Second, we conduct def-
use analysis [45] on the return value of getCallingUid to find
whether it is used by an if statement. If so, a UID check
statement is found. Each time we find a UID check statement
Su, we also record the value of UID u under check and store
them in a statement-UID map Msu := {Su 7→ u}, which is then
used to determine the access control enforced on the access
restricted JNI methods (see §V-D).

18

	Introduction
	Background
	Access Control
	Android System Services and Binder
	Interacting with Android System Services

	Cross-Context Inconsistency
	Threat Model
	Contrasting Access Control
	Two Types of Cross-Context Inconsistency
	Motivating Examples of Cross-Context Inconsistency

	IAceFinder
	Overview
	Workflow

	Module-J: Analyzing Java System Service
	Building Callgraph of Java System Services
	Collecting JNI Methods
	Identifying Access Control Statements
	Finding Access Restricted JNI Methods

	Module-N: Analyzing Native System Service
	Building Callgraph of Native System Services
	Collecting JNI Functions
	Identifying Access Control Functions
	Finding Access Restricted JNI Functions

	Module-D: Detecting Inconsistency
	Evaluation
	Precision of Correlating Access Control Enforcement to JNI Methods and JNI Functions (RQ1)
	Cross-Context Inconsistent Access Control Enforcement in Recently Released Official Android Systems (RQ2)
	Cross-Context Inconsistent Access Control Enforcement in Open-Source Third-Party Android ROMs (RQ3)
	Case Study

	Limitations of IAceFinder
	Related Work
	Finding Inconsistent Access Control in Android
	Detecting Confused Deputy Problems on Android
	Inspecting Access Control in Traditional Operating Systems

	Conclusion
	Appendix
	Building Callgraph for Java System Services
	Finding Access Control Statements in Java System Services

