
Hybrid Trust Multi-party Computation with
Trusted Execution Environment

Pengfei Wu†, Jianting Ning‡,¶,�, Jiamin Shen†, Hongbing Wang†, Ee-Chien Chang†
†School of Computing, National University of Singapore

‡College of Computer and Cyber Security, Fujian Normal University
¶Institute of Information Engineering, Chinese Academy of Sciences

Email: {wupf,shen jiamin,changec}@comp.nus.edu.sg, {jtning88,florawang.2011}@gmail.com

Abstract—Trusted execution environment (TEE) such as Intel
SGX relies on hardware protection and can perform secure
multi-party computation (MPC) much more efficiently than pure
software solutions. However, multiple side-channel attacks have
been discovered in current implementations, leading to various
levels of trust among different parties. For instance, a party might
assume that an adversary is unable to compromise TEE, while
another might only have a partial trust in TEE or even does
not trust it at all. In an MPC scenario consisting of parties with
different levels of trust, one could fall back to pure software
solutions. While satisfying the security concerns of all parties,
those who accept TEE would not be able to enjoy the benefit
brought by it.

In this paper, we study the above-mentioned scenario by
proposing HYBRTC, a generic framework for evaluating a func-
tion in the hybrid trust manner. We give a security formalization in
universal composability (UC) and introduce a new cryptographic
model for the TEEs-like hardware, named multifaceted trusted
hardware FTH , that captures various levels of trust perceived
by different parties. To demonstrate the relevance of the hybrid
setting, we give a distributed database scenario where a user
completely or partially trusts different TEEs in protecting her
distributed query, whereas multiple servers refuse to use TEE in
protecting their sensitive databases. We propose a maliciously-
secure protocol for a typical select-and-join query in the multi-
party setting. Experimental result has shown that on two servers
with 220 records in datasets, and with a quarter of records
being selected, only 165.82s is incurred which achieves more than
18, 752.58× speedups compared to cryptographic solutions.

I. INTRODUCTION

Secure multi-party computation (MPC) allows a set of
parties to jointly compute a function on their sensitive inputs,
so that nothing will be revealed beyond the output of the
function. Since the appearance of Yao’s garbled circuit [1]
and the protocol of Goldreich-Micali-Wigderson (GMW) [2]
showing its feasibility, MPC has been extensively researched
and well improved in both security and efficiency [3], [4],
[5], [6]. Nowadays, it has been suggested in a wide range
of applications including private information retrieval (PIR)

�Corresponding author

[7], contact tracing discovery [8], privacy-preserving machine
learning [9], and secure DNA matching [10].

Despite extensive efforts in improving efficiency, MPC is
still not sufficiently practical due to a large number of cryp-
tographic operations incurred. For example, in the two-party
computation using Yao’s garbled circuit [1], it is manifested by
representing the function as a boolean circuit and then garbling
all input and output wires for each bit. Then, both parties
engage in the oblivious transfer (OT) and allow one party to
evaluate each gate in the circuit with two input wires one by
one. This process, however, may incur heavy computational
and communication overhead because the circuit complexity
is linear to the input size [11]. It has become one of the major
obstacles in deploying MPC to some real-world applications,
especially when a large dataset is taken as the input, e.g., PIR
and binary search.

Trusted execution environment (TEE) such as commodi-
tized hardware, Intel Software Guard Extensions (Intel SGX)
[12], offers a pragmatic solution to reduce these costs. It
has become an attractive alternative to highly expensive cryp-
tographic MPC protocols. TEE provides a hardware-level
isolated region, commonly referred to as enclave, wherein
code and data cannot be accessed directly by privileged
software, including operating system (OS), Hypervisor, and
system BIOS. This technique offers a user the capability to
thwart a powerful adversary without relying on complicated
cryptographic constructions. However, the security of TEE
relies on additional assumptions that the hardware is tamper-
proof and the hardware vendor is trusted, which some users
do not accept. Additionally, some side-channel vulnerabilities
in an application, e.g., control flow and branch prediction, can
be exploited by an adversary to compromise the security of
the enclave. A series of such attacks have been discovered in
recent years by the research community, e.g., [13], [14], [15],
[16], [17], leading to various levels of trust in TEE.

• Firstly, consider that the data used is highly sensitive, and
any leakage would lead to a critical interest risk. Some
users do not trust TEE at all.

• Secondly, the application codebase could be large and
contributed by various developers. It could include some
libraries that are well-tested and developed by trusted
developers, e.g., Crypto API Toolkit for Intel SGX [18]
and Intel SGX SSL library [19]. Compared to the large
code developed by less well-known third parties, a user
might have higher confidence in these libraries. Therefore,

Network and Distributed Systems Security (NDSS) Symposium 2022
24-28 April 2022, San Diego, CA, USA
ISBN 1-891562-74-6
https://dx.doi.org/10.14722/ndss.2022.24173
www.ndss-symposium.org

𝒞

𝒮1
TEE TEE

③ 𝑂1
① 𝑓𝛼1

 ① 𝑓𝛼𝑚

𝒮𝑚

② 𝑔(𝑓𝛼1
 𝐷1 , … ,𝑓𝛼𝑚

(𝐷𝑚))

③ 𝑂𝑚

complete trust partial trust distrust

Fig. 1: An overview of hybrid trust computing setting.

some users would like to partially trust TEE that they
accept some routines in the libraries can be kept confi-
dential, while other parts of the application potentially
might be leaked by the side-channel attack. In this paper,
we consider a partial trust where a user trusts the imple-
mentation of secure channel and cryptographic primitives
in libraries. She believes that the session key used in her
communication with the enclave, as well as secret keys
would not be leaked via side-channel in TEE execution.

• Lastly, some users believe the application provided by the
vendor is robust enough to prevent side-channel attacks.
So they can choose to completely trust TEE for the sake
of performance benefits in private computation.

Hybrid Trust Computing. Motivated by a mixture of trusts
perceived by different parties, we consider a multi-party com-
putation of a function f composed with a function g that
performs on a client C and multiple TEE-enabled servers
S1, . . . ,Sm, see Fig. 1. Each server Si, i ∈ {1, . . . ,m},
first performs f on a local database Di after receiving a
parameter αi from C. Using the results of fαi(Di), they
jointly work on g and return the partial outputs Oi to C.
Consider that databases contain the utmost sensitive data, so all
servers distrust TEE from each other. Although the parameter
αi used is also sensitive, it induces lesser consequences if
compromised. Therefore, C would like to have higher trusts
in TEEs of all servers. For those applications that are less
likely to be compromised by side-channel attacks in function
evaluation, C completely trusts their TEEs. For others, she
chooses to have partial trust in their TEEs.

We would like to remark that this computing model can
be instantiated to support a wide range of privacy-preserving
applications. For instance, the government makes a distributed
query to multiple distinct financial institutions for gathering
the fiscal spending in the last year. All institutions first filter
out ineligible records and then securely make an aggregation
on the remaining. However, the banking statistics are sensitive
for individuals, and all institutions will take a great credit risk
if some data is leaked during the query execution. Although
the trusted hardware is deployed, e.g., Intel SGX, they still
prefer some standard MPC protocol with a provable security
guarantee. While from the perspective of the government, the
query parameter (“year=2020”) used is not so sensitive as
the databases from institutions. The government can com-
pletely or partially trust an institution’s TEE depending on the
side-channel vulnerability analysis of its program executing a
database query. In this scenario, to satisfy the security concerns
of all parties, one may choose to evaluate both filter and

aggregation using MPC protocols. However, this solution may
introduce expensive overhead without showing the benefits of
TEE. Potentially, a combination of TEE and MPC could reduce
this overhead while satisfying the secrecy needs of each party.

The use of TEEs such as Intel SGX for secure computation
has been investigated in a line of research works, e.g., [26],
[27], [28], [29], [30]. We note that these previous works mainly
focus on the theoretical analysis of TEE-based protocol. It is
still unclear how the security guarantees and how much effi-
ciency gain we can obtain for privacy-preserving applications
in the hybrid trust setting.

A. Challenges and Technical Overview

In this paper, we propose HYBRTC, a generic framework
for performing a hybrid trust multi-party computation wherein
different parties have different trusts in TEEs. It can provably
guarantee the confidentiality of input from all parties by taking
advantage of standard MPC protocol and TEEs.

There are several subtleties arising when designing our
framework. Firstly, how to partition a protocol in hybrid trust
computing should be carefully studied to prevent potential
privacy leakage. A naive way is to put TEE and MPC together
and allow some parts that parties can trust to be performed
inside the enclave, while others use MPC. However, some
intermediate results can be leaked when switching between
protocol partitions, allowing inferences about private inputs.
Choi et al. [27] propose a hybrid approach for secure function
evaluation (SFE) by performing even-round protocols using
Yao’s garbled circuit and executing odd-round ones inside
the enclave. However, their solution is not secure when one
round’s input depends on the previous round. One party
can infer more sensitive information about another party if
she can collect intermediate results. This drawback is also
independently investigated by Felsen et al. [28]. In HYBRTC,
we have a user share a set of secret keys with a partially trusted
TEE by establishing a secure channel between them. They
can process their inputs with keys locally and then feed them
into MPC. If secret keys are protected, the server will learn
nothing about user’s input, thereby keeping confidentiality in
combination of TEE and MPC. Additionally, in order to break
the tie of input and output from two phases f and g, we allow
g to be performed on a randomly chosen part of f ’s output.
In this way, the input of g can be independent of the output
of f , and thus we can remedy the leakage in Choi et al. [27].

Secondly, different from the standard MPC, performing the
function g in the hybrid trust setting requests for a higher
security requirement. Besides the input content, i.e., fαi(Di),
their sizes are also required to be hidden since they mostly
relate to the sensitive parameter αi. Additionally, we only
allow C rather than servers to learn the final output of g, which
poses a stronger security demand than the standard MPC. To
address this issue, we perform g multiple times, each on a
different set of inputs separately. After the protocol terminates,
either party can only learn the size of partial output from the
ciphertext but has no idea about the plaintext and total size.

Last but not least, how to formalize the hybrid trust
computing and provide rigorous security analysis remains a
challenge. In this paper, we introduce a new multifaceted
trusted hardware model FTH as a formalization of TEEs, the

2

function performing in which is parameterized as a proba-
bilistic polynomial time (PPT) Turing machine Prog. When
FTH is not completely trusted, the adversary is able to learn
all incoming messages received by FTH . In HYBRTC, we
follow the universal composability (UC) framework [31], a
simulation-based proof technique, in the security analysis.
Particularly, we parameterize the security definition with two
parameters L, T . The former is a set of leakage function
capturing partial information tolerated to be leaked, and the
latter is a trust function interpreting the trust relationship
between parties.

Contributions. In summary, we make the following main
contributions in this paper.

• We propose HYBRTC, a generic framework for protecting
the confidentiality of all parties’ inputs and outputs in
hybrid trust computing.

• We instantiate our framework in a scenario of performing
a distributed query on multiple databases by proposing a
maliciously-secure protocol for query execution. Our pro-
tocol can support several typical SQL operators, including
SELECT, JOIN, and some aggregate functions COUNT,
addition (+), and subtraction (-).

• We introduce a new cryptographic model for the TEEs-
like hardware named multifaceted trusted hardware FTH .
We also provide rigorous security analysis for hybrid trust
computing in the UC model.

• We implement a prototype of HYBRTC in Intel SGX
and evaluate the overhead incurred by enclave and MPC
protocol. We compare our privacy-preserving distributed
query protocol with state-of-the-art cryptographic solu-
tions, including a maliciously-secure data analytics sys-
tem Senate [35] and three alternatives in the private set
intersection (PSI) [23], [24], [25]. The experimental result
shows the promising efficiency of our scheme.

B. Use Cases

One of our motivations lies in designing a privacy-
preserving protocol allowing a user to submit a distributed
query to multiple databases maintained by different parties. In
principle, HYBRTC can support arbitrary queries because it
builds on generic computing tools, i.e., TEE and MPC pro-
tocol. However, our multi-party computing paradigm is more
relevant to SELECT, JOIN, and some aggregate functions.
All servers first filter out those records unsatisfying the given
condition in WHERE (i.e., the parameter αi) and then privately
join the remaining on a common attribute. This paradigm
serves as one of the most vital building blocks in database
[32], [33] and has been shown in more than 70% SQL queries
[34]. On the basis of this computing paradigm, here, we present
two use cases on the distributed query, each from a different
domain, which can be instantiated by our HYBRTC framework.

Query 1. Banking statistics. The first application has men-
tioned in Section I, where the government queries for the total
fiscal spending last year of different departments in databases
D1, . . . , Dm maintained by m financial institutions, m ≥ 2.
In this setting, the government is willing to completely trust
or partially trust an institution’s TEE depending on whether

its program used is vulnerable to the side-channel attack.
However, for taking a great credit risk, institutions cannot share
their databases with each other. The government may use the
following query.

SELECT D1.spending + ... + Dm.spending
FROM D1 AS c1 ...
JOIN Dm AS cm ON c1.depa_ID = ...

= cm.depa_ID
WHERE c1.year = 2020 AND ...

AND cm.year = 2020;

Query 2. Medical analysis. COVID-19 is a contagious disease
caused by the coronavirus, which has spread worldwide, lead-
ing to an ongoing pandemic. There are m hospitals that wish to
study the symptom, sequela, and the number of people infected
with COVID-19 but do not want to share patient’s information,
m ≥ 2. In addition, the data consumer can completely trust a
hospital’s TEE if its program is robust enough to thwart side-
channel attacks; otherwise, she can have a partial trust in it.
Under this circumstance, the data consumer may use

SELECT symptom, sequela, COUNT(*)
FROM D1 AS c1 ...
JOIN Dm AS cm ON c1.user_ID = ...

= cm.user_ID
WHERE c1.COVID-19 = true ...

AND cm.COVID-19 = true;

C. Related Work

TEE-based Secure Computation. A variety of MPC pro-
tocols built on TEEs have been proposed for passive and
malicious adversary [26], [27], [28], [29], [30]. Gupta et al.
[29] propose a protocol for the SFE problem using Intel
SGX and show how to improve it in the semi-honest model.
Bahmani et al. [26] refine their work by putting only sensitive
programs inside the enclave, and major workloads are left
to the untrusted machine. They also provide rigorous secu-
rity analysis for SGX-based solutions by introducing labeled
attested computation (LAC). The primary difference between
LAC and FTH lies in their intuitive design coming from some
authenticated mechanisms provided by TEEs, e.g., message
authentication code, digital signature, and authenticated en-
cryption. Nevertheless, the purpose of FTH is to offer the
simulator in the UC framework a special capability to extract
the secret inside the enclave and well emulate an adversary’s
behavior. Analogously, Pass et al. [36] formalize the TEE as an
attested execution secure processor Gatt, a global trusted setup
in the UC model. Their formalization is purely theoretical
but bridges the gap between design and provable security of
TEE-based secure computation. As a closely related work,
Choi et al. [27] propose a hybrid solution for two-party SFE
by allowing one party to partly perform the protocol inside
the enclave and the other party evaluate in Yao’s garbled
circuit. However, they have claimed that their approach is
vulnerable in an improper protocol partition. Felsen et al. [28]
utilize Intel SGX to realize both secure and private function
evaluation. They allow the boolean circuit and universal circuit
to be performed inside the enclave to mitigate side-channel
attacks. Some other works are devoted to adapting TEE to
cloud computing and building a privacy-preserving distributed
computing framework, e.g., [30], [37], [38], [39]. However,
most of these previous works consider TEE as a trusted third-
party and secure to perform a function in plaintext. Instead,

3

HYBRTC discusses in a hybrid trust model that not all parties
fully accept this building block. It is a more general case of
reality and thus can be applied to many real-world scenarios.

Privacy-preserving SQL Execution. CryptDB [40] is a prac-
tical database system with a provable confidentiality guarantee
in the face of a malicious administrator. It leverages a SQL-
aware encryption strategy, a set of lightweight symmetric-
key encryption schemes to improve the efficiency of per-
forming a query. Poddar et al. [35] propose a maliciously-
secure analytic system named Senate, which is based on the
garbled circuit to enable multiple parties to run SQL queries
collaboratively. They also provide several optimized circuits
to ensure the system’s practicality. However, these works still
leave much to be desired in concrete communication and
computation because of the heavy cryptographic operations.
HYBRTC highlights another way to design a secure SQL
system by combining the advantages of TEE and MPC. If
more parties are willing to choose TEE, our countermeasure
can benefit from many lightweight operations and win a
significant efficiency boost. Zheng et al. propose Opaque [41],
an SGX-based encrypted SQL analytics platform built on a
popular distributed computing framework, Spark. They re-
design several typical SQL operators using column sort to
hide the memory-level access pattern. Dang et al. [42] also
refine secure SQL execution in SGX by proposing scramble-
then-compute (STC) framework that allows each operator to
be performed following the Melbourne shuffle [43]. However,
different from our work, both [41] and [42] discuss a secure
join on tables maintained by a single administrator, while
more challenges we are facing to handle MPC among different
data holders. Hafiz et al. [44] and Wang et al. [45] introduce
approaches to securely fetch a record in multiple databases
using PIR. The former expresses a contextual index as a
matrix and achieves information-theoretic security by secretly
sharing it to databases. The latter extends the functional secret
sharing (FSS) to support more complex queries, including MAX
and Top-K. They also develop an optimized implementation
of FSS that leverages AES-NI instructions to improve per-
formance in modern hardware. Compared to these schemes,
there is only one server used in the HYBRTC to perform a
SELECT query, thereby not requiring secret-sharing queries
and reconstructing output, which mitigates the computational
burden on the client-side.

II. PRELIMINARIES

Notations. We denote [n] as shorthand of a set of contiguous
integers 1, . . . , n. We use |m| to denote the size of message
m, a ←$ S to denote uniformly and independently sample a
number a from a set S, and m1||m2 to denote a concatenation
of two messages m1,m2.

A. Trusted Execution Environment (TEE)

A TEE (e.g., ARM TrustZone, Intel SGX) is capable of
creating a hardware-protected area of the main processor,
called enclave, which provides strong security features includ-
ing confidentiality and integrity to any code and data it stores
or processes. TEEs are designed to thwart a powerful adversary
by enforcing a dual-world view where even compromised or
malicious systems in the normal world (a.k.a., rich operating
system execution environment (REE)) cannot gain access and

tamper with the secure world. In this work, we leverage Intel
SGX at the server-side to offer strong support for SFE.

Intel SGX [12]. It is a set of X86-64 instruction set architec-
ture (ISA) extensions introduced by Intel Corporation, enabling
the creation of about 92MB secure memory region to store the
data efficiently. Intel SGX allows an enclave to demonstrate
to a remote user that the code has been instantiated securely
and correctly by providing remote attestation mechanism.
A secure and authenticated communication channel is then
established via Diffie-Hellman key exchange, which can be
used to transmit sensitive data securely. However, Intel SGX
is vulnerable to many side-channel attacks, including in page
table [15], [20], dynamic random access memory (DRAM)
[21], [22], [14], and cache [47], [48], [49].

B. PSI and Distributed Join

PSI is one of the typical 2PC, the functionality of which
allows two parties to compute the common items with respec-
tive input sets without revealing anything about the items not in
the intersection. Analogously, in the database, a distributed join
(./, a.k.a., natural join) is a SQL operator that combines two
key-value pairs 〈K1, V1〉, 〈K2, V2〉 stored in different tables
by concatenating them in a matched key, i.e., K1 = K2,
and returns 〈K, (V1, V2)〉, where K is a common key. It can
be considered as a general way to realize PSI because this
protocol has to find all candidate pairs agreeing on the same
key with a given pair from the other party. For example, two
key-value pairs with the same key in both tables will return at
least four items in the output table. However, only one item can
be returned in PSI because the duplicated items are disallowed
in a set. The following two building blocks are commonly used
in constructing a PSI protocol.

Bloom Filter [50]. It is a space-efficient data structure for
probabilistically testing whether an element is a member of a
set. A bloom filter is an array of m bits and parameterized by
k independently uniform hash functions h1, . . . , hk such that
each hi can map an element to m indexes uniformly. To add
an element x into the filter, we first need to hash x using k
hash functions and set all bits at the index of hash values to 1.
To check if an item y is in a set, we also need to hash y using
these k hash functions. If any bit at the index of hash values
is 0, y is definitely not in this set; otherwise, y is probably in
the set. The probability of this false positive is approximate
(1− e−kn/m)k, where n is a total number of items in the set.

Cuckoo Hashing [51]. To mitigate the collision in simple
hashing, cuckoo hashing is proposed to allow an element not
to be hashed to only one bin. In cuckoo hashing, one can
use two hash functions h0, h1 to map n elements to two hash
tables T0, T1, both of which have a capacity of (1 + ε)n bins,
where ε is a rate of redundant storage. We allow each bin to
accommodate at most one element. To assign an element x
into these bins, first check to see whether any of the bins at
the index of h0(x), h1(x) are empty. If so, place x in one of
the empty bins and terminates. Otherwise, randomly choose
m ∈ {0, 1}, evict the element in the bin at the index of
hm(x), and find another bin for it using h1−m. This procedure
is repeated until no more evictions are necessary or reaching
an upper bound of relocations. The last item in the latter case
will be moved to another storage, named stash. Previous work

4

fαi [C,Si](1κ, Di), i ∈ [m]

• Complete trust:

1) C agrees on a session key k ←$ {0, 1}κ with Si’s enclave;

2) C encrypts αi with k, and sends the ciphertext to Si;
3) Si decrypts ciphertext with k and performs Ri ← fαi (Di);

• Partial trust:

1) C shares a secret key k ←$ {0, 1}κ with Si’s enclave;

2) Si computes Ci ← F1(k,Di) in the enclave;

3) C computes ci ← F1(k, αi) in local;

4) C and Si engage in a 2PC protocol Ri ← F2(ci, Ci);

g[C,S1, . . . ,Sm](1κ, R1, . . . , Rm)

1) S1, . . . ,Sm engage in an MPC protocol
(O1, . . . , Om)← g(1κ, R1, . . . , Rm),

where Oi is a part of output received by Si;
2) Si returns Oi to C, and C combines all Oi as the final output.

ΠHyb[C,S1, . . . ,Sm, f, g](1κ, D1, . . . , Dm)

Fig. 2: The HYBRTC framework for hybrid trust MPC

[52] has demonstrated that the probability of stash overflows
is at most O(n−(s+1)), where the stash has a constant size s.

III. HYBRTC: A FRAMEWORK FOR HYBRID TRUST
COMPUTING

The main idea of HYBRTC to evaluate a function is based
on the level of trust that a party has in TEEs from others.
If it is complete trust, the sensitive data of the trusting party
can be simply delivered into the enclave and performed in
plaintext directly. If it is distrust, an MPC protocol is necessary
to compute on their inputs privately. If it is partial trust, we
combine TEE and MPC together by allowing some parts of
the function that rely on a secret key to be processed in TEE,
while others use MPC. An overview of HYBRTC framework
is shown in Fig. 2.

TEE-based two-party computation. In our hybrid trust set-
ting, if C completely trusts the TEE deployed in a server Si, she
first agrees on a session key k with Si’s enclave for securely
delivering her input, e.g., by Diffie-Hellman key exchange. The
key length is dependent on the security parameter κ. Then, she
encrypts sensitive parameter αi with k and sends the ciphertext
to Si. Finally, Si decrypts the parameter in the enclave and
performs the function f on its database Di in plaintext to
obtain intermediate result Ri. If C partially trusts the TEE
from Si, the function f is split into two parts, one is a keyed
function F1 that relies on a secret key k, e.g., a pseudo-random
function; the other is a function F2 without using a secret key.
Initially, C shares k with Si’s enclave1. Then, Si performs F1

in the enclave with the help of k, and C processes her input
αi with k as well. Finally, they conduct a 2PC to evaluate F2

with inputs ci, Ci and get the result Ri.

Cryptographic multi-party computation. Consider that all
servers do not trust the TEE from each other. We have them
engage in a traditional cryptographic multi-party computation

1This can be done by establishing a secure channel that is encrypted by C’s
session key.

Parameters: (mpk,msk) is a verification and signing key pair. K is a set
of keys used in Prog. Initially, set corrupted = false.

• Upon receiving (GETPK, sid) from Pi ∈ {P1, . . . ,Pm}:

1) Return mpk to Pi.

• Upon receiving (CORRUPT, sid,Prog∗) from A:

1) Set corrupted := true;

2) If Prog∗ 6= ∅, Prog := Prog∗.

• Upon receiving (RUN, sid, inpi, trusted) from Pi, i ∈ [m]:

1) If corrupted = true, then
If trusted = 0, send (INPNOTIFY, sid, inpi,K) to A;
If trusted = 1, send (INPNOTIFY, sid, inpi) to A;
If trusted = 2, send (INPNOTIFY, sid, |inpi|) to A;

Else, send (INPNOTIFY, sid, |inpi|) to A;

2) Store inpi in local, let %inpi ← H(inpi);

3) Await (RUN, sid, inpj , trusted) from Pj , let %inpj ← H(inpj);
assert Prog has already installed, run

(outp1, . . . , outpm)← ProgK(inp1, . . . , inpm);

4) Let %outpi ← H(outpi), and
σi ← Sigmsk(sid,Prog, %inpi , %outpi);

5) If corrupted = true and trusted = 0 or 1, then
return (outpi, σi) to Pi and A;

Else, return (outpi, σi) to Pi and (|outpi|, σi) to A.

FTH [Prog, corrupted,K,P1, . . . ,Pm]

Fig. 3: The functionality of FTH

with the output of f as input. At the end of the computation,
each party Si is allowed to receive a part of the final output
Oi. HYBRTC supports the following three typical and generic
ways to realize SFE.

• Garbled circuit. Beaver-Micali-Rogaway (BMR) protocol
[53] is a multi-party version of Yao’s protocol [1]. Instead of
having a single garbler know all circuit secrets, this mechanism
allows each entry of the truth table to be computed by multiple
servers in a secret-sharing manner, and neither party knows
which semantic value is encrypted. Another party can evaluate
the circuit as Yao after providing the table and wire labels of
input values.

• Secret sharing. Assuming that all servers agree on a
ring Zp with a prime order p. For an input number x on
each server Si, it uniformly samples a sequence of numbers
r1, . . . , rm−1 ←$ Zp. Each number ri is sent to one of the
other servers as a share, and the last share, defined as x−Σri
in additive secret sharing, is kept in local. Then, with m sets
of shares from all servers, they can evaluate the arithmetic
circuit of g via the protocol proposed by Ben-Or, Goldwasser,
and Wigderson (BGW) [55], and output a secret-shared result.

• Homomorphic encryption. During initialization, C dis-
tributes a public key pk of homomorphic encryption to all
servers. A function g can be evaluated on ciphertext directly
after servers encrypt their input with pk.

Finally, C can obtain the final result of function by com-
bining separate outputs from parties.

5

A. Multifaceted Trusted Hardware (FTH) Model

Providing formal proof for the security of TEE-based
protocol is not trivial work. One may first formalize the hard-
ware model in cryptography because of the close relationship
between trusted hardware and the protocol’s security. In this
paper, we introduce a novel notion named multifaceted trusted
hardware model FTH that can be passively or maliciously
corrupted. In FTH , we formally model the root key picked by
hardware manufacturer during initialization as a pair of master
keys (mpk,msk). The key mpk is a public verification key that
can be obtained by any parties using a request (GETPK, sid),
and msk is a secret key always kept by FTH to sign the output
of function with a signature scheme (Sig,Ver). The program
performed inside the enclave is parameterized as a PPT Turing
machine Prog with a set of keys K. A boolean flag corrupted
is used to identify whether FTH is corrupted. The functionality
of FTH is shown in Fig. 3.

In FTH , upon receiving a message (CORRUPT, sid,Prog∗)
from the adversary A, FTH first flips corrupted flag to true.
If A is semi-honest, it always sets Prog∗ = ∅. However,
when A is malicious, it can arbitrarily define Prog∗ and FTH
will replace the initial program Prog with Prog∗. FTH also
supports multi-party SFE by calling (RUN, sid, inpi, trusted),
wherein trusted ∈ {0, 1, 2} identifies the level of trust that
input provider Pi has in FTH . Under the condition that
corrupted is true, if Pi distrusts FTH , i.e., trusted = 0,
FTH will reveal the input inpi and K together to A; if Pi
has a partial trust, i.e., trusted = 1, FTH only tells inpi to
A; if Pi completely trusts FTH , i.e., trusted = 2, A can
only learn the size of inpi. Particularly, consider that a trusted
hardware is fully dominated by its localhost. We can always
set the trusted element in RUN message from the platform to
the local hardware as 2.

After that, FTH stores inpi in local and performs a
collision-resistant hash function H to make a commitment to
inpi, so does inpj from each Pj , j 6= i. If Prog has ever been
installed, FTH performs a function with the help of K and
receives outp1, . . . ,outpm. Finally, FTH computes another
hash digest %outpi on outpi and creates a signature σi on the
session id sid, Prog, as well as all hash digests regarding Pi’s
input and output with msk. Their contents can be visible to
A when corrupted = true and trusted = 0 or 1; otherwise,
outpi, σi can be returned to Pi, and A has knowledge on the
output size |outpi| and σi.

B. Threat Model and Security Definition

In this section, we first define the threat model and then
formally present the security of hybrid trust computing in the
UC framework.

Threat Model. In HYBRTC, we assume that all servers are
compromised by malicious adversaries A in the sense that they
can arbitrarily deviate from the protocol specification to learn
the private input of the other party [56]. Such an adversary
can be a database administrator or an insider who has full
access to the server infrastructure from misusing privileges
or exploiting vulnerabilities in the operating system. It is
able to see all messages sent or received by localhost. We
allow A to perform several passive and active attacks, such as
extracting the plaintext by cipher analysis and tampering with

Parameters: The functionality maintains a set of corruption Sc. Initially, it
is set as ∅.

• Upon receiving (CORRUPT, sid,Si) from Sim, i ∈ [m]:

1) If Si 6∈ Sc, set Sc ← Sc ∪ Si;
2) Send (INPUT, sid,Si, Di) to Sim if Di has already received.

• Upon receiving (COMPUTE, sid,Di) from Si, i ∈ [m]:

1) If Si ∈ Sc, notify Sim of (INPUT, sid,Si, Di); Else, notify Sim
of (INPUT, sid,Si, |Di|);

2) If having received all αi from C, compute Ri ← fαi (Di), and
outp← g(R1, . . . , Rm);

3) Provision some leakage information:
– For f , send (LEAKAGE, sid,Lfαi (Di)) to Sim;

– For g, send (LEAKAGE, sid,L(i)g (R1, . . . , Rm)) to Sim.

4) Send (OUTPUTDELIVERY, sid) to Sim. If receiving “ok” from
Sim, return (OUTPUT, sid, outp) to C.

Ff,gmpc[C,S1, . . . ,Sm,L]

Fig. 4: The functionality of hybrid trust computation Ff,gmpc

the intermediate results to learn the privacy according to the
view of protocol performing [56]. Nevertheless, A is unable
to break into the hardware physically to learn the root key.
A client C in HYBRTC is only responsible for submitting a
distributed query, verifying several signatures, and collecting
the final output. We assume that she is always honest and does
not collude with any server. Some other methods can be taken
to thwart a corrupted client, such as access control [57] and
query sensitivity detection [46], which can be orthogonal to our
work, and we refer the interested reader to these literature.

Trust Function. In the hybrid trust computing, we model the
trust relationship between any party P and the enclave of
a TEE-enabled party S as a trust function T . Formally, the
function is defined as follows.

Definition 1 (Trust Function). A trust function T : P × S →
{0, 1, 2} is defined on a set of parties P participating in the
hybrid trust computing, and a set of TEE-enabled parties S ⊂
P . For each party P ∈ P , if it completely trusts the enclave
of another party S ∈ S , we have T (P, S) = 2; if it only has
partial trust, we have T (P, S) = 1; if it distrusts S’s enclave,
say T (P, S) = 0. Especially, we set T (S, S) = 2 to denote a
TEE-enabled party would like to completely trust itself.

Universal Composability. Our security model is designed in
the universal composability (UC) framework [31], which al-
lows analyzing the security of each subroutine in a complicated
protocol separately. If this holds, the protocol composed of
these UC-secure subroutines can be inherently provably secure
in the UC framework as well. In the UC framework, a protocol
is formally modeled as a system of probabilistic Interactive
Turing Machines (ITMs), wherein each represents the program
to be run in a party. We call the process of performing a
protocol in the presence of an adversary A the real world, and
the ideal world defines a simulator Sim emulates the execution
of A with an ideal functionality F . This functionality plays
the role of a “trusted party”, who is able to communicate with
each party in the ideal world. In the hybrid trust computing
setting, we formally model the performing of a protocol using

6

the two-world paradigm as follows.

• The real world execution. A two-phase protocol π for
the hybrid trust computing is an instance of our HYBRTC
framework. For the function f , it can be used to instantiate
Prog in the multifaceted trusted hardware FTH model. The
computation is performed as we have described in Fig. 3. C
and S feed inputs into FTH , and the input and output will be
leaked to A if C partially trusts FTH . For the function g, this
should be performed as the standard cryptographic multi-party
computation, e.g., using the garbled circuit, secret sharing,
and homomorphic encryption, to allow the sensitive inputs of
servers not to be leaked during execution.

• The ideal world execution. In the ideal world, multiple
parties C,S1, . . . ,Sm communicate with the ideal functionality
Ff,gmpc. As depicted in Fig. 4, if the simulator Sim corrupts
a server Si, this server will be added to the corruption set
of Ff,gmpc, and its corresponding input can be leaked to Sim
immediately. For performing a multi-party computation, when
the functionality receives a message (RUN, sid,Di) identifying
Si’s input Di, it first checks whether Si is in the set Sc.
If so, the functionality passes (INPUT, sid,Si, Di) to Sim;
otherwise, only notifies Sim the size of Di. When all inputs
received, Ff,gmpc computes f first, and then g. Note that in the
hybrid trust computing, all servers perform a function fαi in
local, so they are able to learn at least the size of intermediate
results. Here, to enable Sim to successfully emulate in the ideal
world, we also allow it to know such information by providing
a leakage function L associated with servers’ input. For the
function f , we offer Sim the leakage Lfαi (Di) pertaining
to Ri that a server obtains in local. For the function g,
we split the leakage function into m parts L(i)

g , i ∈ [m]
corresponding to the information breaches from the partial
output Oi. After the evaluation terminates, the functionality
returns (OUTPUT, sid,outp) to C if Sim allows for the output
delivery.

The security of hybrid trust computing is formally defined
as follows.

Definition 2 (UC-security). Let a protocol π associated with
a trust function T be an instance of HYBRTC framework. We
say that it can UC-securely realize Ff,gmpc with a set of leakage
functions L, if for any PPT adversaries A, there exists a PPT
simulator Sim, such that none PPT environment Z exists to
distinguish whether it contacts with π and A in the real world
or Sim and Ff,gmpc in the ideal world. We have

REALπ,A,Z,T ≈c IDEALFf,gmpc ,Sim,Z,L,

where ≈c denotes the computational indistinguishability.

IV. PRIVACY-PRESERVING DISTRIBUTED QUERY
EXECUTION WITH HYBRTC

In this section, we show how to adapt HYBRTC framework
to a distributed database query setting involving a client C and
multiple servers S1, . . . ,Sm. Our protocol can support both
use cases in Section I-B by presenting privacy-preserving SQL
operators, including SELECT, JOIN, and aggregate functions
such as COUNT, addition, subtraction.

A. Select

The SELECT algorithm is for compacting the database
by removing those elements unsatisfying a given condition in
WHERE. The baseline method to implement the algorithm using
TEE is to sequentially read each element into the enclave, label
on those should be kicked out, and finally write back unlabeled
elements after re-encryption. However, this solution can leak
the data distribution of unlabeled elements. A system insider
may observe whether an element is written back or not after
reading to the enclave, which will further leak the sensitive
parameter in WHERE.

The intuition of designing SELECT is to hide the sensitive
parameter in WHERE by means of Melbourne shuffle MS [43].
This algorithm can be used to break the tie of data distribution
between input and output without revealing any information
about which element is removed or kept (see Appendix A). In
HYBRTC, a privacy-preserving SELECT with complete trust in
TEE consists of three steps, see Fig. 5. At the beginning, C and
S submit their inputs α and D to FTH , respectively. After that,
FTH performs the program ProgSELECT. It scans through
D, labels on a key-value pair “1” if it should be retained, and
“0” if removed. Then, the labeled database C is obliviously
shuffled using MS to obfuscate the data distribution. Next,
each key-value pair is checked again. If it is labeled on “1”,
put it in R as the final output; otherwise, omit it and continue
this process. Finally, the algorithm returns R to C, while S
receives nothing. To prevent S from maliciously tampering
α and ProgSELECT, C is required to check the signature σ
in the last step. She is able to accept the output only if the
verification succeeds.

The main difference in the variant of partial trust is that
we allow C to trust four secret keys in FTH , including a key
k1 for a pseudo-random function (PRF), a symmetric key k2
for a semantically secure encryption scheme (Gen,Enc,Dec),
as well as two keys used in Melbourne shuffle, one is for
a pseudo-random permutation, and the other is for data re-
encryption. Here, we have C and FTH share keys k1, k2
by establishing a secure channel between them. Under the
condition of partial trust, S can securely perform MS in the
enclave like the variant of complete trust, as well as PRF and
Enc. However, rather than delivering α to FTH directly, we
have C preprocess her input with PRF and check on c and Ck
using 2PC instead. Additionally, the value V of each record is
encrypted with k2. If S has no idea about k1, k2, two strings
Ck, Cv are computationally indistinguishable from the output
of a truly random function and a random string, respectively
[65]. This makes S infeasible to infer α. After receiving R
from FTH , C can decrypt each Cv with k2 to get the output.

By taking advantage of the trusted unit, both variants only
require to scan the database twice, which runs in O(n), while
some other data-oblivious alternatives can be more expensive,
e.g., O(n log n) in [41] using a combination of quicksort and
bitonic sorting network.

B. Distributed Join

A distributed JOIN algorithm is designed to find out all
elements agreeing on the same key in different databases.
An efficient way to realize this functionality in a privacy-
preserving manner can borrow from cryptographic PSI proto-

7

• Upon receiving (RUN1, sid, α, trusted1) from C and
(RUN2, sid,D, trusted2) from S:
– If RUN1 = RUN2 = SELECT and trusted1 = 2:

1) Foreach 〈K,V 〉 ∈ D do
* If K = α,C ← 〈K,V 〉||“1”; Else, C ← 〈K,V 〉||“0”.

2) C̃ ← MS(C);

3) Foreach (〈K,V 〉||r) ∈ C̃ do
* If r = “1”, R← 〈K,V 〉 ∪R; Else, omit it and continue.

4) return outp1 ← R to C and outp2 ← ∅ to S.

– If RUN1 = RUN2 = SELECT and trusted1 = 1:

1) Foreach 〈K,V 〉 ∈ D do
a) Ck ← PRF(k1,K), Cv ← Enc(k2, V);

b) C ← 〈Ck, Cv〉 ∪ C.

2) C̃ ← MS(C);

3) Foreach 〈Ck, Cv〉 ∈ C̃ do
* If Ck = α,R← 〈Ck, Cv〉 ∪R; Else, omit it and continue.

4) return outp1 ← R to C and outp2 ← ∅ to S.

ProgSELECT

Inputs: Parameter α is a condition in WHERE from C. Database D is a set
of key-value pairs 〈K,V 〉 from S.

Initialization:

– C sends the program ProgSELECT to FTH and generates two keys
used in MS in FTH [ProgSELECT], one is for a pseudo-random
permutation, and the other is for data re-encryption.

– (Only for partial trust): C and FTH [ProgSELECT] share another
two keys, including a key k1 ←$ {0, 1}κ for PRF, and a key k2 ←
Gen(1κ), by establishing a secure channel between them.

Protocol description:

• Step-1: (Submit Client’s Input). Upon receiving α from Z , C:
– (Complete trust): send (SELECT, sid, α, 2) to FTH [ProgSELECT];

– (Partial trust): compute c← PRF(k1, α) and send
(SELECT, sid, c, 1) to FTH [ProgSELECT];

• Step-2: (Submit Server’s Input). Upon receiving D from Z , S:
– send (SELECT, sid,D, 2) to FTH [ProgSELECT];

• Step-3: (Verify Results). Upon receiving (R, σ) from FTH , C:

1) send (GETPK, sid) to FTH [ProgSELECT], and await mpk;

2) – (Complete trust): let %inp ← H(α), %outp ← H(R);

– (Partial trust): let %inp ← H(c), %outp ← H(R);

3) assert Vermpk((sid,ProgSELECT, %inp, %outp), σ) = 1;

4) – (Complete trust): return R to Z;

– (Partial trust): foreach 〈Ck, Cv〉 ∈ R, compute V ←
Dec(k2, Cv), return a set of all V to Z;

πSELECT2pc

Fig. 5: A TEE-based select protocol

col, such as ones based on garbled bloom filter [59], [60], [61],
garbled circuit [62], [63], [24], and oblivious pseudo-random
function (OPRF) [64], [23], [25].

In this paper, we present a novel secure distributed join
algorithm on multiple databases that incurs a linear asymp-
totic computational overhead as state-of-the-art counterparts
[23], [24], [25] but with higher concrete efficiency, see Fig.
6. Our protocol processes in two phases including forward

transmission and backward transmission. At the beginning, S1
initializes the forward transmission phase by creating a bloom
filter B1, a cuckoo hashing table T1 (with a stash S1) using
D1, and then delivers B1 to S2. Next, for 2 ≤ i < m, each
server Si filters out ineligible records in Di using Bi−1, creates
Bi,Ti,Si with the remaining, and forwards Bi to Si+1. After
filtering out ineligible records using Bm−1, Sm returns all the
remaining to Sm−1. Particularly, if a server has no record left
after applying the bloom filter, which means that there is no
record agreeing on the same key in databases, the protocol
can output an empty set. In the backward transmission, for
2 ≤ i < m, each server Si searches keys of all records received
from Si+1 in Ti,Si to find all joinable records and aggregates
their values in homomorphic encryption. Then Si delivers these
aggregated records backward to Si−1. After S1 finishes its
aggregation, it returns all records to C as the final output. We
note that all servers are possibly malicious. If a compromised
Si inserts only one record in Bi, it can learn the number
of aggregated records in subsequent servers that agree on the
same key with this target. Therefore, another two steps Verify
Signature are necessary to check whether Prog and some
intermediate results have tampered in this process. For some
aggregate functions, e.g., addition and subtraction, allowing
multiple parties to privately compute over elements agreeing
on the common key, we implement them utilizing Paillier
cryptosystem [54], an efficient encryption scheme supporting
additive homomorphic property (see Appendix B). To enable
more operators such as MIN, MAX, we leave them as an avenue
for future work by replacing Paillier cryptosystem with a
fully homomorphic encryption scheme, e.g., Brakerski-Gentry-
Vaikuntanathan (BGV) cryptosystem [58].

In detail, C initializes the protocol by creating two enclaves
in all servers. One is for the PRF and the other is for JOIN.
Then she produces a key k for PRF and a pair of keys (pk, sk)
for Paillier cryptosystem. Two keys k and pk are delivered to
PRF and JOIN enclave, respectively. Next, all servers prepro-
cess each K in their databases with PRF and engage in a JOIN
protocol that processes as follows. In Step-1, S1 constructs a
bloom filter B1 in local by sending (CREATEBF, sid,D1, 2)
to FTH . FTH inserts each Ck in B1 with ` hash functions
h1, . . . , h`. Meanwhile, S1 sends (CREATECCH, sid,D1, 2)
to FTH to construct an `-ary cuckoo-hashing table T1 with
these ` hash functions. To prevent the data loss, all overflowed
keys are stored in the stash S1. Then, S1 sends signatures
with hash digests of input and output to C and makes a call
(SEARCHBF, sid,B1, 0) to deliver B1 to S2. In Step-2, C
verifies the input for constructing B1 and T1 are identical, i.e.,
%
(1,1)
inp = %

(2,1)
inp , after requesting for mpk using (GETPK, sid).

In addition, she asserts that both σ(1,1), σ(2,1) are valid. If
so, C allows S2 to filter out key-value pairs not agreeing on
the same key using B1 by invoking (SEARCHBF, sid,D2, 2)
in Step-3. All remaining records in a set Rb,2 are used to
create a new bloom filter B2 and cuckoo hashing table T2.
For subsequent servers Si, where 2 < i < m, they process
their databases as in S2, which filter out ineligible records in
Di and forward Bi to Si+1. In Step-4, after Sm returns Rb,m
to Sm−1, C ensures that Sm does not tamper with ProgJOIN

and intermediate results by verifying σ(3,m). If it succeeds,
in Step-5, Sm−1 searches in Tm−1 and Sm−1 individually to
find out all records with matched keys in Dm−1 by calling

8

Upon receiving (RUN, sid,D, trusted) from S:

• If RUN = CREATEBF: First, initialize a bloom filter B with all zeros. Then, foreach 〈Ck, V 〉 ∈ D, insert Ck in B with ` independent hash functions
h1, . . . , h`. Finally, return outp← B to S;

• If RUN = CREATECCH: First, initialize a bloom filter T with all zeros and a stash S = ∅. Then, foreach 〈Ck, V 〉 ∈ D, insert Ck in T with `
independent hash functions h1, . . . , h`. All overflowed Ck are stored in S. Finally, return outp← T,S to S;

Upon receiving (RUN1, sid,D, trusted1) from S1 and (RUN2, sid,D, trusted2) from S2:

• If RUN1 = RUN2 = SEARCHBF: First, parse D = B and initialize a result set Rb = ∅. Then, foreach 〈Ck, V 〉 ∈ D, search Ck in B with `
independent hash functions h1, . . . , h`. If found, let Rb ← Rb ∪ 〈Ck,HE.Enc(pk, V)〉; Finally, return outp1 ← ∅ to S1 and outp2 ← Rb to S2.

• If RUN1 = RUN2 = SEARCHCCH: First, parse D = (T,S) and initialize a result set Rc = ∅. Then, foreach 〈Ck,HE.Enc(pk, V)〉 ∈ D,
search Ck in T,S with ` hash functions h1, . . . , h`. Let V ′ be the corresponding value of a found key, evaluate Cv ← HE.Eval(HE.Enc(pk, V),
HE.Enc(pk, V ′)), Rc ← Rc ∪ 〈Ck, Cv〉; Finally, return outp1 ← Rc to S1 and outp2 ← ∅ to S2.

ProgJOIN

Inputs: Databases D1, . . . , Dm are from S1, . . . ,Sm, respectively. Each of them is a set of key-value pairs 〈K,V 〉.
Initialization:

– C sends a program ProgPRF of PRF to FTH . Then she generates a key k ←$ {0, 1}κ for PRF, and delivers it to FTH [ProgPRF] by establishing
a secure channel between them. In FTH [ProgPRF], Si preprocesses each K in Di by computing Ck ← PRF(k,K), i ∈ [m].

– C sends ProgJOIN to FTH . Then she generates (pk, sk)← HE.KeyGen(1κ) for Paillier cryptosystem, and delivers pk to FTH [ProgJOIN].

Forward transmission phase:

• Step-1: (Create Bloom Filter and Cuckoo Hashing Table). Upon receiving D1 from Z , S1:

1) send (CREATEBF, sid,D1, 2), (CREATECCH, sid,D1, 2) to FTH [ProgJOIN], and await (B1, σ(1,1)), (T1,S1, σ(2,1));

2) let %(1,1)inp ← H(D1), %
(1,1)
outp ← H(B1), %

(2,1)
inp ← H(D1), %

(2,1)
outp ← H(T1,S1);

3) send (SEARCHBF, sid,B1, 0) to FTH [ProgJOIN] and (σ(1,1), %
(1,1)
inp , %

(1,1)
outp), (σ(2,1), %

(2,1)
inp , %

(2,1)
outp) to C;

• Step-2: (Verify Signature I). Upon receiving (σ(1,1), %
(1,1)
inp , %

(1,1)
outp), (σ(2,1), %

(2,1)
inp , %

(2,1)
outp) from S1, C:

1) send (GETPK, sid) to FTH [ProgJOIN], and await mpk;

2) assert %(1,1)inp = %
(2,1)
inp ,Vermpk((sid,ProgJOIN, %(1,1)inp , %

(1,1)
outp), σ(1,1)) = 1, and Vermpk((sid,ProgJOIN, %(2,1)inp , %

(2,1)
outp), σ(2,1)) = 1.

Abort if any of them is not valid; otherwise, send “SIGCHECKEDI” to S2;

• Step-3: (Filter out Ineligible Records using Bloom Filter). Upon receiving Di from Z and “SIGCHECKEDI” from C, Si, 2 ≤ i ≤ m:

1) send (SEARCHBF, sid,Di, 2) to FTH [ProgJOIN], and await (Rb,i, σ
(3,i));

2) – if 2 ≤ i < m, abort and return an empty set to C if there is no record in Rb,i; otherwise, create Bi,Ti,Si with Rb,i as in Step-1, send

corresponding signatures and hash digests to C as in Step-2 but let Si+1 be the “SIGCHECKEDI” receiver;

– if i = m, let %(3,i)inp ← H(Di), %
(3,i)
outp ← H(Rb,i), send (SEARCHCCH, sid, Rb,i, 0) to FTH [ProgJOIN] and (σ(3,i), %

(3,i)
inp , %

(3,i)
outp) to C;

• Step-4: (Verify Signature II). Upon receiving (σ(3,m), %
(3,m)
inp , %

(3,m)
outp) from Sm, C asserts Vermpk((sid,ProgJOIN, %(3,m)

inp , %
(3,m)
outp), σ(3,m)) = 1,

and sends “SIGCHECKEDII” to Sm−1 if it is valid; otherwise, aborts execution.

Backward transmission phase:

• Step-5: (Find All Joinable Records using Cuckoo Hashing). Upon receiving “SIGCHECKEDII” or “SIGCHECKEDIII” from C, Si, i ∈ [m− 1]:

1) send (SEARCHCCH, sid,Ti,Si, 2) to FTH [ProgJOIN], await (Rc,i, σ
(4,i)), and let %(4,i)inp ← H(Ti,Si), %

(4,i)
outp ← H(Rc,i);

2) – if 2 ≤ i ≤ m− 1, send (σ(4,i), %
(4,i)
inp , %

(4,i)
outp) to C and (SEARCHCCH, sid, Rc,i, 0) to FTH [ProgJOIN];

– if i = 1, send (Rc,i, σ
(4,i), %

(4,i)
inp , %

(4,i)
outp) to C;

• Step-6: (Verify Results). Upon receiving (σ(4,i), %
(4,i)
inp , %

(4,i)
outp) from Si, 2 ≤ i ≤ m− 1, or (Rc,i, σ

(4,i), %
(4,i)
inp , %

(4,i)
outp) from Si, i = 1, C:

1) assert %(4,i)inp = %
(2,i)
outp and Vermpk((sid,ProgJOIN, %(4,i)inp , %

(4,i)
outp), σ(4,i)) = 1. Abort if any of them is not valid;

2) – if 2 ≤ i ≤ m− 1, send “SIGCHECKEDIII” to Si−1;

– if i = 1, foreach 〈Ck, Cv〉 ∈ Rc,i, decrypt Cv to obtain V ← HE.Dec(sk, Cv), and return a set of all V to Z .

πJOINmpc

Fig. 6: A multi-party distributed join protocol

(SEARCHCCH, sid,Tm−1,Sm−1, 2). If found, FTH encrypts
the corresponding value and performs an aggregate function

in the Paillier cryptosystem, e.g., addition and subtraction, the
result of which is stored in a set Rc,m−1. Subsequently, all

9

servers Si, where 2 ≤ i < m − 1, process as in Sm−1
by aggregating records in Rc,i+1 with ones in Ti,Si to
produce Rc,i, and passes it backward to Si−1. In each move,
C confirms Ti,Si are not tampered in Step-6 by determining
%
(4,i)
inp = %

(2,i)
outp and ensures σ(4,i) is legitimate. After C validates

the signature from S1, it decrypts each value in Rc,1 with sk
and returns output to Z .

Compared to some existing solutions, our scheme mostly
benefits from TEE in both communication and computation
aspects. On the one hand, we allow Si to preprocess each K
in the database by performing PRF in initialization. If the
secret key k from C is kept confidential under the complete or
partial trust, a server can generate a random string for each key-
value pair directly without performing a two-party OPRF. This
can reduce much network traffic, especially when the database
has a large size. On the other hand, our scheme only involves
some lightweight operations, e.g., create and search in a bloom
filter or cuckoo hashing table, rather than OT instances as in
[23], [25]. This advantage leads to the elimination of some
asymmetric operations used in OT extension, e.g., encrypt and
decrypt messages in OT-bases. Let the size of all databases be
n, our JOIN protocol only introduces O(pn+ Σi∈[m−1]|Bi|)
network traffic, where p = m(m−1)

2 . For each i ∈ [m − 1],
Si constructs a bloom filter Bi and transfers it to Si+1. In
return, Si+1 sends Si a set of pairs Rc,i+1, which is linear to
the total size of databases that have made an aggregation. For
the computational overhead, all servers require performing a
total of O(pn(C + |Si|)) comparisons to find out all matched
keys, where C is a constant. For each key-value pair returned
from Si+1, Si first looks up the cuckoo-hashing table Ti

and compares Ck with all items in bins h1(Ck), . . . , h`(Ck),
which processes in a constant time. And then, Si scans Si
and compares Ck with each item within, which suffers from a
linear overhead to the size of Si. Previous work has shown that
a stash of size O(log n) ensures a negligible failure probability
[66]. To mitigate this overhead, we present three optimization
strategies to relieve the use of stash on each server and reduce
the comparison overhead to only O(pn).

Optimizations. Our first optimization utilizes permutation-
based hashing introduced by Pinkas et al. [67] allowing each
bin to store b− log |T| bits, where b is the number of bits per
key and |T| = (1 + ε)n is the size of a cuckoo hashing table.
Then, we show how to reduce the size of the stash by extending
each bin in T to a constant size d for accommodating multiple
elements. Finally, we introduce a technique inspired by [24]
to set a constant-sized stash by empirical analysis.

• Permutation-based hashing. Let K = KL||KR be the bit
representation of a key K, where |KL| = log |T|, i.e., |KL|
is equal to the number of bins in T, f : [KR] → [KL] be
a random function with the purpose of mapping K to a bin
KL⊕f(KR), which stores a value KR. Because the length of
KR is much shorter than K, this technique can dramatically
reduce the comparison overhead of each item and the server
storage, especially when |K| is not much greater than |T|. The
function f ensures that if two keys K,K ′ are mapped to the
same bin such that KL⊕f(KR) = K ′L⊕f(K ′R), it holds that
KL = K ′L because the stored values are equal, and therefore
K = K ′. For example, we assume that |K| = 64 bits and T
has 250 bins, then only 14 bits for each value are stored in a
bin, which is much shorter than |K| in the original scheme.

10 12 14 16 18 20

Size of dataset (power of 2)

10-12

10-11

10-10

10-9

10-8

F
a
il
u

re
 p

ro
b

a
b

il
it

y
 (

p
e
rc

e
n

ta
g

e
)

2
-30

Fig. 7: Failure probability of cuckoo-hashing when mapping n
elements into 1.2n bins using ` ∈ {4, 5, 6, 7, 8} hash functions
with each bin size d = 18 and stash size |S| = 5.

• Multiple elements in a bin. Kirsch et al. [52] have shown
that the number of evictions requiring to relocate any element
can be essentially bounded by the size of the largest cycle
in a cuckoo graph. Here, it is dominated by the maximum
number of key-value pairs that agree on a common key in the
database. If it is much larger than the number of hash functions
`, the elements with an identical key will collide with a high
probability. This collision will lead to a large stash size and
introduce much overhead in scanning. To reduce the number
of comparisons in S, we allow each bin of T to accommodate
d items instead of one. In this way, hash-collided keys have
more opportunity to reside in T without being overflowed.
Another advantage is that a d-size bin of cuckoo hashing does
no harm to the efficiency of consulting an item. A most recent
work presented by Minaud et al. [68] has demonstrated that it
incurs a worst-case constant time when comparing in ` bins
only with a probability of failure O(n−d−|S|).

• Cuckoo hashing with a constant-sized stash. The key
insight of this technique is to choose a fixed size of stash |S|
and a fixed size of bin d, and then run an empirical evaluation
for a negligible failure probability of cuckoo hashing, e.g.,
2−30 chosen in [63], [24]. Here, the failure refers to an item
cannot be accommodated in both T and S. To achieve such
failure probability, we choose |S| = 5, d = 18, number of bins
|T| as 1.2× of dataset size, and make statistics in different
number of hash functions ` ranging from four to eight, see Fig.
7. From this figure, we observe that when |S| = 5, d = 18, the
number of hash functions required for achieving 2−30 failure
probability is drastically increased for a larger dataset — for
n = 212, we need ` = 4; for n = 214, we need ` = 6; and for
n = 220, we need ` = 8.

C. Hybrid Trust Select-and-Join Protocol

By putting SELECT and JOIN protocols together, we
propose a hybrid trust protocol for realizing select-and-join
execution in m databases, see Fig. 8. In this protocol, C first
creates two enclaves for programs ProgSELECT,ProgJOIN

in all servers. Then, C generates a pair of keys (pk, sk) for
Paillier cryptosystem and a key k for PRF. Two keys pk
and k are delivered to the SELECT enclave of each server.
Similar to Fig. 5, another two keys for the pseudo-random
permutation and data re-encryption are produced to perform
Melbourne shuffle in the enclave. Next, C provides sensitive
parameters α1, . . . , αm to servers as stated in πSELECT2pc and
allows servers to perform SELECT over their databases in

10

Inputs: Parameters α1 . . . , αm are conditions in WHERE from C. Each database Di is from Si, i ∈ [m], which is a set of key-value pairs 〈K,V 〉.
Initialization:

– C sends programs ProgSELECT and ProgJOIN to FTH . Then C generates a pair of keys (pk, sk)← HE.KeyGen(1κ) for Paillier cryptosystem,
a key k ←$ {0, 1}κ for PRF, and delivers pk, k to FTH [ProgSELECT] by establishing a secure channel between them. Additionally, C generates
another two keys used in MS in FTH [ProgSELECT]. One is for a pseudo-random permutation and the other is for the data re-encryption.

– (Only for partial trust): Overall, C requires to trust three secret keys in FTH [ProgSELECT], including k and two keys used in Melbourne shuffle.

Protocol description:

• Step-1: (Perform πSELECT2pc on C and Si, i ∈ [m]). As shown in Fig. 5,

1) Step-1.1: Upon receiving αi from Z , if C completely trusts FTH [ProgSELECT], she sends αi to it; if C partially trusts FTH [ProgSELECT],
she computes ci ← PRF(k, αi) and sends ci to it;

2) Step-1.2: Upon receiving Di from Z , Si sends Di to FTH [ProgSELECT].

3) Step-1.3: If Si is in complete trust, foreach 〈K,V 〉 ∈ Ri, Si performs PRF on K by computing Ck ← PRF(k,K) and encrypts V by
computing Cv ← HE.Enc(pk, V). If Si is in partial trust, foreach 〈Ck, Cv〉 ∈ Ri, Si produces Cv by means of the Paillier cryptosystem.

• Step-2: (Commit to Ri, i ∈ [m]). Upon receiving (Ri, σ
(i)
1) from FTH [ProgSELECT], Si computes %(1,i)inp ← H(Di), %

(1,i)
outp ← H(Ri), and sends

(σ
(i)
1 , %

(1,i)
inp , %

(1,i)
outp) to C.

• Step-3: (Verify Signature). Upon receiving (σ
(i)
1 , %

(1,i)
inp , %

(1,i)
outp) from Si, i ∈ [m], C sends (GETPK, sid) to FTH [ProgSELECT], and awaits mpk.

Then she verifies whether σ(i)
1 is legitimate. If so, C sends “SIGCHECKEDI” to S1; otherwise, aborts execution.

• Step-4: (Perform πJOINmpc on Servers). As shown in Fig. 6,

1) Step-4.1: Upon receiving “SIGCHECKEDI” from C, S1 creates B1,T1,S1 with R1. It computes %(2,1)inp ← H(R1), %
(2,1)
outp ← H(B1), %

(3,1)
inp ←

H(R1), %
(3,1)
outp ← H(T1,S1), sends B1 to S2 and (σ(2,1), %

(2,1)
inp , %

(2,1)
outp), (σ(3,1), %

(3,1)
inp , %

(3,1)
outp) to C;

2) Step-4.2: Upon receiving (σ(2,i), %
(2,i)
inp , %

(2,i)
outp), (σ(3,i), %

(3,i)
inp , %

(3,i)
outp) from Si, C sends (GETPK, sid) to FTH [ProgJOIN], and awaits mpk.

Then she asserts %(1,i)outp = %
(2,i)
inp = %

(3,i)
inp and σ(2,i), σ(3,i) are valid. If so, C sends “SIGCHECKEDII” to Si+1; otherwise, aborts execution;

3) Step-4.3: Upon receiving “SIGCHECKEDII” from C,

– If 2 ≤ i ≤ m− 1, Si filters out ineligible records in Ri with Bi−1, uses the remaining to create Bi,Ti,Si, and forwards Bi to Si+1. Then
it sends corresponding signatures and hash digests to C as in Step-4.2;

– If i = m, Si randomly splits Ri into m parts Ri,1, . . . , Ri,m in FTH [ProgJOIN], and filters out ineligible records in Ri,1 with Bi−1.
Then it computes %(4,i)inp ← H(Ri,1), %

(4,i)
outp ← H(Rb,i), sends Rb,i to Si−1 and (σ(4,i), %

(4,i)
inp , %

(4,i)
outp) to C;

– All servers conduct another m − 1 number of πJOINmpc separately. Each takes R1, . . . , Rm−1, Rm,i as inputs and lets Si be the receiver of
output Oi.

4) Step-4.4: Upon receiving (σ(4,m), %
(4,m)
inp , %

(4,m)
outp) from Sm, C verifies σ(4,m) and sends “SIGCHECKEDIII” to Sm−1 if it is valid;

5) Step-4.5: Upon receiving “SIGCHECKEDIII” or “SIGCHECKEDIV” from C, Si aggregates records in Rc,i+1 with ones in Ti,Si to get Rc,i.
Then it computes %(5,i)inp ← H(Ti,Si), %

(5,i)
outp ← H(Rc,i). If 2 ≤ i ≤ m− 1, Si sends Rc,i to Si−1 and (σ(5,i), %

(5,i)
inp , %

(5,i)
outp) to C. If i = 1,

Si sends (Rc,i, σ
(5,i), %

(5,i)
inp , %

(5,i)
outp) to C.

• Step-5: (Verify Results). Upon receiving (σ(5,i), %
(5,i)
inp , %

(5,i)
outp) from Si, 2 ≤ i ≤ m− 1, or (Rc,i, σ

(5,i), %
(5,i)
inp , %

(5,i)
outp) from Si, i = 1,

1) C asserts %(5,i)inp = %
(3,i)
outp and verifies σ(5,i). If any of them is not valid, C aborts execution;

2) – If 2 ≤ i ≤ m− 1, C sends “SIGCHECKEDIV” to Si−1;

– If i = 1, foreach 〈Ck, Cv〉 ∈ Rc,i, C decrypts Cv to obtain V ← HE.Dec(sk, Cv). Let Oi be a set of all V . After collecting all partial
outputs from other m− 1 separate πJOINmpc , C combines and returns them to Z .

πSELECT,JOINmpc

Fig. 8: A hybrid trust multi-party select-and-join protocol

local, which outputs a set of intermediate results R1, . . . , Rm.
However, consider that R1, . . . , Rm are used as input of JOIN,
wherein all servers do not trust each other. We have each server
Si in complete trust hide the real key-value pairs in Ri using
PRF and Paillier cryptosystem before returning Ri from FTH .
Additionally, rather than using a symmetric key encryption
scheme as in SELECT, each server in partial trust produces
Cv in Paillier cryptosystem as well. This enables two records
agreeing on a common key can be aggregated in JOIN directly

without revealing any information. Subsequently, C checks the
hash digests and signatures of SELECT output to determine
whether an adversary maliciously tampers with her input. If
not, C sends SIGCHECKEDI to S1 and keeps hash digests of
R1, . . . , Rm, which are used in integrity verification later.

The key insight to hide the final output of query R1 ./
. . . ./ Rm from one server is to randomly split the input Rm
into m parts Rm,1, . . . , Rm,m in the enclave, and perform

11

10 12 14 16 18 20

Size of dataset (power of 2)

10-2

100

102

104

106

108

R
u

n
n

in
g

 t
im

e
 (

s
)

Select (Complete trust)

Select (Partial trust)

[35]

(a)

10 12 14 16 18 20

Size of dataset (power of 2)

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
n

ta
g

e
 (

%
)

Encryption Shuffle Others

(b)

Fig. 9: (a) Performance comparisons of three privacy-
preserving select operators; (b) normalized running time of
our select protocol (the variant of complete trust).

R1 .// Rm−1 ./ (Rm,1 ∪ . . . ∪Rm,m)

= (R1 .// Rm−1 ./ Rm,1) ∪ . . .
∪ (R1 .// Rm−1 ./ Rm,m)

instead (Step-4.3). We allow each Si to learn about the partial
output Oi = R1 .// Rm−1 ./ Rm,i by performing JOIN
on different sets of input separately. We note that there may
be t records left in Rm, where t is less than m. To deal with
this circumstance, Sm can split Rm into t parts and allow t of
m servers have partial output. Alternatively, C can randomly
choose another server that has enough records to play the role
of Sm and reorder the message transmission among servers.
After the protocol terminates, each server Si returns Oi to
C, and C decrypts each value with the private key sk before
confirming all servers’ operations are legitimate.

Analogous to πJOINmpc , to handle malicious adversary, all
servers in this protocol are also required to check the integrity
of input and output, as well as the correctness of the program
used. For example, when the output of SELECT is used as
input of JOIN, C will check the consistency by comparing
two corresponding hash digests. The correctness can also be
guaranteed by verifying the signature returned from FTH . The
adversary has no idea to tamper with the program and makes
a forged signature because no one knows the master key msk.

V. SECURITY ANALYSIS

In this section, we demonstrate the security of our scheme.
We assume that once a malicious adversary corrupts a server,
the underlying hardware FTH is compromised as well, i.e.,
FTH is able to collude with its localhost. We first give a
formal proof that two subroutines SELECT and JOIN are able
to UC-securely realize ideal functionalities of two-party SFE
F2pc and multi-party SFE Fmpc, respectively. For the sake
of coherence, we leave the definitions of F2pc and Fmpc to
Appendix C. And then, we show that our privacy-preserving
select-and-join protocol is able to UC-securely realize Ff,gmpc in
the FTH -hybrid model. Formally, we have

Theorem 1. If the signature scheme used in FTH is ex-
istentially unforgeable under chosen message attacks (EUF-
CMA), the Decisional Diffie-Hellman assumption holds in the
adopted algebraic group, the symmetric key encryption scheme
(Gen,Enc,Dec) is semantically secure, the pseudo-random
permutation for Melbourne shuffle and PRF are cryptograph-
ically secure, the SELECT protocol described in Fig. 5 is able

10 12 14 16 18 20

Size of dataset (power of 2)

0

100

200

300

400

500

600

R
u

n
n

in
g

 t
im

e
 (

m
s
)

Bloom filter (Construct)

Bloom filter (Search)

Cuckoo hashing (Construct)

Cuckoo hashing (Search)

(a)

10 12 14 16 18 20

Size of dataset (power of 2)

0

0.2

0.4

0.6

0.8

1

P
e
rc

e
n

ta
g

e
 (

%
)

Bloom filter Cuckoo hashing Others

(b)

Fig. 10: (a) Performance comparisons of bloom filter and
cuckoo hashing; (b) normalized running time of our join
protocol

to UC-securely realize F2pc in the FTH -hybrid model with the
presence of a malicious adversary A.

Proof: The proof is given in Appendix D.

Theorem 2. If the signature scheme used in FTH is EUF-
CMA, PRF is a cryptographically secure PRF function,
h1, . . . , h`,H are collision-resistant hash functions, and homo-
morphic encryption scheme HE is semantically secure under
DCRA, the JOIN protocol described in Fig. 6 is able to
UC-securely realize Fmpc in the FTH -hybrid model with the
presence of a malicious adversary A.

Proof: The proof is given in the full version.

Theorem 3. If the signature scheme used in FTH is EUF-
CMA, the Decisional Diffie-Hellman assumption holds in the
adopted algebraic group, the pseudo-random permutation for
Melbourne shuffle and PRF are cryptographically secure,
h1, . . . , h`,H are collision-resistant hash functions, the ho-
momorphic encryption scheme HE is semantically secure, the
hybrid trust select-and-join protocol described in Fig. 8 is able
to UC-securely realize Ff,gmpc in the FTH -hybrid model with the
presence of a malicious adversary A.

Proof: The proof is given in the full version.

VI. IMPLEMENTATION

We implement a prototype of HYBRTC2 and designed
protocols with the help of OpenEnclave v0.15.0, an open-
sourced SDK3 for building enclave applications in Intel SGX.
We choose OpenEnclave because it provides all basic function
calls to manage the life-cycle of an enclave, including data
sealing and attestation, as well as some pluggable libraries
for necessary language and cryptographic support. Our im-
plementation consists of two separate programs, the client
application and the enclave application in servers. Both of
them are programmed in C++ language with about 4,700 LOC
totally.

Client Application. The functionality of the client consists
of remote attestation and system initialization for providing
necessary keys. In our implementation, the SGX remote attes-
tation relies on the Data Center Attestation Primitives (DCAP)

2https://github.com/HybrTC/HybrTC
3https://github.com/openenclave/openenclave/releases/tag/v0.15.0

12

https://github.com/HybrTC/HybrTC
https://github.com/openenclave/openenclave/releases/tag/v0.15.0

TABLE I: Performance comparisons of proposed distributed join to three state-of-the-art schemes, KKRT16 [23], PSTY19 [24],
and CM20 [25] (the number in the bracket is the ratio of overhead to ours).

n
Communication overhead (MB) Computational overhead (ms)

KKRT16 PSTY19 CM20 Ours KKRT16 PSTY19 CM20 Ours
210 0.12 (0.02) 2.31 (0.37) 79.03 (12.54) 6.30 90.23 (1.10) 527.09 (6.44) 346.14 (4.23) 81.89
212 0.29 (0.05) 9.22 (1.46) 79.06 (12.53) 6.31 91.17 (1.01) 1,144.19 (12.65) 376.54 (4.16) 90.44
214 1.26 (0.20) 36.86 (5.83) 79.18 (12.53) 6.32 129.64 (1.13) 9,545.58 (83.06) 505.76 (4.40) 114.92
216 3.90 (0.62) 147.42 (23.25) 79.65 (12.56) 6.34 242.57 (1.33) 1.39E+05 (762.76) 1,027.58 (5.65) 181.91
218 17.56 (2.75) 589.66 (92.28) 81.53 (12.76) 6.39 791.33 (1.62) 2.28E+06 (4,666.38) 3,097.40 (6.33) 489.58
220 60.00 (9.02) 2,358.63 (354.68) 89.04 (13.39) 6.65 3,279.84 (1.44) 3.59E+07 (15,795.87) 11,237.71 (4.94) 2,273.24

technology that enables client and enclave to agree on a 256-
bit symmetric key in Elliptic-curve Diffie–Hellman (ECDH).
By invoking an OpenEnclave API oe_get_evidence(),
a server can create a quote signed in Elliptic Curve Digital
Signature Algorithm (ECDSA) and a client can verify its va-
lidity by invoking oe_verify_evidence(). All messages
between the client and enclave are encrypted in the AES-GCM
algorithm with the agreed symmetric key. We also implement
the key generation algorithm of Paillier cryptosystem in the
client, and the security parameter we choose is 128-bit.

Enclave Application in Server. We partition the application
running in servers into the sensitive and insensitive two parts.
The sensitive part of the program is kept within the enclave.
It consists of two handlers for executing SELECT and JOIN
queries, which define Melbourne shuffle, and some algorithms
for creating and searching in bloom filter and cuckoo hashing
table. In our implementation, the hash function we use is the
SHA512 algorithm, and the symmetric key encryption scheme
in SELECT is the AES-GCM algorithm with a 256-bit key.
They are implemented by mbedtls4 library. For the insensitive
part, we define some additional functions for I/O and message
transmission.

VII. EXPERIMENTS AND EVALUATION

In this section, we evaluate HYBRTC by benchmarking
SELECT and JOIN protocols and comparing them with state-
of-the-art counterparts, including a maliciously-secure data
analytic system Senate [35], and three alternatives in PSI,
KKRT16 [23], PSTY19 [24], and CM20 [25]. In addition,
we simulate and assess the efficiency of executing two SQL
queries in Section I-B.

Experimental Setup. All our experiments are conducted on a
machine equipped with a 3.70GHz Intel Xeon E-2176G CPU,
64GB RAM, and 440GB disk. The operating system running
on the machine is Ubuntu 18.04 LTS. In our evaluation, we
randomly produce a dataset for each server in the protocol,
which consists of 220 records, and each record is 64-bit.

A. Performance of SQL Operators

In this experiment, we assess two privacy-preserving SQL
operators SELECT and JOIN. We reproduce the filter al-
gorithm in Senate using ABY framework5 and Fig. 9 (a)
shows the comparison result with our scheme. From this
figure, we find that the proposed SELECT with complete trust

4https://github.com/openenclave/openenclave-mbedtls
5https://github.com/encryptogroup/ABY

only introduces 0.10-141.69s computational overhead, which
achieves approximately 75.24-21,625.11× speedups of Senate
when the dataset size ranges from 210 to 220 records. This
efficiency gap is primarily attributable to some plaintext-based
operations exploited in our approach. Under the assumption of
complete trust, C is allowed to deliver the sensitive parameter
to the enclave directly, which enables labeling on key-value
pairs to be performed in plaintext. We can also find that the
variant of partial trust is slightly slower, which incurs an extra
0.08-23.56s. This overhead mainly comes from the pseudo-
random function and data encryption on each record, as well
as network transmission for these ciphertexts. To achieve the
confidentiality of WHERE, Senate resorts to evaluating a large
garbled circuit between C and S, which can be more expensive.
Additionally, another PIR is required in Senate to retrieve those
labeled results obliviously. Both of them incur much time cost,
which is more than 3.1×106s in a 220-size dataset. From Fig.
9 (b), we can observe that the Melbourne shuffle dominates the
performance of the SELECT algorithm by accounting for 71.2-
82.1% of total overhead. It is due to the fact that this process
requires to randomly permute the whole dataset, which suffers
a lot from serialization and deserialization of intermediate
array in entering and exiting an enclave (performing ECALL
and OCALL functions). As the size of the dataset increases, the
system demands more time to pad dummy data and re-encrypt
the whole dataset, leading to a long delay for servers.

To show the practicality of our JOIN protocol, we choose
and compare with three state-of-the-art PSI protocols as base-
lines [23], [24], [25]. Here, we set two servers in our protocol
to have a fair comparison with these two-party PSIs. Table
I reveals the comparison results in both communication and
computation. From this table, we find that KKRT16 does the
best in communication when the dataset size is smaller than
216, the reason for which comes from the underlying OPRF
constructed by OT extension protocol [69]. It allows both
servers to engage in k instances of 1-out-of-2 OT protocols on
each column of two m×k matrices (m� k), a.k.a. base-OTs,
and then extend the messages received to achieve m effective
OTs by some symmetric operations. Our scheme requires more
network bandwidth than theirs because two joint key-value
pairs have to be aggregated using homomorphic encryption,
which produces a much longer ciphertext. Nevertheless, as the
dataset size increases, more OT instances are required, and
both servers have to transfer longer messages by constructing
larger matrices, which is up to 60.0MB over a 220-size dataset.
Additionally, we find that both PSTY19 and CM20 are less
practical than ours because the receiver in PSTY19 has to
evaluate a large polynomial in programmable PRF (PPRF)

13

https://github.com/openenclave/openenclave-mbedtls
https://github.com/encryptogroup/ABY

10 12 14 16 18 20

Size of dataset (power of 2)

100

102

104

106

108

R
u

n
n

in
g

 t
im

e
 (

s
)

Ours

KKRT16[23]+[35]

PSTY19[24]+[35]

CM20[25]+[35]

167.78s

~18,544.56

(a) Query 1

10 12 14 16 18 20

Size of dataset (power of 2)

100

102

104

106

108

R
u

n
n

in
g

 t
im

e
 (

s
)

Ours

KKRT16[23]+[35]

PSTY19[24]+[35]

CM20[25]+[35]

165.82s

~18,752.58

(b) Query 2

Fig. 11: Performance comparisons of executing two SQL
queries in use cases.

constructed by the sender, the size of which is square to the
dataset size. Also, despite extending to multi-point OPRF in
CM20, this scheme still relies on the heavy use of OT protocol.
However, our approach eliminates the use of OT and allows
both servers to discard most inappropriate items locally using
bloom filter, which incurs much less network communication
than PSTY19 and CM20.

As shown in this table, our scheme achieves the lowest
computational overhead in all sizes of the dataset. Particularly,
when the size of a database is 220, the proposed JOIN only
incurs 2.27s time cost that achieves four order-of-magnitude
speedups compared to PSTY19. Although both PSTY19 and
CM20 possess the same linear asymptotic overhead as ours,
we achieve better concrete efficiency for the following two
aspects. On the one hand, instead of involving in some highly
compute-intensive operation, e.g., evaluate circuit in PSTY19,
our JOIN protocol only leverages lightweight cryptographic
primitives like hashing and PRF. On the other hand, to achieve
malicious security, our scheme only needs to check a signature
produced by the trusted hardware without introducing extra
overhead. Hence, from the analysis above, we may believe
that the proposed distributed join protocol is a good choice
for the privacy-preserving SQL execution, especially for some
cases with a large database.

To show the performance impact of the bloom filter and
cuckoo hashing, we test the running time of constructing and
searching in them with a different size of datasets, and report
their take-ups in the JOIN protocol, see Fig. 10. From Fig.
10(a), we can find that constructing and searching in a cuckoo
hashing table are slightly slower than in a bloom filter. For
example, when the dataset size is up to 220, constructing and
searching in a cuckoo hashing table approximately introduce
449.09ms and 591.42ms, respectively, while only 389.52ms
and 346.93ms in a bloom filter. It is well understood because
cuckoo hashing requires comparing in bins item-by-item and
handling relocation in construction, which incur more time
cost than operations in bits of the bloom filter. As depicted in
Fig. 10(b), we observe that bloom filter and cuckoo hashing
increasingly dominate the performance of JOIN when a larger
dataset is taken as input. If we set the dataset size as 220,
they approximately account for 38.01% and 47.57% of total
overhead, respectively. It is mainly because for the purpose of
accuracy, our protocol relies on filtering out ineligible records
in the bloom filter and finding out all joinable records in the
cuckoo hashing. The larger dataset that is taken as input, the
longer time this process lasts. For some other components,
such as homomorphic encryption, they have a less significant

2 4 6 8 10

Number of Servers

0

20

40

60

70

R
u

n
n

in
g

 t
im

e
 (

s
)

(a) Join

2 4 6 8 10

Number of Servers

100

101

102

103

R
u

n
n

in
g

 t
im

e
 (

s
)

(b) Select-and-join

Fig. 12: Performance comparisons of proposed schemes in a
different number of servers.

effect on the performance, which only account for 14.42% of
total overhead when dataset size is 220.

B. Performance of SQL query execution

When we put SELECT and JOIN algorithms together, Fig.
11 shows the performance comparisons of two SQL queries in
HYBRTC with a combination of Senate and three alternatives
in PSI. Here, we set two servers in our protocol, wherein one’s
TEE is in complete trust, and the other is in partial trust. We
simulate the execution by randomly filtering out three-quarters
of elements and joining all remainings. From these figures,
we can observe that HYBRTC achieves approximately 2.47-
18,752.58× speedups of three purely MPC-based approaches
and all baselines seem to incur the same overhead. It is mainly
because a garbled circuit based filter algorithm dominates the
performance of query execution, which accounts for more than
97.8% of total overhead. In HYBRTC, by taking advantage
of the hybrid trust setting, we can get rid of this heavy
cryptographic operation, which reduces much online overhead.
In addition, we can find that Query 1 roughly incurs an extra
0.21-1.96s than Query 2. Consider that the SQL queries studied
in this paper follow the same paradigm; the main difference
between these two queries lies in the aggregate function. In
Query 1, we accumulate values of elements that agree on
the same key while simply counting their numbers in Query
2. Therefore, the efficiency difference is introduced from
performing homomorphic addition. However, this overhead
does no harm to the useability of the system, which only
accounts for 0.1-1.2% of running time.

C. Scalability

In this experiment, we scale up the system from two to
ten servers to assess the scalability of the proposed JOIN
protocol and hybrid trust select-and-join protocol. We simulate
the select-and-join execution by randomly filtering out three-
quarters of records and joining all remainings. Additionally,
half of the servers’ TEEs in the select-and-join are chosen to
be completely trusted, and the other half are partially trusted.
As depicted in Fig. 12, we can find that both protocols scale
well among multiple parties. Specifically, when we increase
the number of servers from two to ten, the JOIN protocol
incurs 64.68s more cost when n = 220, 16.51s more cost when
n = 216, and 4.40s more cost when n = 212. In the select-
and-join protocol, the SELECT part is performed in parallel
on servers. Therefore, when we increase the number of servers
from two to ten, the extra running time mainly comes from

14

JOIN part, which is about 15.28s, 4.20s, and 1.16s on the
dataset size n = 220, 216, and 212, respectively.

VIII. CONCLUSION

In this paper, we proposed HYBRTC framework, which
provides a general way to realize hybrid trust multi-party com-
putation by combining TEE and cryptographic MPC protocol.
We first formalized the TEEs-like hardware by introducing
a notion of multifaceted trust hardware FTH , that captures
three levels of trust in TEE, including complete trust, partial
trust, and distrust. To show the practicality of our scheme,
we instantiated the framework in the privacy-preserving dis-
tributed query setting by presenting some typical secure SQL
operations, including SELECT, JOIN, and some aggregate
functions. Detailed security analysis in the UC model demon-
strated that the proposed HYBRTC achieves the goal of secure
computing only with little tolerated privacy leakage to the
malicious adversary. Finally, we benchmarked the framework
in two use cases and compared it with Senate as well as three
state-of-the-art alternatives in PSI. The experimental results
showed that the presented select-and-join protocol outperforms
all three baselines, indicating the promising efficiency of our
scheme.

ACKNOWLEDGEMENT

This research is supported by the National Research Foun-
dation, Singapore under its Strategic Capability Research Cen-
tres Funding Initiative, the National Natural Science Founda-
tion of China under Grant 61972094, Grant 62032005, the Sci-
ence Foundation of Fujian Provincial Science and Technology
Agency (2020J02016), and the young talent promotion project
of Fujian Science and Technology Association. Any opinions,
findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the views
of National Research Foundation, Singapore.

REFERENCES

[1] Andrew C. Yao, Protocols for Secure Computations (extended abstract).
In FOCS, pp. 160-164, 1982.

[2] O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental
Game, or a Completeness Theorem for Protocols with Honest Majority.
In STOC, pp. 218-229, 1987.

[3] V. Kolesnikov. Gate Evaluation Secret Sharing and Secure One-round
Two-party Computation. In AsiaCrypt, pp. 136-155, 2005.

[4] S. Zahur, M. Rosulek, and D. Evans. Two Halves Make a Whole. In
EuroCrypt, pp. 220-250, 2015.

[5] B. Pinkas, T. Schneider, and N. P. Smart. Secure Two-Party Computation
Is Practical. In AsiaCrypt, pp. 250-267, 2009.

[6] T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K.
Ohara, A. Watzman, O. Weinstein. Optimized Honest-Majority MPC for
Malicious Adversaries - Breaking the 1 Billion-Gate Per Second Barrier.
In S&P, pp. 843-862, 2017.

[7] S. Angel, H. Chen, K. Laine. PIR with Compressed Queries and
Amortized Query Processing. In S&P, pp. 962-979, 2018.

[8] T. Duong, D. H. Phan, and N. Trieu. Catalic: Delegated PSI Cardinality
with Applications to Contact Tracing. In AsiaCrypt, pp. 870-899, 2020.

[9] P. Mohassel, and Y. Zhang. SecureML: A System for Scalable Privacy-
Preserving Machine Learning. In S&P, pp. 19-38, 2017.

[10] J. Katz, and L. Malka. Secure Text Processing with Applications to
Private DNA Matching. In CCS, pp. 485-492, 2010.

[11] E. Boyle, N. Gilboa, and Y. Ishai. Breaking the Circuit Size Barrier for
Secure Computation Under DDH. In CRYPTO, pp. 509-539, 2016.

[12] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. Innovative
Technology for CPU based Attestation and Sealing. In HASP, pp. 1-7,
2013.

[13] S. Lee, M-W. Shi, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring
Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing.
In USENIX Security, pp. 557-574, 2017.

[14] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. SgxPectre
Attacks: Stealing Intel Secrets from SGX Enclaves via Speculative
Execution. In EuroS&P, pp. 142-157, 2019.

[15] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks: Deter-
ministic Side Channels for Untrusted Operating Systems. In S&P, pp.
640-656, 2015.

[16] D. Evtyushkin, R. Riley, N. Abu-Ghazaleh, and D. Ponomarev. Branch-
Scope: A New Side-Channel Attack on Directional Branch Predictor. In
ASPLOS, pp. 693-707, 2018.

[17] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M.
Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre Attacks: Exploiting Speculative Execution. In S&P, pp. 1-19,
2019.

[18] Crypto API Toolkit for Intel(R) SGX. [Online] Available: https://github.
com/intel/crypto-api-toolkit. 2021.

[19] Intel Software Guard Extensions SSL. [Online] Available: https://github.
com/intel/intel-sgx-ssl. 2021.

[20] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler, H.
Tang, and C. A. Gunter. Leaky Cauldron on the Dark Land: Understand-
ing Memory Side-Channel Hazards in SGX. In CCS, pp. 2421-2434,
2017.

[21] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, et al. Meltdown:
Reading Kernel Memory from User Space. In USENIX Security, pp. 973-
990, 2018.

[22] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci, et al.
Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution. In USENIX Security, pp. 991-1008,
2018.

[23] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient
Batched Oblivious PRF with Applications to Private Set Intersection.
In CCS, pp. 818-829, 2016.

[24] B. Pinkas, T. Schneider, O. Tkachenko, and A. Yanai. Efficient Circuit-
Based PSI with Linear Communication. In EuroCrypt, pp. 122-153, 2019.

[25] M. Chase, and P. Miao. Private Set Intersection in the Internet Setting
From Lightweight Oblivious PRF. In CRYPTO, pp. 34-63, 2020.

[26] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A-R. Sadeghi, G. Scerri,
and B. Warinschi. Secure Multiparty Computation from SGX. In FC, pp.
477-497, 2017.

[27] J. I. Choi, D. Tian, G. Hernandez, C. Patton, B. Mood, T. Shrimpton,
K. R. B. Butler, and P. Traynor. A Hybrid Approach to Secure Function
Evaluation using SGX. In AsiaCCS, pp. 100-113, 2019.

[28] S. Felsen, Á. Kiss, T. Schneider, and C. Weinert. Secure and Private
Function Evaluation with Intel SGX. In CCSW, pp. 165-181, 2019.

[29] D. Gupta, B. Mood, J. Feigenbaum, K. Butler, and P. Traynor. Using
Intel Software Guard Extensions for Efficient Two-Party Secure Function
Evaluation. In FC, pp. 302-318, 2016.

[30] P. Wu, Q. Shen, R. H. Deng, X. Liu, Y. Zhang, and Z. Wu. ObliDC: An
SGX-based Oblivious Distributed Computing Framework with Formal
Proof. In AsiaCCS, pp. 86-99, 2019.

[31] R. Canetti. Universally Composable Security: A New Paradigm for
Cryptographic Protocols. In FOCS, pp. 136-145, 2001.

[32] Y. Wang, and K. Yi. Secure Yannakakis: Join-Aggregate Queries over
Private Data. In SIGMOD, 2021.

[33] R. Li, M. Riedewald, and X. Deng. Submodularity of Distributed Join
Computation. In SIGMOD, pp. 1237-1252, 2018.

[34] L. Rupprecht, W. Culhane, P. R. Pietzuch. SquirrelJoin: Network-Aware
Distributed Join Processing with Lazy Partitioning. In Proceedings of the
VLDB Endowment, 10(11): 1250-1261, 2017.

[35] R. Poddar, S. Kalra, A. Yanai, R. Deng, R. A. Popa, and J. M. Heller-
stein. Senate: A Maliciously-Secure MPC Platform for Collaborative
Analytics. In USENIX Security, 2021.

15

https://github.com/intel/crypto-api-toolkit
https://github.com/intel/crypto-api-toolkit
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl

[36] R. Pass, E. Shi, and F. Tramèr. Formal Abstractions for Attested
Execution Secure Processors. In EuroCrypt, pp. 260-289, 2017.

[37] F. Schuster, M. Costa, C. Fournet, C. Gkantsidis, M. Peinado, G.
Mainar-Ruiz, and M. Russinovich. VC3: Trustworthy Data Analytics in
the Cloud using SGX. In S&P, pp. 38-54, 2015.

[38] O. Ohrimenko, M. Costa, C. Fournet, C. Gkantsidis, M. Russinovich,
and D. Sharma. Observing and Preventing Leakage in MapReduce. In
CCS, pp. 1570-1581, 2015.

[39] T-T-A Dinh, P. Saxena, E-C Chang, B-C Ooi, and C. Zhang. M2R:
Enabling Stronger Privacy in MapReduce Computation. In USENIX
Security, pp. 447-462, 2015.

[40] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan.
CryptDB: Protecting Confidentiality with Encrypted Query Processing.
In SOSP, pp. 85-100, 2011.

[41] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica. Opaque: An Oblivious and Encrypted Distributed Analytics
Platform. In USENIX NSDI, pp. 283-298, 2017.

[42] H. Dang, T. T. A. Dinh, E-C. Chang, and B. C. Ooi. Privacy-Preserving
Computation with Trusted Computing via Scramble-then-Compute. In
PoPETs, 3(2017):21-38, 2017.

[43] O. Ohrimenko, M. T. Goodrich, R. Tamassia, and E. Upfal. The
Melbourne Shuffle: Improving Oblivious Storage in the Cloud. In ICALP,
pp. 556-567, 2014.

[44] S. M. Harfiz, and R. Henry. Querying for queries: Indexes of queries
for efficient and expressive IT-PIR. In CCS, pp. 1361-1373, 2017.

[45] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia.
Splinter: Practical Private Queries on Public Data. In USENIX NSDI, pp.
299-313, 2017.

[46] D. L. Quoc, M. Beck, P. Bhatotia, R. Chen, C. Fetzer, and T. Strufe.
PrivApprox: Privacy-Preserving Stream Analytics. In USENIX ATC, pp.
659-672, 2017.

[47] J. Götzfried, M. Echert, S. Schinzel, and T. Müller. Cache Attacks on
Intel SGX. In EuroSys, pp. 1-6, 2017.

[48] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache
Side-Channel Attacks are Practical. In S&P, pp. 605-622, 2015.

[49] A. Moghimi, G. Irazoqui, and T. Eisenbarth. Cachezoom: How SGX
Amplifies the Power of Cache Attacks. In CHES, pp. 69-90, 2017.

[50] B. H. Bloom. Space/time Trade-offs in Hash Coding with Allowable
Errors. In Communications of the ACM, 13(7):422–426, 1970.

[51] R. Pagh, and F. F. Rodler. Cuckoo Hashing. In Algorithm - ESA, pp.
121-133, 2001.

[52] A. Kirsch, M. Mitzenmacher, and U. Wieder. More Robust Hashing:
Cuckoo Hashing with a Stash. In SIAM Journal on Computing, 39(4):
1543-1561, 2009.

[53] D. Beaver, S. Micali, and P. Rogaway. The Round Complexity of Secure
Protocols. In STOC, pp. 503-513.

[54] P. Paillier. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. In EuroCrypt, pp. 223-238, 1999.

[55] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems
for Non-cryptographic Fault-tolerant Distributed Computation. In STOC,
pp. 351-371, 1988.

[56] Y. Lindell. Secure Multiparty Computation for Privacy Preserving Data
Mining. In The Journal of Privacy and Confidentiality, 1(1):59–98, 2005.

[57] C. Xiang, Y. Wu, B. Shen, M. Shen, H. Huang, T. Xu, Y. Zhou,
C. Moore, X. Jin, and T. Sheng. Towards Continuous Access Control
Validation and Forensics. In CCS, pp. 113-129, 2019.

[58] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. Fully Homomorphic
Encryption without Bootstrapping. In ACM Transactions on Computation
Theory, pp. 1-36, 2014.

[59] C. Dong, L. Chen, and Z. Wen. When Private Set Intersection Meets
Big Data: An Efficient and Scalable Protocol. In CCS, pp. 789-800, 2013.

[60] R. Inbar, E. Omri, and B. Pinkas. Efficient Scalable Multiparty Private
Set-Intersection via Garbled Bloom Filters. In SCN, pp. 235-252, 2018.

[61] P. Rindal, and M. Rosulek. Improved Private Set Intersection Against
Malicious Adversaries. In EuroCrypt, pp. 235-259, 2017.

[62] Y. Huang, D. Evans, and J. Katz. Private Set Intersection: Are Garbled
Circuits Better than Custom Protocols? In NDSS, 2012.

[63] B. Pinkas, T. Schneider, C. Weinert, and U. Wieder. Efficient Circuit-
based PSI via Cuckoo Hashing. In EuroCrypt, pp. 125-157, 2018.

[64] D. Kales, C. Rechberger, T. Schneider, M. Senker, and C. Weinert.
Mobile Private Contact Discovery at Scale. In USENIX Security, pp.
1447-1464, 2019.

[65] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random
Functions (Extended Abstract). In FOCS, pp. 464-479, 1984.

[66] M. T. Goodrich, and M. Mitzenmacher. Privacy-Preserving Access of
Outsourced Data via Oblivious RAM Simulation. In ICALP, pp. 576-587,
2011.

[67] B. Pinkas, T. Schneider, G. Segev, and M. Zohner. Phasing: Private Set
Intersection using Permutation-based Hashing. In USENIX Security, pp.
515-530, 2015.

[68] B. Minaud, and C. Papamanthou. Note on Generalized Cuckoo Hashing
with a Stash. In arXiv:2010.01890, 2020. [Online] Available: https://
arxiv.org/abs/2010.01890.

[69] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending Oblivious
Transfers Efficiently. In CRYPTO, pp. 145-161, 2003.

APPENDIX A
MELBOURNE SHUFFLE

Melbourne shuffle [43] randomly permutes n elements in
an input set I to an output set O. It processes in two phases,
including a distribution phase and a cleanup phase. Another
array T of size O(n log n) is leveraged for storing intermediate
results.

In the distribution phase, the algorithm randomly samples
a permutation ω : {0, 1}

√
n × {0, 1}κ → {0, 1}

√
n associated

with a key k and continuously reads batches of
√
n elements

from I . For each element x in a batch, the algorithm puts it into
another bucket ω(k, x) in T after re-encryption. According to
the balls-into-bins model, a set of p log n encrypted elements
from each batch is written into a bucket in T , where p is
a constant. If there are less than p log n elements in one set
shuffling to a bucket, dummy data is necessary to pad that set to
p log n. Here, the padded dummy element should be the same
length as the real element to make an adversary indistinguish
any two of them after data encryption. On the other hand,
if a set has more than p log n elements, excessive elements
will be overflowed and the algorithm cannot ensure data-
obliviousness. Fortunately, its probability can be negligible
for some well-chosen parameters, or a user can simply try
some other permutations by starting the algorithm anew. In
the cleanup phase, the algorithm reads each bucket from T ,
filters out all dummy data, and arranges remaining elements
to their final locations in O. For the design details about the
Melbourne shuffle, we may refer the reader to [43].

APPENDIX B
PAILLIER CRYPTOSYSTEM

The Paillier cryptosystem [54] is a probabilistic asymmet-
ric encryption scheme that supports additive homomorphic
encryption whose security is designed on the hardness of
decisional composite residuosity assumption (DCRA). Pail-
lier cryptosystem contains a set of four PPT algorithms
(HE.KeyGen,HE.Enc,HE.Eval,HE.Dec), which are defined
as follows.

• (pk, sk)← HE.KenGen(1κ) is a probabilistic algorithm
to generate a pair of asymmetric keys (pk, sk). Given a
security parameter κ, the algorithm randomly samples two
large prime numbers p, q, and computes n = p · q. It then

16

https://arxiv.org/abs/2010.01890
https://arxiv.org/abs/2010.01890

selects a random integer g from a group Z∗n2 such that the
order of g is at least n. Lastly, the algorithm returns a tuple
(n, g) as the public key pk, and λ = lcm(p− 1, q− 1) as
the secret key sk, where lcm(·, ·) means the least common
multiple of two input numbers.

• C ← HE.Enc(pk,m) is a probabilistic algorithm to
encrypt a given message m ∈ Zn with pk. It randomly
samples a number r ←$ Z∗n, and computes the ciphertext
as C = gm · rn mod n2.

• C ′ ← HE.Eval(C1, C2) is a deterministic algorithm to
compute on two ciphertexts C1, C2 based on the additive
homomorphic property. The Paillier cryptosystem sup-
ports the following addition computation on ciphertext.

HE.Enc(pk,m1) · HE.Enc(pk,m2)

= (gm1 · rn1) · (gm2 · rn2) mod n2

= gm1+m2 · (r1r2)n mod n2

= HE.Enc(pk,m1 +m2).

• m ← HE.Dec(sk, C) is a deterministic algorithm to
decrypt a ciphertext C ∈ Zn2 with sk. The plaintext can
be solved by computing L(Csk mod n2)

L(gsk mod n2)
mod n, where

L(x) = x−1
n .

Definition 3 (Semantic security). The Paillier cryptosystem
is semantically secure under the DCRA, if for any PPT
adversaries A, there exists a negligible function negl(·) such
that

Pr

(pk, sk)← HE.KenGen(1κ);

(m0,m1)← A(pk); b←$ {0, 1};
C ← HE.Enc(pk,mb); b

′ ← A(C);

: b = b′

 ≤ negl(κ)

APPENDIX C
IDEAL FUNCTIONALITIES F2PC AND FMPC

Fig. 13 defines an ideal functionality of two-party SFE.
Upon receiving a corruption message (CORRUPT, sid,Pi)
from Sim, F2pc leaks Pi’s input inpi to Sim. For evaluating
a function, when F2pc receives a message (RUN, sid, inp1), it
first checks whether P1 is corrupted. If not, the size of P1’s
input will be sent to Sim. After having received another input
inp2 from P2, F2pc evaluates f , and notifies Pi of outpi after
being permitted by Sim. In the multi-party version of SFE (Fig.
14), upon receiving a corruption message, Fmpc reveals input
of the corrupted party to Sim. If having received all inputs,
the functionality performs a function g on them. Similar to the
Ff,gmpc in Fig. 4, we also allow Sim to learn some information
regarding the size of intermediate results that can be obtained
by A in the real world. It is defined in the leakage function
L(i)
g (inp1, . . . , inpm). After Sim permits the output delivery,
Fmpc notifies outpi to Pi.

APPENDIX D
SECURITY PROOF

Theorem 1 Revisited. If the signature scheme used in FTH is
existentially unforgeable under chosen message attacks (EUF-
CMA), the Decisional Diffie-Hellman assumption holds in the
adopted algebraic group, the symmetric key encryption scheme

• Upon receiving (CORRUPT, sid,Pi), i ∈ {1, 2} from Sim:

1) Send (INPUT, sid,Pi, inpi) to Sim if inpi has already received.

• Upon receiving (COMPUTE, sid, inp1) from P1:

1) If P1 has not been corrupted, notify Sim of (INPUT, sid, |inp1|);

2) If having received (COMPUTE, sid, inp2) from P2, compute
(outp1, outp2)← f(inp1, inp2);

3) Send (OUTPUTDELIVERY, sid) to Sim. If receiving “ok” from
Sim, send (OUTPUT, sid, outpi) to Pi.

F2pc[f,P1,P2]

Fig. 13: The functionality of two-party SFE F2pc

• Upon receiving (CORRUPT, sid,Pi), i ∈ [m] from Sim:

1) Send (INPUT, sid,Pi, inpi) to Sim if inpi has already received.

• Upon receiving (COMPUTE, sid, inp1) from P1:

1) If P1 has not been corrupted, notify Sim of (INPUT, sid, |inp1|);

2) If having received (COMPUTE, sid, inpi) from all Pi, compute
(outp1, . . . , outpm)← g(inp1, . . . , inpm);

3) Send (LEAKAGE, sid,L(i)g (inp1, . . . , inpm)) to Sim;

4) Send (OUTPUTDELIVERY, sid) to Sim. If receiving “ok” from
Sim, send (OUTPUT, sid, outpi) to Pi.

Fmpc[g,P1, . . . ,Pm]

Fig. 14: The functionality of multi-party SFE Fmpc

(Gen,Enc,Dec) is semantically secure, the pseudo-random
permutation for Melbourne shuffle and PRF are cryptograph-
ically secure, the SELECT protocol described in Fig. 5 is able
to UC-securely realize F2pc in the FTH -hybrid model with the
presence of a malicious adversary A.

Proof: We construct a simulator Sim in the ideal world
that internally runs a copy of A. Any messages between Z and
A or between A and FTH are simply forwarded to Sim. Also,
Sim simulates the interface of FTH and honest parties. In
detail, according to whether S has been corrupted, we consider
the following two cases

Case 1. S is corrupted, while C is honest.

• If C has complete trust in FTH , upon receiving
(INPUT, sid, |α|) from F2pc, Sim randomly generates a pa-
rameter α∗ as canonical input of C such that |α∗| = |α|,
and then sends (COMPUTE, sid, α∗) to FTH . After receiving
(SELECT, sid,D, 2) from S to FTH , due to the fact that S has
been corrupted, Sim can extract its real input D and forwards
it to F2pc. Using α∗ and D, Sim acts as FTH to compute
SELECT algorithm outp∗ ← fα∗(D) by picking a pseudo-
random permutation ω for Melbourne shuffle, labeling on D,
and filtering out items unsatisfying a predicate α∗. Finally, Sim
leaks |outp∗| to A. Upon receiving (OUTPUTDELIVERY, sid)
from F2pc, Sim allows it to pass outp to C in the ideal world.

• If C has partial trust in FTH , the difference in the
simulation is that after generating a canonical input α∗ such
that |α∗| = |α|, Sim randomly picks a string c∗ for it using
PRF. Then Sim forwards c∗ to A. Using c∗ and D, Sim
acts as FTH to compute SELECT algorithm outp∗ ← fc∗(D)
by preprocessing each key-value pair in D with PRF and a

17

symmetric key encryption scheme, picking a pseudo-random
permutation ω for Melbourne shuffle, and filtering out ineligi-
ble records. Finally, Sim reveals outp∗ to both C and A.

We first prove the indistinguishability of real world and
ideal world for the complete trust case through a sequence of
hybrid worlds.

Claim 1. Assuming that the signature scheme used in FTH
is EUF-CMA, a malicious A cannot forge a valid signature
except with negligible probability AdvSig(A, κ).

Proof: Straightforward reduction to the security of digital
signature. If A has no idea about the secret key msk of FTH ,
Z can distinguish between two worlds only if A can forge
a signature attributed with its input and output. This happens
at most with AdvSig(A, κ), the probability of breaking un-
forgeability assumption if A pre-obtains at most a polynomial
number of chosen-text signatures on κ.

Hybrid H0. This is the simulated execution as described
above.

Hybrid H1a. Identical to H0, but the secret key used in the
secure channel is agreed on via Diffie-Hellman key exchange.

Claim 2. Assuming that the DDH assumption is hard, then
H1a is computationally indistinguishable from H0.

Proof: The security is straightforwardly reduced to the
DDH assumption. We can show that if there exists a PPT
adversary who is able to distinguish H0 and H1a, then we
can construct another adversary who can break the hardness
of DDH assumption with advantage AdvDDH(A, κ).

Hybrid H2a. Identical to H1a except that instead of sending
a ciphertext of canonical input α∗ to S’s enclave, Sim now
sends the honest C’s real input α.

Claim 3. Assuming that the communication channel between C
and S’s enclave is encrypted in a semantically secure encryp-
tion scheme, then H2a is computationally indistinguishable
from H1a.

Proof: Straightforward reduction to the semantic security.
Since |α∗| = |α|, any PPT adversaries only has a negligible
advantage AdvSS(A, κ) to distinguish ciphertexts of α∗, α that
encrypted with the same secret key. Therefore, A only has at
most probability of AdvSS(A, κ) to distinguish H1a and H2a

from extracting useful information in ciphertext.

Hybrid H3. Identical to H2a except that instead of using a
pseudo-random permutation ω, Sim obliviously shuffles input
database D with a truly random permutation.

Claim 4. Assuming that ω is cryptographically secure, then
H3 is computationally indistinguishable from H2a.

Proof: Straightforward reduction to the security of a
pseudo-random permutation, which guarantees output of the
permutation is identically distributed to a truly random one,
such that any PPT adversaries can distinguish them only with
a negligible advantage AdvPRP(A, κ). Based on this, Z only
has at most AdvPRP(A, κ) probability to distinguish H2a and
H3 from learning access pattern during shuffling process.

Therefore, for the complete trust variant of SELECT pro-

tocol, A’s view of H3 is identical to the simulated execution
except with a negligible sum of distinguishing advantages
such that AdvSig(A, κ) + AdvDDH(A, κ) + AdvSS(A, κ) +
AdvPRP(A, κ) = negl(κ).

Then we show the indistinguishability of real world and
ideal world for the partial trust case. The difference in the
proof is to replace the following two hybrids H1b,H2b with
H1a,H2a.

Hybrid H1b. Identical to H0, but instead of performing a
pseudo-random function PRF on a key K, Sim picks a truly
random number for it over {0, 1}|K|.
Claim 5. If PRF : {0, 1}|K| × {0, 1}κ → {0, 1}|K| is a
cryptographically secure PRF with adversarial distinguishing
advantage AdvPRF(A, κ), H0 and H1b are indistinguishable
with distinguishing advantage |R| · AdvPRF(A, κ).

Proof: The security is straightforwardly reduced to the
pseudo-random function. Let RF denote a truly random func-
tion over {0, 1}|K| to {0, 1}|K|. If having no idea about k,
any PPT adversary is impractical to distinguish PRF(k,K)
and RF(K) with non-negligible advantage AdvPRF(A, κ). In
SELECT protocol, there are |R| key-value pairs returned to
C. Hence, H1b is computationally indistinguishable from H0

except with |R| · AdvPRF(A, κ) probability.

HybridH2b. Identical toH1b except that instead of encrypting
a real value V in S’s enclave, Sim now encrypts a random
value V ′ but with the same length.

Claim 6. Assuming that the symmetric key encryption scheme
(Gen,Enc,Dec) used is semantically secure, then H2b is
computationally indistinguishable from H1b.

Proof: Similar to the proof of Claim 3. The security
is straightforwardly reduced to the semantic security. If two
messages are the same length, any PPT adversaries only has
a negligible advantage AdvSS(A, κ) to distinguish ciphertexts
of them encrypted with the same secret key. Consider that
there are |R| records in the output set. So the probability to
distinguish H1b and H2b is at most |R| · AdvSS(A, κ) for a
PPT adversary A.

Therefore, for the partial trust variant of SELECT protocol,
A’s view of H3 is identical to the simulated execution except
with a negligible sum of distinguishing advantages such that
AdvSig(A, κ) + |R| · AdvPRF(A, κ) + |R| · AdvSS(A, κ) +
AdvPRP(A, κ) = negl(κ).

Case 2. Both C and S are honest.

In this case, Sim simulates both C and S by randomly
generating inputs for them and then forwarding to F2pc. After-
wards, F2pc returns an output to C. It is trivial to see that two
worlds in this case can be computationally indistinguishable
by taking advantage of secure channel in the protocol.

This concludes the proof of Theorem 1.

18

	Introduction
	Challenges and Technical Overview
	Use Cases
	Related Work

	Preliminaries
	Trusted Execution Environment (TEE)
	PSI and Distributed Join

	HybrTC: A Framework for Hybrid Trust Computing
	Multifaceted Trusted Hardware (FTH) Model
	Threat Model and Security Definition

	Privacy-preserving Distributed Query Execution with HybrTC
	Select
	Distributed Join
	Hybrid Trust Select-and-Join Protocol

	Security Analysis
	Implementation
	Experiments and Evaluation
	Performance of SQL Operators
	Performance of SQL query execution
	Scalability

	Conclusion
	References
	Appendix A: Melbourne Shuffle
	Appendix B: Paillier Cryptosystem
	Appendix C: Ideal functionalities F2pc and Fmpc
	Appendix D: Security Proof

